
A NOTE ON THE HERMITE-HADAMARD INEQUALITY
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It is well known that every convex function f : [a; b]! R can be modi�ed at the
endpoints to become convex and continuous. An immediate consequence of this
remark is the integrability of f: The integral of f can then be estimated by the
Hermite-Hadamard Inequality,
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f(x) dx � f(a) + f(b)

2
:

(HH) can be easily derived via the midpoint and trapezoidal approximation to the
middle term. Moreover, under the presence of continuity, equality occurs (in either
side) only for linear functions. Interesting applications of (HH) are to be found in
[4], pp. 137-151. See also [3].
The argument used by F. Burk [1] to prove the Geometric, Logarithmic and

Arithmetic Mean Inequality can be embedded in an abstract scheme, leading us to
a dual Hermite-Hadamard Inequality. Comparing to a straightforward application
of (HH) ; a number of examples will illustrate that the latter often yields better
results.

Theorem (The Dual Hermite-Hadamard Inequality). Suppose that I and J are
two intervals and F : I ! J is an invertible mapping such that F and F�1 both
are di¤erentiable. If moreover
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is nonlinear and convex, then
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for every a < b in I:
When

�
F�1

�0
is nonlinear and concave, the inequalities above should be reversed.

Proof. One applies the inequality (HH) to the derivative of F�1; taking into
account that

1

F (b)� F (a)

F (b)Z
F (a)

�
F�1(y)

�0
dy =

b� a
F (b)� F (a)

and
�
F�1(y)

�0
= 1=F 0(F�1(y)): �

Examples. i) For F (x) = lnx; x 2 (0;1); (DHH) yields the Geometric, Loga-
rithmic and Arithmetic Mean Inequality,

p
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x� y
lnx� ln y <

x+ y

2
:
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ii) The function F (x) = tanx; establishes a di¤eomorphism between (0; �=2) and
(0;1); whose inverse is

�
F�1

�
(y) = arctan y: Because�

F�1
�000
(y) =

d2

dy2

�
1

1 + y2

�
=
6(y � 1=

p
3)(y + 1=

p
3)

(1 + y2)
3 ;

it follows that
�
F�1

�0
is concave in (0; 1=

p
3] and convex in [1=

p
3;1): According

to the Dual Hermite-Hadamard Inequality,

(1) 1 +
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2
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whenever x < y in (0; �=6] and
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whenever x < y in [�=6; �=2):
On the other hand, a direct application of the Hermite-Hadamard Inequality to

f(x) = 1= cos2 x gives us
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1

2
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�
;

whenever x < y in (0; �=2): Notice that each of the inequalities (1) and the �rst
part of (2) are stronger than (3) in the corresponding domain; the second part of
(2) is stronger than the �rst part of (3) only for x < y in [�=6; �=4].
iii) The function F (x) = ln tan x2 establishes a di¤eomorphism between (0; �)

and R; whose inverse is F�1(y) = 2 arctan ey: Because

d3
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3 =
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3 ;

it follows that
�
F�1

�0
is convex in each of the intervals

(�1; ln(�1 +
p
2)] and [ln(1 +

p
2); 1)

and concave in
�
ln(�1 +

p
2); ln(1 +

p
2)
�
:According to the Dual Hermite-Hadamard

Inequality,
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for all x < y in (0; �=4) or in [3�=4; �) and
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for all x < y in [�=4; 3�=4]:
On the other hand, the Hermite-Hadamard Inequality yields

1
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�
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x
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2

whenever x < y in (0; �): This fact is weaker than the conclusion of the Dual
Hermite-Hadamard Inequality.
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iv) The author is much indebted to the referee for calling to his attention that
the inequality in Problem 82.J in the March 1998 issue of Gazette,�

cosx� cos y
x� y

�2
< 1�

�
cosx+ cos y

2

�2
for x 6= y

can be also obtained as a consequence of the Dual Hermite-Hadamard Inequality.

It is worth noticing that any improvement of (HH) leads to a corresponding
improvement of (DHH). For example, as

1
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Z b

a

f(x) dx <
f(a) + 2f ((a+ b)=2) + f(b)

4
<
f(a) + f(b)

2

(for the nonlinear convex functions), the right hand side of (DHH) can be replaced
by 24 1
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2
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�35 =2:
Unfortunately, this new bound often looks clumsy. An exception is example i)

above, which can cf. [5] be improved to
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1
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+
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�
:
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