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A NOTE ON THE DENJOY-BOURBAKI
THEOREM

Abstract

We prove the following extension of the Mean Value Theorem. Let
E be a Banach space and let F : [a, b] → E and ϕ : [a, b] → R be two
functions for which there exists a subset A ⊂ [a, b] such that :

i) F and ϕ have negligible variation on A,

ii) F and ϕ are differentiable on [a, b] \A and ‖F ′‖ ≤ ϕ′ on [a, b] \A.

Then ‖F (b)− F (a)‖ ≤ ϕ(b)− ϕ(a).

Several applications are included.

1 Introduction

In what follows I = [a, b] denotes a nondegenerate compact interval and E
denotes a Banach space.

A subpartition of I is a collection P = (Ij)s
j=1 of nonoverlapping closed

intervals in I; if ∪jIj = I, we say that P is a partition. A tagged subpartition
of I is a collection of ordered pairs (Ij , tj)s

j=1 consisting of intervals Ij , that
form a subpartition of I, and tags tj ∈ Ij , for j = 1, . . . , s. If δ is a gauge
(i.e., a positive function) on a subset A ⊂ I, we say that a tagged subpartition
(Ij , tj)s

j=1 is (δ,A)-fine if all tags tj belong to A and Ij ⊂ [tj−δ(tj), tj +δ(tj)]
for j = 1, . . . , s. A result (usually ascribed to P. Cousin) asserts the existence
of (δ, I)-fine partitions for each δ : I → (0,∞). See [1], page 11.

A function F : I → E is said to have negligible variation on a set A ⊂ I
(and we write F ∈ NVI(A,E)) if, for every ε > 0 there exists a gauge δε on A
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such that if D = {([uj , vj ]) , tj}s
j=1 is any (δε, A)-fine subpartition of I, then

Var (F ;D) =
s∑

j=1

‖F (vj)− F (uj)‖ < ε.

As is well known (see [1]), if F ∈ NVI(A,E), then F is continuous at
every point of A. Conversely, if C is a countable set in I and F : I → E is
continuous at every point of C, then F ∈ NVI(C,E). However, when Z ⊂ I is
a null set, not every continuous function on I belongs to NVI(Z,E). See [1],
page 233, for an example.

The aim of this paper is to prove the following generalization of the classical
Denjoy-Bourbaki theorem.

Theorem 1. Let F : [a, b] → E and ϕ : [a, b] → R be two functions for which
there exists a subset A ⊂ [a, b] such that:

i) F and ϕ have negligible variation on A,

ii) F and ϕ are differentiable on [a, b] \A and ‖F ′‖ ≤ ϕ′ on [a, b] \A.

Then ‖F (b)− F (a)‖ ≤ ϕ(b)− ϕ(a).

The details of the proof are given in Section 2.
The classical case corresponds to the situation when A is at most countable.

It was published in [2], pp. 23–24, with an argument adapted from a celebrated
paper of A. Denjoy [3], dedicated to the Dini derivates. In that case, it is usual
to reformulate the assumption i) by requiring the continuity of both F and
ϕ on [a, b]. See [4], Ch. 8, Section 5. An immediate consequence is the
integral representation of continuous convex functions on compact intervals.
If F : [a, b] → R is such a function, then

F (x) = F (c) +
∫ x

c

F ′
+(t) dt,

for every c ∈ (a, b) and every x ∈ [a, b].
According to Theorem 1 we can enlarge the concept of a primitive function

as follows. Given a function f : [a, b] → E, by a primitive of f we mean any
continuous function F : [a, b] → E which is differentiable except for a null
subset A ⊂ [a, b], on which F has negligible variation, and F ′ = f on [a, b]\A.
By Theorem 1 above, every two primitives (of a same function) differ by a
constant. Letting∫ b

a

f(t) dt = F (b)− F (a), if F is a primitive of f,
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we arrive at a concept of integral which, in the scalar case, is equivalent to the
Denjoy integral.

An immediate consequence of Theorem 1 (for ϕ(x) = M(x − a)) is as
follows.

Theorem 2. Let F : [a, b] → E be a function for which there exists a subset
A ⊂ [a, b] such that:

i) F has negligible variation on A,

ii) F is differentiable at all points of [a, b] \A and ‖F ′‖ ≤ M on [a, b] \A.

Then ‖F (b)− F (a)‖ ≤ M(b− a).

Theorem 1 can be used to improve upon the usual criterion of differen-
tiation of the limit of differentiable functions (as formulated in [4], Theorem
8.6.4).

Theorem 3. Assume there are given for each n ∈ N a pair of functions
Fn, fn : [a, b] → E, and a subset An ⊂ [a, b], such that:

i) Fn has negligible variation on An,

ii) Except at points of An, fn is the derivative of Fn,

iii) There is at least one point ξ ∈ [a, b] such that the sequence (Fn(ξ))n is
convergent,

iv) For each x ∈ [a, b] there is a neighborhood Ux on which the sequence (fn)n

converges uniformly.

Then the sequence (Fn)n converges uniformly on each Ux and, letting F (x) =
limn→∞ Fn(x) and f(x) = limn→∞ fn(x), the function F is differentiable at
each x ∈ [a, b] \ ∪∞n=1An and F ′(x) = f(x).

The proof is essentially the same as in the classical case and therefore it
will be omitted.

Theorem 1 can be used to derive some classical inequalities such as the
Steffensen and Iyengar inequalities. This will be discussed in Section 4 below.

2 Proof of Theorem 1

Suppose there is given ε > 0. By the assumption ii), for every x ∈ [a, b] \A,

lim
z→x

(∥∥∥∥F (z)− F (x)
z − x

∥∥∥∥− ϕ(z)− ϕ(x)
z − x

)
≤ 0,
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so that for every x ∈ [a, b] \A, there is a δε(x) > 0 for which

0 < |z − x| < δε(x) in [a, b]

implies ∥∥∥∥F (z)− F (x)
z − x

∥∥∥∥− ϕ(z)− ϕ(x)
z − x

<
ε

2(b− a)
. (2.1)

Consequently, for every x′, x′′ ∈ [a, b] with x′ ≤ x ≤ x′′ and

[x′, x′′] ⊂ (x− δε(x), x + δε(x))

we have

‖F (x′′)− F (x′)‖ − (ϕ(x′′)− ϕ(x′)) ≤ ε(x′′ − x′)
2(b− a)

.

By the assumption i), F and ϕ both have negligible variation on A. Then
there are gauges δ

′

ε, δ
′′

ε : A → (0,∞) such that

Var (F ;D′) < ε/4 (2.2)

for every (δ
′

ε, A)-fine tagged subpartition D′, and

Var (ϕ;D′′) < ε/4 (2.3)

for every (δ
′′

ε , A)-fine tagged subpartition D′′
. This allows us to extend the

function δε : x → δε(x) to the whole interval [a, b], by letting

δε(x) = inf
{

δ
′

ε(x), δ
′′

ε (x)
}

for x ∈ A.

According to Cousin’s principle, there exists a (δε, [a, b])-fine partition

{([xj , xj+1]) , tj}n−1
j=0

of [a, b]. Then

‖F (b)− F (a)‖ − (ϕ(b)− ϕ(a))

≤
n−1∑
j=0

(‖F (xj+1)− F (xj)‖ − (ϕ(xj+1)− ϕ(xj)))

≤
∑

{j; tj /∈A}

(‖F (xj+1)− F (xj)‖ − (ϕ(xj+1)− ϕ(xj)))

+
∑

{j; tj∈A}

‖F (xj+1)− F (xj)‖+
∑

{j; zj∈A}

|ϕ(xj+1)− ϕ(xj)|

<
ε

2(b− a)

∑
{j; zj /∈A}

(xj+1 − xj) +
ε

4
+

ε

4
≤ ε,
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by (2.1), (2.2) and respectively (2.3). As ε > 0 was fixed arbitrarily, we
conclude that ‖F (b)− F (a)‖ − (ϕ(b)− ϕ(a)) ≤ 0.

3 The Case of Absolutely Continuous Functions

Negligible variation is related to generalized absolute continuity. A function
F : [a, b] → E is said to be absolutely continuous on a set A if for every ε > 0
there is some η > 0 such that

N∑
i=1

‖F (xi)− F (yi)‖ < ε (AC)

for all finite sets of disjoint open intervals {(xi, yi)}N
i=1 with endpoints in A

and
∑N

i=1(yi − xi) < η. F is said to be absolutely continuous in the restricted
sense on A if instead we have

N∑
i=1

sup
x,y∈[xi,yi]

‖F (x)− F (y)‖ < ε (AC?)

under the same conditions as for (AC). And, F is generalized absolutely con-
tinuous in the restricted sense on A (i.e., F ∈ AC?G[a,b](A,E)) if F is contin-
uous and A is the countable union of sets on each of which F is AC?. Notice
that among continuous functions, the AC?G functions on [a, b] are properly
contained in the class of functions that are differentiable almost everywhere
and they properly contain the class of functions that are differentiable nearly
everywhere (differentiable except perhaps on a countable set). See [5].

A function f : [a, b] → R is Henstock-Kurzweil integrable if and only if
there is a function F ∈ AC?G[a,b]([a, b], R) with F ′ = f almost everywhere. In
this case, F (x)− F (a) =

∫ x

a
f(t) dt. See [5].

Lemma 1. If A is a null subset of [a, b], then AC?G[a,b](A,E) ⊂ NV[a,b](A,E).

The proof is straightforward and we shall omit it. By combining Theorem
1 with Lemma 1 we obtain the following result.

Theorem 4. Let F : [a, b] → E and ϕ : [a, b] → R be two functions and let A
be a null subset of [a, b] such that:

i) F and ϕ are generalized absolutely continuous in the restricted sense on
[a, b],

ii) F and ϕ are differentiable on [a, b] \A and ‖F ′‖ ≤ ϕ′ on [a, b] \A.

Then ‖F (b)− F (a)‖ ≤ ϕ(b)− ϕ(a).
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4 Application to Inequalities

We need the following easy consequence of Theorem 4.

Theorem 5. Let ϕ : [a, b] → E be a continuous function and let A be a null
subset of [a, b] such that:

i) ϕ is generalized absolutely continuous in the restricted sense on [a, b];

ii) ϕ is differentiable on [a, b] \A and ϕ′ ≥ 0 on [a, b] \A.

Then ϕ is nondecreasing.

Corollary 1. (Steffensen’s Inequalities [7], Theorem 6.25). Let f : [a, b] → R
be a nondecreasing function and let g : [a, b] → [0,∞) be a Lebesgue integrable
function such that∫ x

a

g(t) dt ≤ x− a and
∫ b

x

g(t) dt ≤ b− x

for every x ∈ [a, b]. Then∫ a+λ

a

f(t) dt ≤
∫ b

a

f(t)g(t) dt ≤
∫ b

b−λ

f(t) dt,

where λ =
∫ b

a
g(t) dt.

Proof. Here we shall prove the left hand inequality; the other one can be
obtained in a similar manner. For this we put

F (x) =
∫ x

a

f(t) dt, G(x) = a +
∫ x

a

g(t) dt, and H(x) =
∫ x

a

f(t)g(t) dt.

Then H −F ◦G is absolutely continuous and (H − F ◦G)′ ≥ 0 almost every-
where. Consequently, H(b)− F (G(b)) ≥ H(a)− F (G(a)) = 0; i.e.,∫ b

a

f(t)g(t) dt−
∫ a+λ

a

f(t) dt ≥ 0.

The hypotheses on g are fulfilled by all integrable functions g such that
0 ≤ g ≤ 1 (and also by some other functions, outside this range of values).

As is well known, if F : [a, b] → R is a convex function (which admits finite
derivatives at the endpoints), then

λF ′(a) ≤ F (a + λ)− F (a) and F (b)− F (b− λ) ≤ λF ′(b)
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for every λ ∈ [0, b − a]. These inequalities are complemented by Steffensen’s
Inequalities as follows

F (a + λ)− F (a) ≤ inf
{∫ b

a

F ′(t)g(t) dt; g ∈ L1[a, b], 0 ≤ g ≤ 1,

∫ b

a

g(t) dt = λ
}

F (b)− F (b− λ) ≥ sup
{∫ b

a

F ′(t)g(t) dt; g ∈ L1[a, b], 0 ≤ g ≤ 1,

∫ b

a

g(t) dt = λ
}

.

Corollary 1 allows us to derive the following extension of the Iyengar in-
equality [6].

Proposition 1. Consider a Riemann integrable function f : [a, b] → R such
that the slopes of the lines AC and CB, joining the endpoints A (a, f(a)) and
B (b, f(b)) of the graph of f to the other points C(x, f(x)) of the graph, vary
between −M and M . Then∣∣∣∣∣ 1

b− a

∫ b

a

f(x) dx− f(a) + f(b)
2

∣∣∣∣∣ ≤ M

4
(b− a)− (f(b)− f(a))2

4M(b− a)
.

Proof. According to the trapezoidal approximation, it suffices to consider
the case where f is piecewise linear. In that case f is absolutely continuous
and it satisfies the inequalities

0 ≤
∫ x

a

f ′(t) + M

2M
dt =

f(x)− f(a) + M(x− a)
2M

≤ x− a

and

0 ≤
∫ b

x

f ′(t) + M

2M
dt =

f(b)− f(x) + M(b− x)
2M

≤ b− x

for every x ∈ [a, b]. The proof ends by applying Corollary 1 to (f ′+M)/(2M).
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