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Perpignan

52 Avenue Paul Alduy, F-66860 Perpignan, France

E-mail: sofonea@univ-perp.fr

∗∗Department of Mathematics, University of Craiova
A.I. Cuza Street 13, Craiova, RO-200585, Romania
E-mail: cniculescu@central.ucv.ro, andaluziamatei@k.ro

Abstract. We study a mechanical problem modeling the antiplane shear defor-
mation of a cylinder in frictional contact with a rigid foundation. The material is
assumed to be viscoelastic with long-term memory, the process is quasistatic, and
the friction is modeled with Tresca’s law. The problem leads to an evolutionary vari-
ational inequality that we study in an abstract framework. We then use the abstract
result to prove the existence of a unique weak solution to the mechanical model.
Moreover, we study its behavior with respect to the memory term and establish a
convergence result.
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1. Introduction

Some people think that Mathematics is an arbitrary creation and the job of
mathematicians is to develop abstract theories. In their view, the more ab-
stract and demanding is a theory, the bigger is its value. However, everyday
experience shows a somewhat different picture, namely the interest for intel-
lectual activities comes primarily from their practical implication. Nowadays a
considerable progress has been achieved in the different areas of Mathematics
and most of it was motivated by applications. Indeed, the abstract character
1 The work of the last two authors was performed in the framework of the Grant

CNSIS 80/2005.
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of mathematical tools allows to solve wide classes of problems which present a
common feature and to provide significant applications in the study of prob-
lems arising in sciences, engineering and everyday life.

The Theory of Variational Inequalities has not been an exception. Indeed,
the cross fertilization between modeling and applications on the one hand
and nonlinear mathematical analysis on the other hand was an important as-
pect which contributed to its development in the last four decades. Currently,
the Theory of Variational Inequalities became a fully mature discipline which
deals with existence, uniqueness or nonuniqueness, regularity and continuous
dependence results, together with numerical approximations and optimal con-
trol of the solutions. It provides results which are of considerable theoretical
and applied interest.

The aim of this paper is to recall the attention to the great potential of
inequalities in Mechanics and Physics. In the spirit of the classical book of
G. Duvaut and J. L. Lions [3], we show how a concrete viscoelastic contact
problem leads to a mathematical model which can be solved by using the
methods of the Theory of Variational Inequalities.

The contact between a deformable body and a foundation is a very fre-
quent and important phenomenon. For this reason the literature covering this
phenomenon is extensive, both in Applied Mathematics and in Engineering
or Geophysics. The Mathematical Theory of Contact Mechanics is concerned
with the mathematical structures which underline general problems of con-
tact with different constitutive laws and different contact conditions, see for
instance [4, 12] and the references therein. Its aim is to provide a sound, clear
and rigorous background to the specific applied problems. A number of recent
publications is dedicated to the study of quasistatic contact models involving
viscoelastic materials with long-term memory. The variational analysis of such
problems leads to evolutionary variational inequalities with integral term or
with integro-differential term, see for instance [9, 10, 11] for details.

In this paper we study the frictional contact between a deformable cylinder
and a rigid foundation. We consider the case of antiplane shear deformation
i.e., the displacement is parallel to the generators of the cylinder and is in-
dependent of the axial coordinate. Such kind of problems were studied in a
number of papers, in the context of various constitutive laws and contact con-
ditions, see, e.g. [1, 5, 8] and the references therein. The novelty in this paper
consists in the fact that we model the friction with Tresca’s law and the ma-
terial’s behavior with a viscoelastic constitutive law with long-term memory.
We neglect the inertial term in the equation of motion to obtain a quasistatic
approximation of the process. In the variational formulation, this mechanical
problem leads to an integro-differential variational inequality. The main result
we provide concerns the existence of a unique weak solution to the model. Its
proof is carried out in several steps, and is based on arguments of evolutionary
variational inequalities and Banach’s fixed point theorem.

Our paper is structured as follows. In Section 2 we present the mechanical
problem of antiplane contact, derive its variational formulation and state the
main existence and uniqueness result, Theorem 1. In Section 3 we prove an
abstract existence and uniqueness result, Theorem 2, and we apply it in the
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proof of Theorem 1. Finally, in Section 4 we study the behavior of the solu-
tion as the memory term converges to zero and provide a convergence result,
Theorem 4.

2. The antiplane contact problem and its variational
formulation

We consider a body B identified with a region in IR3 it occupies in a fixed
and undistorted reference configuration. We assume that B is a cylinder with
generators parallel to the x3-axes with a cross-section which is a regular region
Ω in the x1, x2-plane, Ox1x2x3 being a Cartesian coordinate system. The
cylinder is assumed to be sufficiently long so that the end effects in the axial
direction are negligible. Thus, B = Ω × (−∞, +∞). Let ∂Ω = Γ . We assume
that Γ is divided into three disjoint measurable parts Γ1, Γ2 and Γ3 such
that the one-dimensional measure of Γ1, denoted measΓ1, is strictly positive.
Let T > 0 and let [0, T ] denote the time interval of interest. The cylinder
is clamped on Γ1 × (−∞,+∞) and is in contact with a rigid foundation on
Γ3×(−∞, +∞) during the process. Moreover, the cylinder is subjected to time
dependent volume forces of density f0 on B and to time dependent surface
tractions of density f2 on Γ2 × (−∞, +∞). We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω × [0, T ] → IR, (2.1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ] → IR. (2.2)

The body forces (2.1) and the surface tractions (2.2) would be expected to
give rise to a deformation of the cylinder whose displacement, denoted by u,
is independent on x3 and has the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω × [0, T ] → IR. (2.3)

Such kind of deformation is called an antiplane shear, see for instance [6, 7]
for details.

The infinitesimal strain tensor is denoted by ε(u) = (εij(u)) and the stress
field by σ = (σij). Here and below, in order to simplify the notation, we do
not indicate the dependence of various functions on x1, x2 or t.

The material is modeled by the following viscoelastic constitutive law with
long-term memory,

σ = λ(tr ε(u))I + 2µε(u) + 2
∫ t

0

θ(t− s)ε(u(s))ds, (2.4)

where λ > 0 and µ > 0 are the Lamé coefficients, tr ε(u) =
3∑

i=1

εii(u), I is

the unit tensor in IR3 and θ : [0, T ] → IR is the relaxation function. In the
antiplane context (2.3), keeping in mind (2.4), the stress field becomes
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σ =




0 0 σ13

0 0 σ23

σ31 σ32 0


 (2.5)

where

σ13 = σ31 = µ ∂x1u +
∫ t

0

θ(t− s) ∂x1u(s)ds,

σ23 = σ32 = µ ∂x2u +
∫ t

0

θ(t− s) ∂x2u(s)ds.

Neglecting the inertial term in the equation of motion we obtain the qua-
sistatic approximation for the process. Thus, taking into account (2.5), (2.1)
and the previous equalities, the equation of equilibrium reduces to the scalar
equation

µ∆u +
∫ t

0

θ(t− s)∆u(s)ds + f0 = 0 in Ω × (0, T ).

As the cylinder is clamped on Γ1 × (−∞,+∞)× (0, T ), the displacement
field vanishes there. Thus, (2.3) implies that

u = 0 on Γ1 × (0, T ).

Let ν denote the unit normal on Γ × (−∞,+∞). We have

ν = (ν1, ν2, 0) with νi = νi(x1, x2) : Γ → IR, i = 1, 2. (2.6)

For a vector v we denote by vν and vτ its normal and tangential components
on the boundary, given by

vν = v · ν, vτ = v − vνν. (2.7)

In (2.7) and everywhere in this paper “ · ” represents the inner product on
the space IRd (d = 2 or 3). Moreover, throughout this paper the notation | · |
will designate the Euclidean norm on IRd, and a dot above a function will
represent its derivative with respect to the time variable. For a given stress
field σ we denote by σν and στ the normal and the tangential components
on the boundary, that is

σν = (σν) · ν, στ = σν − σνν. (2.8)

From (2.5) and (2.6) we deduce that the Cauchy stress vector is given by

σν = (0, 0, µ ∂νu +
∫ t

0

θ(t− s) ∂νu(s)ds). (2.9)

Here and below we use the notation ∂νu = ∂x1u ν1 + ∂x2u ν2. Taking into
account the traction boundary condition σν = f2 on Γ2 × (0, T ), it follows
from (2.2) and (2.9) that
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µ∂νu +
∫ t

0

θ(t− s) ∂νu(s)ds = f2 on Γ2 × (0, T ).

We now describe the contact condition on Γ3 × (−∞,+∞). First, from
(2.3) and (2.6) we infer that uν = 0, which shows that the contact is bilateral,
that is, the contact is kept during all the process. Using now (2.3), (2.6)–(2.8)
we conclude that

uτ = (0, 0, u), στ = (0, 0, µ ∂νu +
∫ t

0

θ(t− s) ∂νu(s)ds). (2.10)

We assume that the friction is invariant with respect to the x3 axis and is
modeled with Tresca’s friction law, that is





|στ | ≤ g,

|στ | < g ⇒ u̇τ = 0,

|στ | = g ⇒ ∃β ≥ 0 such that στ = −βu̇τ

on Γ3 × (0, T ). (2.11)

Here g : Γ3 → IR+ is a given function, the friction bound, and u̇τ represents
the tangential velocity on the contact boundary. The strict inequality holds
in the stick zone and the equality in the slip zone. Using now (2.10) it is
straightforward to see that the conditions (2.11) imply




|µ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds| ≤ g,

|µ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds| < g ⇒ u̇ = 0,

|µ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds| = g

⇒ ∃β ≥ 0 such that µ ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds = −βu̇

on Γ3×(0, T ).

Finally, we prescribe the initial displacement,

u(0) = u0 in Ω,

where u0 is a given function on Ω.

We collect the above equations and conditions to obtain the classical for-
mulation of the antiplane problem for viscoelastic materials with long-term
memory, in frictional contact with a foundation.

Problem P. Find the displacement field u : Ω × [0, T ] → IR such that

µ∆u +
∫ t

0

θ(t− s)∆u(s)ds + f0 = 0 in Ω × (0, T ), (2.12)

u = 0 on Γ1 × (0, T ), (2.13)

µ∂νu +
∫ t

0

θ(t− s) ∂νu(s)ds = f2 on Γ2 × (0, T ), (2.14)
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|µ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds| ≤ g,

|µ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds| < g ⇒ u̇ = 0,

|µ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds| = g

⇒ ∃β ≥ 0 such that

µ∂νu +
∫ t

0
θ(t− s) ∂νu(s)ds = −βu̇

on Γ3 × (0, T ), (2.15)

u(0) = u0 in Ω. (2.16)

Notice that once the displacement field u which solves Problem P is known,
then the stress tensor can be calculated using (2.4).

We derive now the variational formulation of the Problem P. To this end
we introduce the functional space

V = {v ∈ H1(Ω) | v = 0 on Γ1}.
Here and below we write v for the trace γv of v on Γ . Since meas Γ1 > 0, the
Friedrichs-Poincaré inequality holds, that is there exists a positive constant
CP (which depends only on Ω and Γ1) such that

‖u‖H1(Ω) ≤ CP ‖∇u‖L2(Ω)2 ∀u ∈ V. (2.17)

We consider on V the inner product given by

(u, v)V =
∫

Ω

∇u · ∇v dx ∀u, v ∈ V,

and let ‖ · ‖V be the associated norm, i.e.

‖v‖V = ‖∇v‖L2(Ω)2 ∀v ∈ V.

Using (2.17), it follows that ‖ · ‖H1(Ω) and ‖ · ‖V are equivalent norms on V
and therefore (V, ‖ · ‖V ) is a real Hilbert space. By Sobolev’s trace theorem
we deduce that there exists C0 > 0 (depending only on Ω, Γ1 and Γ3) such
that

‖v‖L2(Γ3) ≤ C0‖v‖V ∀v ∈ V. (2.18)

If (X, ‖ ·‖X) represents a real Banach space, we denote by C([0, T ];X) the
space of continuous functions from [0, T ] to X, with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X

and we use standard notations for the Lebesgue space L2(0, T ; X) as well as
for the Sobolev space W 1,2(0, T ;X). In particular, recall that the norm on the
space L2(0, T ; X) is given by

‖u‖L2(0,T ;X) =
( ∫ T

0

‖u(t)‖2Xdt
) 1

2
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and the norm on the space W 1,2(0, T ; X) is given by

‖u‖W 1,2(0,T ;X) =
( ∫ T

0

‖u(t)‖2Xdt +
∫ T

0

‖u̇(t)‖2Xdt
) 1

2
.

Finally, we suppress the argument X when X = IR; thus, for example, we
use the notation W 1,2(0, T ) for the space W 1,2(0, T ; IR) and the notation
‖ · ‖W 1,2(0,T ) for the norm ‖ · ‖W 1,2(0,T ;IR).

In the study of the mechanical Problem P we assume that the friction
bound function g satisfies

g ∈ L∞(Γ3) and g(x) ≥ 0 a.e. x ∈ Γ3. (2.19)

The forces and tractions are assumed to have the regularity

f0 ∈ W 1,2(0, T ; L2(Ω)), f2 ∈ W 1,2(0, T ; L2(Γ2)) (2.20)

and, for the relaxation function, we assume

θ ∈ W 1,2(0, T ). (2.21)

We consider the functional j : V → IR+ given by

j(v) =
∫

Γ3

g |v|da ∀v ∈ V (2.22)

and let f : [0, T ] → V be defined by

(f(t), v)V =
∫

Ω

f0(t)v dx +
∫

Γ2

f2(t)v da ∀v ∈ V, t ∈ [0, T ]. (2.23)

The definition of f is based on Riesz’s representation theorem and, by (2.20)
and (2.23), we infer that

f ∈ W 1,2(0, T ;V ). (2.24)

Finally, we assume that the initial data verifies

u0 ∈ V (2.25)

and, moreover,

µ (u0, v)V + j(v) ≥ (f(0), v)V ∀v ∈ V. (2.26)

Using Green’s formula it is straightforward to derive the following varia-
tional formulation of Problem P.

Problem PV . Find a displacement field u : [0, T ] → V such that

µ (u(t), v − u̇(t))V + (
∫ t

0

θ (t− s)u(s)ds, v − u̇(t))V (2.27)

+j(v)− j(u̇(t)) ≥ (f(t), v − u̇(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0. (2.28)

Our main existence and uniqueness result, which we establish in Section
3, is the following.
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Theorem 1. Assume that (2.19)–(2.21), (2.25) and (2.26) hold. Then there
exists a unique solution of problem PV . Moreover, the solution satisfies u ∈
W 1,2(0, T ; V ).

An element u which solves Problem PV is called a weak solution of the
mechanical problem P. We conclude by Theorem 1 that the antiplane contact
problem P has a unique weak solution, provided that (2.19)–(2.21), (2.25)
and (2.26) hold.

3. An abstract existence and uniqueness result

The following abstract problem includes Problem PV as a special case.

Problem PA
V . Find u : [0, T ] → X such that

a(u(t), v − u̇(t)) + (
∫ t

0

θ (t− s)u(s)ds, v − u̇(t))X + j(v)− j(u̇(t)) (3.1)

≥ (f(t), v − u̇(t))X ∀v ∈ X, a.e. t ∈ (0, T ),

u(0) = u0. (3.2)

Here X is a real Hilbert space endowed with the inner product (·, ·)X and the
data a, θ, j, f, u0 will be described below. We denote by ‖ · ‖X the associated
norm in X and by 0X the zero element of X.

We assume that:




a : X ×X → R is a bilinear symmetric form and

(a) there exists m > 0 such that |a(u, v)| ≤ ‖u‖X‖v‖X ∀u, v ∈ X,

(b) there exists α > 0 such that a(u, u) ≥ α‖u‖2X ∀u ∈ X.

(3.3)

θ ∈ W 1,2(0, T ). (3.4)

j : X → (−∞,+∞] is a convex, lower semicontinuous function. (3.5)

f ∈ W 1,2(0, T ; X). (3.6)

u0 ∈ X. (3.7)

a(u0, v) + j(v) ≥ (f(0), v)X ∀v ∈ X. (3.8)

We have the following existence and uniqueness result.

Theorem 2. Assume that (3.3)–(3.8) hold. Then, there exists a unique solu-
tion u ∈ W 1,2(0, T ;X) to the problem PA

V .

We turn to the proof of Theorem 2 which will be carried out in several
steps. To this end, in the rest of this section we assume that (3.3)–(3.8) hold
and we recall the following result.
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Theorem 3. ( [2], p. 117). Let (X, (·, ·)X) be a real Hilbert space and let
j : X → (−∞, +∞] be a convex lower semicontinuous functional. Assume
that j 6≡ +∞, that is

D(j) = {v ∈ X | j(v) < ∞} 6= ∅.
Let f ∈ W 1,2(0, T ;X) and u0 ∈ X be such that

sup
v∈D(j)

{(f(0), v)X − (u0, v)X − j(v)} < +∞.

Then, there exists a unique element u ∈ W 1,2(0, T ; X) which satisfies u(0) =
u0 and

(u(t), v − u̇(t))X + j(v)− j(u̇(t)) ≥ (f(t), v − u̇(t))X ,

for all v ∈ X, and a.e. t ∈ (0, T ).

In the first step of the proof we introduce the set

W = { η ∈ W 1,2(0, T ;X) | η(0) = 0X } (3.9)

and we prove the following existence and uniqueness result.

Lemma 1. For all η ∈ W there exists a unique element uη ∈ W 1,2(0, T ;X)
such that

a(uη(t), v − u̇η(t)) + (η(t), v − u̇η(t))X + j(v)− j(u̇η(t)) (3.10)
≥ (f(t), v − u̇η(t))X ∀v ∈ X, a.e. t ∈ (0, T ),

uη(0) = u0. (3.11)

Proof. Let
(u, v)a = a(u, v) ∀u, v ∈ X. (3.12)

It follows that (·, ·)a is an inner product on the space X and the associated
norm, denoted ‖ · ‖a, is equivalent to the norm ‖ · ‖X on X. Consequently,
(X, (·, ·)a) is a real Hilbert space.

Let fη : [0, T ] → X be the function defined by

(fη(t), v)a = (f(t), v)X − (η(t), v)X ∀v ∈ X, t ∈ [0, T ]. (3.13)

Then, (3.6) and the regularity η ∈ W imply that

fη ∈ W 1,2(0, T ; X). (3.14)

Moreover, using (3.9), (3.12) and (3.13), we obtain

(fη(0), v)a − (u0, v)a − j(v) = (f(0), v)X − a(u0, v)− j(v) ∀v ∈ X

and, taking into account (3.8), we find

sup
v∈D(j)

{(fη(0), v)A − (u0, v)A − j(v)} < +∞. (3.15)
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Keeping in mind (3.5), (3.7), (3.14) and (3.15), we can use Theorem 3
on the space (X, (·, ·)a) to obtain the existence of a unique element uη ∈
W 1,2(0, T ; X) such that uη(0) = u0 and

(uη(t), v−u̇η(t))a+j(v)−j(u̇η(t)) ≥ (fη(t), v−u̇η(t))a ∀v ∈ X, a.e. t ∈ (0, T ).

It follows from (3.12) and (3.13) that uη is the unique solution to the
problem (3.10)–(3.11) which concludes the proof. ¥

In the next step we consider the operator Λ : W →W defined by

Λη(t) =
∫ t

0

θ(t− s)uη(s) ds ∀η ∈ W, t ∈ [0, T ]. (3.16)

It follows from (3.4) that the operator Λ is well defined, since η ∈ W implies
Λη ∈ W. We also note that

( d

dt
Λη

)
(t) = θ(0)uη(t) +

∫ t

0

θ̇(t− s)uη(s) ds ∀η ∈ W, a.e. t ∈ (0, T ).

(3.17)
We have the following result.

Lemma 2. The operator Λ has a unique fixed point η∗ ∈ W.

Proof. Let η1, η2 ∈ W and, for the sake of simplicity, denote u1 = uη1 and
u2 = uη2 . Using (3.16) and (3.4) it follows that

‖Λη1(t)− Λη2(t)‖2X ≤ c

∫ t

0

‖u1(s)− u2(s)‖2X ds ∀t ∈ [0, T ]. (3.18)

Here and in what follows c represents a generic positive constant which may
depend on ‖θ‖W 1,2(0,T ), a and T , and whose value may change from place to
place.

Moreover, from (3.17) we infer that
∥∥∥
( d

dt
Λη1

)
(t)−

( d

dt
Λη2

)
(t)

∥∥∥
X
≤ |θ(0)|‖u1(t)− u2(t)‖X

+
∫ t

0

|θ̇(t− s)| ‖u1(s)− u2(s)‖X ds

≤ c
(
‖u1(t)− u2(t)‖X +

( ∫ t

0

‖u1(s)− u2(s)‖2X ds
) 1

2
)

a.e. t ∈ (0, T ),

which yields
∥∥∥
( d

dt
Λη1

)
(t)−

( d

dt
Λη2

)
(t)

∥∥∥
2

X
≤ c

(
‖u1(t)− u2(t)‖2X (3.19)

+
∫ t

0

‖u1(s)− u2(s)‖2X ds
)

a.e. t ∈ (0, T ).

On the other hand, taking into account (3.10), we have the inequalities
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a(u1(s), v− u̇1(s))+(η1(s), v− u̇1(s))X + j(v)− j(u̇1(s)) ≥ (f(s), v− u̇1(s))X ,

a(u2(s), v− u̇2(s))+(η2(s), v− u̇2(s))X + j(v)− j(u̇2(s)) ≥ (f(s), v− u̇2(s))X ,

for all v ∈ X, a.e. s ∈ (0, T ). We choose v = u̇2(s) in the first inequality,
v = u̇1(s) in the second inequality, add the results and use (3.12) to obtain

1
2

d

ds
‖u1(s)− u2(s)‖2a ≤ −(η1(s)− η2(s), u̇1(s)− u̇2(s))X a.e. s ∈ (0, T ).

Let t ∈ [0, T ]. Integrating the previous inequality from 0 to t and using
(3.11), we get

1
2
‖u1(t)− u2(t)‖2a ≤ −(η1(t)− η2(t), u1(t))− u2(t)))X

+
∫ t

0

(η̇1(s)− η̇2(s), u1(s)− u2(s))X ds.

It follows now that

c ‖u1(t)− u2(t)‖2X ≤ ‖η1(t)− η2(t)‖X‖u1(t)− u2(t)‖X

+
∫ t

0

‖η̇1(s)− η̇2(s)‖X‖u1(s)− u2(s)‖Xds

and, using the inequality

ab ≤ a2

2α
+ 2αb2 for a, b, α > 0,

we find

‖u1(t)− u2(t)‖2X ≤ c
(
‖η1(t)− η2(t)‖2X (3.20)

+
∫ t

0

‖η̇1(s)− η̇2(s)‖2Xds +
∫ t

0

‖u1(s)− u2(s)‖2X ds
)
.

As

η1(t)− η2(t) =
∫ t

0

(η̇1(s)− η̇2(s)) ds,

we deduce that

‖η1(t)− η2(t)‖2X ≤ c

∫ t

0

‖η̇1(s)− η̇2(s)‖2X ds.

Plugging this inequality in (3.20) we obtain

‖u1(t)− u2(t)‖2X ≤ c
( ∫ t

0

‖η̇1(s)− η̇2(s)‖2X ds +
∫ t

0

‖u1(s)− u2(s)‖2X ds
)
.

Applying now Gronwall’s inequality we deduce
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‖u1(t)− u2(t)‖2X ≤ c

∫ t

0

‖η̇1(s)− η̇2(s)‖2X ds (3.21)

which yields
∫ t

0

‖u1(s)− u2(s)‖2X ds ≤ c

∫ t

0

‖η̇1(s)− η̇2(s)‖2X ds. (3.22)

Combining now (3.18), (3.19), (3.21) and (3.22) we obtain

‖Λη1(t)−Λη2(t)‖2X+
∥∥∥
( d

dt
Λη1

)
(t)−

( d

dt
Λη2

)
(t)

∥∥∥
2

X
≤ c

∫ t

0

‖η̇1(s)−η̇2(s)‖2X ds.

Iterating the last inequality p times we infer

‖Λpη1(t)− Λpη2(t)‖2X +
∥∥∥
( d

dt
Λpη1

)
(t)−

( d

dt
Λpη2

)
(t)

∥∥∥
2

X

≤ cp

∫ t

0

∫ s1

0

· · ·
∫ sp−1

0

‖η̇1(sp)− η̇2(sp)‖2X dsp · · · ds1,

where Λp denotes the power of the operator Λ. The last inequality implies

‖Λpη1 − Λpη2‖2W 1,2(0,T ;X) ≤
cp T p

p!
‖η1 − η2‖2W 1,2(0,T ;X).

Since lim
p→∞

cpT p

p!
= 0, the previous inequality implies that a power Λp of Λ is a

contraction in W for p large enough. It follows now from Banach’s fixed point
theorem that there exists a unique element η∗ ∈ W such that Λp η∗ = η∗.
Moreover, since Λp(Λη∗) = Λ(Λp η∗) = Λη∗, we deduce that Λη∗ is also
a fixed point of the operator Λp. By the uniqueness of the fixed point, we
conclude that Λη∗ = η∗, which shows that η∗ is a fixed point of Λ. The
uniqueness of the fixed point of the operator Λ follows from the uniqueness of
the fixed point of the operator Λp. ¥

We have now all the ingredients to prove the theorem.

Proof of Theorem 2. Existence. Let η∗ ∈ W be the fixed point of Λ and let
uη∗ be the function defined by Lemma 1 for η = η∗. Since Λη∗ = η∗, it follows
from (3.16), (3.10) and (3.11) that uη∗ is a solution to the problem (3.1)–(3.2).
Moreover, the regularity uη∗ ∈ W 1,2(0, T ; X) is obtained from Lemma 1.

Uniqueness. The uniqueness follows by arguments similar to those used in
[9] and is a consequence of the uniqueness of the fixed point of the operator
Λ. Indeed, let u be a solution of problem (3.1)–(3.2) with regularity u ∈
W 1,2(0, T ; X) and consider the element η ∈ W defined by

η(t) =
∫ t

0

θ(t− s)u(s) ds ∀t ∈ [0, T ]. (3.23)

Then u is also the solution of problem (3.10)–(3.11), so by Lemma 1 we have
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u = uη. (3.24)

By (3.16), (3.23) and (3.24) we obtain that Λη = η. As Λ has a unique fixed
point, we conclude that

η = η∗. (3.25)

The uniqueness part of Theorem 2 is now a consequence of equalities (3.24)
and (3.25). ¥

We now apply Theorem 2 to provide the well-posedness of problem PV .

Proof of Theorem 1. Consider the form a : V × V → IR defined by

a(u, v) = µ

∫

Ω

∇u · ∇v dx ∀u, v ∈ V.

Clearly this form is bilinear, continuous, coercive and symmetric; moreover,
using (2.18) and (2.19) it follows that the functional j defined by (2.22) is
convex, lower semicontinuous and proper. Therefore, we conclude that condi-
tions (3.3) and (3.5) are satisfied in this case. Taking into account (2.21) and
(2.24)–(2.26), the conclusion of Theorem 1 follows from Theorem 3. ¥

4. A convergence result

In this section we investigate the behavior of the weak solution of the an-
tiplane contact problem as the relaxation function converges to zero. To this
end, in order to underline the dependence with respect to the function θ, we
reformulate the problem PV as follows.

Problem Pθ
V . Find a displacement field uθ : [0, T ] → V such that

µ (uθ(t), v − u̇θ(t))V + (
∫ t

0

θ (t− s)uθ(s)ds, v − u̇θ(t))V + j(v) (4.1)

−j(u̇θ(t)) ≥ (f(t), v − u̇θ(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

uθ(0) = u0. (4.2)

We also consider the problem obtained for θ = 0 that is:

Problem P0
V . Find a displacement field u : [0, T ] → V such that

µ (u(t), v − u̇(t))V + j(v)− j(u̇(t)) ≥ (f(t), v − u̇(t))V (4.3)
∀v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0. (4.4)
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Clearly problem P0
V represents the variational formulation of the antiplane

frictional contact problem for linear elastic materials, i.e. the problem obtained
when (2.4) is replaced by the elastic constitutive law

σ = λ(tr(ε(u)))I + 2µε(u).

Everywhere in this section we assume that (2.19)–(2.21), (2.25) and (2.26)
hold. It follows from Theorem 1 that Problem Pθ

V has a unique solution uθ ∈
W 1,2(0, T ; V ) and Problem P0

V has a unique solution u ∈ W 1,2(0, T ; V ).
Consider now the assumption

‖θ‖W 1,2(0,T ) → 0. (4.5)

Our main result in this section is the following.

Theorem 4. Assume that (2.19)–(2.21), (2.25), (2.26) and (4.5) hold. Then
the solution uθ of the Problem Pθ

V converge to the solution u of the Problem
P0

V , i.e.
‖uθ − u‖C([0,T ];V ) → 0. (4.6)

Proof. Denote

ηθ(t) =
∫ t

0

θ(t− s)uθ(s)ds ∀t ∈ [0, T ]. (4.7)

Using (4.1), (4.3), (4.7) and arguments similar to those used to obtain (3.21),
yields

‖uθ(t)− u(t)‖2V ≤ c

∫ t

0

‖η̇θ(s)‖2V ds ∀t ∈ [0, T ]. (4.8)

Here and below c represent a positive constant which may depend on u but
is independent of θ and whose value may change from line to line.

It follows from (4.7) that

η̇θ(t) = θ(0)uθ(t) +
∫ t

0

θ̇(t− s)uθ(s)ds, a.e. t ∈ (0, T )

which implies the inequality

‖η̇θ(t)‖V ≤ |θ(0)|‖uθ(t)− u(t)‖V + |θ(0)|‖u(t)‖V (4.9)

+
∫ t

0

|θ̇(t− s)|‖uθ(s)− u(s)‖V ds +
∫ t

0

|θ̇(t− s)|‖u(s)‖V ds a.e. t ∈ (0, T ).

Moreover (4.5) implies that there exists c > 0 such that

‖θ‖C(0,T ) ≤ c, ‖θ̇‖L2(0,T ) ≤ c. (4.10)

Keeping in mind (4.9) and (4.10), after some algebra yields
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‖η̇θ(t)‖2V ≤ c(‖θ‖2W 1,2(0,T ) + ‖uθ(t)− u(t)‖2V +
∫ t

0

‖uθ(s)− u(s)‖2V ds)

a.e. t ∈ (0, T ).

We integrate the previous inequality to find
∫ t

0

‖η̇θ(s)‖2V ds ≤ c(‖θ‖2W 1,2(0,T )+
∫ t

0

‖uθ(s)−u(s)‖2V ds) ∀t ∈ [0, T ]. (4.11)

We combine (4.8) and (4.11) to obtain

‖uθ(t)− u(t)‖2V ≤ c(‖θ‖2W 1,2(0,T ) +
∫ t

0

‖uθ(s)− u(s)‖2V ds) ∀t ∈ [0, T ],

and, using Gronwall’s inequality, we find

‖uθ(t)− u(t)‖V ≤ c ‖θ‖W 1,2(0,T ) ∀t ∈ [0, T ]. (4.12)

The convergence result (4.6) is now a consequence of (4.5) and (4.12). ¥

From Theorem 4 we conclude that the weak solution to the antiplane vis-
coelastic problem with Tresca’s friction law may be approached by the weak
solution to the antiplane elastic problem with Tresca’s friction law as the re-
laxation function is small enough. In addition to the mathematical interest
in this result, this is of importance from mechanical point of view, as it in-
dicates that the elasticity with friction may be considered as a limit case of
viscoelasticity with friction as the memory decreases.
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