Constantin P. Niculescu, Department of Mathematics, University of Craiova, Street A.I. Cuza 13, Craiova 200585, Romania.
email: cniculescu@central.ucv.ro
Florin Popovici, College Nicolae Titulescu, Braşov 500435, Romania.

A NOTE ON THE DENJOY-BOURBAKI THEOREM

Abstract

We prove the following extension of the Mean Value Theorem. Let E be a Banach space and let $F:[a, b] \rightarrow E$ and $\varphi:[a, b] \rightarrow \mathbb{R}$ be two functions for which there exists a subset $A \subset[a, b]$ such that: i) F and φ have negligible variation on A, ii) F and φ are differentiable on $[a, b] \backslash A$ and $\left\|F^{\prime}\right\| \leq \varphi^{\prime}$ on $[a, b] \backslash A$.

Then $\|F(b)-F(a)\| \leq \varphi(b)-\varphi(a)$.

Several applications are included.

1 Introduction

In what follows $I=[a, b]$ denotes a nondegenerate compact interval and E denotes a Banach space.

A subpartition of I is a collection $\mathcal{P}=\left(I_{j}\right)_{j=1}^{s}$ of nonoverlapping closed intervals in I; if $\cup_{j} I_{j}=I$, we say that \mathcal{P} is a partition. A tagged subpartition of I is a collection of ordered pairs $\left(I_{j}, t_{j}\right)_{j=1}^{s}$ consisting of intervals I_{j}, that form a subpartition of I, and tags $t_{j} \in I_{j}$, for $j=1, \ldots, s$. If δ is a gauge (i.e., a positive function) on a subset $A \subset I$, we say that a tagged subpartition $\left(I_{j}, t_{j}\right)_{j=1}^{s}$ is (δ, A)-fine if all tags t_{j} belong to A and $I_{j} \subset\left[t_{j}-\delta\left(t_{j}\right), t_{j}+\delta\left(t_{j}\right)\right]$ for $j=1, \ldots, s$. A result (usually ascribed to P . Cousin) asserts the existence of (δ, I)-fine partitions for each $\delta: I \rightarrow(0, \infty)$. See [1], page 11.

A function $F: I \rightarrow E$ is said to have negligible variation on a set $A \subset I$ (and we write $F \in N V_{I}(A, E)$) if, for every $\varepsilon>0$ there exists a gauge δ_{ε} on A

[^0]such that if $\mathcal{D}=\left\{\left(\left[u_{j}, v_{j}\right]\right), t_{j}\right\}_{j=1}^{s}$ is any $\left(\delta_{\varepsilon}, A\right)$-fine subpartition of I, then
$$
\operatorname{Var}(F ; \mathcal{D})=\sum_{j=1}^{s}\left\|F\left(v_{j}\right)-F\left(u_{j}\right)\right\|<\varepsilon
$$

As is well known (see [1]), if $F \in N V_{I}(A, E)$, then F is continuous at every point of A. Conversely, if C is a countable set in I and $F: I \rightarrow E$ is continuous at every point of C, then $F \in N V_{I}(C, E)$. However, when $Z \subset I$ is a null set, not every continuous function on I belongs to $N V_{I}(Z, E)$. See [1], page 233, for an example.

The aim of this paper is to prove the following generalization of the classical Denjoy-Bourbaki theorem.
Theorem 1. Let $F:[a, b] \rightarrow E$ and $\varphi:[a, b] \rightarrow \mathbb{R}$ be two functions for which there exists a subset $A \subset[a, b]$ such that:
i) F and φ have negligible variation on A,
ii) F and φ are differentiable on $[a, b] \backslash A$ and $\left\|F^{\prime}\right\| \leq \varphi^{\prime}$ on $[a, b] \backslash A$.

Then $\|F(b)-F(a)\| \leq \varphi(b)-\varphi(a)$.
The details of the proof are given in Section 2.
The classical case corresponds to the situation when A is at most countable. It was published in [2], pp. 23-24, with an argument adapted from a celebrated paper of A. Denjoy [3], dedicated to the Dini derivates. In that case, it is usual to reformulate the assumption i) by requiring the continuity of both F and φ on $[a, b]$. See [4], Ch. 8, Section 5. An immediate consequence is the integral representation of continuous convex functions on compact intervals. If $F:[a, b] \rightarrow \mathbb{R}$ is such a function, then

$$
F(x)=F(c)+\int_{c}^{x} F_{+}^{\prime}(t) d t
$$

for every $c \in(a, b)$ and every $x \in[a, b]$.
According to Theorem 1 we can enlarge the concept of a primitive function as follows. Given a function $f:[a, b] \rightarrow E$, by a primitive of f we mean any continuous function $F:[a, b] \rightarrow E$ which is differentiable except for a null subset $A \subset[a, b]$, on which F has negligible variation, and $F^{\prime}=f$ on $[a, b] \backslash A$. By Theorem 1 above, every two primitives (of a same function) differ by a constant. Letting

$$
\int_{a}^{b} f(t) d t=F(b)-F(a), \text { if } F \text { is a primitive of } f
$$

we arrive at a concept of integral which, in the scalar case, is equivalent to the Denjoy integral.

An immediate consequence of Theorem 1 (for $\varphi(x)=M(x-a)$) is as follows.

Theorem 2. Let $F:[a, b] \rightarrow E$ be a function for which there exists a subset $A \subset[a, b]$ such that:
i) F has negligible variation on A,
ii) F is differentiable at all points of $[a, b] \backslash A$ and $\left\|F^{\prime}\right\| \leq M$ on $[a, b] \backslash A$.

Then $\|F(b)-F(a)\| \leq M(b-a)$.
Theorem 1 can be used to improve upon the usual criterion of differentiation of the limit of differentiable functions (as formulated in [4], Theorem 8.6.4).

Theorem 3. Assume there are given for each $n \in \mathbb{N}$ a pair of functions $F_{n}, f_{n}:[a, b] \rightarrow E$, and a subset $A_{n} \subset[a, b]$, such that:
i) F_{n} has negligible variation on A_{n},
ii) Except at points of A_{n}, f_{n} is the derivative of F_{n},
iii) There is at least one point $\xi \in[a, b]$ such that the sequence $\left(F_{n}(\xi)\right)_{n}$ is convergent,
iv) For each $x \in[a, b]$ there is a neighborhood U_{x} on which the sequence $\left(f_{n}\right)_{n}$ converges uniformly.

Then the sequence $\left(F_{n}\right)_{n}$ converges uniformly on each U_{x} and, letting $F(x)=$ $\lim _{n \rightarrow \infty} F_{n}(x)$ and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, the function F is differentiable at each $x \in[a, b] \backslash \cup_{n=1}^{\infty} A_{n}$ and $F^{\prime}(x)=f(x)$.

The proof is essentially the same as in the classical case and therefore it will be omitted.

Theorem 1 can be used to derive some classical inequalities such as the Steffensen and Iyengar inequalities. This will be discussed in Section 4 below.

2 Proof of Theorem 1

Suppose there is given $\varepsilon>0$. By the assumption $i i$, for every $x \in[a, b] \backslash A$,

$$
\lim _{z \rightarrow x}\left(\left\|\frac{F(z)-F(x)}{z-x}\right\|-\frac{\varphi(z)-\varphi(x)}{z-x}\right) \leq 0
$$

so that for every $x \in[a, b] \backslash A$, there is a $\delta_{\varepsilon}(x)>0$ for which

$$
0<|z-x|<\delta_{\varepsilon}(x) \text { in }[a, b]
$$

implies

$$
\begin{equation*}
\left\|\frac{F(z)-F(x)}{z-x}\right\|-\frac{\varphi(z)-\varphi(x)}{z-x}<\frac{\varepsilon}{2(b-a)} . \tag{2.1}
\end{equation*}
$$

Consequently, for every $x^{\prime}, x^{\prime \prime} \in[a, b]$ with $x^{\prime} \leq x \leq x^{\prime \prime}$ and

$$
\left[x^{\prime}, x^{\prime \prime}\right] \subset\left(x-\delta_{\varepsilon}(x), x+\delta_{\varepsilon}(x)\right)
$$

we have

$$
\left\|F\left(x^{\prime \prime}\right)-F\left(x^{\prime}\right)\right\|-\left(\varphi\left(x^{\prime \prime}\right)-\varphi\left(x^{\prime}\right)\right) \leq \frac{\varepsilon\left(x^{\prime \prime}-x^{\prime}\right)}{2(b-a)}
$$

By the assumption $i), F$ and φ both have negligible variation on A. Then there are gauges $\delta_{\varepsilon}^{\prime}, \delta_{\varepsilon}^{\prime \prime}: A \rightarrow(0, \infty)$ such that

$$
\begin{equation*}
\operatorname{Var}\left(F ; \mathcal{D}^{\prime}\right)<\varepsilon / 4 \tag{2.2}
\end{equation*}
$$

for every $\left(\delta_{\varepsilon}^{\prime}, A\right)$-fine tagged subpartition \mathcal{D}^{\prime}, and

$$
\begin{equation*}
\operatorname{Var}\left(\varphi ; \mathcal{D}^{\prime \prime}\right)<\varepsilon / 4 \tag{2.3}
\end{equation*}
$$

for every $\left(\delta_{\varepsilon}^{\prime \prime}, A\right)$-fine tagged subpartition $\mathcal{D}^{\prime \prime}$. This allows us to extend the function $\delta_{\varepsilon}: x \rightarrow \delta_{\varepsilon}(x)$ to the whole interval $[a, b]$, by letting

$$
\delta_{\varepsilon}(x)=\inf \left\{\delta_{\varepsilon}^{\prime}(x), \delta_{\varepsilon}^{\prime \prime}(x)\right\} \text { for } x \in A
$$

According to Cousin's principle, there exists a $\left(\delta_{\varepsilon},[a, b]\right)$-fine partition

$$
\left\{\left(\left[x_{j}, x_{j+1}\right]\right), t_{j}\right\}_{j=0}^{n-1}
$$

of $[a, b]$. Then

$$
\begin{aligned}
& \|F(b)-F(a)\|-(\varphi(b)-\varphi(a)) \\
\leq & \sum_{j=0}^{n-1}\left(\left\|F\left(x_{j+1}\right)-F\left(x_{j}\right)\right\|-\left(\varphi\left(x_{j+1}\right)-\varphi\left(x_{j}\right)\right)\right) \\
\leq & \sum_{\left\{j ; t_{j} \notin A\right\}}\left(\left\|F\left(x_{j+1}\right)-F\left(x_{j}\right)\right\|-\left(\varphi\left(x_{j+1}\right)-\varphi\left(x_{j}\right)\right)\right) \\
& +\sum_{\left\{j ; t_{j} \in A\right\}}\left\|F\left(x_{j+1}\right)-F\left(x_{j}\right)\right\|+\sum_{\left\{j ; z_{j} \in A\right\}}\left|\varphi\left(x_{j+1}\right)-\varphi\left(x_{j}\right)\right| \\
< & \frac{\varepsilon}{2(b-a)} \sum_{\left\{j ; z_{j} \notin A\right\}}\left(x_{j+1}-x_{j}\right)+\frac{\varepsilon}{4}+\frac{\varepsilon}{4} \leq \varepsilon,
\end{aligned}
$$

by (2.1), (2.2) and respectively (2.3). As $\varepsilon>0$ was fixed arbitrarily, we conclude that $\|F(b)-F(a)\|-(\varphi(b)-\varphi(a)) \leq 0$.

3 The Case of Absolutely Continuous Functions

Negligible variation is related to generalized absolute continuity. A function $F:[a, b] \rightarrow E$ is said to be absolutely continuous on a set A if for every $\varepsilon>0$ there is some $\eta>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{N}\left\|F\left(x_{i}\right)-F\left(y_{i}\right)\right\|<\varepsilon \tag{AC}
\end{equation*}
$$

for all finite sets of disjoint open intervals $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$ with endpoints in A and $\sum_{i=1}^{N}\left(y_{i}-x_{i}\right)<\eta$. F is said to be absolutely continuous in the restricted sense on A if instead we have

$$
\sum_{i=1}^{N} \sup _{x, y \in\left[x_{i}, y_{i}\right]}\|F(x)-F(y)\|<\varepsilon
$$

under the same conditions as for (AC). And, F is generalized absolutely continuous in the restricted sense on A (i.e., $\left.F \in A C_{\star} G_{[a, b]}(A, E)\right)$ if F is continuous and A is the countable union of sets on each of which F is $A C_{\star}$. Notice that among continuous functions, the $A C_{\star} G$ functions on $[a, b]$ are properly contained in the class of functions that are differentiable almost everywhere and they properly contain the class of functions that are differentiable nearly everywhere (differentiable except perhaps on a countable set). See [5].

A function $f:[a, b] \rightarrow \mathbb{R}$ is Henstock-Kurzweil integrable if and only if there is a function $F \in A C_{\star} G_{[a, b]}([a, b], \mathbb{R})$ with $F^{\prime}=f$ almost everywhere. In this case, $F(x)-F(a)=\int_{a}^{x} f(t) d t$. See [5].
Lemma 1. If A is a null subset of $[a, b]$, then $A C_{\star} G_{[a, b]}(A, E) \subset N V_{[a, b]}(A, E)$.
The proof is straightforward and we shall omit it. By combining Theorem 1 with Lemma 1 we obtain the following result.

Theorem 4. Let $F:[a, b] \rightarrow E$ and $\varphi:[a, b] \rightarrow \mathbb{R}$ be two functions and let A be a null subset of $[a, b]$ such that:
i) F and φ are generalized absolutely continuous in the restricted sense on $[a, b]$,
ii) F and φ are differentiable on $[a, b] \backslash A$ and $\left\|F^{\prime}\right\| \leq \varphi^{\prime}$ on $[a, b] \backslash A$.

Then $\|F(b)-F(a)\| \leq \varphi(b)-\varphi(a)$.

4 Application to Inequalities

We need the following easy consequence of Theorem 4.
Theorem 5. Let $\varphi:[a, b] \rightarrow E$ be a continuous function and let A be a null subset of $[a, b]$ such that:
i) φ is generalized absolutely continuous in the restricted sense on $[a, b]$;
ii) φ is differentiable on $[a, b] \backslash A$ and $\varphi^{\prime} \geq 0$ on $[a, b] \backslash A$.

Then φ is nondecreasing.
Corollary 1. (Steffensen's Inequalities [7], Theorem 6.25). Let $f:[a, b] \rightarrow \mathbb{R}$ be a nondecreasing function and let $g:[a, b] \rightarrow[0, \infty)$ be a Lebesgue integrable function such that

$$
\int_{a}^{x} g(t) d t \leq x-a \text { and } \int_{x}^{b} g(t) d t \leq b-x
$$

for every $x \in[a, b]$. Then

$$
\int_{a}^{a+\lambda} f(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq \int_{b-\lambda}^{b} f(t) d t
$$

where $\lambda=\int_{a}^{b} g(t) d t$.
Proof. Here we shall prove the left hand inequality; the other one can be obtained in a similar manner. For this we put

$$
F(x)=\int_{a}^{x} f(t) d t, G(x)=a+\int_{a}^{x} g(t) d t, \text { and } H(x)=\int_{a}^{x} f(t) g(t) d t
$$

Then $H-F \circ G$ is absolutely continuous and $(H-F \circ G)^{\prime} \geq 0$ almost everywhere. Consequently, $H(b)-F(G(b)) \geq H(a)-F(G(a))=0$; i.e.,

$$
\int_{a}^{b} f(t) g(t) d t-\int_{a}^{a+\lambda} f(t) d t \geq 0
$$

The hypotheses on g are fulfilled by all integrable functions g such that $0 \leq g \leq 1$ (and also by some other functions, outside this range of values).

As is well known, if $F:[a, b] \rightarrow \mathbb{R}$ is a convex function (which admits finite derivatives at the endpoints), then

$$
\lambda F^{\prime}(a) \leq F(a+\lambda)-F(a) \text { and } F(b)-F(b-\lambda) \leq \lambda F^{\prime}(b)
$$

for every $\lambda \in[0, b-a]$. These inequalities are complemented by Steffensen's Inequalities as follows

$$
\begin{aligned}
& F(a+\lambda)-F(a) \leq \inf \left\{\int_{a}^{b} F^{\prime}(t) g(t) d t ; g \in L^{1}[a, b], 0 \leq g \leq 1, \int_{a}^{b} g(t) d t=\lambda\right\} \\
& F(b)-F(b-\lambda) \geq \sup \left\{\int_{a}^{b} F^{\prime}(t) g(t) d t ; g \in L^{1}[a, b], 0 \leq g \leq 1, \int_{a}^{b} g(t) d t=\lambda\right\} .
\end{aligned}
$$

Corollary 1 allows us to derive the following extension of the Iyengar inequality [6].
Proposition 1. Consider a Riemann integrable function $f:[a, b] \rightarrow \mathbb{R}$ such that the slopes of the lines $A C$ and $C B$, joining the endpoints $A(a, f(a))$ and $B(b, f(b))$ of the graph of f to the other points $C(x, f(x))$ of the graph, vary between $-M$ and M. Then

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}\right| \leq \frac{M}{4}(b-a)-\frac{(f(b)-f(a))^{2}}{4 M(b-a)} .
$$

Proof. According to the trapezoidal approximation, it suffices to consider the case where f is piecewise linear. In that case f is absolutely continuous and it satisfies the inequalities

$$
0 \leq \int_{a}^{x} \frac{f^{\prime}(t)+M}{2 M} d t=\frac{f(x)-f(a)+M(x-a)}{2 M} \leq x-a
$$

and

$$
0 \leq \int_{x}^{b} \frac{f^{\prime}(t)+M}{2 M} d t=\frac{f(b)-f(x)+M(b-x)}{2 M} \leq b-x
$$

for every $x \in[a, b]$. The proof ends by applying Corollary 1 to $\left(f^{\prime}+M\right) /(2 M)$.

References

[1] R. G. Bartle, A Modern Theory of Integration, Graduate Studies in Mathematics, 32, Amer. Math. Soc., Providence, R. I., 2001.
[2] N. Bourbaki, Fonctions d'une variable réelle (Théorie élémentaire), Hermann, Paris, 1949.
[3] A. Denjoy, Mémoire sur les nombres derivés des fonctions continues, Journal de Mathématiques Pures et Appliquées, 7th Series, 1 (1915), 105-240.
[4] J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York and London, 1960.
[5] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, Amer. Math. Soc., Providence, R. I., 1994.
[6] K. S. K. Iyengar, Note on an inequality, Math. Student, 6 (1938), 75-76.
[7] J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Press, 1992.

[^0]: Key Words: Differentiable function, generalized absolute continuity, negligible variation Mathematical Reviews subject classification: Primary 26A24, 26A39; Secondary 26A46, 26D10

 Received by the editors May 27, 2003
 Communicated by: Peter Bullen

