A GENERALIZATION OF A THEOREM OF BERNARD CONCERNING THE FRONTAL SETS

CONSTANTIN P. NICULESCU, GAVRIL PĂLTINEANU AND DAN T. VUZA

1. Introduction

The notion of a frontal set with respect to a vector subspace of a space $C(X)$ was introduced by Alain Bernard [1] as a generalization of the concept of intersection of peak sets with respect to a subalgebra of $C(X)$.

Based on a new characterization of frontal sets (see Theorem 2.10 below) we shall further extend some of his fundamental results to ideals in locally convex lattices. To be more specific, let E be a real, metrizable, locally convex, locally solid vector lattice and let \mathcal{V}_{0} be a basis of convex and solid neighborhoods of the origin. Typical examples of such spaces are the metrizable weighted spaces, as described in section 4 below. See also [7].

A closed ideal \mathcal{I} of E is said to be a \mathcal{V}_{0}-frontal ideal (with respect to a vector subspace F of E) if for every pair of elements $x \in F$ and $y \in E_{+}$, with $\left.(|x|-y)\right)_{+} \in$ \mathcal{I}, and every $V \in \mathcal{V}_{0}$ there exists an $\bar{x} \in F$ such that

$$
x-\bar{x} \in \mathcal{I} \quad \text { and } \quad(|\bar{x}|-y))_{+} \in V
$$

Our main result is the following generalization of the Theorem 4 in [1]:
Theorem 1.1. Let F be a complete vector subspace of E, let \mathcal{I} be a \mathcal{V}_{0}-frontal ideal with respect to F and let p be a continuous seminorm of $A M$-type such that

$$
p_{\mathcal{I}}(x)=\inf \{p(x+u): u \in \mathcal{I}\}>0 \quad \text { for every } x \in E
$$

Then for every $x \in F$ and $y \in E_{+}$with $\left.(|x|-y)\right)_{+} \in \mathcal{I}$ and every $V \in \mathcal{V}_{0}$ there exists an $\bar{x} \in F$ such that

$$
x-\bar{x} \in \mathcal{I}, \quad(|\bar{x}|-y))_{+} \in V \quad \text { and } \quad p(\bar{x})=p_{\mathcal{I}}(x) .
$$

Applications in the framework of weighted spaces are given in section 4.

2. Generalities

Throughout this section X will denote a compact Hausdorff space and $C(X)$ will denote the Banach space of all continuous complex-valued functions on X, equipped with the sup norm.

We shall denote by A° the polar set of any subset A of $C(X)$ and by B_{r} the open ball

$$
B_{r}=\{f \in C(X):\|f\|<r\}, \quad r>0
$$

Also, for every subset K of X, we shall denote by χ_{K} the characteristic function of K and by \mathcal{I}_{K} the ideal of all functions $f \in C(X)$ such that $f \mid K=0$.

[^0]Our first result concerns the restriction operator,

$$
R_{K}: C(X) \rightarrow C(K), \quad R_{K}(f)=f \mid K
$$

2.1 Lemma. Let F and G be two vector subspaces of $C(X)$ and let K be a closed subset of X such that $\chi_{K} F^{\circ} \subset G^{\circ}$. Then

$$
\left(B_{r} \mid K\right) \cap(G \mid K) \subset \overline{\left(B_{r} \cap F\right) \mid K}
$$

Proof. According to the bipolar theorem it is sufficient to prove that

$$
\left[\left(B_{r} \cap F\right) \mid K\right]^{\circ} \subset\left[\left(B_{r} \mid K\right) \cap(G \mid K)\right]^{\circ}
$$

For, let $\mu \in\left[\left(B_{r} \cap F\right) \mid K\right]^{\circ}$. Then $R_{K}^{\prime}(\mu) \in\left(B_{r} \cap F\right)^{\circ} \subset B_{r}{ }^{\circ}+F^{\circ}$, where R_{K}^{\prime} denotes the adjoint of R_{K}. Thus there exists a $\nu \in B_{r}{ }^{\circ}$ such that $\nu-R_{K}^{\prime}(\mu) \in F^{\circ}$. Since $\chi_{K} F^{\circ} \subset G^{\circ}$, it follows that $\chi_{K} \nu-R_{K}^{\prime}(\mu) \in G^{\circ}$. Let $f \in\left[\left(B_{r} \mid K\right) \cap(G \mid K)\right]$ and chose $g_{1} \in B_{r}$ and $g_{2} \in F$ such that

$$
f=g_{1}\left|K=g_{2}\right| K
$$

Then we have

$$
\begin{aligned}
\mu(f) & =\mu\left(g_{1} \mid K\right)=\left(\chi_{K} \nu\right)\left(g_{1}\right)-\left[\chi_{K} \nu-R_{K}^{\prime}(\mu)\right]\left(g_{1}\right) \\
& =\left(\chi_{K} \nu\right)\left(g_{1}\right)-\left[\chi_{K} \nu-R_{K}^{\prime}(\mu)\right]\left(g_{2}\right)=\left(\chi_{K} \nu\right)\left(g_{1}\right)
\end{aligned}
$$

Since $\nu \in B_{r}{ }^{\circ}$ and $B_{r}{ }^{\circ}$ is a solid set, it follows that $\chi_{K} \nu \in B_{r}{ }^{\circ}$, hence $\operatorname{Re} \mu(f) \leq$ 1. Consequently, $\mu \in\left[\left(B_{r} \mid K\right) \cap(G \mid K)\right]^{\circ}$, which ends the proof.
2.2 Corollary. Let F be a vector subspace of $C(X)$ and let K be a closed subset of X such that $\chi_{K} F^{\circ} \subset F^{\circ}$. Then

$$
\left(B_{r} \mid K\right) \cap(F \mid K) \subset \overline{\left(B_{r} \cap F\right) \mid K}
$$

2.3 Corollary. Let F be a vector subspace of $C(X)$ and let K be a closed subset of X such that $\chi_{K} F^{\circ} \subset\{0\}$. Then

$$
B_{r} \mid K \subset \overline{\left(B_{r} \cap F\right) \mid K}
$$

2.4 Lemma. Let F be a vector subspace of $C(X)$ and let K be a closed subset of X such that $\chi_{K} F^{\circ} \subset F^{\circ}$. If $F / F \cap \mathcal{I}_{K}$ is complete then $\left(B_{r} \mid K\right) \cap(F \mid K) \subset\left(B_{1} \cap F\right) \mid K$ for every $0<r<1$.
Proof. Let $0<r<t<1$ be fixed and put

$$
r_{n}= \begin{cases}r, & \text { if } n=1 \\ \frac{t-r}{2^{n-1}}, & \text { if } n \geq 2\end{cases}
$$

Obviously, $t=\sum_{n=1}^{\infty} r_{n}$. Let $f \in\left(B_{r} \mid K\right) \cap(F \mid K)$. According to Corollary 2.2, $f \in \overline{\left(B_{r} \cap F\right) \mid K}$. Since $\left(B_{r_{2}} \mid K\right) \cap(F \mid K)$ is a neighborhood of f with respect to the relative topology of $F \mid K$, there exists a $g_{2} \in B_{r_{2}} \cap F$ such that

$$
f-g_{1}\left|K-g_{2}\right| K \in\left(B_{r_{3}} \mid K\right) \cap(F \mid K) .
$$

By induction, we find a $g_{n} \in B_{r_{n}} \cap F$ such that

$$
f-\sum_{i=1}^{n} g_{i} \mid K \in\left(B_{r_{n+1}} \mid K\right) \cap(F \mid K)
$$

Now consider the commutative diagram

$$
\begin{array}{lll}
F & \stackrel{R_{K}}{\rightarrow} & F \mid K \\
\varphi_{K} \searrow & & \nearrow \rho_{K} \\
& F / F \cap \mathcal{I}_{K} &
\end{array}
$$

where φ_{K} is the canonical mapping and ρ_{K} is defined by the formula

$$
\rho_{K}(\hat{h})=h \mid K .
$$

It is easily seen that ρ_{K} is well defined, one-to-one and continuous.
Since $\left\|\widehat{g_{i}}\right\| \leq\left\|g_{i}\right\|<r_{i}$ for every i, it follows that

$$
\left\|\sum_{i=1}^{p} \hat{g}_{n+i}\right\|<\frac{t-r}{2^{n-1}}, \quad \text { for every } p \in \mathbb{N}^{\star}
$$

hence the series $\sum_{n=1}^{\infty} \hat{g}_{n}$ is a Cauchy series in the complete space $F / F \cap \mathcal{I}_{K}$. Let $g \in F$ be such that

$$
\hat{g}=\sum_{n=1}^{\infty} \hat{g}_{n} .
$$

By the continuity of ρ_{K} we have $\rho_{K}(\hat{g})=\sum_{n=1}^{\infty} \rho_{K}\left(\hat{g}_{n}\right)$ and thus $g \mid K=$ $\sum_{n=1}^{\infty} \hat{g}_{n} \mid K$. Since $\left\|f-\sum_{i=1}^{n} g_{i} \mid K\right\|<r_{n+1}$ it follows that

$$
f=\sum_{n=1}^{\infty} g_{n}|K=g| K
$$

On the other hand

$$
\left\|\sum_{i=1}^{n} \hat{g}_{i}\right\|<\sum_{i=1}^{n} r_{i}<t
$$

which yields $\|\hat{g}\| \leq t<1$.
Let $\bar{u} \in F \cap \mathcal{I}_{K}$ be such that $\|g+\bar{u}\|<1$. Since $g+\bar{u} \in F \cap B_{1}$ and $(g+\bar{u}) \mid K=$ $g \mid K=f$, it results that $f \in\left(F \cap B_{1}\right) \mid K$ and so the proof is complete.
2.5 Corollary. Let F be a vector subspace of $C(X)$ and let K be a closed subset of X such that $\chi_{K} F^{\circ}=\{0\}$. If $F / F \cap \mathcal{I}_{K}$ is complete, then $B_{r}\left|K \subset\left(F \cap B_{1}\right)\right| K$ for every $r \in(0,1)$.

Corollary 2.5 extends Bishop's lemma [2].
The following notion was introduced by Alain Bernard [1] in connection with the diagram which appeared in the proof of Lemma 2.4.
2.6 Definition. A closed subset K of X is said to be an interpolating set (respectively a strictly interpolating set) with respect to the vector subspace F of $C(X)$ if ρ_{K} is an isomorphism (respectively, an isometric isomorphism).

Clearly, if $F / F \cap \mathcal{I}_{K}$ is complete and $F \mid K$ is closed in $C(K)$, then K is an interpolating set with respect to F.
2.7 Theorem. Let F be a vector subspace of $C(X)$ and let K be a closed subset of X such that $F / F \cap \mathcal{I}_{K}$ is complete and $\chi_{K} F^{\circ} \subset F^{\circ}$. Then given $f \in F$, $g \in C(X), g \geq 0$, with $|f| \leq g$ and $\varepsilon>0$, there exists a $\bar{f} \in F$ with the following properties:

$$
\bar{f}|K=f| K \quad \text { and } \quad|\bar{f}| \leq g+\varepsilon
$$

Proof. Let $r=\sup \left\{\frac{|f(x)|}{g(x)+\varepsilon} ; x \in K\right\}$ and choose $r^{\prime} \in(r, 1)$.
The vector space

$$
H=\{h \in C(X) ;(g+\varepsilon) h \in F\}
$$

verifies the conditions: $H^{\circ}=(g+\varepsilon) F^{\circ}, \chi_{K} H^{\circ} \subset H^{\circ}$ and $H / H \cap \mathcal{I}_{K}$ is complete. According to Lemma 2.2 above,

$$
\left(B_{r^{\prime}} \mid K\right) \cap(H \mid K) \subset\left(B_{1} \cap H\right) \mid K
$$

As $f /(g+\varepsilon) \mid K \in\left(B_{r^{\prime}} \mid K\right) \cap(H \mid K)$, it follows that there exists a $h \in B_{1} \cap H$ such that $f /(g+\varepsilon)|K=h| K$.

Then $\bar{f}=h(g+\varepsilon)$. has all properties as required in the statement of Theorem 2.7.

The following result is a slight generalization of Bishop's interpolation theorem [2]:
2.8 Theorem. Let F be a vector subspace of $C(X)$ and let K be a closed subset of X such that $F / F \cap \mathcal{I}_{K}$ is complete and $\chi_{K} F^{\circ}=\{0\}$. Then, given $f \in C(X)$, $g \in C(X), g \geq 0$, with $|f| \leq g$ and $\varepsilon>0$, there exists a $\bar{f} \in F$ with the following properties:

$$
\bar{f}|K=f| K \quad \text { and } \quad|\bar{f}| \leq g+\varepsilon
$$

Particularly, $F \mid K=C(K)$.
The proof is similar to the proof of Theorem 2.7, except for using Corollary 2.5 instead of Lemma 2.4.

Let us now recall the concept of a frontal set as introduced by Alain Bernard [1]:
2.9 Definition. A closed subset K of X is said to be a frontal set with respect to the vector subspace F of $C(X)$ if for every $f \in F$, every pair (ε, η) of strictly positive numbers and every neighborhood V of K there exists a $\bar{f} \in F$ such that

$$
\bar{f}|K=f| K,\|\bar{f}\|_{X} \leq\|f\|_{K}+\eta \quad \text { and } \quad\|\bar{f}\|_{X \backslash V} \leq \varepsilon
$$

2.10 Theorem. Let F be a vector subspace of $C(X)$ and let K be a closed subset of X such that $F / F \cap \mathcal{I}_{K}$ is complete. Then the following assertions are equivalent:

Theorem 2.1. (i) K is a frontal set with respect to F;
(ii) $\chi_{K} F^{\circ} \subset F^{\circ}$;
(iii) K is a strictly interpolating set with respect to the space $h F$, for every $h \in C(X)$, with $h \neq 0$ on X :
(iv) Given $f \in F, g \in C(X)$, with $g \geq 0$ and $|f| \leq g$, then for every $\varepsilon>0$ there exists a $\bar{f} \in F$ such that

$$
\bar{f}|K=f| K \quad \text { and } \quad|\bar{f}| \leq g+\varepsilon
$$

Proof. According to Theorem 3 in [1], we know that $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$.
Suppose there given $f \in F, \varepsilon>0, \eta>0$ and V a neighborhood of K. Put $\delta=\min \{\varepsilon, \eta\}$. According to Uryson's lemma, there exists a continuous function $g: X \rightarrow\left[\delta,\|f\|_{K}+\delta\right]$ such that

$$
g(x)= \begin{cases}\|f\|_{K}+\delta, & \text { if } x \in K \\ \delta, & \text { if } x \in X \backslash V .\end{cases}
$$

Obviously, $g-\delta \geq 0$ on X and $|f| \leq g-\delta$ on K.
From (iv) it follows that there exists an $\bar{f} \in F$ with the properties

$$
\bar{f}|K=f| K \text { and }|\bar{f}| \leq(g-\delta)+\delta=g \text { on } X
$$

Consequently, for $x \in K$ we have $|\bar{f}(x)| \leq\|f\|_{K}+\delta \leq\|f\|_{K}+\eta$. On the other hand, if $x \in X \backslash V$, then $|f(x)| \leq \delta \leq \varepsilon$, hence $\|f\|_{X \backslash V} \leq \varepsilon$ and this concludes the proof.

3. \mathcal{V}_{0}-FRONTAL IDEALS

Our generalization of the concept of a frontal ideal is motivated by Theorem 2.10 above.

Let E be a real metrizable, locally convex, locally solid vector lattice and let \mathcal{V}_{0} be a basis of convex and solid neighborhoods of the origin.
3.1 Definition. A closed ideal \mathcal{I} of E is said to be a \mathcal{V}_{0}-frontal ideal with respect to the vector subspace F of E if for every pair of elements $x \in F$ and $y \in E_{+}$, with $(|x|-y))_{+} \in \mathcal{I}$, and every $V \in \mathcal{V}_{0}$ there exists an $\bar{x} \in F$ such that

$$
x-\bar{x} \in \mathcal{I} \quad \text { and } \quad(|\bar{x}|-y))_{+} \in V .
$$

If $E=C(X)$, then a closed subset K of X is a frontal set with respect to the vector subspace F of $C(X)$ if and only if the closed ideal $\mathcal{I}_{K}=\{f \in C(X): f \mid K=$ $0\}$ is a frontal ideal in the sense of the Definition 3.1. Indeed, it is sufficient to notice that $(|f|-g)_{+} \in \mathcal{I}_{K}$ if and only if

$$
|f| \leq g \text { on } K \text { and }\left\|(|\bar{f}|-g)_{+}\right\|<\varepsilon \Longleftrightarrow|\bar{f}| \leq g+\varepsilon \text { on } X .
$$

3.2 Theorem (A. Bernard [1]). Let F be a closed vector subspace of $C(X)$ and let K be a closed subset of X. Then the following assertions are equivalent:
i) K is a frontal set with respect to F;
ii) For every $f \in F$, every $\varepsilon>0$ and every neighborhood V of K there exists an \bar{f} such that

$$
\bar{f}|K=f| K,\|\bar{f}\|_{X} \leq\|f\|_{K} \quad \text { and } \quad\|\bar{f}\|_{X \backslash V} \leq \varepsilon .
$$

Now we return to the general case. Let E be a real, metrizable, locally convex, locally solid vector lattice, and let \mathcal{I} be a closed ideal of E. Given a continuous seminorm p on E we associate to it the quotient seminorm

$$
p_{\mathcal{I}}(x)=\inf \{p(x+u): u \in \mathcal{I}\}, x \in E
$$

The following theorem is a generalization of Theorem 3.2:
3.3 Theorem. Let F be a complete vector subspace of E and let \mathcal{V}_{0} be a basis of convex and solid neighborhoods of the origin. Suppose there are given a \mathcal{V}_{0}-frontal ideal \mathcal{I} (with respect to F), two elements $x \in F, y \in E_{+}$such that $(|x|-y)_{+} \in \mathcal{I}$, a neighborhood $V \in \mathcal{V}_{0}$ and a continuous seminorm p of $(A M)$-type on E such that $p_{\mathcal{I}}(x)>0$. Then there exists an $\bar{x} \in F$ with the following properties:

$$
\bar{x}-x \in \mathcal{I}, \quad(|\bar{x}|-y)_{+} \in V \quad \text { and } \quad p(x)=p_{\mathcal{I}}(x) .
$$

Proof. Let $\left(V_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{V}_{0} such that $\bar{V}_{1} \subset V$ and $V_{n+1}+$ $V_{n+1} \subset V_{n}$ for every $n \geq 1$. We shall exhibit two sequences $\left(x_{n}\right)_{n \geq 1} \subset F$ and $\left(\varepsilon_{n}\right)_{n \geq 1} \subset \mathbb{R}_{+}^{\star}$ with the following properties:
a) $x_{n}-x \in \mathcal{I}$ for every $n \geq 1$;
b) $p\left(x_{n}\right) \leq\left(1+\varepsilon_{n}\right) p_{\mathcal{I}}(x)$ and $\varepsilon_{n} \leq 1 / n$ for every $n \geq 1$;
c) $\left(\left|x_{n}\right|-y\right)_{+} \in V_{2}+\ldots+V_{n+1}$ for every $n \geq 1$;
d) $x_{n}-x_{n-1} \in V_{n}$ for every $n \geq 2$;
e) $\varepsilon_{n} x_{n} \in \frac{1}{3} V_{n+1}$ and $\varepsilon_{n} y \in \frac{1}{9} V_{n+1}$ for every $n \geq 0$.

From d) we can infer that $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence. As F is complete, there must exist $\bar{x}=\lim _{x \rightarrow \infty} x_{n}$. From a) it follows that $\bar{x}-x \in \mathcal{I}$, while form b) it follows that $p(\bar{x}) \leq p_{\mathcal{I}}(x)$. On the other hand,

$$
p_{\mathcal{I}}(x) \leq p(x+\bar{x}-x)=p(\bar{x})
$$

and thus $p(\bar{x})=p_{\mathcal{I}}(x)$.
From c) it follows that $\left(\left|x_{n}\right|-y\right)_{+} \in V_{2}+V_{2} \subset \bar{V}_{1} \subset V$.
We pass now to the construction of the sequences $\left(x_{n}\right)_{n \geq 1}$ and $\left(\varepsilon_{n}\right)_{n \geq 1}$. Put $u_{0}=0$ and choose $\varepsilon_{0}>0$ such that $\varepsilon_{0} y \in \frac{1}{9} V_{1}$. Then choose $\varepsilon_{1} \in(0,1]$ such that $\varepsilon_{1} y \in \frac{1}{9} V_{2}$. According to the definition of $p_{\mathcal{I}}(x)$, we can find a $u_{1} \in \mathcal{I}$ such that

$$
p\left(x+u_{1}\right) \leq\left(1+\frac{\varepsilon_{1}}{2}\right) p_{\mathcal{I}}(x)
$$

Put $y_{1}=\left|x+u_{1}\right| \wedge y$. We shall show that

$$
\left(|x|-y_{1}\right)_{+} \in \mathcal{I}
$$

Let $\pi: E \rightarrow E / \mathcal{I}$ be the canonical morphism. Proving the above relation amounts to show that $\pi\left(\left(|x|-y_{1}\right)_{+}\right)=0$. It is well known that π is a lattice homomorphism, therefore $0=\pi\left((|x|-y)_{+}\right)=(|\pi(x)|-\pi(y))_{+}$, hence $|\pi(x)| \leq$ $\pi(y)$ which in turn implies $\pi\left(y_{1}\right)=|\pi(x)| \wedge \pi(y)=|\pi(x)|$ concluding thus the proof of the assertion.

As $p_{\mathcal{I}}(x)>0$ and p is a continuous seminorm on E, it follows that there exists a $W \in \mathcal{V}_{0}$ such that

$$
p(z) \leq \frac{\varepsilon_{1}}{2} p_{\mathcal{I}}(x) \quad \text { for every } z \in W
$$

Let $W^{\prime} \in \mathcal{V}_{0}$ such that $W^{\prime} \subset W \cap \frac{1}{9} V_{2}$. As \mathcal{I} is a frontal ideal with respect to $F, x \in F$ and $\left(|x|-y_{1}\right)_{+} \in \mathcal{I}$, we infer the existence of a $v_{1} \in F$ with the following properties:
$v_{1}-x \in \mathcal{I} ;$
$\left(\left|v_{1}\right|-y_{1}\right)_{+} \in W^{\prime}$;
$p\left(\left(\left|v_{1}\right|-y_{1}\right)_{+}\right) \leq \frac{\varepsilon_{1}}{2} p_{\mathcal{I}}(x)$.
Letting $x_{1}=v_{1}$, we can verify easily that x_{1} and ε_{1} verify the conditions a)-e) above. In fact,
$x_{1}-x=v_{1}-x \in \mathcal{I} ;$
$\left|x_{1}\right|=\left|v_{1}\right|=\left(\left|v_{1}\right|-y_{1}\right)+y_{1} \leq\left(\left|v_{1}\right|-y_{1}\right)_{+}+\left|x+u_{1}\right|$.
As p is a solid seminorm, the last relation yields

$$
\begin{aligned}
p\left(x_{1}\right) & \leq p\left(\left(\left|v_{1}\right|-y_{1}\right)_{+}\right)+p\left(x+u_{1}\right) \\
& \leq \frac{\varepsilon_{1}}{2} p_{\mathcal{I}}(x)+\left(1+\frac{\varepsilon_{1}}{2}\right) p_{\mathcal{I}}(x) \\
& =\left(1+\varepsilon_{1}\right) p_{\mathcal{I}}(x)
\end{aligned}
$$

For c), notice that $\left(\left|x_{1}\right|-y\right)_{+} \in V_{2}$ is a consequence of the fact that V_{2} is a solid set and

$$
\left(\left|x_{1}\right|-y\right)_{+} \leq\left(\left|v_{1}\right|-y_{1}\right)_{+}+\left(y_{1}-y\right)_{+}=\left(\left|v_{1}\right|-y_{1}\right)_{+} \in \frac{1}{9} V_{2} \subset V_{2}
$$

The condition e) has a similar motivation, due to the following relations:

$$
\begin{aligned}
\varepsilon_{1}\left|x_{1}\right| & \leq\left(\left|v_{1}\right|-y_{1}\right)_{+}+\varepsilon_{1} y_{1} \\
& \leq\left(\left|v_{1}\right|-y_{1}\right)_{+}+\varepsilon_{1} y \in \frac{1}{9} V_{2}+\frac{1}{9} V_{2} \subset \frac{1}{3} V_{2}
\end{aligned}
$$

Suppose now x_{0}, \ldots, x_{n-1} and $\varepsilon_{0}, \ldots \varepsilon_{n-1}$ are already chosen with the properties a)-e). Then pick an $\varepsilon_{n} \in(0,1 / n]$ such that

$$
\varepsilon_{n} x_{n-1} \in \frac{1}{9} V_{n+1} \text { and } \varepsilon_{n} y \in \frac{1}{9} V_{n+1}
$$

Next, choose $u_{n} \in \mathcal{I}$ such that

$$
p\left(x+u_{n}\right) \leq\left(1+\frac{\varepsilon_{n}}{2}\right) p_{\mathcal{I}}(x) .
$$

The element y_{n} defined by

$$
y_{n}=\left(\left|x+u_{n}\right|-\frac{\left|x_{n-1}\right|}{1+\varepsilon_{n-1}}\right)_{+} \wedge \frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}} y
$$

verifies the relation

$$
\begin{equation*}
\left(\frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}}|x|-y_{n}\right)_{+} \in \mathcal{I} \tag{1}
\end{equation*}
$$

which can be seen by using a similar argument based on the lattice homomorphism π as above.

From the continuity of p and the fact that $p_{\mathcal{I}}(x)>0$ we can derive the existence of a $U \in \mathcal{V}_{0}$ such that

$$
p(z) \leq \frac{\varepsilon_{n}}{2} p_{\mathcal{I}}(x) \text { for every } z \in U
$$

Choose $U^{\prime} \in \mathcal{V}_{0}$ such that $U^{\prime} \subset U \cap \frac{1}{9} V_{n+1}$. Since \mathcal{I} is a frontal ideal with respect to F and

$$
x \in F \quad \text { and } \quad\left(\frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}}|x|-y_{n}\right)_{+} \in \mathcal{I}
$$

we infer the existence of a $v_{n} \in F$ with the following properties:

$$
\begin{align*}
& v_{n}-\frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}} x \in \mathcal{I} \tag{3.3}\\
& \left(\left|v_{n}\right|-y_{n}\right)_{+} \in U^{\prime} \\
& p\left(\left(\left|v_{n}\right|-y_{n}\right)_{+}\right) \leq \frac{\varepsilon_{n}}{2} p_{\mathcal{I}}(x)
\end{align*}
$$

Letting $x_{n}=\frac{x_{n-1}}{1+\varepsilon_{n-1}}+v_{n}$, we have completed a pair of sequences $\left(\varepsilon_{k}\right)_{k=1}^{n}$ and $\left(x_{k}\right)_{k=1}^{n}$ which verify the conditions a)-e) above. In fact,

$$
x_{n}-x=\frac{x_{n-1}}{1+\varepsilon_{n-1}}+v_{n}-x=\frac{x_{n-1}-x}{1+\varepsilon_{n-1}}+\left(v_{n}-\frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}} x\right) \in \mathcal{I}
$$

which yields a). As for b),

$$
\left|x_{n}\right| \leq \frac{\left|x_{n-1}\right|}{1+\varepsilon_{n-1}}+\left(\left|v_{n}\right|-y_{n}\right)_{+}+y_{n}
$$

and

$$
\begin{aligned}
y_{n} & \leq\left(\left|x+u_{n}\right|-\frac{\left|x_{n-1}\right|}{1+\varepsilon_{n-1}}\right) \vee 0 \\
y_{n}+\frac{\left|x_{n-1}\right|}{1+\varepsilon_{n-1}} & \leq\left|x+u_{n}\right| \vee \frac{\left|x_{n-1}\right|}{1+\varepsilon_{n-1}}
\end{aligned}
$$

so that

$$
\left|x_{n}\right| \leq \frac{\left|x_{n-1}\right|}{1+\varepsilon_{n-1}} \vee\left|x+u_{n}\right|+\left(\left|v_{n}\right|-y_{n}\right)_{+} .
$$

As p is a solid seminorm of $(A M)$-type, we are led to

$$
p\left(x_{n}\right) \leq \max \left\{p\left(x+u_{n}\right), \frac{p\left(x_{n-1}\right)}{1+\varepsilon_{n-1}}\right\}+p\left(\left(\left|v_{n}\right|-y_{n}\right)_{+}\right)
$$

Taking into account (3.1) and (3.5) and the fact that $p\left(x_{n-1}\right) \leq\left(1+\varepsilon_{n-1}\right) p_{\mathcal{I}}(x)$, it follows that

$$
p\left(x_{n}\right) \leq\left(1+\frac{\varepsilon_{n}}{2}\right) p_{\mathcal{I}}(x)+\frac{\varepsilon_{n}}{2} p_{\mathcal{I}}(x)=\left(1+\varepsilon_{n}\right) p_{\mathcal{I}}(x)
$$

For c), notice first that

$$
\begin{aligned}
\left(\left|x_{n}\right|-y\right)_{+} & \leq\left(\frac{\left|x_{n-1}\right|}{1+\varepsilon_{n-1}}+\left|v_{n}\right|-y\right)_{+} \\
& =\left(\frac{\left|x_{n-1}\right|-y}{1+\varepsilon_{n-1}}+\left|v_{n}\right|-\frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}} y\right)_{+} \\
& \leq \frac{1}{1+\varepsilon_{n-1}}\left(\left(\left|x_{n-1}\right|-y\right)_{+}+\left(\left|v_{n}\right|-\frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}} y\right)_{+}\right) \\
& \leq \frac{1}{1+\varepsilon_{n-1}}\left(\left(\left|x_{n-1}\right|-y\right)_{+}+\left(\left|v_{n}\right|-y_{n}\right)_{+}\right)
\end{aligned}
$$

Since $\left(\left|x_{n-1}\right|-y\right)_{+} \in V_{2}+\cdots+V_{n}$ and $\left(\left|v_{n}\right|-y_{n}\right)_{+} \in V_{n+1}$ it follows that

$$
\left(\left|x_{n}\right|-y\right)_{+} \in V_{2}+\cdots+V_{n}+V_{n+1}
$$

The verification of condition d) is a consequence of the fact that V_{n} is solid. In fact,

$$
\begin{aligned}
\left|x_{n}-x_{n-1}\right| & =\left|v_{n}-\frac{\varepsilon_{n-1}}{1+\varepsilon_{n-1}} x_{n-1}\right| \\
& \leq \varepsilon_{n-1}\left|x_{n-1}\right|+y_{n}+\left|v_{n}\right|-y_{n} \\
& \leq \varepsilon_{n-1}\left|x_{n-1}\right|+\varepsilon_{n-1} y+\left(\left|v_{n}\right|-y_{n}\right)_{+} \in \frac{1}{3} V_{n}+\frac{1}{9} V_{n}+\frac{1}{9} V_{n+1} \subset V_{n}
\end{aligned}
$$

For e), we have to notice that

$$
\begin{aligned}
\varepsilon_{n}\left|x_{n}\right| & \leq \varepsilon_{n}\left|x_{n-1}\right|+\varepsilon_{n}\left(\left|v_{n}\right|-y_{n}\right)+\varepsilon_{n} y_{n} \\
& \leq \varepsilon_{n}\left|x_{n-1}\right|+\varepsilon_{n}\left(\left|v_{n}\right|-y_{n}\right)_{+}+\varepsilon_{n} y
\end{aligned}
$$

Taking into account the definition of ε_{n} and the relation (3.4), we obtain that

$$
\varepsilon_{n}\left|x_{n-1}\right|+\varepsilon_{n}\left(\left|v_{n}\right|-y_{n}\right)_{+}+\varepsilon_{n} y \in \frac{1}{9} V_{n+1}+\frac{1}{9} V_{n+1}+\frac{1}{9} V_{n+1} \subset \frac{1}{3} V_{n+1}
$$

which yields $\varepsilon_{n} x_{n} \in \frac{1}{3} V_{n+1}$.
It is worth to explain how Theorem 3.3 extends Theorem 3.2.
For, let $E=C(X), F$ a closed vector subspace of $E, K \subset X$ a frontal set (with respect to $F), f \in F, \varepsilon>0, V$ a neighborhood of K and $p=\|\cdot\|_{X}$. According to Uryson's lemma, there exists a continuous function $g: X \rightarrow\left[\varepsilon / 2,\|f\|_{K}\right]$ such that

$$
g(x)= \begin{cases}\|f\|_{K}, & \text { for } x \in K \\ \varepsilon / 2, & \text { for } x \in X \backslash V\end{cases}
$$

Clearly, $|f| \leq g$ on K, hence $(|f|-g)_{+} \in \mathcal{I}_{K}$. Letting

$$
U=\{h \in C(K):\|h\|<\varepsilon / 2\}
$$

then U is a neighborhood of the origin of E. Since \mathcal{I}_{K} is a frontal ideal with respect to F, Theorem 3.3 yields a $\bar{f} \in F$ such that

$$
\bar{f}-f \in \mathcal{I}_{K}, \quad(|\bar{f}|-g)_{+} \in U \text { and }\|\bar{f}\|_{X}=p_{\mathcal{I}_{K}}(f)
$$

Accordingly,

$$
\bar{f}|K=f| K \text { and }|\bar{f}(x)| \leq g(x)+\varepsilon / 2 \text { for every } x \in X .
$$

In particular, for $x \in X \backslash V$ we have $|\bar{f}(x)| \leq \varepsilon / 2+\varepsilon / 2=\varepsilon$, hence $\|\bar{f}\|_{X \backslash V}<\varepsilon$. As K is a frontal set, from Theorem 2.10 we can infer that K is also a strictly interpolating set (i.e. ρ_{K} is an isometric isomorphism). Then

$$
\begin{aligned}
\|f \mid K\| & =\left\|\rho_{K}\left(\varphi_{K}\right)\right\|=\left\|\rho_{K}(\hat{f})\right\| \\
& =\inf \left\{\|f+h\|: h \in \mathcal{I}_{K} \cap F\right\} \\
& \geq \inf \left\{\|f+h\|: h \in \mathcal{I}_{K}\right\} \\
& =p_{\mathcal{I}_{K}}(f)=\|\bar{f}\|_{X}
\end{aligned}
$$

and the conclusion of Theorem 3.2 holds true.
3.4 Theorem. Suppose there are given a vector subspace F of E, a \mathcal{V}_{0}-frontal ideal \mathcal{I} (with respect to F), an element $x \in F$, a closed ideal \mathcal{J} of E such that $x \in \overline{\mathcal{I}}+\mathcal{J}$, a continuous and solid seminorm p on E and $\varepsilon>0$. Then there exists $a \bar{x} \in F$ with the following properties:

$$
\bar{x}-x \in \mathcal{I}, p(\bar{x}) \leq p_{\mathcal{I}}(x)+\varepsilon \quad \text { and } \quad p_{\mathcal{J}}(\bar{x}) \leq \varepsilon .
$$

If in addition F is complete, p is an (AM)-type seminorm and $p(x)>0$, then $p(\bar{x})=p_{\mathcal{I}}(x)$.
Proof. Since $x \in \overline{\mathcal{I}+\mathcal{J}}$, and p is a continuous seminorm on E, one can find a $u \in \mathcal{I}$ and a $v \in \mathcal{J}$ such that

$$
p(x-u-v) \leq \varepsilon / 2 .
$$

According to the definition of $p_{\mathcal{I}}$, one can also find a $w \in \mathcal{I}$ with $p(x+w) \leq$ $p_{\mathcal{I}}(x)+\varepsilon / 2$. Put

$$
y=(|v|+|x-u-v|) \wedge|x+w| .
$$

Then $(|x|-y)_{+} \in \mathcal{I}$, which can be proved by the same argument as in the proof of Theorem 3.3, based on the lattice homomorphism $\pi: E \rightarrow E / \mathcal{I}$.

As \mathcal{I} is a \mathcal{V}_{0}-frontal ideal with respect to F, one can find a $\bar{x} \in F$ such that

$$
\bar{x}-x \in \mathcal{I} \text { and } p\left((|\bar{x}|-y)_{+}\right) \leq \varepsilon / 2 .
$$

On the other hand,

$$
(|\bar{x}|-y)_{+}+|x+w| \geq(|\bar{x}|-y)_{+}+y=|\bar{x}| \vee y \geq|\bar{x}| .
$$

Since p is a solid seminorm, it results

$$
\begin{aligned}
p(\bar{x}) & \leq p\left((|\bar{x}|-y)_{+}\right)+p(x+w) \leq \frac{\varepsilon}{2}+p_{\mathcal{I}}(x)+\frac{\varepsilon}{2} \\
& =p_{\mathcal{I}}(x)+\varepsilon
\end{aligned}
$$

In a similar way,

$$
\begin{aligned}
p_{\mathcal{J}}(\bar{x}) & \leq p_{\mathcal{J}}\left((|\bar{x}|-y)_{+}\right)+p_{\mathcal{J}}(x+w) \\
& \leq p_{\mathcal{J}}\left((|\bar{x}|-y)_{+}\right)+p_{\mathcal{J}}(|v|+|x-u-v|) \\
& \leq p_{\mathcal{J}}\left((|\bar{x}|-y)_{+}\right)+p_{\mathcal{J}}(x-u-v) \\
& \leq \varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

The second part of our statement is a consequence of Theorem 3.3 above.

4. The case of weighted spaces

The aim of this section is to indicate an application of Theorem 3.3.
Let X be a locally compact Hausdorff space and let V be a Nachbin family on E i.e., a set of nonnegative upper semicontinuous functions on X, such that for every $v_{1}, v_{2} \in V$ and every $\lambda>0$ there is $v \in V$ such that $v_{1}, v_{2} \leq \lambda v$. We shall denote by $C V_{0}(X)$ the corresponding weighted space,

$$
C V_{0}(X)=\{f \in C(X): f v \text { vanishes at infinity for every } v \in V\}
$$

The weighted topology on $C V_{0}(X)$, denoted by ω_{V}, is determined by the seminorms $\left(p_{v}\right)_{v \in V}$, where

$$
p_{v}(f)=\sup \{|f(x)| v(x): x \in X\} \quad \text { for } f \in C V_{0}(X)
$$

ω_{V} is a locally convex topology and a basis of open neighborhoods of the origin consists of the sets

$$
D_{v}=\left\{f \in C V_{0}(X): p_{v}(f)<1\right\}
$$

This way, $C V_{0}(X)$ appears as a locally convex locally solid vector lattice of ($A M$)-type.

A result due to Summers [10] asserts that there is a linear isomorphism between the topological dual of $C V_{0}(X)$ and the vector subspace $V M_{b}(X)$, where $M_{b}(X)$ denotes the space of all bounded Radon measures on X. According to Proposition 3.8 of [4], $C V_{0}(X)$ is metrizable if and only if there exists a countable subset $W \subset V$ with the property that for every $v \in V$ there are $w \in W$ and $r>0$ such that $v \leq r w$. Notice also that a metrizable weighted space is complete if and only if for every $x \in X$ there are $w \in W$ and $r>0$ such that $v \geq r$ on a neighborhood of x. Cf. [4], Corollary 3.11.

On the other hand, a result due to C. Partenier (see [4], Lemma 3.8) asserts that for every closed ideal \mathcal{I} of $C V_{0}(X)$ there exists a closed subset Y of X such that

$$
\mathcal{I}=\left\{f \in C V_{0}(X): f \mid Y=0\right\}
$$

Therefore, there exists a one-to-one between the family of all closed ideals of $C V_{0}(X)$ and the family of all closed subsets of X.

If X is a compact Hausdorff space and V is the family of all positive constants, then $C V_{0}(X)=C(X)$ and the weighted topology coincides with the uniform topology of $C(X)$.
4.1 Definition. Let $C V_{0}(X)$ be a metrizable weighted space and let F be a vector subspace of $C V_{0}(X)$. A closed subset Y of X is said to be a strictly interpolating set with respect to F if

$$
\left(D_{v} \mid Y\right) \cap(F \mid Y)=\left(D_{v} \cap F\right) \mid Y \quad \text { for every } v \in V
$$

From Theorem 1 of [8] we infer that a closed subset Y of X is strictly interpolating (with respect to F) if

$$
\mathbf{1}_{Y} F^{\circ} \subset F^{\circ} \quad \text { and } \quad F /\left(F \cap \mathcal{I}_{Y}\right) \text { is complete. }
$$

4.2 Definition. Let $C V_{0}(X)$ be a metrizable weighted space and let F be a vector subspace of $C V_{0}(X)$. A closed subset Y of X is said to be a frontal set (with respect to F) if it verifies the following condition:

Given $f \in F, g \in C V_{0}(X)$ with $g \geq|f|$ on $Y, \varepsilon>0$ and $v \in V$, there exists a $\bar{f} \in F$ such that

$$
\bar{f}|Y=f| Y \quad \text { and } \quad|\bar{f}(x)| v(x) \leq g(x) v(x)+\varepsilon \text { for every } x \in X
$$

According to Theorem 3.3, the following result works:
4.3 Proposition. Let $C V_{0}(X)$ be a metrizable weighted space and let F be a complete vector subspace of $C V_{0}(X)$. Suppose there are given a closed subset Y of X, and the functions $f \in F, g \in C V_{0}(X)$ with $g \geq|f|$ on Y, and $v \in V$ with $p_{v}(f)>0$. Then for every $\varepsilon>0$ there exists a $\bar{f} \in F$ such that

$$
\bar{f}|Y=f| Y, \quad|\bar{f}| v \leq g v+\varepsilon \quad \text { and } \quad\|\bar{f} v\|_{X} \leq\|f v\|_{Y}
$$

References

[1] Bernard A., Charactérisation de certaines parties d'une algèbre de fonctions continues, Ann. Inst. Fourier Grenoble, 17, 2 (1967), 359-382.
[2] Bishop E., A general Rudin-Carlson theorem, Proc. Amer. Math. Soc., 13 (1962), 140-143.
[3] Cristescu R., Topological vector spaces, Nordhoff, Leyden, 1977.
[4] Goullet de Rugy A., Espaces de fonctions ponderables, Israel J. Math., 12 (1972), 147-160.
[5] Nachbin L., Weighted approximation for algebras and modules of continuous functions, real and self-adjoint complex cases, Ann. of Math., 81 (1965), 289-302.
[6] Niculescu C. P., Păltineanu G. and Vuza D. T., Interpolation and approximation from the M-theory point of vue, Rev. Roum. Math. Pures et Appl., 38 (1993), 521-544.
[7] Păltineanu G., Elements of approximation theory of continuous functions, Ed. Academiei, Bucharest, 1982. (Romanian)
[8] Păltineanu G. and Vuza D. T., Interpolating ideals in locally convex lattices, Rev. Roum. Math. Pures et Appl., 41 (1996), 397-406.
[9] Prolla J. B., Approximation of vector valued functions, North-Holland Publishing Company, Amsterdam, 1977.
[10] Summers W. H., Dual spaces of weighted spaces, Trans. Amer. Math. Soc., 151 (1970), 323-333.

Constantin P. Niculescu: University of Craiova, Department of Mathematics, Craiova 1100, ROMANIA. E-mail address: tempus@oltenia.ro
Gavril Păltineanu: Technical University of Civil Engineering, Department of Mathematics, Bucharest, ROMANIA. E-mail address: npalt@hidro.utcb.ro Dan Tudor Vuza: Institute of Mathematics, Romanian Academy.

E-mail address: danvuza@hotmail.com

[^0]: Published in Proc. of the 4 th International Conference on Functional Analysis and Approximation Theory, Acquafredda di Maratea (Potenza, Italy), September 22-28, 2000. Redinconti del Circolo Matematico di Palermo, Serie II, Suppl. 68 (2002), 699-710.

