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Abstract

We prove the following extension of the Mean Value Theorem. Let
E be a Banach space and let F : [a,b] — E and ¢ : [a,b] — R be two
functions for which there exists a subset A C [a,b] such that:

i) F and ¢ have negligible variation on A,
ii) F and ¢ are differentiable on [a,b]\ A and |[F'|| < ¢’ on [a,b]\ A.

Then ||[F(b) — F(a)|l < ¢(b) — ¢(a).
Several applications are included.

1 Introduction

In what follows I = [a,b] denotes a nondegenerate compact interval and F
denotes a Banach space.

A subpartition of I is a collection P = (I;)j_; of nonoverlapping closed
intervals in I; if U;1; = I, we say that P is a partition. A tagged subpartition
of I is a collection of ordered pairs (I;,t;);_; consisting of intervals I;, that
form a subpartition of I, and tags t; € I;, for j = 1,...,s. If 0 is a gauge
(i.e., a positive function) on a subset A C I, we say that a tagged subpartition
(1j,t5)5=1 is (0, A)-fine if all tags t; belong to A and I; C [t; —5(t;),t; +0(t5)]
for j =1,...,s. A result (usually ascribed to P. Cousin) asserts the existence
of (4, I)-fine partitions for each ¢ : I — (0,00). See [1], page 11.

A function F' : I — E is said to have negligible variation on a set A C I
(and we write F' € NV;(A, E)) if, for every € > 0 there exists a gauge 6. on A
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such that if D = {([u;,v;]),t; };:1 is any (d., A)-fine subpartition of I, then
Var (F;D) = ||F(v;) = Fluy)|| <.
j=1

As is well known (see [1]), if FF € NVi(A, E), then F is continuous at
every point of A. Conversely, if C' is a countable set in I and F' : I — FE is
continuous at every point of C, then F' € NV;(C, E). However, when Z C [ is
a null set, not every continuous function on I belongs to NV;(Z, E). See [1],
page 233, for an example.

The aim of this paper is to prove the following generalization of the classical
Denjoy-Bourbaki theorem.

Theorem 1. Let F : [a,b] — E and ¢ : [a,b] — R be two functions for which
there exists a subset A C |a,b] such that:

i) F and ¢ have negligible variation on A,
it) F and ¢ are differentiable on [a,b] \ A and |F'|| < ¢’ on [a,b] \ A.
Then ||F(b) = F(a)|| < ¢(b) — ¢(a).

The details of the proof are given in Section 2.

The classical case corresponds to the situation when A is at most countable.
It was published in [2], pp. 23—-24, with an argument adapted from a celebrated
paper of A. Denjoy [3], dedicated to the Dini derivates. In that case, it is usual
to reformulate the assumption ) by requiring the continuity of both F' and
¢ on [a,b]. See [4], Ch. 8, Section 5. An immediate consequence is the
integral representation of continuous convex functions on compact intervals.
If F': [a,b] — R is such a function, then

F(x) = F(c) + /1’ F(t) dt,

for every ¢ € (a,b) and every x € [a, b].

According to Theorem 1 we can enlarge the concept of a primitive function
as follows. Given a function f : [a,b] — E, by a primitive of f we mean any
continuous function F' : [a,b] — E which is differentiable except for a null
subset A C [a,b], on which F has negligible variation, and F’ = f on [a, b] \ A.
By Theorem 1 above, every two primitives (of a same function) differ by a
constant. Letting

b
/ f@t)dt = F(b) — F(a), if F is a primitive of f,
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we arrive at a concept of integral which, in the scalar case, is equivalent to the
Denjoy integral.

An immediate consequence of Theorem 1 (for p(x) = M(z — a)) is as
follows.

Theorem 2. Let F : [a,b] — FE be a function for which there exists a subset
A C [a,b] such that:

i) F has negligible variation on A,
it) F is differentiable at all points of [a,b] \ A and |F'|| < M on [a,b] \ A.
Then |F(b) — F(a)|| < M(b— a).

Theorem 1 can be used to improve upon the usual criterion of differen-
tiation of the limit of differentiable functions (as formulated in [4], Theorem
8.6.4).

Theorem 3. Assume there are given for each n € N a pair of functions
F,, fn: [a,b] = E, and a subset A,, C [a,b], such that:

i) F, has negligible variation on A,,
it) Except at points of A,,, fy is the derivative of F,,

i) There is at least one point & € [a,b] such that the sequence (F,(&))y is
convergent,

i) For each x € [a,b] there is a neighborhood Uy on which the sequence (fn)n
converges uniformly.

Then the sequence (F,,), converges uniformly on each U, and, letting F(z) =
limy, o0 F(z) and f(x) = lim,—.o fn(2), the function F is differentiable at
each x € [a,b] \ U2, A, and F'(x) = f(z).

The proof is essentially the same as in the classical case and therefore it
will be omitted.

Theorem 1 can be used to derive some classical inequalities such as the
Steffensen and Iyengar inequalities. This will be discussed in Section 4 below.

2 Proof of Theorem 1

Suppose there is given € > 0. By the assumption i7), for every z € [a,b] \ A,

lim (HF<z> - F() ’ _ple) - W)) <0,

zZ—T zZ—X zZ—X
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0<|z—2z| <d(x)in [a,d]

implies
F(z) - F(z)

Z—X

so that for every x € [a,b] \ A, there is a d.(z) > 0 for which

' c—e  20b-a)

Consequently, for every o/, 2" € [a,b] with 2’ <z < 2" and

[/, 2"] C (z — 6:(),z + ()

we have
E(fL‘// _ :I:I)

F(2") — F(2) — A Y < )
1P = F@)] = (o) = o) < S
By the assumption i), F and ¢ both have negligible variation on A. Then
there are gauges 6,6, : A — (0,00) such that
Var (F;D') < e/4 (2.2)
for every ((5;, A)-fine tagged subpartition D', and
Var (¢; D) < e/4 (2.3)
for every (6;/,A)—ﬁne tagged subpartition D". This allows us to extend the
function 4. : x — §.(z) to the whole interval [a, ], by letting

0c(z) = inf {5;(1‘), 6!(3:)} for x € A.

According to Cousin’s principle, there exists a (., [a, b])-fine partition

{(zj i) 5370

of [a,b]. Then
1£(b) = F(a)]| = ((b) = ¥(a))
< UEF @) = Fzy)ll = (p(z1) = o(z5)))
=0
< D (IF(@is) = Fapl = (e(zj41) = olz))
{55 t5¢A}
+ Y IF@a) = Fa)l+ Y0 le(zio) — ()|
{7; t;€A} {7; z;€A}
5 e €
“20b—a) {j;;A}(%“ “mtgtgse
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by (2.1), (2.2) and respectively (2.3). As e > 0 was fixed arbitrarily, we
conclude that ||F(b) — F(a)|| — (¢(b) — ¢(a)) < 0. O

3 The Case of Absolutely Continuous Functions

Negligible variation is related to generalized absolute continuity. A function
F : [a,b] — E is said to be absolutely continuous on a set A if for every € > 0
there is some 1 > 0 such that

N
Z [F(zi) = Fy)ll <e (AC)

for all finite sets of disjoint open intervals {(z;, yi)}ijil with endpoints in A
and Zf\;(yi — ;) <n. F is said to be absolutely continuous in the restricted
sense on A if instead we have

N

S sw [[F@) - Fl)l <e (AC.)

i=1 z,y€[wq,y;]

under the same conditions as for (AC). And, F' is generalized absolutely con-
tinuous in the restricted sense on A (i.e., F € AC,Gq (A, E)) if F is contin-
uous and A is the countable union of sets on each of which F is AC,. Notice
that among continuous functions, the AC,G functions on [a,b] are properly
contained in the class of functions that are differentiable almost everywhere
and they properly contain the class of functions that are differentiable nearly
everywhere (differentiable except perhaps on a countable set). See [5].

A function f : [a,b] — R is Henstock-Kurzweil integrable if and only if
there is a function F' € AC, G4 ([a,b], R) with F' = f almost everywhere. In
this case, F(z) — F(a) = [ f(t) dt. See [5].

Lemma 1. If A is a null subset of [a, b], then AC,Gqp)(A, E) C NV]o4(A, E).

The proof is straightforward and we shall omit it. By combining Theorem
1 with Lemma 1 we obtain the following result.

Theorem 4. Let F : [a,b] — E and ¢ : [a,b] — R be two functions and let A
be a null subset of [a,b] such that:

i) F and ¢ are generalized absolutely continuous in the restricted sense on
[a, 0],

it) F and ¢ are differentiable on [a,b] \ A and ||F’|| < ¢’ on [a,b] \ A.
Then ||[F(b) = F(a)| < ¢(b) — ¢(a).



644 CONSTANTIN P. NICULESCU AND FLORIN POPOVICI

4 Application to Inequalities

We need the following easy consequence of Theorem 4.

Theorem 5. Let ¢ : [a,b] — E be a continuous function and let A be a null
subset of [a,b] such that:

i) @ is generalized absolutely continuous in the restricted sense on [a, b];
i) ¢ is differentiable on [a,b] \ A and ¢’ >0 on [a,b] \ A.
Then ¢ is nondecreasing.

Corollary 1. (Steffensen’s Inequalities [7], Theorem 6.25). Let f : [a,b] — R
be a nondecreasing function and let g : [a,b] — [0,00) be a Lebesgue integrable
function such that

T b
/g(t)dtﬁm—aand/g(t)dtgb—x

for every x € [a,b]. Then

a+A b b
[ swars [ rogwis [ s
a a b—A
where \ = f; g(t) dt.

ProoFr. Here we shall prove the left hand inequality; the other one can be
obtained in a similar manner. For this we put

Flz) :/mf(t) it, G(z) =a+/xg(t) dt, and H(z) :/mf(t)g(t) .

Then H — F o G is absolutely continuous and (H — F o G)" > 0 almost every-
where. Consequently, H(b) — F(G(b)) > H(a) — F(G(a)) = 0; i.e.,

b a+A
/f(t)g(t)dt—/ f(t)dt > 0. O

The hypotheses on g are fulfilled by all integrable functions g such that
0 < g <1 (and also by some other functions, outside this range of values).

As is well known, if F': [a,b] — R is a convex function (which admits finite
derivatives at the endpoints), then

AF'(a) < F(a+ X) — F(a) and F(b) — F(b— \) < \F'(b)
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for every A € [0,b — a]. These inequalities are complemented by Steffensen’s
Inequalities as follows

Fla+ X)) — F(a) < inf{/bF’(t)g(t) dt;g € L'a,b], 0 < g < 1,/bg(t) dt = /\}

F(b) — F(b—\) > sup {/}"(t)g(t) dt;g € L'a,b], 0< g < 1,/2(15) dt = /\}.

Corollary 1 allows us to derive the following extension of the Iyengar in-
equality [6].

Proposition 1. Consider a Riemann integrable function f : [a,b] — R such
that the slopes of the lines AC and CB, joining the endpoints A (a, f(a)) and
B (b, f(b)) of the graph of f to the other points C(z, f(x)) of the graph, vary
between —M and M. Then

1t fla)+ fb)| M (f(b) = f(a))®
b—a/af(w)dx_ 2 I Ay vy

PROOF. According to the trapezoidal approximation, it suffices to consider
the case where f is piecewise linear. In that case f is absolutely continuous
and it satisfies the inequalities

S+ M f(z) = fla) + M(x — a)
< e = <x-—
0< /a Wi dt Wi <zr-—a
and .
[ +M f(b) = f(x) + M(b—x)
< - = <b-—
0< /m Wi dt Wi <b-=
for every = € [a, b]. The proof ends by applying Corollary 1 to (f'+M)/(2M).
O
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