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Introduction

Convexity is a simple and natural notion which plays an important role both in
pure and applied mathematics. However, the recognition of this subject as one
that deserves to be studied in its own is generally traced to J. L. W. V. Jensen
[27], [28]. During the 20th Century an intense research activity was done and
signi�cant results were obtained related to the theory of convex optimization and
the isoperimetric problems. In fact, convex functions have two basic properties,
that make them widely used in theoretical and applied mathematics:

a) their maximum is attained on the boundary of their domain of de�nition;
b) a strictly convex function admits at most one minimum.

Our presentation here aims to be a thorough introduction to the contem-
porary convex functions theory. It covers a large variety of subjects, from the
convex calculus to the variational approach of partial di¤erential equations.
The reader is only assumed to know elementary analysis and have some ac-

quaintance with functional analysis. This can be covered from many textbooks
such as [31].
Formally, our presentation is an extended version of our talk given at the

Symposium on Order Structures in Functional Analysis (Bucharest, October 28,
2005). In this respect we acknowledge the �nancial support of Grant CEX05-
D11-36, that made possible our participation.
At the moment there are available many books on convex functions theory

commenting on di¤erent aspects of this vast subject. We cite here: J. M. Bor-
wein and A. S. Lewis [4], I. Ekeland and R. Temam [13], L. Hörmander [26],
J. E. Peµcaríc, F. Proschan and Y. C. Tong [37], R. R. Phelps [39], R. T. Rockafel-
lar [42], C. Villani [44], and R. Webster [45]. In our joint book with L.-E. Persson
[35] we tried to cover some other recent topics such as the Brunn�Minkowski
inequality and the di¤erent theories concerning the convex-like functions.
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Chapter 1

Background on Convex Sets

The natural domain for a convex function is a convex set. That is why we shall
start by recalling some basic facts on convex sets, which should prove useful for
understanding the general concept of convexity.

1.1 Convex Sets

All ambient linear spaces are assumed to be real.
A subset C of a linear space E is said to be convex if it contains the line

segment
[x; y] = f(1� �)x+ �y : � 2 [0; 1]g

connecting any of its points x and y.
For example, convex sets in R2 include line segments, half-spaces, open or

closed triangles, or open discs (plus any part of the boundary).
Many other examples can be obtained by considering the following operation

with sets:
�A+ �B = f�x+ �y : x 2 A; y 2 Bg;

for A;B � E and �; � 2 R. One can prove easily that �A + �B is convex,
provided that A and B are convex and �; � � 0.
A subset A of E is said to be a¢ ne if it contains the whole line through any

two of its points. Algebraically, this means

x; y 2 A and � 2 R imply (1� �)x+ �y 2 A:

Clearly, any a¢ ne subset is also convex (but the converse is not true). It is
important to notice that any a¢ ne subset A is just the translate of a (unique)
linear subspace L (and all translates of a linear space represent a¢ ne sets). In
fact, for every a 2 A, the translate

L = A� a

1



2 CHAPTER 1. BACKGROUND ON CONVEX SETS

is a linear space and it is clear that A = L+ a. For the uniqueness part, notice
that if L and M are linear subspaces of E and a; b 2 E verify

L+ a =M + b;

then necessarily L =M and a� b 2 L.
This remark allows us to introduce the concept of dimension for an a¢ ne

set (as the dimension of the linear subspace of which it is a translate).
Given a �nite family x1; : : : ; xn of points in E, an a¢ ne combination of them

is any point of the form

x =
nX
k=1

�kxk

where �1; : : : ; �n 2 R, and
Pn

k=1 �k = 1. If, in addition, �1; : : : ; �n � 0, then x
is called a convex combination (of x1; : : : ; xn).

1.1.1. Lemma. A subset C of E is convex (respectively a¢ ne) if and only if
it contains every convex (respectively a¢ ne) combination of points of C.

Proof. The su¢ ciency part is clear, while the necessity part can be proved by
mathematical induction. �
Given a subset A of E, the intersection co (A) of all convex subsets containing

A is convex and thus it is the smallest set of this nature containing A. We call
it the convex hull of A. By using Lemma 1.1.1, one can verify easily that co (A)
consists of all convex combinations of elements of A. The a¢ ne variant of this
construction yields the a¢ ne hull of A, denoted a¤(A). As a consequence we
can introduce the concept of dimension for convex sets to be the dimension of
their a¢ ne hulls.

1.1.2. Theorem (Carathéodory�s theorem). Suppose that A is a subset of a
linear space E and its convex hull co (A) has dimension m. Then each point x
of co (A) is the convex combination of at most m+ 1 points of A.

Proof. Suppose that x =
Pn

k=0 �kxk, where xk 2 A, �k > 0 and
Pn

k=0 �k = 1.
If n > m, then the set B = fx0; : : : ; xng veri�es

dim(a¤(B)) � dim(a¤(A)) = m � n� 1

and thus fx1�x0; : : : ; xn�x0g is a linearly dependent set. This gives us a set of
real numbers �0; : : : ; �n, not all 0, such that

Pn
k=0 �kxk = 0 and

Pn
k=0 �k = 0.

Choose t > 0 for which �k = �k � t�k � 0 for k = 0; : : : ; n and �j = 0 for some
index j. This allows us to reduce the number of terms in the representation
of x. Indeed,

x =
nX
k=0

�kxk =
nX
k=0

(�k + t�k)xk =
X
k 6=j

�kxk;

and
P

k 6=j �k =
Pn

k=0 �k =
Pn

k=0(�k � t�k) =
Pn

k=0 �k = 1. �
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The sets of the form C = co (fx0; : : : ; xng) are usually called polytopes. If
x1 � x0; : : : ; xn � x0 are linearly independent, then C is called an n-simplex
(with vertices x0; : : : ; xn); in this case, dimC = n. Any point x in an n-simplex
C has a unique representation x =

Pn
k=0 �kxk, as a convex combination. In

this case, the numbers �0; : : : ; �n are called the barycentric coordinates of x.
An important class of convex sets are the convex cones. A convex cone in E

is a subset C with the following two properties:

C + C � C
�C � C for all � > 0:

Interesting examples are:

� Rn+ = f(x1; : : : ; xn) 2 Rn : x1; : : : ; xn � 0g, the nonnegative orthant;

� Rn++ = f(x1; : : : ; xn) 2 Rn : x1; : : : ; xn > 0g;

� Sym+(n;R), the set of all positive matrices A of Mn(R), that is,

hAx; xi � 0 for all x 2 Rn;

� Sym++(n;R), the set of all strictly positive matrices A of Mn(R), that is,

hAx; xi > 0 for all x 2 Rn; x 6= 0:

The cones C containing the origin are important because of the ordering
they induce:

x � y if and only if y � x 2 C:

So far we have not used any topology; only the linear properties of the space
E have played a role.
Suppose now that E is a linear normed space. The following two results

relate convexity and topology:

1.1.3. Lemma. If U is a convex set in a linear normed space, then its interior
intU and its closure U are convex as well.

Proof. For example, if x; y 2 intU , and � 2 (0; 1), then

�x+ (1� �)y + u = �(x+ u) + (1� �)(y + u) 2 U

for all u in a suitable ball B"(0). This shows that intU is a convex set. Now let
x; y 2 U . Then there exist sequences (xk)k and (yk)k in U , converging to x and
y respectively. This yields �x+ (1� �)y = limk!1[�xk + (1� �)yk] 2 U for all
� 2 [0; 1], that is, U is convex as well. �
Notice that a¢ ne sets in Rn are closed because �nite dimensional subspaces

are always closed.
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1.1.4. Lemma. If U is an open set in a linear normed space E, then its convex
hull is open. If E is �nite dimensional and K is a compact set, then its convex
hull is compact.

Proof. For the �rst assertion, let x =
Pm

k=0 �kxk be a convex combination of
elements of the open set U . Then

x+ u =

mX
k=0

�k(xk + u) for all u 2 E

and since U is open it follows that xk + u 2 U for all k, provided that kuk is
small enough. Consequently, x+ u 2 co (U) for u in a ball B"(0).
We pass now to the second assertion. Clearly, we may assume that E = Rn.

Then consider the map de�ned by

f(�0; : : : ; �n; x0; : : : ; xn) =

nX
k=0

�kxk;

where �0; : : : ; �n 2 [0; 1],
Pn

k=0 �k = 1, and x0; : : : ; xn 2 K. Since f is con-
tinuous and its domain of de�nition is a compact space, so is the range of f .
According to Carathéodory�s theorem, the range of f is precisely co (K), and
this ends the proof. �
While working with a convex subset A of Rn, the natural space containing

it is often a¤(A), not Rn, which may be far too large. For example, if dimA =
k < n, then A has empty interior. We can talk more meaningfully about
the topological notions of interior and boundary by using the notions of relative
interior and relative boundary. If A is a convex subset of Rn, the relative interior
of A, denoted ri (A), is the interior of A relative to a¤(A). That is, a 2 ri (A)
if and only if there is an " > 0 such that B"(a)\ a¤(A) � A. We de�ne the
relative boundary of A, denoted rbd (A), as rbd (A) = �An ri (A). These notions
are important in optimization theory; see J. M. Borwein and A. S. Lewis [4].
It is well known that all norms on Rn give rise to the same topology. All

(nonempty) open convex subsets of Rn are homeomorphic. For example, if B is
the open unit ball of the Euclidean space Rn, then the mapping x! x=(1�kxk2)
provides a homeomorphism between B and Rn.

1.2 The Orthogonal Projection

In any normed linear space E we can speak about the distance from a point
u 2 E to a subset A � E. This is de�ned by the formula

d(u;A) = inffku� ak : a 2 Ag

and represents a numerical indicator of how well u can be approximated by
the elements of A. When E = R3 and A is the x-y plane, the Pythagorean
theorem shows that d(u;A) is precisely the distance between u and its orthogonal
projection on that plane.
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This remark has a notable generalization which will be presented in what
follows.

1.2.1. Theorem. Let C be a nonempty closed convex subset of a Hilbert
space H (particularly, of the Euclidean space Rn). Then for each x 2 H there
is a unique point PC(x) of C such that

d(x;C) = kx� PC(x)k:

We call PC(x) the orthogonal projection of x onto C (or the nearest point of
C to x).

Proof. The existence of PC(x) follows from the de�nition of the distance from
a point to a set and the special geometry of the ambient space. In fact, any
sequence (yn)n in C such that kx � ynk ! � = d(x;C) is a Cauchy sequence.
This is a consequence of the following identity,

kym � ynk2 + 4
x� ym + yn2

2 = 2(kx� ymk2 + kx� ynk2)
(motivated by the parallelogram law), and the de�nition of � as an in�mum;
notice that kx� ym+yn

2 k � �, which forces lim supm;n!1 kym � ynk2 = 0.
SinceH is complete, there must exist a point y 2 C at which (yn)n converges.

Then necessarily d(x; y) = d(x;C). The uniqueness of y with this property
follows again from the parallelogram law. If y0 is another point of C such that
d(x; y0) = d(x;C) then

ky � y0k2 + 4
x� y + y02

2 = 2(kx� yk2 + kx� y0k2)
which gives us ky � y0k2 � 0, a contradiction since it was assumed that the
points y and y0 are distinct. �
The map PC : x ! PC(x), from H into itself, is called the orthogonal pro-

jection associated to C. Clearly,

PC(x) 2 C for every x 2 H

and
PC(x) = x if and only if x 2 C:

In particular,
P 2C = PC :

PC is also monotone, that is,

hPC(x)� PC(y); x� yi � 0 for all x; y 2 H: (1.1)

This follows by adding the inequalities

kx� PC(x)k2 � kx� PC(y)k2 and ky � PC(y)k2 � ky � PC(x)k2
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after replacing the norm by the inner product.
If C is a closed subspace of the Hilbert space H, then PC is a linear self-

adjoint projection and x�PC(x) is orthogonal on each element of C. This fact
is basic for the entire theory of orthogonal decompositions.
It is important to reformulate Theorem 1.2.1 in the framework of approx-

imation theory. Suppose that C is a nonempty closed subset in a real linear
normed space E. We de�ne the set of best approximation from x 2 E to C as
the set PC(x) of all points in C closest to x, that is,

PC(x) = fz 2 C : d(x;C) = kx� zkg:

We say that C is a Chebyshev set if PC(x) is a singleton for all x 2 E, and a
proximinal set if all the sets PC(x) are nonempty. Theorem 1.2.1 asserts that
all nonempty closed convex sets in a Hilbert space are Chebyshev sets. There
is an analogue of this theorem valid for the spaces Lp(�) (1 < p < 1, p 6= 2),
saying that all such sets are proximinal. See the end of Section 2.3.
Clearly, the Chebyshev sets are closed.
The following result is a partial converse to Theorem 1.2.1:

1.2.2. Theorem (L. N. H. Bunt). Every Chebyshev subset of Rn is convex.

See R. Webster [45, pp. 362�365] for a proof based on Brouwer�s �xed
point theorem. Proofs based on the di¤erentiability properties of the func-
tion dC : x ! d(x;C), are available in the paper by J.-B. Hiriart-Urruty [23],
and in the monograph by L. Hörmander [26, pp. 62�63].
V. Klee raised the question whether Theorem 1.2.2 is valid for all real Hilbert

spaces. The answer is known to be positive for all Chebyshev sets C such that
the map d2C is di¤erentiable. See [23] for details (and an account of Klee�s
problem).
Outside Hilbert spaces, Klee�s problem has a negative answer. For exam-

ple, let `1(2;R) be the space R2 endowed with the sup norm, k(x1; x2)k =
supfjx1j; jx2jg, and let C be the set of all vectors (x1; x2) such that x2 � x1 � 0.
Then C is a nonconvex Chebyshev set.

1.3 The Hahn�Banach Extension Theorem

The Hahn�Banach theorem is a deep result in functional analysis which provides
important consequences to convex function theory. We recall it here for the
convenience of the reader.
Throughout, E will denote a real linear space.
A functional p : E ! R is subadditive if p(x+y) � p(x)+p(y) for all x; y 2 E;

p is positively homogeneous if p(�x) = �p(x) for each � � 0 and each x in E;
p is sublinear if it has both the above properties. A sublinear functional p is a
seminorm if p(�x) = j�jp(x) for all scalars. Finally, a seminorm p is a norm if

p(x) = 0 =) x = 0:
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If p is a sublinear functional, then p(0) = 0 and �p(�x) � p(x). If p is a
seminorm, then p(x) � 0 for all x in E and fx : p(x) = 0g is a linear subspace
of E.

1.3.1. Theorem (The Hahn�Banach theorem). Let p be a sublinear functional
on E, let E0 be a linear subspace of E, and let f0 : E0 ! R be a linear functional
dominated by p, that is, f0(x) � p(x) for all x 2 E0. Then f0 has a linear
extension f to E which is also dominated by p.

This is an application of Zorn�s lemma. See [10] for details.

1.3.2. Corollary. If p is a sublinear functional on a real linear space E, then
for every element x0 2 E there exists a linear functional f : E ! R such that
f(x0) = p(x0) and f(x) � p(x) for all x in E.
Proof. Take E0 = f�x0 : � 2 Rg and f0(�x0) = �p(x0) in Theorem 1.3.1. �
The continuity of a linear functional on a topological linear space E means

that it is bounded in a neighborhood of the origin. We shall denote by E0 the
dual space of E that is, the space of all continuous linear functionals on E.
In the context of normed linear spaces, the remark above allows us to de�ne

the norm of a continuous linear functional f : E ! R by the formula

kfk = sup
kxk�1

jf(x)j:

With respect to this norm, the dual space of a normed linear space is always
complete.
It is worth noting the following variant of Theorem 1.3.1 in the context of

real normed linear spaces:

1.3.3. Theorem. Let E0 be a linear subspace of the normed linear space E,
and let f0 : E0 ! R be a continuous linear functional. Then f0 has a continuous
linear extension f to E, with kfk = kf0k.
1.3.4. Corollary. If E is a normed linear space, then for each x0 2 E
with x0 6= 0 there exists a continuous linear functional f : E ! R such that
f(x0) = kx0k and kfk = 1.
1.3.5. Corollary. If E is a normed linear space and x is an element of E
such that f(x) = 0 for all f in the dual space of E, then x = 0.

The weak topology on E is the locally convex topology associated to the
family of seminorms

pF (x) = supfjf(x)j : f 2 Fg;
where F runs over all nonempty �nite subsets of E0. A sequence (xn)n converges
to x in the weak topology (abbreviated, xn

w! x) if and only if f(xn) ! f(x)
for every f 2 E0. When E = Rn this is the coordinate-wise convergence and
agrees with the norm convergence. In general, the norm function is only weakly
lower semicontinuous, that is,

xn
w! x =) kxk � lim inf

n!1
kxnk:
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By Corollary 1.3.5 it follows that E0 separates E in the sense that

x; y 2 E and f(x) = f(y) for all f 2 E0 =) x = y:

As a consequence we infer that the weak topology is separated (equivalently,
Hausdor¤).
For E0 we can speak of the normed topology, of the weak topology (associated

to E00 = (E0)0) and also of the weak-star topology, which is associated to the
family of seminorms pF de�ned as above, with the di¤erence that F runs over
all nonempty �nite subsets of E. The weak-star topology on E0 is separated.
A net (fi)i2I (over some directed set I) converges to f in the weak-star

topology (abbreviated, fi
weak?! f) if and only if fi(x)! f(x) for all x 2 E.

1.3.6. Theorem (The Banach�Alaoglu theorem). If E is a normed linear
space, then the closed unit ball of its dual space is compact in the weak-star
topology. Consequently, each net of points of this ball has a converging subnet.

See [10, p. 47] for details.
When E is a separable normed linear space, the closed unit ball of E0 is

also a metrizable space in the weak-star topology (and in this case dealing with
sequences su¢ ces as well). We come to the separability situation very often, by
replacing E with a subspace generated by a suitable sequence of elements.

1.3.7. Remark. According to the Banach�Alaoglu theorem, if E is a normed
linear space, then each weak-star closed subset of the closed unit ball of the
dual of E is weak-star compact. This is a big source of compact convex sets
in mathematics. For example, so is the set Prob (X), of all Borel probability
measures on a compact Hausdor¤ space X. These are the regular �-additive
measures � on the Borel subsets of X with �(X) = 1. The Riesz�Kakutani
representation theorem (see [22, p. 177]) allows us to identify Prob (X) with the
following weak-star closed subset of norm-1 functionals of C(X)0:

K = fL : L 2 C(X)0; L(1) = 1 = kLkg:

Notice that K consists of positive functionals, that is,

f 2 C(X); f � 0 implies L(f) � 0:

In fact, if the range of f is included in [0; 2r], then kf � rk � r, so that r �
jL(f � r)j = jL(f)� rj, that is, L(f) 2 [0; 2r].
Corollary 1.3.4 yields an important canonical embedding of each normed

linear space E into its second dual E00:

JE : E ! E00; JE(x)(x
0) = x0(x):

One can easily show that JE is a linear isometry.
A Banach space E is said to be re�exive if JE is onto (that is, if E is

isometric with its second dual through JE). Besides the �nite dimensional
Banach spaces, other examples of re�exive Banach spaces are Hilbert spaces
and the spaces Lp(�) for 1 < p < 1. One can easily prove the following
permanence properties:
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(R1) every closed subspace of a re�exive space is re�exive;

(R2) the dual of a re�exive space is also a re�exive space;

(R3) re�exivity preserves under renorming by an equivalent norm.

Property (R3) is a consequence of the following characterization of re�exiv-
ity:

1.3.8. Theorem (The Eberlein��mulyan theorem). A Banach space E is
re�exive if and only if every bounded sequence of elements of E admits a weakly
converging subsequence.

Proof. The necessity part follows from the Banach�Alaoglu theorem (Theo-
rem 1.3.6). In fact, we may restrict ourselves to the case where E is also separa-
ble. The su¢ ciency part follows from the remark that JE maps the closed unit
ball of E into a weak�star dense (and also weak-star closed) subset of the closed
unit ball of E00. Full details are available in books such as those by H. W. Alt [2],
J. B. Conway [8] or M. M. Day [10]. �

1.4 Hyperplanes and Separation Theorems

The notion of a hyperplane represents a natural generalization of the notion of
a line in R2 or a plane in R3. Hyperplanes are useful to split the whole space
into two pieces (called half-spaces).
A hyperplane in a real linear space E is any set of constancy of a nonzero

linear functional. In other words, a hyperplane is a set of the form

H = fx 2 E : h(x) = �g; (1.2)

where h : E ! R is a suitable nonzero linear functional and � is a suitable
scalar. In this case the sets

fx 2 E : h(x) � �g and fx 2 E : h(x) � �g

are called the half-spaces determined by H. We say that H separates two sets U
and V if they lie in opposite half-spaces (and strictly separates U and V if one
set is contained in fx 2 E : h(x) < �g and the other in fx 2 E : h(x) � �g).
When E is a real normed linear space (or, more generally, a locally con-

vex Hausdor¤ space) and the functional h which appears in the representation
formula (1.2) is continuous (that is, when h belongs to the dual space E0) we
say that the corresponding hyperplane H is closed. In the context of Rn, all
linear functionals are continuous and thus all hyperplanes are closed. In fact,
any linear functional h : Rn ! R has the form h(x) = hx; zi, for some z 2 Rn
(uniquely determined by h).
Some authors de�ne the hyperplanes as the maximal proper a¢ ne subsets H

of E. Here proper means di¤erent from E. One can prove that the hyperplanes
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are precisely the translates of codimension-1 linear subspaces, and this explains
the agreement of the two de�nitions.
The following results on the separation of convex sets by closed hyperplanes

are part of a very general theory that can be found in [10].

1.4.1. Theorem (Separation theorem). Let U and V be two convex sets in a
real locally convex Hausdor¤ space E, with intU 6= ; and V \ intU = ;. Then
there exists a closed hyperplane that separates U and V .

1.4.2. Theorem (Strong separation theorem). Let K and C be two disjoint
nonempty convex sets in a real locally convex Hausdor¤ space E; with K compact
and C closed. Then there exists a closed hyperplane that separates strictly K
and C.

The special case of the last result when K is a singleton is known as the
basic separation theorem.
Proof of Theorem 1.4.2 in the case where E = Rn : We start by noticing

that the distance
d = inffkx� yk : x 2 K; y 2 Cg

is attained for a pair x0 2 K, y0 2 C. The hyperplane through x0, orthogonal
to the linear segment [x0; y0], determined by x0 and y0, has the equation hy0 �
x0; z � x0i = 0. Fix arbitrarily a point x 2 K. Then hy0 � x0; z � x0i � 0
for every point z 2 [x0; x] (and thus for every z 2 K). Consequently, every
hyperplane through any point inside the segment [x0; y0], orthogonal to this
segment, separates strictly K and C. �
We are now in a position to infer the �nite dimensional case of Theorem 1.4.1

from Theorem 1.4.2. In fact, it su¢ ces to assume that both sets U and V are
closed. Then choose a point x0 2 intU and apply the preceding result to V and
to the compact set

Kn = fx0 + (1� 1=n)(x� x0) : x 2 Ug \Bn(0)

for n 2 N�. This gives us a sequence of unit vectors un and numbers �n such
that hun; xi � �n for x 2 Kn and hun; yi � �n for y 2 V . As (un)n and (�n)n
are bounded, they admit converging subsequences, say to u and � respectively.
Now it is easy to conclude that H = fz : hu; zi = �g is the desired separation
hyperplane.
The closed convex hull of a subset A of a locally convex Hausdor¤ space E

is the smallest closed convex set co (A) containing A (that is, the intersection
of all closed convex sets containing A). From Theorem 1.4.2 we can infer the
following result on the support of closed convex sets:

1.4.3. Proposition. If A is a nonempty subset of a real locally convex Haus-
dor¤ space E, then the closed convex hull co (A) is the intersection of all the
closed half-spaces containing A. Equivalently,

co (A) =
\
f2E0

fx : f(x) � sup
y2A

f(y)g:
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This proposition implies:

1.4.4. Corollary. In a real locally convex Hausdor¤ space E, the closed convex
sets and the weakly closed convex sets are the same.

Let C be a nonempty subset of Rn. The polar set of C, is the set

C� = fx 2 Rn : hu; xi � 1 for every u 2 Cg:

Clearly, C� is a closed convex set containing 0 and C � D implies D� � C�.
By the basic separation theorem we infer that

C�� = co (C [ f0g)

(which is known as the bipolar theorem).
Next we introduce the notion of a supporting hyperplane to a convex set U

in a normed linear space E.

1.4.5. De�nition. We say that the hyperplane H supports U at a point a in
U if a 2 H and U is contained in one of the half-spaces determined by H.

Theorem 1.4.1 assures the existence of a supporting hyperplane to any convex
set U at a boundary point, provided that U has nonempty interior.
When E = Rn, the existence of a supporting hyperplane of U at a boundary

point a will mean the existence of a vector z 2 Rn and of a real number � such
that

ha; zi = � and hx; zi � � for all x 2 U:
A direct argument for the existence of a supporting hyperplane in the �nite

dimensional case is as follows: We may assume that U is closed, by replacing U
with U . Choose a point x0 2 S1(a) = fx : kx� ak = 1g such that

d(x0; U) = supfd(x;U) : x 2 S1(a)g;

that is, x0 is the farthest point from U . The point a is the point of U closest
to x0 and we may conclude that the hyperplane H = fz : hx0 � a; z � ai = 0g
supports U at a.

1.5 The Krein�Milman Theorem

This section is devoted to a discussion on the geometry of convex sets.

1.5.1. De�nition. Let U be a convex subset of a linear space E. A point z
in U is an extreme point if it is not an interior point of any linear segment in
U , that is, if there do not exist distinct points x; y 2 U and numbers � 2 (0; 1)
such that

z = (1� �)x+ �y:

The extreme points of a triangle are its vertices. More generally, every
polytope A = co fa0; : : : ; amg has �nitely many extreme points, and they are
among the points a0; : : : ; am.
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All boundary points of a disc DR(0) = f(x; y) : x2 + y2 � R2g are extreme
points; this is an expression of the rotundity of discs. The closed upper half-
plane y � 0 in R2 has no extreme point.
The extreme points are the landmarks of compact convex sets in Rn:

1.5.2. Theorem (H. Minkowski). Every nonempty convex and compact subset
K of Rn is the convex hull of its extreme points.

Proof. We use induction on the dimension m of K. If m = 0 or m = 1, that is,
when K is a point or a closed segment, the above statement is obvious. Assume
the theorem is true for all compact convex sets of dimension at most m � n�1.
Consider now a compact convex set K whose dimension is m+ 1 and embed it
into a linear subspace E of dimension m+ 1.
If z is a boundary point of K, then we can choose a supporting hyperplane

H � E forK through z. The setK\H is compact and convex and its dimension
is less or equal to m. By the induction hypothesis, z is a convex combination of
extreme points of K \H. Or, any extreme point e of K \H is also an extreme
point of K. In fact, letting H = ft 2 E : '(t) = �g, we may assume that K
is included in the half-space '(t) � �. If e = (1 � �)x + �y with x 6= y in K
and � 2 (0; 1), then necessarily '(x) = '(y) = �, that is, x and y should be in
K \H, in contradiction with the choice of e.
If z is an interior point of K, then each line through z intersects K in a

segment whose endpoints belong to the boundary of K. Consequently, z is a
convex combination of boundary points that in turn are convex combinations
of extreme points. This ends the proof. �
The result of Theorem 1.5.2 can be made more precise: every point in a

compact convex subset K of Rn is the convex combination of at most n + 1
extreme points. See Theorem 1.1.2.
Theorem 1.5.2 admits a remarkable generalization to the setting of locally

convex spaces.

1.5.3. Theorem. Let E be a real locally convex Hausdor¤ space and K be a
nonempty compact convex subset of E. If U is an open convex subset of K
such that ExtK � U , then U = K.

Proof. Suppose that U 6= K and consider the family U of all open convex sets
in K which are not equal to K. By Zorn�s lemma, each set U 2 U is contained
in a maximal element V of U .
For each x 2 K and t 2 [0; 1], let 'x;t : K ! K be the continuous map

de�ned by 'x;t(y) = ty + (1� t)x.
Assuming x 2 V and t 2 [0; 1), we shall show that '�1x;t(V ) is an open convex

set which contains V properly, hence '�1x;t(V ) = K. In fact, this is clear when
t = 0. If t 2 (0; 1), then 'x;t is a homeomorphism and '�1x;t(V ) is an open convex
set in K. Moreover,

'x;t(V ) � V;

which yields V � '�1x;t(V ), hence '�1x;t(V ) = K by the maximality of V . There-
fore 'x;t(K) � V . For any open convex set W in K the intersection V \W is
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also open and convex, and the maximality of V yields that either V [W = V or
V [W = K. In conclusion KnV is precisely a singleton feg. But such a point
is necessarily an extreme point of K, which is a contradiction. �

1.5.4. Corollary (Krein�Milman theorem). Let K be a nonempty compact
convex subset of a real locally convex Hausdor¤ space E. Then K is the closed
convex hull of ExtK.

Proof. By Theorem 1.4.2, the set L = co (ExtK) is the intersection of all
open convex sets containing L. If U is an open subset of K and U � L, then
U �ExtK. Hence U = K and L = K. �
The above proof of the Krein�Milman theorem yields the existence of ex-

treme points as a consequence of the formula K = co (ExtK). However this
can be checked directly. Call a subset A of K extremal if it is closed, nonempty
and veri�es the following property:

x; y 2 K and (1� �)x+ �y 2 A for some � 2 (0; 1) =) x; y 2 A:

By Zorn�s lemma we can choose a minimal extremal subset, say S. We show
that S is a singleton (which yields an extreme point of K). In fact, if S contains
more than one point, the separation Theorem 1.4.2 proves the existence of a
functional f 2 E0 which is not constant on S. But in this case the set

S0 = fx 2 S : f(x) = sup
y2S

f(y)g

will contradict the minimality of S. Now the formula K = co (ExtK) can easily
be proved by noticing that the inclusion co (ExtK) � K cannot be strict.
It is interesting to note the following converse to Theorem 1.5.4:

1.5.5. Theorem (D. P. Milman). Suppose that K is a compact convex set (in
a locally convex Hausdor¤ space E) and C is a subset of K such that K is the
closed convex hull of C. Then the extreme points of K are contained in the
closure of C.

Coming back to Theorem 1.5.2, the fact that every point x of a compact
convex set K in Rn is a convex combination of extreme points of K,

x =
mX
k=1

�kxk;

can be reformulated as an integral representation,

f(x) =
mX
k=1

�kf(xk) =

Z
ExtK

f d� (1.3)

for all f 2 (Rn)0. Here � =
Pm

k=1 �k�xk is a convex combination of Dirac
measures �xk and thus � itself is a Borel probability measure on ExtK.
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The integral representation (1.3) can be extended to all Borel probability
measures � on a compact convex set K (in a locally convex Hausdor¤ space E).
We shall need some de�nitions.
Given a Borel probability measure � on K, and a Borel subset S � K, we

say that � is concentrated on S if �(KnS) = 0. For example, a Dirac measure
�x is concentrated on x.
A point x 2 K is said to be the barycenter of � provided that

f(x) =

Z
K

f d� for all f 2 E0:

Since the functionals separate the points of E, the point x is uniquely determined
by �. With this preparation, we can reformulate the Krein�Milman theorem as
follows:

1.5.6. Theorem. Every point of a compact convex subset K (of a locally
convex Hausdor¤ space E), is the barycenter of a Borel probability measure on
K, which is supported by the closure of the extreme points of K.

H. Bauer pointed out that the extremal points of K are precisely the points
x 2 K for which the only Borel probability measure � which admits x as a
barycenter is �x. See [39, p. 6]. This fact together with Theorem 1.5.6 yields
D. P. Milman�s aforementioned converse of the Krein�Milman theorem. For an
alternative argument see [10, pp. 103�104].
Theorem 1.5.6 led G. Choquet [6] to his theory on integral representation

for elements of a closed convex cone. See [39] for details.



Chapter 2

Convex Functions on
Banach Spaces

A central theme of applied mathematics is optimization, which involves min-
imizing or maximizing various quantities. In addition to the �rst and second
derivative tests of one-variable calculus there is the powerful technique of La-
grange multipliers in several variables. The aim of this chapter is to develop
analogues of these tests within the framework of convexity, which provides a
valuable alternative to di¤erentiability. Many applications in economics, busi-
ness and other areas involve convex functions.

2.1 Convex Functions at First Glance

Convex functions are real-valued functions de�ned on convex sets.
In what follows U will be a convex set in a real linear space E.

2.1.1. De�nition. A function f : U ! R is said to be convex if

f((1� �)x+ �y) � (1� �)f(x) + �f(y) (2.1)

for all x; y 2 U and all � 2 [0; 1].
The other related notions such as concave function, a¢ ne function, and

strictly convex function can be introduced in a standard manner.
By mathematical induction we can extend the basic inequality (2.1) to the

case of arbitrary convex combinations. We shall refer to this as the discrete case
of Jensen�s inequality.
Convexity, in the case of several variables, is equivalent with convexity on

each line segment included in the domain of de�nition:

2.1.2. Proposition. A function f : U ! R is convex if and only if for every
two points x and y in U the function

' : [0; 1]! R; '(t) = f((1� t)x+ ty)

15
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is convex.

Notice that convexity of functions in the several variables case means more
than convexity in each variable separately; think of the case of the function
f(x; y) = xy, (x; y) 2 R2, which is not convex, though convex in each variable.
Some simple examples of strictly convex functions on Rn are as follows:

� f(x1; : : : ; xn) =
Pn

k=1 '(xk), where ' is a strictly convex function on R.

� f(x1; : : : ; xn) =
P

i<j cij(xi � xj)2, where the coe¢ cients cij are positive.

� The distance function dU : Rn ! R, dU (x) = d(x; U), associated to a
nonempty convex set U in Rn.

An important example of a concave function is given by

f : Sym++(n;R)! R; f(A) = log(detA):

Notice that Sym++(n;R) is an open convex set in Mn(R): In order to prove
that f is concave we have to recall the formulaZ

Rn
e�hAx;xi dx = �n=2=

p
detA

for all A in Sym++(n;R). Then, for all A;B 2Sym++(n;R) and all � 2 (0; 1)
we haveZ

Rn
e�h[�A+(1��)B]x;xi dx �

�Z
Rn
e�hAx;xi dx

���Z
Rn
e�hBx;xi dx

�1��
;

by the Rogers�Hölder inequality. This yields the log-concavity of the function
det:

det(�A+ (1� �)B) � (detA)�(detB)1��:

It is worth to extend this last formula to the setting of positive matrices
(e.g., by using perturbations of the form A+ "I and B + "I).

Remarks (Getting new examples from old ones). i) Suppose that '1; : : : ; 'n
are convex functions de�ned on the same convex set D in Rn and f : Rn ! R is
a nondecreasing convex function. Then F (x) = f('1(x); : : : ; 'n(x)) is convex
on D. Here �nondecreasing�means nondecreasing in each variable (when the
others are kept �xed).
ii) The limit of any pointwise converging sequence of convex functions is a

convex function.
iii) Let (f�)� be a family of convex functions de�ned on the same convex set

U , such that f(x) = sup� f�(x) <1 for all x 2 U . Then f is convex.

We shall next discuss several connections between convex functions and con-
vex sets.
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By de�nition, the epigraph of a function f : U ! R is the set

epi (f) = f(x; y) : x 2 U; y 2 R and f(x) � yg:

It is easy to verify that f : U ! R is convex if and only if epi (f) is convex in
E � R. This shows that the theory of convex functions can be subordinated to
the theory of convex sets.
A practical implication is the existence of supporting hyperplanes for convex

functions. To make this more precise, we shall pass to the topological context,
where U is an open convex set in a linear normed space E and f : U ! R is
a continuous convex function. In this case, epi (f) has a nonempty interior in
E � R and every point (a; f(a)) is a boundary point for epi (f). According to
Theorem 1.4.1, there is a closed hyperplane H in E �R that contains (a; f(a))
and epi (f) is contained in one of the half-spaces determined by H. We call this
a supporting hyperplane to f at a.
The closed hyperplanes H are associated to nonzero continuous linear func-

tionals on E � R and the dual space of E � R is constituted of all pairs (h; �),
where h is any continuous linear functional on E and � is any real number.
Consequently a supporting hyperplane to f at a is determined by a pair (h; �)
and a real number � such that

h(a) + �f(a) = �

and
h(x) + �y � � for all y � f(x) and all x 2 U:

Notice that � 6= 0, since otherwise h(x) � h(a) for x in a ball Br(a), which
forces h = 0. A moment�s re�ection shows that actually � > 0 and thus we are
led to the existence of a continuous linear functional h such that

f(x) � f(a) + h(x� a) for every x 2 U:

We call h a support of f at a. Supports are instrumental in de�ning the
concept of subdi¤erential. See Section 2.4.
We pass now to another connection between convex functions and convex

sets.
Given a function f : U ! R and a scalar �, the sublevel set L� of f at height

� is the set
L� = fx 2 U : f(x) � �g:

2.1.3. Lemma. Each sublevel set of a convex function is a convex set.

The property of Lemma 2.1.3 characterizes the quasiconvex functions. Recall
that a function f : U ! R de�ned on a convex set U is said to be quasiconvex if

f((1� �)x+ �y) � supff(x); f(y)g

for all x; y 2 U and all � 2 [0; 1].
Convex functions exhibit a series of nice properties related to maxima and

minima, which make them important in theoretical and applied mathematics.
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2.1.4. Theorem. Assume that U is a convex subset of a normed linear space
E. Then any local minimum of a convex function f : U ! R is also a global
minimum. Moreover, the set of global minimizers of f is convex.
If f is strictly convex in a neighborhood of a minimum point, then the

minimum point is unique.

Proof. If a is a local minimum, then for each x 2 U there is an " > 0 such that

f(a) � f(a+ "(x� a)) = f((1� ")a+ "x)
� (1� ")f(a) + "f(x):

(2.2)

This yields f(a) � f(x), so a is a global minimum. If f is strictly convex in a
neighborhood of a, then the last inequality in (2.2) is strict and the conclusion
becomes f(x) > f(a) for all x 2 U , x 6= a. The second assertion is a consequence
of Lemma 2.1.3. �
The following result gives us a useful condition for the existence of a global

minimum:

2.1.5. Theorem. Assume that U is an unbounded closed convex set in Rn
and f : U ! R is a continuous convex function whose sublevel sets are bounded.
Then f has a global minimum.

Proof. Notice that all sublevel sets L� of f are bounded and closed (and thus
compact in Rn). Then every sequence of elements in a sublevel set has a converg-
ing subsequence and this yields immediately the existence of global minimizers.
�
Under the assumptions of Theorem 2.1.5, the condition on boundedness of

sublevel sets is equivalent with the following growth condition:

lim inf
kxk!1

f(x)

kxk > 0: (2.3)

The su¢ ciency part is clear. For the necessity part, reason by reductio
ad absurdum and choose a sequence (xk)k in U such that kxkk ! 1 and
f(xk) � kxkk=k. Since the level sets are supposed to be bounded we have
kxkk =k ! 1, and this leads to a contradiction. Indeed, for every x 2 U the
sequence

x+
k

kxkk
(xk � x)

is unbounded though lies in some sublevel set Lf(x)+", with " > 0.
The functions which verify the condition (2.3) are said to be coercive. Clearly,

coercivity implies
lim

kxk!1
f(x) =1:

Convex functions attain their maxima at the boundary:

2.1.6. Theorem (The maximum principle). If f is a convex function on a
convex subset U of a normed linear space E and attains a global maximum at
an interior point of U , then f is constant.
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Proof. Assume that f is not constant and attains a global maximum at the
point a 2 intU . Choose x 2 U such that f(x) < f(a) and " 2 (0; 1) such
that y = a + "(a � x) 2 U . Then a = y=(1 + ") + "x=(1 + "), which yields a
contradiction since

f(a) � 1

1 + "
f(y) +

"

1 + "
f(x) <

1

1 + "
f(a) +

"

1 + "
f(a) = f(a): �

We end this section with an important consequence of Theorem 2.1.6.

2.1.7. Theorem. If f is a continuous convex function on a compact convex
subset K of Rn, then f attains a global maximum at an extreme point.

Proof. Assume that f attains its global maximum at a 2 K. By Theorem 2.1.6,
the point a can be represented as a convex combination of extreme points,
say a =

Pm
k=1 �kek. Then f(a) �

Pm
k=1 �kf(ek) � supk f(ek), which forces

f(a) = f(ek) for some k. �
For functions de�ned on n-dimensional intervals [a1; b1] � � � � � [an; bn] in

Rn, Theorem 2.1.7 extends to the case of continuous functions which are convex
in each variable (when the others are kept �xed). This fact can be proved
by one-variable means (taking into account that convex functions of one real
variable attain their supremum at the end points). Here is an example: Find
the maximum of the function

f(a; b; c) =
h
3(a5 + b7 sin

�a

2
+ c)� 2(bc+ ca+ ab)

i
for a; b; c 2 [0; 1]. The answer is 4, by noticing that

f(a; b; c) � sup[3(a+ b+ c)� 2(bc+ ca+ ab)] = 4:

In the in�nite dimensional setting, it is di¢ cult to state fairly general re-
sults on maximum-attaining. Besides, the deep results of Banach space theory
appears to be crucial in answering questions which at �rst glance may look sim-
ple. Here is an example. By the Eberlein�¼Smulyan theorem it follows that each
continuous linear functional on a re�exive Banach space E achieves its norm
on the unit ball. Surprisingly, these are the only Banach spaces for which the
norm-attaining phenomenon occurs. This was proved by R. C. James (see [10,
p. 63]).

2.2 Continuity of Convex Functions

It is well known that a convex function de�ned on an open interval is continuous.
In what follows the same is true for convex functions de�ned on open convex
sets in Rn. The basic remark refers to a local property of convex functions.

2.2.1. Lemma. Every convex function f de�ned on an open convex set U in
Rn is locally bounded (that is, each a 2 U has a neighborhood on which f is
bounded).
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Proof. For a 2 U arbitrarily �xed, choose a cube K in U , centered at a, with
vertices v1; : : : ; v2n . Clearly, K is a neighborhood of a. Every x 2 K is a convex
combination of vertices and thus

f(x) = f(

2nX
k=1

�kvk) �M = sup
1�k�2n

f(vk);

so f is bounded above on K. By the symmetry of K, for every x 2 K there is
a y 2 K such that a = (x + y)=2. Then f(a) � (f(x) + f(y))=2, which yields
f(x) � 2f(a)� f(y) � 2f(a)�M , and the proof is complete. �

2.2.2. Proposition. Let f be a convex function on an open convex set U in
Rn. Then f is locally Lipschitz. In particular, f is continuous on U .

According to a classical theorem due to Rademacher (see [14]), we can infer
from Proposition 2.2.2 that every convex function on an open convex set U in Rn
is almost everywhere di¤erentiable. A direct proof will be given in Section 2.5
(see Theorem 2.5.3).

Proof. According to the preceding lemma, given a 2 U , we may �nd a ball
B2r(a) � U on which f is bounded above, say by M . For x 6= y in Br(a), put
z = y + (r=�)(y � x), where � = ky � xk. Clearly, z 2 B2r(a). As

y =
r

r + �
x+

�

r + �
z;

from the convexity of f we infer that

f(y) � r

r + �
f(x) +

�

r + �
f(z):

Then

f(y)� f(x) � �

r + �
[f(z)� f(x)]

� �

r
[f(z)� f(x)] � 2M

r
ky � xk

and the proof ends by interchanging the roles of x and y. �

2.2.3. Corollary. Let f be a convex function de�ned on a convex set A in
Rn. Then f is Lipschitz on each compact convex subset of ri (A) (and thus f
is continuous on ri (A)).

Proof. Clearly, we may assume that a¤(A) = Rn. In this case, ri (A) = int (A)
and Proposition 2.2.2 applies. �
The in�nite dimensional analogue of Proposition 2.2.2 is as follows:

2.2.4. Proposition. Let f be a convex function on an open convex set U in a
normed linear space. If f is bounded above in a neighborhood of one point of U ,
then f is locally Lipschitz on U . In particular, f is a continuous function.
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The proof is similar with that of Proposition 2.2.2, with the di¤erence that
the role of Lemma 2.2.1 is taken by the following lemma:

2.2.5. Lemma. Let f be a convex function on an open convex set U in a
normed linear space. If f is bounded above in a neighborhood of one point of
U , then f is locally bounded on U .

Proof. Suppose that f is bounded above by M on a ball Br(a). Let x 2 U and
choose � > 1 such that z = a+ �(x� a) 2 U . If � = 1=�, then

V = fv : v = (1� �)y + �z; y 2 Br(a)g

is a neighborhood of x = (1 � �)a + �z, with radius (1 � �)r. Moreover, for
v 2 V we have

f(v) � (1� �)f(y) + �f(z) � (1� �)M + �f(z):

To show that f is bounded below in the same neighborhood, choose arbitrarily
v 2 V and notice that 2x� v 2 V . Consequently, f(x) � f(v)=2 + f(2x� v)=2,
which yields f(v) � 2f(x)� f(2x� v) � 2f(x)�M: �
A convex function on an in�nite dimensional Banach space E is not neces-

sarily continuous. Actually, one can prove that the only Banach spaces E such
that every convex function f : E ! R is continuous are the �nite dimensional
ones. This is a consequence of the well-known fact that the norm and the weak
topology agree only in the �nite dimensional case. See [10, Lemma 1, p. 45].
In applications it is often useful to consider extended real-valued functions,

de�ned on a real linear space E.

2.2.6. De�nition. A function f : E ! R is said to be convex if its epigraph,

epi (f) = f(x; y) : x 2 E; y 2 R and f(x) � yg

is a convex subset of E � R.
The e¤ective domain of a convex function f : E ! R is the set

dom f = fx : f(x) <1g:

Clearly, this is a convex set. Most of the time we shall deal with proper convex
functions, that is, with convex functions f : E ! R [ f1g which are not iden-
tically 1. In their case, the property of convexity can be reformulated in more
familiar terms,

f((1� �)x+ �y) � (1� �)f(x) + �f(y)
for all x; y 2 E and all � 2 [0; 1] for which the right hand side is �nite.
If U is a convex subset of E, then every convex function f : U ! R extends

to a proper convex function ef on E, letting ef(x) = 1 for x 2 EnU . Another
basic example is related to the indicator function. The indicator function of a
nonempty subset A is de�ned by the formula

�A(x) =

�
0 if x 2 A
1 if x 2 EnA.
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Clearly, A is convex if and only if �A is a proper convex function.
The sublevel sets of a proper convex function f : E ! R [ f1g are con-

vex sets. A discussion of the topological nature of the sublevel sets needs the
framework of lower semicontinuity.

2.2.7. De�nition. An extended real-valued function f de�ned on a Hausdor¤
topological space X is called lower semicontinuous if

f(x) = lim inf
y!x

f(y) for all x 2 X:

In the same framework, a function g is called upper semicontinuous if �g is
lower semicontinuous.

The lower semicontinuous functions are precisely the functions for which
all sublevel sets are closed. An important remark is that the supremum of any
family of lower semicontinuous proper convex functions is a function of the same
nature.
If the e¤ective domain of a proper convex function is closed and f is con-

tinuous relative to dom f , then f is lower semicontinuous. However, f can be
lower semicontinuous without its e¤ective domain being closed. The following
function,

'(x; y) =

8><>:
y2=2x if x > 0,

� if x = y = 0,

1 otherwise,

is illustrative on what can happen at the boundary points of the e¤ective domain.
In fact, f is a proper convex function for each � 2 [0;1]. All points of its
e¤ective domain are points of continuity except the origin, where the limit does
not exist. The function ' is lower semicontinuous for � = 0.

2.3 Positively Homogeneous Functions

Many of the functions which arise naturally in convex analysis are real-valued
functions f de�ned on a convex cone C in Rn (often Rn itself) that satisfy the
relation

f(�x) = �f(x) for all x 2 C and all � > 0:
Such functions are called positively homogeneous. An important example is

the norm mapping k � k, which is de�ned on the whole space Rn.

2.3.1. Lemma. Let f be a positively homogeneous function de�ned on a convex
cone C in Rn. Then f is convex if and only if f is subadditive.

Proof. Suppose that f is convex and x; y 2 C. Then

1

2
f(x+ y) = f

�x+ y
2

�
� 1

2
(f(x) + f(y))

and so f(x+ y) � f(x) + f(y).
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Conversely, suppose that f is subadditive. Then

f((1� �)x+ �y) � f((1� �)x) + f(�y) = (1� �)f(x) + �f(y)

for all x; y 2 C and � 2 [0; 1], which shows that f is convex. �

2.3.2 Lemma. Let f be a nonnegative positively homogeneous function de�ned
on a convex cone C in Rn such that the sublevel set fx 2 C : f(x) � 1g is
convex. Then f is a convex function.

Proof. According to Lemma 2.3.1, it su¢ ces to show that f is subadditive. For
that, let x; y 2 C and choose scalars � and � such that � > f(x), and � > f(y).
Since f is nonnegative and positively homogeneous, f(x=�) � 1 and f(y=�) � 1.
Thus x=� and y=� both lie in the sublevel set of f at height 1. The assumed
convexity of this sublevel set shows that

1

�+ �
f(x+ y) = f

� x+ y
�+ �

�
= f

� �

�+ �
� x
�
+

�

�+ �
� y
�

�
� 1;

that is, f(x + y) � � + � whenever � > f(x), � > f(y). Hence f(x + y) �
f(x) + f(y), which shows that f is subadditive. �
A sample of how the last lemma yields the convexity of some functions is as

follows. Let p � 1 and consider the function f given on the nonnegative orthant
Rn+ by the formula

f(x1; : : : ; xn) = (x
p
1 + � � �+ xpn)1=p:

Clearly, f is nonnegative and positively homogeneous, and fp is convex as a
sum of convex functions. Hence the sublevel set

fx 2 X : f(x) � 1g = fx 2 X : fp(x) � 1g

is convex and this implies that f is a convex function. By Lemma 2.3.1 we
conclude that f is subadditive, a fact which is equivalent with the Minkowski
inequality.
The support function of a nonempty compact convex set C in Rn is de�ned

by
h(u) = sup

x2C
hx; ui; u 2 Rn:

If kuk = 1, the set H� = fx 2 Rn : hx; ui = �g describes a family of parallel
hyperplanes, each having u as a normal vector; � = h(u) represents the value
for which each H� supports C and C is contained in the half-space H�

� .
Notice that the support function is positively homogeneous and convex.

Moreover

C = fx 2 Rn : hx; ui � h(u) for all u 2 Rng;

which shows that C is the intersection of all half-spaces that contain it.
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Conversely, let h : Rn ! R be a positively homogeneous convex function.
Then

C = fx 2 Rn : hx; ui � h(u) for every u 2 Rng

is nonempty, compact and convex set whose support function is h.
The notion of a support function can be attached to any nonempty convex

set C in Rn. See the end of Section 2.4.
The Minkowski functional (also called the gauge function) associated to a

nonempty subset C of Rn is the function

pC : Rn ! R [ f1g; pC(x) = inff� > 0 : x 2 �Cg;

with the convention inf ; = 1. Suppose that C is a closed convex set which
contains the origin. Then:

(i) pC is a positively homogeneous convex function.
(ii) The Minkowski functional of C is the support function of the polar set

C�, and the Minkowski functional of C� is the support function of C.
(iii) C� is bounded if and only if 0 2 intC (so by the bipolar theorem C is

bounded if and only if 0 2 intC�). As a consequence, the Minkowski functional
of C is real-valued if 0 2 intC.
It is well known Jensen�s inequality in the context of �nite measure spaces.

Recently, P. Roselli and M. Willem [43] proved an extension of this inequality
for all measure spaces, under the assumption that the convex function under
attention is positively homogeneous and continuous. The basic ingredient in
their proof is the following result:

2.3.3. Lemma. Suppose that J : R2+ ! R is a positively homogeneous contin-
uous function. Then the following assertions are equivalent :
(i) J is convex ;
(ii) ' = J(1; t) is convex ;
(iii) there exists a subset G � R2 such that

J(u; v) = supfau+ bv : (a; b) 2 Gg:

Proof. Clearly, (i) ) (ii) and (iii) ) (i). For (ii) ) (iii) notice that J(u; v) =
uJ(1; v=u) if u > 0 and J(u; v) = vJ(0; 1) if u = 0. Or,

'(t) = supfa+ bt : (a; b) 2 Gg

where G = f('(s)� sb; b) : b 2 @'(s); s 2 Rg. �
2.3.4. Theorem (Roselli�Willem theorem). Let J : R2+ ! R be a positively ho-
mogeneous continuous convex function. Then for every measure space (X;
; �)
and every �-integrable function f : X ! R2+ for which J �f is also �-integrable,
we have the inequality

J

�Z
X

f d�

�
�
Z
X

J � f d�: (2.4)
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The role of R2+ can be taken by every cone in Rn+.

Proof. Put f = (f1; f2). According to Lemma 2.3.3, and Lebesgue�s dominated
convergence theorem,Z

X

J � f d� =
Z
X

sup
(a;b)2G

(af1 + bf2) d�

� sup
(a;b)2G

�
a

Z
X

f1 d�+ b

Z
X

f2 d�

�
= J

�Z
X

f d�

�
: �

The particular case where f(x) = (ju(x)jp; jv(x)jp) and

J(u; v) = (u1=p + v1=p)p (p 2 R; p 6= 0)

gives us a very general version of Minkowski�s inequality:

2.3.5. Theorem. For p 2 (�1; 0) [ [1;1) and f; g 2 Lp(�) we have

kf + gkLp � kfkLp + kgkLp ; (2.5)

while for 0 < p < 1 the inequality works in the reverse sense,

kf + gkLp � kfkLp + kgkLp : (2.6)

If f is not 0 almost everywhere, then we have equality if and only if g = �f
almost everywhere, for some � � 0.

Proof. In fact J(1; t) = (1 + t1=p)p is strictly convex for 0 < p < 1 and strictly
concave for p 2 (�1; 0) [ (1;1). Then apply Theorem 2.3.4 above. �
Another application of Theorem 2.3.4 is given by Hanner�s inequalities.

2.3.6. Theorem (Hanner�s inequalities). If f; g 2 Lp(�) and 2 � p <1, then

kf + gkpLp + kf � gk
p
Lp � (kfkLp + kgkLp)

p +
��kfkLp � kgkLp��p;

equivalently (by making the replacements f ! f + g and g ! f � g),

(kf + gkLp + kf � gkLp)p +
��kf + gkLp � kf � gkLp��p � 2p(kfkpLp + kgkpLp):

If 1 < p � 2, the above inequalities are reversed.

Proof. Apply Theorem 2.3.4 for f(x) = (ju(x)jp; jv(x)jp) and J(u; v) = (u1=p +
v1=p)p + ju1=p � v1=pjp. �
By using the inequalities of Hanner as a substitute for parallelogram�s law

we can infer (as in Theorem 1.2.1) that all nonempty closed convex subsets in
a space Lp(�) (1 < p <1) are proximinal.
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2.4 The Subdi¤erential

As already noted in Section 2.1, if f is a convex function (on an open convex
subset U of a normed linear space E), then f has a supporting hyperplane at
each point a 2 U . This means the existence of a continuous linear functional h
on E (the support of f at a) such that

f(x) � f(a) + h(x� a) for all x 2 U: (2.7)

The set @f(a) of all such functionals h constitutes the subdi¤erential of f at
the point a.

2.4.1. Theorem. Suppose that U is an open convex set in a normed linear
space E. Then a function f : U ! R is convex if and only if @f(a) 6= ; at all
a 2 U .
When E is Rn (or, more generally, a Hilbert space), all such h can be uniquely

represented as
h(x) = hx; zi for x 2 E:

In this case the inequality (2.7) becomes

f(x) � f(a) + hx� a; zi for all x 2 U (2.8)

and the subdi¤erential @f(a) will be meant as the set of all such vectors z
(usually called subgradients).
The subdi¤erential can be related to the directional derivative. Let f be a

real-valued function de�ned on an open subset U of a Banach space E. The
one-sided directional derivatives of f at a 2 U relative to v are de�ned to be
the limits

f 0+(a; v) = lim
t!0+

f(a+ tv)� f(a)
t

and

f 0�(a; v) = lim
t!0�

f(a+ tv)� f(a)
t

:

If both directional derivatives f 0+(a; v) and f
0
�(a; v) exist and they are equal,

we shall call their common value the directional derivative of f at a, relative
to v (also denoted f 0(a; v)). Notice that the one-sided directional derivatives of
a convex function f : U ! R are positively homogeneous and subadditive (as a
function of v). In fact, for a 2 U , u; v 2 E and t > 0 small enough, we have

f(a+ t(u+ v))� f(a)
t

� f(a+ 2tu)� f(a)
2t

+
f(a+ 2tv)� f(a)

2t

which yields f 0+(a;u+ v) � f 0+(a;u) + f 0+(a; v).
Taking into account the formula

f 0+(a; v) = �f 0�(a;�v);

we infer that the directional derivatives (when they exist) are linear.
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The directional derivatives relative to the vectors of the canonical basis of
Rn are nothing but the partial derivatives.
If f is convex, then for each pair (a; v) 2 U � E there exists an interval

(�"; ") on which the function t! f(a+ tv) is well-de�ned and convex. Taking
into account the one real variable case, it follows that every convex function
admits one-sided directional derivatives at any point and that

f 0+(a; v) � f 0�(a; v):

As f 0�(a; v) = �f 0+(a;�v), the above discussion yields the following result:

2.4.2. Lemma. Suppose that f is a convex function de�ned on an open convex
subset U of Rn. Then z 2 @f(a) if and only if f 0+(a; v) � hz; vi for all v 2 Rn.

In the �nite dimensional case, @f(a) is a singleton precisely when f has a
directional derivative f 0(a; v) relative to any v. In that case, @f(a) consists of
the mapping v ! f 0(a; v). See Theorem 2.5.2.
If f : Rn ! R [ f1g is a lower semicontinuous proper convex function, we

say that z 2 Rn is a subgradient of f at a 2dom f if

f(x) � f(a) + hx� a; zi for all x 2 Rn: (2.9)

We call the set @f(a), of all subgradients of f at a, the subdi¤erential of f
(at the point a).
A derivative is a local property, while the subgradient de�nition (2.8) de-

scribes a global property. An illustration of this idea is the following remark:
for any lower semicontinuous proper convex function f : Rn ! R [ f1g, the
point a is a global minimizer of f if and only if

0 2 @f(a):

Remarks (The subdi¤erential calculus).
(i) Suppose that f; f1; f2 are convex functions on Rn and a 2 Rn. By

Lemma 2.4.2, we know that

f 0+(a; v) = supfhz; vi : z 2 @f(a)g for all v 2 Rn:

Let �1 and �2 be two positive numbers. Then

@(�1f1 + �2f2)(a) = �1@f1(a) + �2@f2(a):

In the general setting of proper convex functions, only the inclusion � works.
The equality needs additional assumptions, for example, the existence of a com-
mon point in the convex sets ri (dom fk) for k = 1; : : : ;m. See [42, p. 223].
(ii) Let f be a proper convex function on Rn and let A be a linear transfor-

mation from Rm to Rn. Then

@(f �A)(x) � A�@f(Ax):
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The equality needs additional assumptions. For example, it works when the
range of A contains a point of ri (dom f). See [42, p. 225].
(iii) (Subdi¤erential of a max-function). Suppose that f1; : : : ; fm are convex

functions on Rn and set
f = maxff1; : : : ; fmg

and
J(a) = fj : fj(a) = f(a)g

for a 2 Rn: Then @f(a) = co f@fj(a) : j 2 J(a)g.
The subdi¤erential of f is de�ned as the set-valued map @f which associates

to each x 2 Rn the subset @f(x) � Rn. Equivalently, @f may be seen as a graph
in Rn � Rn. Given two set-valued maps u; v : Rn ! P(Rn), we de�ne:

� domain of u, domu = fx : u(x) 6= ;g;

� graph of u, graphu = f(x; y) : y 2 u(x)g;

� inverse of u, u�1(y) = fx : y 2 u(x)g;

� u � v if the graph of u is contained in the graph of v.

2.4.3. De�nition. A set-valued map u : Rn ! P(Rn) is said to be monotone
if it veri�es

hx1 � x2; y1 � y2i � 0
for all x1; x2 2 Rn and all y1 2 u(x1), y2 2 u(x2). A monotone function u is
called maximal monotone when it is maximal with respect to inclusion in the
class of monotone functions, that is, if the following implication holds:

v � u and v monotone =) v = u:

According to Zorn�s lemma, for each monotone function u there exists a
maximal monotone function eu which includes u.
The graph of any maximal monotone map u : Rn ! P(Rn) is closed and

thus it veri�es the following conditions of upper semicontinuity:

xk ! x; yk ! y; and yk 2 u(xk) for all k 2 N =) y 2 u(x):

We shall prove the existence of a one-to-one correspondence between graphs
of maximal monotone maps and graphs of nonexpansive functions. Recall that
a function h : Rn ! Rn is called nonexpansive if its Lipschitz constant veri�es

Lip (h) = sup
x6=y

kh(x)� h(y)k
kx� yk � 1:

We shall need the following result concerning the extension of Lipschitz
functions:

2.4.4. Theorem (M. D. Kirszbraun). Suppose that A is a subset of Rn and
f : A ! Rm is a Lipschitz function. Then there exists a Lipschitz function
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ef : Rn ! Rm such that ef = f on A and Lip ( ef) =Lip (f). Moreover, we may
choose ef convex, when A and f are also convex.
Proof. When m = 1, we may choose

ef(x) = inf
y2A

ff(y) + Lip (f) � kx� ykg:

In the general case, a direct application of this remark at the level of compo-
nents of f leads to an extension ef with Lip ( ef) � pmLip (f). The existence of an
extension with the same Lipschitz constant is described in [15, Section 2.10.43,
p. 201]. �
The aforementioned correspondence between graphs is realized by the Cayley

transform, that is, by the linear isometry

�: Rn � Rn ! Rn � Rn; �(x; y) =
1p
2
(x+ y;�x+ y):

When n = 1, the Cayley transform represents a clockwise rotation of angle �=4.
The precise statement of this correspondence is as follows:

2.4.5 Theorem (G. Minty [34]). Let u : Rn ! P(Rn) be a maximal monotone
map. Then J = (I + u)�1 is de�ned on the whole Rn and �(graphu) is the
graph of a nonexpansive function v : Rn ! Rn, given by

v(x) = x�
p
2 (I + u)�1(

p
2x): (2.10)

Conversely, if v : Rn ! Rn is a nonexpansive function, then the inverse
image of graph v under � is the graph of a maximal monotone function on Rn:
Here I denotes the identity map of Rn.

Proof. Let u be a monotone map and let v be the set-valued function whose
graph is �(graphu). We shall show that v is nonexpansive in its domain (and
thus single-valued). In fact, given x 2 Rn, we have

y 2 v(x) if and only if
x+ yp
2
2 u

�
x� yp
2

�
(2.11)

and this yields y 2 x�
p
2 (I + u)�1(

p
2x) for all y 2 v(x).

Now, if xk 2 Rn and yk 2 v(xk) for k = 1; 2, we infer from (2.11) that

h(x1 � y1)� (x2 � y2); (x1 + y1)� (x2 + y2)i � 0;

hence ky1 � y2k2 � kx1 � x2k2. This shows that v is indeed nonexpansive.
The same argument shows that ��1 maps graphs of nonexpansive functions

into graphs of monotone functions.
Assuming that u is maximal monotone, we shall show that the domain of v

is Rn. In fact, if the contrary were true, we could apply Theorem 2.4.4 to extend
v to a nonexpansive function ev de�ned on the whole Rn, and then ��1(graph ev)
provides a monotone extension of u, which contradicts the maximality of u. �
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2.4.6. Corollary. Let u : Rn ! P(Rn) be a maximal monotone map. Then
J = (I + u)�1 is a nonexpansive map of Rn into itself.

Proof. It is easy to see that I + u (and thus (I + u)�1) is monotone. By
Theorem 2.4.5, the maximality of u yields the surjectivity of I + u, hence
dom (I + u)�1 = Rn. In order to prove that (I + u)�1 is also a nonexpan-
sive function, let us consider points xk 2 Rn and yk 2 u(xk) (for k = 1; 2).
Then

kx1 � x2k2 � hx1 � x2; x1 � x2 + y1 � y2i
� kx1 � x2k � kx1 + y1 � (x2 + y2)k;

(2.12)

which yields kx1�x2k � k(x1+y1)�(x2+y2)k. Particularly, if x1+y1 = x2+y2;
then x1 = x2, and this shows that (I + u)�1 is single-valued. Consequently,
(I + u)�1(xk + yk) = xk for k = 1; 2 and thus (2.12) yields the nonexpansivity
of (I + u)�1. �
An important class of maximal monotone maps is provided by the subdif-

ferentials of convex functions.

2.4.7. Theorem. If f : Rn ! R [ f1g is a lower semicontinuous proper
convex function, then @f is a maximal monotone function such that

int dom f � dom @f � dom f:

Proof. The fact that @f is monotone follows from (2.9). According to Theo-
rem 2.4.5, the maximality of @f is equivalent to the surjectivity of @f + I. To
prove that @f + I is onto, let us �x arbitrarily y 2 Rn, and choose x 2 Rn as
the unique minimizer of the coercive lower semicontinuous function

g : x! f(x) +
1

2
kxk2 � hx; yi:

Then 0 2 @g(x), which yields y 2 @(f(x) + kxk2=2) = (@f + I)(x). �
One can prove (by examples) that both inclusions in Theorem 2.4.7 may be

strict.
According to W. Fenchel [16], the conjugate (or the Legendre transform) of

a function f : Rn ! R is the function f� : Rn ! R de�ned by

f�(y) = sup
x2Rn

[hx; yi � f(x)]:

The function f� is always lower semicontinuous and convex, and, if the
e¤ective domain of f is nonempty, then f� never takes the value �1. Clearly,
f � g yields f� � g� (and thus f�� � g��). Also, the following generalization
of Young�s inequality holds true: If f is a proper convex function then so is f�

and
f(x) + f�(y) � hx; yi for all x; y 2 Rn:

Equality holds if and only if hx; yi � f(x)+f�(y), equivalently, when f(z) �
f(x) + hy; z � xi for all z (that is, when y 2 @f(x)).
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By Young�s inequality we infer that

f(x) � sup
y2Rn

[hx; yi � f�(y)] = f��(x) for all x 2 Rn:

2.4.8. Theorem (Computing the Legendre transform). Let f : Rn ! R be
a strictly convex function of class C1, such that f(x)= kxk ! 1 as kxk ! 1:
Then:
(i) The map x! rf(x) is a homeomorphism (from Rn onto itself );
(ii) f?(y) = hy; (rf)�1 yi � f((rf)�1 y) for all y 2 Rn;
(iii0 f? is a C1 function and rf? = (rf)�1 :

Proof. For every x; y 2 Rn; x; y 6= 0, the function g(t) = f(x + ty) is strictly
convex on R and thus g0(1)�g0(0) = hrf(x+y)�rf(y); yi > 0. This shows that
rf is one-to-one. Let z 2 Rn: Since g(x) = f(x)� hx; zi is coercive and C1; it
attains a global minimum at a point a for which rg(a) = rf(a)� z = 0: Hence
rf is onto. The inequality f(0) + hrf(x); xi � f(x) yields krf(x)k ! 1
as kxk ! 1: Therefore the inverse image under rf of every compact set is
compact too, a fact which assures the continuity of (rf)�1. �
If f is a convex function on Rn, then f = f� if and only if f(x) = kxk2=2.
One can prove that conjugacy induces a bijection between lower semicontin-

uous proper convex functions.

2.4.9. Theorem. Suppose that f : Rn ! R[ f1g is a proper convex function.
Then the following assertions are equivalent :
(i) f is lower semicontinuous;
(ii) f = f��;
(iii) f is the pointwise supremum of the family of all a¢ ne functions h such

that h � f .
Proof. Clearly, (ii)) (i) and (ii)) (iii). Since any a¢ ne minorant h of f veri�es
h = h�� � f�� � f , it follows that (iii) ) (ii). The implication (i) ) (iii) can
be proved easily by using the basic separation theorem. See [4, pp. 76�77].
Alternatively, we can show that (i) ) (ii). If x 2 int (dom f), then @f(x) is

nonempty and for each y 2 @f(x) we have hx; yi = f(x) + f�(y), hence f(x) =
hx; yi � f�(y) � f��(x). In the general case, we may use an approximation
argument. See the end of Section 2.5. �
The Legendre transform allows us to attach the notion of support function

to any nonempty convex set C in Rn, by de�ning it as the conjugate of the
indicator function of C. For example, the support function of C = f(x; y) 2
R2 : x+ y2=2 � 0g is ��C(x; y) = y2=2x if x > 0, ��C(0; 0) = 0 and ��C(x; y) =1
otherwise. Consequently, ��C is a lower semicontinuous proper convex function.

2.5 Di¤erentiability of Convex Functions

The problem of di¤erentiability of a convex function de�ned on an open subset
U of a Banach space E can be treated in the setting of Fréchet di¤erentiability
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or in the more general setting of Gâteaux di¤erentiability.
The Fréchet di¤erentiability (or, simply, the di¤erentiability) of f at a point

a means the existence of a continuous linear functional df(a) : E ! R such that

lim
x!a

jf(x)� f(a)� df(a)(x� a)j
kx� ak = 0:

Equivalently,

f(x) = f(a) + df(a)(x� a) + !(x)kx� ak for x 2 U;

where ! : U ! R is a function such that !(a) = limx!a !(x) = 0. When
E = Rn, the functional df(a) can be computed via the formula

df(a)(v) = hrf(a); vi;

where

rf(a) =
nX
k=1

@f

@xk
(a) ek

represents the gradient of f at a. As usually, e1; : : : ; en denotes the unit vector
basis of Rn:
A function f : U ! R is said to be Gâteaux di¤erentiable at a point a if the

directional derivative f 0(a; v) exists for every v 2 E and de�nes a continuous
linear functional f 0(a) : v ! f 0(a; v) on E. It is straightforward that di¤eren-
tiability implies Gâteaux di¤erentiability and also the equality

f 0(a) = df(a):

For convex functions on open subsets of Rn, Gâteaux and Fréchet di¤eren-
tiability agree:

2.5.1. Theorem. Suppose that a convex function f de�ned on an open convex
set U in Rn possesses all its partial derivatives @f

@x1
; : : : ; @f@xn at some point

a 2 U . Then f is di¤erentiable at a.

Proof. Since U is open, there is a r > 0 such that Br(a) � U . We have to prove
that the function

g(u) = f(a+ u)� f(a)�
nX
k=1

@f

@xk
(a)uk

de�ned for all u = (u1; : : : ; un) with kuk < r, veri�es limkuk!0 g(u)=kuk = 0.
Clearly, the function g is convex. Then

0 = g(0) = g
�u+ (�u)

2

�
� 1

2
(g(u) + g(�u));
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which yields g(u) � �g(�u). On the other hand, for each u with nkuk < r, we
have

g(u) = g
� 1
n

nX
k=1

nukek

�
� 1

n

nX
k=1

g(nukek)

=
X

fk:uk 6=0g

uk
g(nukek)

nuk
� kuk

X
fk:uk 6=0g

����g(nukek)nuk

���� :
Similarly,

g(�u) � kuk
X

fk:uk 6=0g

����g(�nukek)nuk

���� :
Then

�kuk
X

fk:uk 6=0g

����g(�nukek)nuk

���� � �g(�u) � g(u) � kuk X
fk:uk 6=0g

����g(nukek)nuk

����
and it remains to remark that g(nukek)=(nuk)! 0 as uk ! 0. �
The condition of di¤erentiability is equivalent to the uniqueness of the sup-

port function:

2.5.2. Theorem. Let f be a convex function de�ned on an open convex set U
in Rn. Then f is di¤erentiable at a if and only if f has a unique support at a.

Proof. Suppose that f 0(a; v) exists for every v. If h : E ! R is a support of f
at a, then

f(a+ "v)� f(a) � "h(v)
for su¢ ciently small " > 0, which yields f 0(a; v) � h(v). Replacing v by �v,
and taking into account that the directional derivative is linear in v, we obtain

�f 0(a; v) = f 0(a;�v) � �h(v)

from which we conclude that h(v) = f 0(a; v).
Suppose now that f has a unique support h at a and choose a number �

such that
�f 0+(a;�e1) � � � f 0+(a; e1):

Then the line L in Rn+1 given by t! (a+ te1; f(a)+�t) meets the epigraph
of f at (a; f(a)). Since f(a + te1) � f(a) + �t as long as a + te1 2 U , the
line L does not meet the interior of the epigraph of f . By the Hahn�Banach
theorem we infer the existence of a supporting hyperplane to the epigraph of f
at (a; f(a)) which contains L. The uniqueness of the support of f at a shows
that this hyperplane must be the graph of h. Then

h(a+ te1) = f(a) + �t = h(a) + �t

for all t 2 R, so that by the choice of � we get �f 0+(a;�e1) = f 0+(a; e1). In other
words we established the existence of @f=@x1 at a. Similarly, one can prove the
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existence of all partial derivatives at a so, by Theorem 2.5.1, the function f is
di¤erentiable at a. �
In the context of several variables, the set of points where a convex function

is not di¤erentiable can be uncountable, though still negligible:

2.5.3. Theorem. Suppose that f is a convex function on an open subset U of
Rn. Then f is di¤erentiable almost everywhere in U .

Proof. Consider �rst the case when U is also bounded. According to Theo-
rem 2.5.1 we must show that each of the sets

Ek = fx 2 U :
@f

@xk
(x) does not existg

is Lebesgue negligible. The measurability of Ek is a consequence of the fact
that the limit of a pointwise converging sequence of measurable functions is
measurable too. In fact, the formula

f 0+(x; ek) = lim
j!1

f(x+ ek=j)� f(x)
1=j

motivates the measurability of one-sided directional derivative f 0+(x; ek) and a
similar argument applies for f 0�(x; ek). Consequently the set

Ek = fx 2 U : f 0+(x; ek)� f 0�(x; ek) > 0g

is measurable. Being bounded, it is also integrable. By Fubini�s theorem,

m(Ek) =

Z
Rn
�Ek dx

=

Z
R
� � �
�Z

R
�Ek dxi

�
dx1 � � � dxi�1 dxi+1 � � � dxn

and the interior integral is zero since f is convex as a function of xi (and thus
di¤erentiable except at an enumerable set of points).
If U is arbitrary, the argument above shows that all the sets Ek \Bn(0) are

negligible. Or, Ek =
S1
n=1(Ek \Bn(0)) and a countable union of negligible sets

is negligible too. �
The function f(x; y) = supfx; 0g is convex on R2 and nondi¤erentiable at

the points of y-axis (which constitutes an uncountable set).
The coincidence of Gâteaux and Fréchet di¤erentiability is no longer true in

the context of in�nite dimensional spaces.

2.5.4. Theorem. Let E be a Banach space such that for each continuous
convex function f : E ! R, every point of Gâteaux di¤erentiability is also a
point of Fréchet di¤erentiability. Then E is �nite dimensional.

The proof we present here is due to J. M. Borwein and A. S. Lewis [4], and
depends on a deep result in Banach space theory:
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2.5.5. Theorem (The Josephson�Nissenzweig theorem; [29], [36]). If E is a
Banach space such that

x0n ! 0 in the weak-star topology of E0 implies kx0nk ! 0;

then E is �nite dimensional.

Proof of Theorem 2.5.5. Consider a sequence (x0n)n of norm-1 functionals in E
0

and a sequence (�n)n of real numbers such that �n # 0. Then the function

f(x) = sup
n
[hx; x0ni � �n]

is convex and continuous and, moreover,

f is Gâteaux di¤erentiable at 0 () x0n(x)! 0 for all x 2 E
f is Fréchet di¤erentiable at 0 () kx0nk ! 0:

The proof ends by applying the Josephson�Nissenzweig theorem. �
Convolution by smooth functions provides us with a powerful technique for

approximating locally integrable functions by C1 functions. Particularly, this
applies to the convex functions.
Let ' be a molli�er, that is, a nonnegative function in C1c (Rn) such thatZ

Rn
'dx = 1 and supp' � B1(0):

The standard example of such a function is given by

'(x) =

(
C exp(�1=(1� kxk2)) if kxk < 1,
0 if kxk � 1,

where C is chosen such that
R
Rn 'dx = 1. Each molli�er ' gives rise to an

one-parameter family of nonnegative functions

'"(x) =
1

"n
'
�x
"

�
; " > 0

with similar properties:

'" 2 C1c (Rn); supp'" � B"(0) and
Z
Rn
'" dx = 1:

The following lemma is standard and available in many places. For example,
see [14, pp. 122�125] or [46, pp. 22�23].

2.5.6. Lemma. Suppose that f 2 L1loc(Rn) and ('")">0 is the one-parameter
family of functions associated to a molli�er '. Then:
(i) the functions

f" = '" � f
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belong to C1(Rn) and
D�f" = D

�'" � f

for every multi-index �;
(ii) f"(x)! f(x) whenever x is a point of continuity of f . If f is continuous

on an open subset U , then f" converges uniformly to f on each compact subset
of U ;
(iii) if f 2 Lp(Rn) (for some p 2 [1;1)), then f" 2 Lp(Rn), kf"kLp � kfkLp

and lim"!0 kf" � fkLp = 0;
(iv) if f is a convex function on an open convex subset U of Rn, then f" is

convex too.

Molli�cation allows us to prove that the convex functions on open convex
subsets in Rn are locally Lipschitz. In fact, by Lemma 2.5.6 (iv) we can infer
that any such function f : Br(a)! R veri�es inequalities of the form

sup
x2 �Br=2(a)

jf(x)j � C

Vol (Br(a))

Z
Br(a)

jf(y)j dy

ess sup
x2 �Br=2(a)

jDf(x)j � C

rVol (Br(a))

Z
Br(a)

jf(y)j dy;

where C > 0 is a constant. As a hint, consider �rst the case of C2 functions.
See [14], pp. 236-239, for details.
A nonlinear analogue of molli�cation is o¤ered by the in�mal convolution,

which for two proper convex functions f; g : E ! R [ f1g is de�ned by the
formula

(f � g)(x) = infff(x� y) + g(y) : y 2 Eg;

the value �1 is allowed. If (f � g)(x) > �1 for all x, then f � g is a proper
convex function. For example, this happens when both functions f and g are
nonnegative (or, more generally, when there exists an a¢ ne function h : E ! R
such that f � h and g � h).
In�mal convolution and addition are inverse each other under the action of

Legendre transform:

(INF1) (f � g)� = f� + g�;
(INF2) (f + g)� = f� � g� if the e¤ective domain of f contains a point of

continuity of g:

By computing the in�mal convolution of the norm function and the indicator
function of a nonempty convex set C, we get

(k � k � �C)(x) = inf
y2C

kx� yk = dC(x);

a fact which implies the convexity of the distance function.
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A standard way to approximate from below a lower semicontinuous proper
convex function f : Rn ! R [ f1g is the Moreau�Yosida approximation:

f"(x) =
�
f � 1

2"
k � k2

�
(x)

= inf
y2Rn

n
f(y) +

1

2"
kx� yk2

o
for x 2 Rn and " > 0. The functions f" are well-de�ned and �nite for all x
because the function y ! f(y) + 1

2"kx � yk
2 is lower semicontinuous and also

coercive (due to the existence of a support for f).

2.5.7. Lemma. The Moreau�Yosida approximates f" are di¤erentiable convex
functions on Rn and f" ! f as " ! 0. Moreover, @f" = ("I + (@f)�1)�1 as
set-valued maps.

Proof. The �rst statement is straightforward. The proof of the second one may
be found in [1] and [3]. �
The Moreau-Yosida approximates can be used to complete the proof of the

implication (i) ) (ii) in Theorem 2.4.8. In fact,

f��(x) � lim inf
"!0

f��" (x) = lim inf
"!0

f"(x) = f(x):

The in�mal convolution provides an e¢ cient regularization procedure for
(even degenerate) elliptic equations. This explains the Lax formula,

u(x; t) = sup
y2Rn

n
v(y)� 1

2t
kx� yk2

o
;

for the solution of the Hamilton-Jacobi equation,

@u

@t
� 1
2
kruk2 = 0 for x 2 Rn; t > 0

ujt=0 = v on Rn:

See J. M. Lasry and P.-L. Lions [32] for details.

2.6 Recognizing Convex Functions

We start with the following variant of Theorem 2.4.1:

2.6.1. Theorem. Suppose that f is de�ned on an open convex set U in a
Banach space. If f is convex on U and Gâteaux di¤erentiable at a 2 U , then

f(x) � f(a) + f 0(a;x� a) for every x 2 U: (2.13)

If f is Gâteaux di¤erentiable throughout U , then f is convex if and only
if (2.13) holds for all a 2 U . Moreover, f is strictly convex if and only if the
inequality is strict for x 6= a.
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On intervals, a di¤erentiable function is convex if and only if its derivative
is nondecreasing. The higher dimensional analogue of this fact is as follows:

2.6.2. Theorem. Suppose that f is Gâteaux di¤erentiable on the open convex
set U in a Banach space. Then f is convex if and only if

f 0(x;x� y) � f 0(y;x� y) (2.14)

for all x; y 2 U .
The variant of this result for strictly convex functions asks the above in-

equality to be strict for x 6= y in U .

Proof. If f is convex, then for x and y in U and 0 < t < 1 we have

f(y + t(x� y))� f(y)
t

� f(x)� f(y)

so by letting t! 0+ we obtain f 0(y;x� y) � f(x)� f(y). Interchanging x and
y, we also have f 0(x; y � x) � f(y)� f(x). Adding, we arrive at (2.14).
Suppose now that (2.14) holds. Let x; y 2 U and consider the function

g(�) = f((1� �)x+ �y), � 2 [0; 1]. One can easily verify that

�1 � �2 implies g0(�1) � g0(�2)

which shows that g is convex. Then

f((1� �)x+ �y) = g(�) = g(� � 1 + (1� �) � 0)
� �g(1) + (1� �)g(0)
= (1� �)f(x) + �f(y): �

When the ambient space is Rn, then the inequality (2.14) becomes

hrf(x)�rf(y); x� yi � 0: (2.15)

In this context, a function F : U ! Rn is said to be nondecreasing (respectively
increasing) if it is the gradient of a convex (strictly convex) function.
Higher di¤erentiability leads to other important criteria of convexity.
Suppose that f : U ! R is Gâteaux di¤erentiable. We say that f is twice

Gâteaux di¤erentiable at a 2 U if the limit

f 00(a; v; w) = lim
�!0

f 0(a+ �w; v)� f 0(a; v)
�

exists for all v; w in the ambient Banach space E. This gives rise to a map
f 00(a) : (v; w) 7! f 00(a; v; w), from E � E into R, called the second Gâteaux
di¤erential of f at a. One can prove easily that this function is homogeneous
in v and w, that is,

f 00(a;�v; �w) = ��f 00(a; v; w)

for all �; � 2 R. Another immediate fact is as follows:
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2.6.3. Lemma. If f : U ! R is twice di¤erentiable, then it is also twice
Gâteaux di¤erentiable and

d2f(a)(v; w) = f 00(a; v; w) (2.16)

for all a 2 U and v; w 2 E.

Our next goal is to establish the analogue of Taylor�s formula in the context
of Gâteaux di¤erentiability and to infer from it an important characterization
of convexity under the presence of Gâteaux di¤erentiability.

2.6.4. Theorem (Taylor�s formula). If f is twice Gâteaux di¤erentiable at
all points of the segment [a; a+ v] relative to the pair (v; v), then there exists a
� 2 (0; 1) such that

f(a+ v) = f(a) + f 0(a; v) +
1

2
f 00(a+ �v; v; v): (2.17)

Proof. Consider the function g(t) = f(a+ tv), for t 2 [0; 1]. Its derivative is

g0(t) = lim
"!0

g(t+ ")� g(t)
"

= lim
"!0

f(a+ tv + "v)� f(a+ tv)
"

= f 0(a+ tv; v)

and similarly, g00(t) = f 00(a + tv; v; v). Then by the usual Taylor�s formula we
get a � 2 (0; 1) such that

g(1) = g(0) + g0(0) +
1

2
g00(�);

which in turn yields the formula (2.17). �

2.6.5. Corollary. Suppose that f is twice Gâteaux di¤erentiable on the open
convex set U in a Banach space E and

f 00(a; v; v) � 0 for all a 2 U; v 2 E: (2.18)

Then f is convex on U . If the above inequality is strict for v 6= 0, then f is
strictly convex.

Proof. In fact, by Taylor�s formula we have

f(x) = f(a) + f 0(a;x� a) + 1
2
f 00(a+ �(x� a);x� a; x� a)

for some � 2 (0; 1), so by our hypothesis,

f(x) � f(a) + f 0(a;x� a)

and the conclusion follows from Theorem 2.6.1. �
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When E = Rn and f 00(a; v; w) is bilinear, it is easy to check the equality

f 00(a; v; w) = h(Haf)v; wi;

where

Haf =

�
@2f

@xi@xj
(a)

�n
i;j=1

is the Hessian matrix of f at a.
Corollary 2.6.5 shows that the positivity (strict positivity) of the Hessian

matrix at all points of U guarantees the convexity (strict convexity) of f .
If A 2Mn(R) is a strictly positive matrix and u 2 Rn, then the function

f(x) =
1

2
hAx; xi � hx; ui;

satis�es

f 0(x; v) = hv;Axi � hv; ui;
f 00(x; v; w) = hAv;wi = hv;Awi;

so by Corollary 2.6.5 it follows that f is strictly convex. By Theorem 2.2.5, f
admits a global minimum a. According to Fermat�s theorem (applied to the
function t ! f(a + tv)), we infer that f 0(a; v) = 0 for all v. This shows that a
is the solution of the equation

Ax = u:

The above idea, to solve equations by �nding the minimum of suitable func-
tionals, is very useful in partial di¤erential equations. This is detailed in the
next chapter.
Corollary 2.6.5 is the source of many interesting inequalities. Here are two

examples.
Consider the open set U = f(x; y; z) 2 R3 : x; y > 0; xy > z2g. Then U is

convex and the di¤erentiable function

f : U ! R; f(x; y; z) =
1

xy � z2

is strictly convex. As a consequence, we infer that

8

(x1 + x2)(y1 + y2)� (z1 + z2)2
<

1

x1y1 � z21
+

1

x2y2 � z22
for every pair of distinct points (x1; y1; z1) and (x2; y2; z2) of the set U .
The fact that the function

f : [0;1)n ! R; f(x1; : : : ; xn) = n
p
x1 � � �xn

is concave yields the Minkowski�s inequality for p = 0:

n
p
(x1 + y1) � � � (xn + yn) � n

p
x1 � � �xn + n

p
y1 � � � yn

for all x1; : : : ; xn; y1; : : : ; yn � 0.
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2.7 The Convex Programming Problem

The aim of this section is to discuss the problem of minimizing a convex function
over a convex set de�ned by a system of convex inequalities. The main result is
the equivalence of this problem to the so-called saddle-point problem. Assuming
the di¤erentiability of the functions concerned, the solution of the saddle-point
problem is characterized by the Karush�Kuhn�Tucker conditions, which will be
made explicit in Theorem 2.7.2 below.
In what follows f; g1; : : : ; gm will denote convex functions on Rn. The convex

programming problem for these data is to minimize f(x) over the convex set

X = fx 2 Rn : x � 0; g1(x) � 0; : : : ; gm(x) � 0g:

In optimization theory f represents a cost, which is minimized over the
feasible set X.
A particular case is the standard linear programming problem. In this prob-

lem we seek to maximize a linear function

L(x) = �hx; ci = �
nX
k=1

ckxk

subject to the constraints

x � 0 and Ax � b:

Here A = (aij)i;j 2Mn(R) and b; c 2 Rn. Notice that this problem can be easily
converted into a minimization problem, by replacing L by �L. According to
Theorem 2.1.7, L attains its global maximum at an extreme point of the convex
set fx : x � 0; Ax � bg. This point can be found by the simplex algorithm of
G. B. Dantzig. See [41] for details.
The linear programming problem has many practical applications in alloca-

tion of resources. For example, in the diet problem, we seek for the minimum
of
Pn

k=1 ckxk subject to

nX
j=1

aijxj � bi (for i = 1; : : : ; n) and xj � 0 for j = 1; : : : ; n:

Here

aij represents the amount of nutrient i in one unit of food j;
bi represents the minimum daily requirement of nutrient i;
ck is the cost of one unit of food k;
xk is the amount of food k in a daily diet.

We pass now to the solution of the convex programming problem. As in
the case of any constrained extremal problem, one can apply the method of La-
grange multipliers in order to eliminate the constraints (at the cost of increasing
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the number of variables). The Lagrangian function associated with the convex
programming problem is the function

F (x; y) = f(x) + y1g1(x) + � � �+ ymgm(x)

of n+m real variables x1; : : : ; xn; y1; : : : ; ym (the components of x and respec-
tively of y). A saddle point of F is any point (x0; y0) of Rn � Rm such that

x0 � 0; y0 � 0

and
F (x0; y) � F (x0; y0) � F (x; y0)

for all x � 0, y � 0. The saddle points of F will provide solutions to the convex
programming problem that generates F :

2.7.1. Theorem. Let (x0; y0) be a saddle point of the Lagrangian function F .
Then x0 is a solution to the convex programming problem and

f(x0) = F (x0; y0):

Proof. The condition F (x0; y) � F (x0; y0) yields

y1g1(x
0) + � � �+ ymgm(x0) � y01g1(x0) + � � �+ y0mgm(x0):

By keeping y2; : : : ; ym �xed and taking the limit as y1 ! 1 we infer that
g1(x

0) � 0. Similarly, g2(x0) � 0; : : : ; gm(x
0) � 0. Thus x0 belongs to the

feasible set X.
From F (x0; 0) � F (x0; y0) and the de�nition of X we infer

0 � y01g1(x0) + � � �+ y0mgm(x0) � 0;

that is, y01g1(x
0) + � � � + y0mgm(x

0) = 0. Then f(x0) = F (x0; y0). Since
F (x0; y0) � F (x; y0) for all x � 0, we have

f(x0) � f(x) + y01g1(x) + � � �+ y0mgm(x) � f(x)

for all x � 0, which shows that x0 is a solution to the convex programming
problem. �
2.7.2. Theorem (The Karush�Kuhn�Tucker conditions). Suppose that the
convex functions f; g1; : : : ; gm are di¤erentiable functions on Rn. Then (x0; y0)
is a saddle point of the Lagrangian function F if and only if

x0 � 0; (2.19)

@F

@xk
(x0; y0) � 0; for k = 1; : : : ; n; (2.20)

@F

@xk
(x0; y0) = 0 whenever x0k > 0; (2.21)
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and

y0 � 0; (2.22)

@F

@yj
(x0; y0) = gj(x

0) � 0; for j = 1; : : : ;m; (2.23)

@F

@yj
(x0; y0) = 0 whenever y0j > 0: (2.24)

Proof. If (x0; y0) is a saddle point of F , then (2.19) and (2.22) are clearly
ful�lled. Also,

F (x0 + tek; y
0) � F (x0; y0) for all t � �x0k:

If x0k = 0, then

@F

@xk
(x0; y0) = lim

t!0+

F (x0 + tek; y
0)� F (x0; y0)
t

� 0:

If x0k > 0, then
@F
@xk
(x0; y0) = 0 by Fermat�s theorem. In a similar way one can

prove (2.23) and (2.24).
Suppose now that the conditions (2.19)�(2.24) are satis�ed. As F (x; y0) is

a di¤erentiable convex function of x (being a linear combination, with positive
coe¢ cients, of such functions), it veri�es the assumptions of Theorem 2.6.1.
Taking into account the conditions (2.19)�(2.21), we are led to

F (x; y0) � F (x0; y0) + hx� x0;rxF (x0; y0)i

= F (x0; y0) +
nX
k=1

(xk � x0k)
@F

@xk
(x0; y0)

= F (x0; y0) +

nX
k=1

xk
@F

@xk
(x0; y0) � F (x0; y0)

for all x � 0. On the other hand, by (2.23)�(2.24), for y � 0, we have

F (x0; y) = F (x0; y0) +
mX
j=1

(yj � y0j ) gj(x0)

= F (x0; y0) +
mX
j=1

yjgj(x
0)

� F (x0; y0):

Consequently, (x0; y0) is a saddle point of F . �
We shall illustrate Theorem 2.7.2 by the following example:

minimize (x1 � 2)2 + (x2 + 1)2 subject to 0 � x1 � 1 and 0 � x2 � 2:
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Here f(x1; x2) = (x1 � 2)2 + (x2 + 1)2, g1(x1; x2) = x1 � 1 and g2(x1; x2) =
x2 � 2. The Lagrangian function attached to this problem is

F (x1; x2; y1; y2) = (x1 � 2)2 + (x2 + 1)2 + y1(x1 � 1) + y2(x2 � 2)

and the Karush�Kuhn�Tucker conditions give us the equations8>>><>>>:
x1(2x1 � 4 + y1) = 0;
x2(2x2 + 2 + y2) = 0;

y1(x1 � 1) = 0;
y2(x2 � 2) = 0;

(2.25)

and the inequalities 8>>><>>>:
2x1 � 4 + y1 � 0;
2x2 + 2 + y2 � 0;
0 � x1 � 1 and 0 � x2 � 2;
y1; y2 � 0:

(2.26)

The system of equations (2.25) admits 9 solutions:

(1; 0; 2; 0); (1; 2; 2;�6); (1;�1; 2; 0); (0; 0; 0; 0); (2; 0; 0; 0); (0;�1; 0; 0);
(2;�1; 0; 0); (0; 0; 0;�1); (2; 0; 0;�1);

of which only (1; 0; 2; 0) veri�es also the inequalities (2.26). Consequently,

inf
0�x1�1
0�x2�2

f(x1; x2) = f(1; 0) = 2:

The Karush�Kuhn�Tucker conditions in the nondi¤erentiable setting are
based on the subdi¤erential calculus. See [4] and [42] for details.
We next indicate a fairly general situation when the convex programming

problem is equivalent to the saddle-point problem. For this we shall need the
following technical result, known as Farkas�lemma:

2.7.3. Lemma. Let f1; : : : ; fm be convex functions de�ned on a nonempty
convex set Y in Rn. Then either there exists y in Y such that

f1(y) < 0; : : : ; fm(y) < 0;

or there exist nonnegative numbers a1; : : : ; am, not all zero, such that

a1f1(y) + � � �+ amfm(y) � 0 for all y 2 Y:

Proof. Assume that the �rst alternative does not work and consider the set

C =
n
(t1; : : : ; tm) 2 Rm : there is y 2 Y with fk(y) < tk

for all k = 1; : : : ;m
o
:
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Then C is an open convex set that does not contain the origin of Rm. Accord-
ing to Theorem 1.4.1, C and the origin can be separated by a closed hyperplane,
that is, there exist scalars a1; : : : ; am not all zero, such that for all y 2 Y and
all "1; : : : ; "m > 0,

a1(f1(y) + "1) + � � �+ am(fm(y) + "m) � 0: (2.27)

Keeping "2; : : : ; "m �xed and letting "1 !1, we infer that a1 � 0. Similarly,
a2 � 0; : : : ; am � 0. Letting "1 ! 0; : : : ; "m ! 0 in (2.27) we conclude that
a1f1(y) + � � �+ amfm(y) � 0 for all y in Y . �
2.7.4. Theorem (Slater�s condition). Suppose that x0 is a solution of the
convex programming problem. If there exists x� � 0 such that

g1(x
�) < 0; : : : ; gm(x

�) < 0;

then one can �nd a y0 in Rm for which (x0; y0) is a saddle point of the associated
Lagrangian function F .

Proof. By Lemma 2.7.3, applied to the functions g1; : : : ; gm; f � f(x0) and the
set Y = Rn+, we can �nd a1; : : : ; am; a0 � 0, not all zero, such that

a1g1(x) + � � �+ amgm(x) + a0(f(x)� f(x0)) � 0 (2.28)

for all x � 0. A moment�s re�ection shows that a0 > 0. Put y0j = aj=a0 and
y0 = (y01 ; : : : ; y

0
m). By (2.28) we infer that

f(x0) � f(x) +
mX
j=1

y0j gj(x) = F (x; y
0)

for all x � 0. Particularly, for x = x0, this yields

f(x0) � f(x0) +
mX
j=1

y0j gj(x
0) � f(x0)

that is,
Pm

j=1 y
0
j gj(x

0) = 0, whence

F (x0; y0) = f(x0) � F (x; y0)

for all x � 0. On the other hand, for y � 0 we have

F (x0; y0) = f(x0) � f(x0) +
mX
j=1

yjgj(x
0) = F (x0; y);

so that (x0; y0) is a saddle point. �
We end this section with a nice geometric application of quadratic pro-

gramming, which was noted by J. Franklin [17], in his beautiful introduction
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to mathematical methods of economics. It is about a problem of J. Sylvester,
requiring the least circle which contains a given set of points in the plane.
Suppose the given points are a1; : : : ; am. They lie inside the circle of center

x and radius r if
kak � xk2 � r2 for k = 1; : : : ;m: (2.29)

We want to �nd x and r so as to minimize r. Letting

x0 =
1

2
(r2 � kxk2);

we can replace the quadratic constraints (2.29) by linear ones,

x0 + hak; xi � bk for k = 1; : : : ;m:

Here bk = kakk2=2. In this way, Sylvester�s problem becomes a problem of
quadratic programming,

minimize (2x0 + x21 + x
2
2);

subject to the m linear inequalities

x0 + ak1x1 + ak2x2 � bk (k = 1; : : : ;m):



Chapter 3

The Variational Approach
of PDE

The aim of this chapter is to illustrate a number of problems in partial di¤er-
ential equations (PDE) which can be solved by seeking a global minimum of
suitable convex functionals. This idea goes back to advanced calculus. See the
comments at the end of Section 2.6.

3.1 The Minimum of Convex Functionals

The main criterion for the existence and uniqueness of global minimum of convex
functions is actually a far reaching generalization of the orthogonal projection:

3.1.1. Theorem. Let C be a closed convex set in a re�exive Banach space V
and let J : C ! R be a convex function such that :
(a) J is weakly lower semicontinuous, that is,

un ! u weakly in V implies J(u) � lim inf
n!1

J(un);

(b) Either C is bounded, or limkuk!1 J(u) =1.
Then J admits at least one global minimum and the points of global minimum

constitute a convex set.
If, moreover, J is strictly convex, then there is a unique global minimum.

Proof. Put
m = inf

u2C
J(u):

Clearly, m < 1, and there exists a sequence (un)n of elements in C such
that J(un) ! m. By our hypotheses, the sequence (un)n is bounded, so by
Theorem 1.3.8, we may assume (replacing (un)n by a subsequence) that it is
also weakly converging to an element u in C. Here we used the fact that C is

47
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weakly closed (which is a consequence of Corollary 1.4.4). Then

m � J(u) � lim inf
n!1

J(un) = m;

and thus u is a global minimum. The remainder of the proof is left to the reader
as an exercise. �
In the di¤erentiable case we state the following useful version of Theo-

rem 3.1.1:

3.1.2. Theorem. Let V be a re�exive Banach space and let J : V ! R be a
Gâteaux di¤erentiable convex functional with the following properties:
(a) For each u 2 V , the map J 0(u) : v ! J 0(u; v) is an element of V 0;
(b) limkuk!1 J(u) =1.
Then J admits at least one global minimum and the points of global minimum

are precisely the points u such that

J 0(u; v) = 0 for all v 2 V:

If, moreover, J is strictly convex, then there is a unique global minimum.

Proof. First notice that J is weakly lower semicontinuous. In fact, by Theo-
rem 2.6.1,

J(un) � J(u) + J 0(u;un � u)

for all n, while J 0(u;un � u) = J 0(u)(un � u) ! 0 by our hypotheses. Hence,
according to Theorem 3.1.1, J admits global minima.
If u is a global minimum, then for each v 2 V there is a � > 0 such that

J(u+ "v)� J(u)
"

� 0 whenever j"j < �:

This yields J 0(u; v) � 0. Replacing v by �v, we obtain

�J 0(u; v) = J 0(u;�v) � 0;

and thus J 0(u; v) = 0. Conversely, if J 0(u; v) = 0 for all v 2 V , then by
Theorem 2.6.1 we get

J(v) � J(u) + J 0(u; v � u) = J(u);

that is, u is a global minimum. �
Typically, Theorem 3.1.1 applies to functionals of the form

J(u) =
1

2
ku� wk2 + '(u); u 2 V;

where V is an Lp-space with p 2 (1;1), w is an arbitrary �xed element of V and
' : V ! R is a weakly lower semicontinuous convex function. Theorem 3.1.2
covers a large range of well-behaved convex functionals, with important conse-
quences to the problem of existence of solutions of partial di¤erential equations:
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3.1.3. Corollary. Let 
 be a nonempty open set in Rn and let p > 1. Consider
a function g 2 C1(R) which veri�es the following properties:
(a) g(0) = 0 and g(t) � �jtjp for a suitable constant � > 0;
(b) The derivative g0 is increasing and jg0(t)j � �jtjp�1 for a suitable con-

stant � > 0. Then the linear space V = Lp(
 ) \ L2(
 ) is re�exive when
endowed with the norm

kukV = kukLp + kukL2 ;

and for all f 2 L2(
 ) the functional

J(u) =

Z



g(u(x)) dx+
1

2

Z



ju(x)j2 dx+
Z



f(x)u(x) dx; u 2 V

is convex and Gâteaux di¤erentiable with

J 0(u; v) =

Z



g0(u(x))v(x) dx+

Z



u(x)v(x) dx+

Z



f(x)v(x) dx:

Moreover, J admits a unique global minimum �u, which is the solution of the
equation

J 0(u; v) = 0 for all v 2 V:

Proof. V is a closed subspace of L2(
 ) and thus it is a re�exive space. Then
notice that

jg(t)j = jg(t)� g(0)j

=

����Z t

0

g0(s) ds

���� � �

p
jtjp;

from which it follows easily that J is well de�ned. Letting

J1(u) =

Z



g(u(x)) dx;

by Lagrange�s mean value theorem,

J1(u+ tv) =

Z



g(u(x) + tv(x)) dx

=

Z



g(u(x)) dx+ t

Z



g0(u(x) + �(x)v(x))v(x) dx;

where 0 < �(x) < t for all x, provided that t > 0. Then

J1(u+ tv)� J1(u)
t

=

Z



g0(u(x) + �(x)v(x))v(x) dx;

and letting t! 0+ we get the desired formula for J 0(u; v).
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Again by Lagrange�s mean value theorem, and the fact that g0 is increasing,
we have

J1(v) = J1(u) +

Z



[g0(u(x) + �(x)(v(x)� u(x))) � (v(x)� u(x))] dx

� J1(u) +
Z



g0(u(x)) � (v(x)� u(x)) dx

= J1(u) + J
0
1(u; v � u);

which shows that J1 is convex. Then the functional J is the sum of a convex
function and a strictly convex function.
Finally,

J(u) � �
Z



ju(x)jp dx+ 1
2

Z



ju(x)j2 dx�
����Z



f(x)u(x) dx

����
� �kukpLp +

1

2
kuk2L2 � kfkL2 kukL2 ;

from which it follows that

lim
kukV!1

J(u) =1;

and the conclusion follows from Theorem 3.1.2. �
The result of Corollary 3.1.3 extends (with obvious changes) to the case

where V is the space of all u 2 L2(
 ) such that Au 2 Lp(
 ) for a given
linear di¤erential operator A. Also, we can consider �nitely many functions
gk (verifying the conditions (a) and (b) for di¤erent exponents pk > 1) and
�nitely many linear di¤erential operators Ak. In that case we shall deal with
the functional

J(u) =
mX
k=1

Z



gk(Aku) dx+
1

2

Z



juj2 dx+
Z



fu dx;

de�ned on V =
Tm
k=1 L

pk(
 ) \ L2(
 ); V is re�exive when endowed with the
norm

kukV =
mX
k=1

kAkukLpk + kukL2 :

3.2 Preliminaries on Sobolev Spaces

Some basic results on Sobolev spaces are recalled here for the convenience of
the reader. The details are available from many sources, including [2], [14], [40]
and [46].
Let 
 be a bounded open set in Rn with Lipschitz boundary @
 , and let m

be a positive integer.
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The Sobolev space Hm(
 ) consists of all functions u 2 L2(
 ) which admit
weak derivatives D�u in L2(
 ), for all multi-indices � with j�j � m. This
means the existence of functions v� 2 L2(
 ) such thatZ




v� � 'dx = (�1)j�j
Z



u �D�'dx (3.1)

for all ' in the space C1c (
 ) and all � with j�j � m. Due to the denseness of
C1c (
 ) in L

2(
 ), the functions v� are uniquely de�ned by (3.1), and they are
usually denoted as D�u.
One can prove easily that Hm(
 ) is a Hilbert space when endowed with the

norm k � kHm associated to the inner product

hu; viHm =
X
j�j�m

Z



D�u �D�v dx:

Notice that Cm(
 ) is a dense subspace of Hm(
 ).

3.2.1. Theorem (The trace theorem). There is a continuous linear operator

 = (0; : : : ; m�1) : H
m(
 )! L2(@
 )m

such that

0u = uj@
 ; 1u =
@u

@n
; : : : ; m�1u =

@m�1u

@nm�1

for all u in Cm(
 ).

The closure of C1c (
 ) in H
m(
 ) is the Sobolev space Hm

0 (
 ). This space
coincides with the kernel of the trace operator , indicated in Theorem 3.2.1.
On H1

0 (
 ), the norm k � kH1 can be replaced by an equivalent norm,

kukH1
0
=

�Z



kruk2 dx
�1=2

:

In fact, there exists a constant c > 0 such that

kukH1
0
� kukH1 � ckukH1

0
for all u 2 H1

0 (
 ):

This is a consequence of a basic inequality in partial di¤erential equations:

3.2.2. Theorem (Poincaré�s inequality). If 
 is a bounded open subset of Rn,
then there exists a constant C > 0 such that

kukL2 � C
�Z




kruk2 dx
�1=2

for all u 2 H1
0 (
 ).
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Proof. Since C1c (
 ) is dense into H
1
0 (
 ), it su¢ ces to prove Poincaré�s inequal-

ity for functions u 2 C1c (
 ) � C1c (Rn). The fact that 
 is bounded, yields
two real numbers a and b such that


 � fx = (x0; xn) 2 Rn�1 � R j a � xn � bg:

We have

u(x0; xn) =

Z xn

a

@u

@xn
(x0; t) dt;

and an application of the Cauchy�Buniakovski�Schwarz inequality gives us

ju(x0; xn)j2 � (xn � a)
Z xn

a

���� @u@xn (x0; t)
����2 dt

� (xn � a)
Z
R

���� @u@xn (x0; t)
����2 dt:

Then Z
Rn�1

ju(x0; t)j2 dx0 � (xn � a)
Z
Rn

���� @u@xn (x)
����2 dx;

which leads toZ
Rn
ju(x)j2 dx =

Z b

a

Z
Rn�1

ju(x0; t)j2 dx0dt � (b� a)2
2

Z
Rn

���� @u@xn (x)
����2 dx

and now the assertion of Theorem 3.2.2 is clear. �
By Poincaré�s inequality, the inclusion Hm

0 (
 ) � Hm(
 ) is strict whenever

 is bounded. Notice that Hm

0 (Rn) = Hm(Rn), due to the possibility to ap-
proximate (via molli�cation) the functions in Hm(Rn) by functions in C1c (Rn).

3.3 Applications to Elliptic Boundary-Value Prob-
lems

In what follows we shall illustrate the role of the variational methods in solving
some problems in partial di¤erential equations. More advanced applications may
be found in books like those by G. Duvaut and J.-L. Lions [12] and I. Ekeland
and R. Temam [13].

3.3.1. Dirichlet Problems. Let 
 be a bounded open set in Rn and let
f 2 C(
 ). A function u 2 C2(
 ) \ C(
 ) is said to be a classical solution of
the Dirichlet problem (

��u+ u = f in 


u = 0 on @
 ,
(3.2)

provided that it satis�es the equation and the boundary condition pointwise.
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If u is a classical solution to this problem then the equation ��u+ u = f is
equivalent toZ




(��u+ u) � v dx =
Z



f � v dx for all v 2 H1
0 (
 ):

By Green�s formula,Z



(��u+ u) � v dx = �
Z
@


@u

@n
� v dx+

Z



u � v dx+
nX
k=1

Z



@u

@xk
� @v
@xk

dx;

so that we arrive at the following restatement of (3.2):

nX
k=1

Z



@u

@xk
� @v
@xk

dx+

Z



u � v dx =
Z



f � v dx (3.3)

for all v 2 C1c (
 ). It turns out that (3.3) makes sense for u 2 H1
0 (
 ) and

f 2 L2(
 ). We shall say that a function u 2 H1
0 (
 ) is a weak solution for the

Dirichlet problem (3.2) with f 2 L2(
 ) if it satis�es (3.3) for all v 2 H1
0 (
 ).

The existence and uniqueness of the weak solution for the Dirichlet problem
(3.2) follows from Theorem 3.1.2, applied to the functional

J(u) =
1

2
kuk2H1

0
� hf; uiL2 ; u 2 H1

0 (
 ):

In fact, this functional is strictly convex and twice Gâteaux di¤erentiable,
with

J 0(u; v) = hu; viH1
0
� hf; viL2

J 00(u; v; w) = hw; viH1
0
:

According to Theorem 3.1.2, the unique point of global minimum of J is the
unique solution of the equation

J 0(u; v) = 0 for all v 2 H1
0 (
 );

and clearly, the latter is equivalent with (3.3).

3.3.2. Neumann Problems. Let 
 be a bounded open set in Rn (with
Lipschitz boundary) and let f 2 C(
 ). A function u 2 C2(
 ) \ C1(
 ) is said
to be a classical solution of the Neumann problem8<:��u+ u = f in 


@u

@n
= 0 on @
 ,

(3.4)

provided that it satis�es the equation and the boundary condition pointwise.
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If u is a classical solution to this problem, then the equation ��u + u = f
is equivalent toZ




(��u+ u) � v dx =
Z



f � v dx for all v 2 H1(
 );

and thus with
nX
k=1

Z



@u

@xk
� @v
@xk

dx+

Z



u � v dx =
Z



f � v dx for all v 2 H1(
 ); (3.5)

taking into account Green�s formula and the boundary condition @u
@n = 0 on

@
 . As in the case of Dirichlet problem, we can introduce a concept of a weak
solution for the Neumann problem (3.4) with f 2 L2(
 ). We shall say that a
function u 2 H1(
 ) is a weak solution for the problem (3.4) if it satis�es (3.5)
for all v 2 H1(
 ).
The existence and uniqueness of the weak solution for the Neumann problem

follows from Theorem 3.1.2, applied to the functional

J(u) =
1

2
kuk2H1 � hf; uiL2 ; u 2 H1(
 ):

The details are similar to the above case of Dirichlet problem.
Corollary 3.1.3, and its generalization to �nite families of functions g; allow

us to prove the existence and uniqueness of considerably more subtle Neumann
problems such as 8<:��u+ u+ u

3 = f in 

@u

@n
= 0 on @
 ,

(3.6)

where f 2 L2(
 ). This corresponds to the case where

g1(t) = � � � = gn(t) = t2=2; gn+1(t) = t
4=4;

Aku = @u=@xk for k = 1; : : : ; n; An+1u = u;

p1 = � � � = pn = 2; pn+1 = 4;

and

J(u) =
1

2
kuk2H1 +

1

4
kuk4L4 � hf; uiL2 ; u 2 V = H1(
 ) \ L4(
 ):

According to Corollary 3.1.3, there is a unique global minimum of J and
this is done by the equation

J 0(u; v) = 0 for all v 2 V;

that is, by
nX
k=1

Z



@u

@xk
� @v
@xk

dx+

Z



u � v dx+
Z



u3 � v dx =
Z



f � v dx

for all v 2 V . Notice that the latter equation represents the weak form of (3.6).
The conditions under which weak solutions provide classical solutions are

discussed in textbooks like that by M. Renardy and R. C. Rogers [40].
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3.4 The Galerkin Method

It is important to give here an idea how the global minimum of convex function-
als can be determined via numerical algorithms. For this, consider a re�exive
real Banach space V , with Schauder basis (ek)k. This means that every u 2 V
admits a unique representation

u =
1X
k=1

ckek

with ck 2 R, the convergence being in the norm topology. As a consequence,
for each n 2 N? there is a linear projection

Pn : V ! V; Pnu =
nX
k=1

ckek:

Since Pnu ! u for every u, the Banach�Steinhaus theorem in functional
analysis assures that sup kPnk <1.
Consider a functional J : V ! R which is twice Gâteaux di¤erentiable and

for each u 2 V there exist rJ(u) 2 V 0 and H(u) 2 L(V; V 0) such that

J 0(u; v) = hrJ(u); vi
J 00(u; v; w) = hH(u)v; wi

for all u; v; w 2 V . In addition, we assume that H(u) satis�es estimates of the
form: (

jhH(u)v; wij �Mkvk kwk
hH(u)v; vi � �kvk2

(3.7)

for all u; v; w 2 V . Here M and � are positive constants.
By Taylor�s formula, J is strictly convex and limkuk!1 J(u) = 1. Then J

is weakly lower semicontinuous, so by Theorem 3.1.2 it admits a unique global
minimum.
In the Galerkin method, the global minimum u of J is found by a �nite

dimensional approximation process. More precisely, one considers the restriction
of J to Vn =Span fe1; : : : ; eng and one computes the global minimum un of this
restriction by solving the equation

hrJ(un); vi = 0 for all v 2 Vn:

The existence of un follows again from Theorem 3.1.2. Remarkably, these min-
imum points approximate the global minimum u in the following strong way:

3.4.1. Theorem. We have

lim
n!1

kun � uk = 0:
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Proof. Letting vn = Pnu, we know that vn ! u. By Taylor�s formula, for each
n there is a �n 2 (0; 1) such that

J(vn) = J(u) + hrJ(u); vn � ui+
1

2
hH(u+ �n(vn � u))(vn � u); vn � ui:

Combining this with the �rst estimate in (3.7), we get J(vn) ! J(u). By
the choice of un, it yields that

J(u) � J(un) � J(vn);

so that J(un)! J(u) too. Also, supJ(un) <1.
Since limkuk!1 J(u) = 1, we deduce that the sequence (un)n is norm

bounded. According to Theorem 1.3.8, it follows that (un)n has a weakly con-
verging subsequence, say uk(n)

w! u0. Since J is lower semicontinuous, we have

J(u0) � lim inf
n!1

J(uk(n)) � J(u);

from which it follows that u0 = u and un
w! u. Again by Taylor�s formula, for

each n there is a �n 2 (0; 1) such that

J(un) = J(u) + hrJ(u); un � ui+
1

2
hH(u+ �n(un � u))(un � u); un � ui:

This relation, when combined with the second estimate in (3.7), leads to

2

�
kun � uk2 � jJ(un)� J(u)j+ jhrJ(u); un � uij

and the conclusion of the theorem is now obvious. �
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