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1. Introduction

The basic idea of absolute continuity is to control the behavior of a function f :
X → R via an estimate of the form

|f | ≤ εq + δ(ε)p, for every ε > 0, (1)

where p, q : X → R are suitably chosen nonnegative functions. Technically, this
means that for every ε > 0, one can find δ(ε) > 0 such that |f(x)| ≤ εq(x) +
δ(ε)p(x), for all x ∈ X . Thus the property of absolute continuity can be seen as a
relaxation of the condition of domination

|f | ≤ p.

In this respect (1) allows us to interpolate between two extreme cases: |f | ≤ q and
|f | ≤ p, one appearing as “too weak” and the other “too special”.

Measure Theory offers us the important case of σ-additive measures defined
on a σ-algebra T (of subsets of a set T ). In this context, a measure m : T → C

is said to be absolutely continuous with respect to a positive measure µ : T → R

(abbreviated, m � µ) if for every ε > 0 there is a η = η(ε) > 0 such that for all
A ∈ T with µ(A) ≤ η we have

|m(A)| ≤ ε.
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Since m has finite variation |m| (see [10], Theorem 19.13 (v)), the condition m � µ
yields

|m(A)| ≤ ε +
|m| (T )

η
µ(A) for all A ∈ T and ε > 0, (2)

that represents the case of (1) when X = T , f = m, q = 1, p = µ and δ =
|m| (T )/η. In turn, (2) yields the absolute continuity of m with respect to µ since
for every A ∈ T with

µ(A) ≤ εη(ε/2)
2 |m| (T )

we have |m(A)| ≤ ε/2 + ε/2 = ε.

The main criterion of absolute continuity in the above context is provided by
the membership of negligible sets:

m � µ if and only if µ(A) = 0 implies m(A) = 0. (3)

See [10], Exercise 19.67, p. 339.
The subject of absolutely continuous functions in Real Analysis can be cov-

ered by the above discussion since a function f : [a, b] → R is absolutely continuous
if and only if it is of the form

f(x) = f(a) + m([a, x]),

for a suitable Borel measure m which is absolutely continuous with respect to the
Lebesgue measure.

The theory of inequalities offers many interesting applications where the con-
cept of absolute continuity is instrumental. In particular this is the case of the
famous Hardy-Landau-Littlewood inequalities. See [18].

The aim of this paper is to illustrate the usefulness of the notion of absolute
continuity in other areas of mathematics such as Functional Analysis, Approxima-
tion Theory and PDE. In particular we show how this notion allows us to derive
some quantitative facts from different qualitative properties.

Most of the results we discuss below are not in full generality, but it was our
option to emphasize ideas rather than technical results.

2. Absolute continuity in Functional Analysis

Inspired by the case of Measure Theory, the author initiated in the early 70s an
operator theoretical generalization of the concept of absolute continuity, which
proved to be useful in understanding the properties of weakly compact operators
defined on some special Banach spaces such as C(K) and its relatives; as usually,
C(K) represents the Banach space (endowed with the sup norm) of all continuous
real-valued functions defined on a compact Hausdorff space K.

The basic fact, which led to the concept of absolutely continuous operator,
is as follows:
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Theorem 1. (C.P. Niculescu [15], [16]). Suppose that E is a Banach space. A
bounded linear operator T ∈ L(C(K), E) is weakly compact if and only if there
exists a positive Borel measure µ on K such that for every ε > 0 one can find a
δ(ε) > 0 such that

‖T (f)‖ ≤ ε ‖f‖ + δ(ε)
∫

K

|f | dµ, (4)

whenever f ∈ C(K).

Proof. If T is weakly compact, then the set

K = {|x′ ◦ T | : x′ ∈ E′, ‖x′‖ ≤ 1}

is relatively weakly compact in C(K)′ (see [19], p. 119); according to the Riesz
representation theorem (see [10], p. 177), the functionals on a space C(K) can be
viewed as Borel regular measures, so here modulus means variation. By a classical
result due to A. Grothendieck [9], the relative weak compactness of K means that
for every bounded sequence of Borel measurable functions fn : K → R which is
pointwise convergent to 0 we have

lim
n→∞

∫
K

fndν = 0, uniformly for ν ∈ K. (5)

Claim: For every ε > 0 there exist a number η(ε) > 0 and a finite subset Kε ⊂ K
such that every Borel measurable function f : K → R with 0 ≤ f ≤ 1 and
supν∈Kε

∫
K

fdν ≤ η(ε) verifies the inequality

sup
ν∈K

∫
K

fdν ≤ ε.

Once the claim is proved, we can easily infer that the measure

µ =
∞∑

n=1

(
1
2n

sup
ν∈K1/n

ν

)

verifies a condition of the following form,

f ∈ C(K), ‖f‖ ≤ 1,

∫
K

|f |dµ ≤ η̃(ε) ⇒ ‖T (f)‖ ≤ ε, (6)

where η̃(ε) > 0 can be obtained from η(ε) by rescaling. Now it is clear that T
verifies the inequality (4) for δ(ε) = ‖T ‖ /η̃(ε).

The Claim can be proved by reductio ad absurdum. In fact, if the contrary is
true, then there are a number ε0 > 0 and two sequences (fn)n (of Borel measurable
functions on K) and (νn)n (of elements of K) such that

i) 0 ≤ fn ≤ 1
ii) sup1≤k≤n

∫
K

fndνk ≤ 2−n−1

iii)
∫

K
fndνn+1 ≥ ε0
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for all n. Put gn = sup {fk : k ≥ n} and g = inf {gn : n ≥ 1} . Then

sup
1≤k≤n

∫
K

gndνk ≤ 2−n,

so by (5) we infer that ∫
K

gdνk = lim
n→∞

∫
K

gndνk = 0

uniformly for k ∈ N, a fact that contradicts the inequalities iii) above. Thus the
proof of Claim is done.

Suppose now that T verifies the estimate (4). We shall show that T maps the
weak Cauchy sequences of elements of C(K) into norm convergent sequences in E
(whence T is weakly compact by a result due to Grothendieck [9]). In fact, if (fn)n

is a weak Cauchy sequence in C(K), then by Lebesgue’s dominated convergence
theorem we get

lim
m,n→∞

∫
K

|fm − fn| dµ = 0

and thus from (4) we conclude that (Tfn)n is a norm Cauchy sequence. �
Since the inclusion L2(µ) ⊂ L1(µ) is continuous, the inequality (4) yields the

following one,

‖T (f)‖ ≤ ε ‖f‖ + δ(ε)
(∫

K

|f |2 dµ

)1/2

. (7)

According to the Banach-Saks theorem, every bounded sequence in a Hilbert space
has a Cesàro converging subsequence. Thus from Theorem 1 we infer the following
interesting property of weakly compact operators defined on a C(K) space:

Corollary 1. If T ∈ L(C(K), E) is weakly compact, then T maps every bounded
sequence into a sequence with Cesàro converging subsequences.

Another direct consequence of Theorem 1 is as follows:

Corollary 2. Suppose that T ∈ L(C(K), E) is an weakly compact operator and
(fn)n is a bounded sequence of functions in C(K) which converges pointwise to a
function f ∈ C(K). Then ‖T (fn) − T (f)‖ → 0.

For further developments related to Theorem 1 see our papers [14], [15], [16],
[17], and the monograph of J. Diestel, H. Jarchow and A. Tonge [7], Ch. 15.

The property of absolute continuity is also instrumental in establishing the
Radon-Riesz property for Lp-spaces with 1 ≤ p < ∞. See Corollary 3 below, which
is a consequence of following result due to H. Brezis and E.H. Lieb [4], about the
“missing term” in Fatou’s Lemma:

Theorem 2. Let (fn)n be a sequence of functions in a space Lp(µ) with p ∈ [1,∞),
which verifies the following conditions:

i) sup ‖fn‖ < ∞; ii) fn → f almost everywhere.
Then f ∈ Lp(µ) and limn→∞ (‖fn‖p − ‖fn − f‖p) = ‖f‖p .
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Corollary 3. Assume that (fn)n is a sequence of functions in a space Lp(µ) (p ∈
[1,∞)) such that:

i) ‖fn‖ → ‖f‖ ;

ii) fn → f almost everywhere.

Then ‖fn − f‖ → 0.

Proof of Theorem 2. We start by noticing the following inequality (that illustrates
a property of absolute continuity): For each ε > 0 there is a δ = δ(ε) > 0 such
that

||a + b|p − |a|p| ≤ ε |a|p + δ|b|p (8)

for all a, b ∈ R.

This is clear for p = 1. For p > 1 we shall use the convexity of the function
|x|p . Indeed,

|a + b|p ≤ (|a| + |b|)p =
(

(1 − λ)
|a|

(1 − λ)
+ λ

|b|
λ

)p

≤ |a|p +
(
(1 − λ)1−p − 1

)
|a|p + λ1−p|b|p

for all a, b ∈ R and λ ∈ (0, 1). For λ = 1−(1 + ε)−1/(p−1), this inequality yields (8).
The membership of f to the space Lp(µ) is motivated by Fatou’s lemma.

According to (8),

gn,ε = (||fn|p − |fn − f |p − |f |p| − ε |fn − f |p)+

≤ (1 + δ) |f |p

so that by the dominated convergence theorem we get

lim
n→∞

∫
gn,εdµ = 0.

Taking into account the inequality

||fn|p − |fn − f |p − |f |p| ≤ gn,ε + ε |fn − f |p ,

we infer that

lim sup
n→∞

∫
||fn|p − |fn − f |p − |f |p|dµ ≤ ε sup

n∈N

‖fn − f‖p
,

whence limn→∞ (‖fn‖p − ‖fn − f‖p) = ‖f‖p. �

In what follows we shall concentrate on the connection between absolute
continuity and the Arzelà-Ascoli criterion of compactness. Roughly speaking, this
criterion asserts that in a function space, the property of being relatively compact
means the boundedness plus a certain kind of equi-membership.

If M is a metric space, then an estimate of the form

|f(s) − f(t)| ≤ Cd(s, t) for all s, t ∈ M
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is characteristic for the Lipschitz functions f : M → R. The following relaxation
in terms of absolute continuity

|f(s) − f(t)| ≤ ε + δ(ε)d(s, t) for all s, t ∈ M (9)

represents precisely the condition of uniform continuity. Indeed, a function f :
M → R is uniformly continuous if and only if there is a nonnegative function
ω : [0,∞) → R such that ω(0) = 0, ω is continuous at x = 0 and

|f(s) − f(t)| ≤ ω (d(s, t)) for all s, t ∈ M.

As a consequence of (9) we easily infer the well-known fact that every uni-
formly continuous function f : R → R verifies an estimate of the form

|f(x)| ≤ a |x| + b.

A characterization of the metric spaces on which every continuous function
is also uniformly continuous appeared in [11].

In the special case when M is also compact, the role of the distance function
in (9) can be taken by any separating function for M . Recall that a separating
function is a nonnegative continuous function γ : M × M → R such that

γ(s, t) = 0 implies s = t.

If M is a compact subset of RN , and f1, . . . , fm ∈ C(M) is a family of
functions which separates the points of M (in particular this is the case of the
coordinate functions pr1, . . . , prN ), then

γ(s, t) =
m∑

k=1

(fk(s) − fk(t))2 (10)

is a separating function.
More generally, all separating parametric in General Topology (see [2]) are

also separating functions.
The separating functions play an important role in Approximation Theory.

This will be detailed in the next section.

Lemma 1. If K is a compact metric space, and γ : K × K → R is a separat-
ing function, then any real-valued continuous function f defined on K verifies an
estimate of the following form

|f(s) − f(t)| ≤ ε + δ(ε)γ(s, t) for all s, t ∈ K.

Proof. In fact, if the estimate above doesn’t work, then for a suitable ε0 > 0 one
can find two sequences (sn)n and (tn)n of elements of K such that

|f(sn) − f(tn)| ≥ ε0 + 2nγ(sn, tn) (11)

for all n. Without loss of generality we may assume (by passing to subsequences)
that both sequences (sn)n and (tn)n are convergent, respectively to s and t. Since
f is bounded, the inequality (11) forces s = t. Indeed,

|f(sn) − f(tn)|
2n

≥ γ(sn, tn) → γ(s, t) ≥ 0.
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On the other hand, from (11) we can infer that |f(s) − f(t)| ≥ ε0 (and thus s �= t).
This contradiction shows that the conclusion of Lemma 1 is true. �

Lemma 1 is the topological counterpart of a well-known result in Measure
Theory (precisely, of the equivalence (3)).

Now, a careful inspection of the proof of the Arzelà-Ascoli criterion of com-
pactness in a space C(K) shows that this criterion can be reformulated in terms
of absolute continuity as follows:

Theorem 3. If K is a compact metric space, then a bounded subset A of the Banach
space C(K) is relatively compact if and only if for every ε > 0 there is a number
δ = δ(ε) > 0 such that

|f(s) − f(t)| ≤ ε + δ(ε)d(s, t) for all s, t ∈ K and f ∈ A.

Here the role of the distance function can be taken by any separating function
for K.

We leave the details to the reader, as an exercise.

The above discussion can be easily extended to the case of functions with
values in a complete metric space. Besides, the result of Theorem 3 remains valid
for many other spaces, for example, for the space Cr([a, b]), of all functions f :
[a, b] → R which are r-times continuously differentiable, endowed with the norm

‖f‖r =
r∑

k=0

sup
a≤t≤b

∣∣∣f (k)(t)
∣∣∣ .

In fact, Cr([a, b]) is isomorphic to a subspace of C([a, b]×{0, . . . , r}). This remark
can be used to prove that the canonical inclusion

j : Cr+1([a, b]) → Cr([a, b]) (12)

is compact.

A variant of Theorem 3 in the case of functions defined on a noncompact
domain is as follows:

Theorem 4. Given a bounded open subset Ω of RN , we denote by BC(Ω) the
Banach space of all continuous bounded functions f : Ω → R, endowed with the
sup norm. A bounded subset A of BC(Ω) is relatively compact if and only if for
every ε > 0 there is a number δ = δ(ε) > 0 such that

|f(s) − f(t)| ≤ ε + δ(ε)d(s, t) for all s, t ∈ Ω and f ∈ A.

3. Absolute continuity and approximation theory

We start with the beautiful result of P.P. Korovkin [12], which put in a new
perspective the whole subject of approximation in the case of continuous functions.
In order to state this result we need a preparation.
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Suppose that E is a Banach lattice. A linear operator T : E → E is called
positive if

x ≥ 0 implies T (x) ≥ 0.

Such an operator is always bounded. See [19], p. 84. For E = C(K) this fact can
be checked easily since

−‖f‖ · 1 ≤ f ≤ ‖f‖ · 1 implies − ‖f‖ · T (1) ≤ T (f) ≤ ‖f‖ · T (1)

and thus ‖T (f)‖ ≤ ‖T (1)‖ · ‖f‖ .

Theorem 5. (P.P. Korovkin [12]). Consider the functions e0(x) = 1, e1(x) = x,
e2(x) = x2 in C([0, 1]), and suppose there is given a sequence

Tn : C([0, 1]) → C([0, 1]) (n ∈ N)

of positive linear operators such that Tn(f) → f uniformly on [0, 1] for f ∈
{e0, e1, e2}. Then

Tn(f) → f uniformly on [0, 1]

for every f ∈ C([0, 1]).

The proof is both simple and instructive, so we shall include here the details.
The main ingredient is the fact that every function f ∈ C([0, 1]) verifies an estimate
of the form

|f(s) − f(t)| ≤ ε + δ(ε)|s − t|2.
See Lemma 1. Then

|f − f(t)e0| ≤ εe0 + δ(ε)
(
e2 − 2te1 + t2e0

)
which implies that |Tn(f)(s) − f(t)Tn(e0)(s)| is bounded above by

εTn(e0)(s) + δ(ε)[Tn(e2)(s) − 2tTn(e1)(s) + t2Tn(e0)(s)]

for every s ∈ [0, 1]. Therefore

|Tn(f)(t) − f(t)| ≤ |Tn(f)(t) − f(t)Tn(e0)(t)| + |f(t)| · |Tn(e0)(t) − 1|
≤ εTn(e0)(t) + δ(ε)[Tn(e2)(t) − 2tTn(e1)(t) + t2Tn(e0)(t)]

+ ‖f‖ · |Tn(e0)(t) − 1|

whence we conclude that Tn(f) → f uniformly on [0, 1].
The above argument (based on Lemma 1) is actually strong enough to cover

a much more general result:

Theorem 6. Suppose that K is a compact metric space and γ is a separating func-
tion for M. If Tn : C(K) → C(K) (n ∈ N) is a sequence of positive linear operators
such that Tn(1) → 1 uniformly and

Tn(γ(·, t))(t) → 0 uniformly in t, (13)

then Tn(f) → f, uniformly for each f ∈ C(K).
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Proof. In fact, taking into account Lemma 1, we have

|Tn(f)(t) − f(t)| ≤ |Tn(f)(t) − f(t)Tn(1)(t)| + |f(t)| · |Tn(1)(t) − 1|
≤ Tn (|f − f(t)|) (t) + ‖f‖ · |Tn(1)(t) − 1|
≤ Tn (ε + δ(ε)γ(·, t)) (t) + ‖f‖ · |Tn(1)(t) − 1|
≤ εTn(1)(t) + δ(ε)Tn(γ(·, t))(t) + ‖f‖ · |Tn(1)(t) − 1|

and the conclusion follows from our hypothesis. �
Theorem 6 is a variant of a recent result by H.E. Lomeli and C.L. Garcia [13]

(based on a slightly different concept of separating function).
In order to understand how Theorem 6 extends the Theorem of Korovkin,

let us consider the case were M is a compact subset of R
N and

γ(s, t) =
m∑

k=1

(fk(s) − fk(t))2

is the separating function (associated to a family of functions f1, . . . , fm ∈ C(M)
which separates the points of M). In this case the condition (13) of uniform con-
vergence can be obtained by imposing that

Tn(f) → f uniformly for t ∈ M,

for each of the functions f ∈
{
1, f1, . . . , fm, f2

1 , . . . , f2
m

}
. For M = [0, 1] the iden-

tity separates the points of M, a fact that leads to the Theorem of Korovkin.

Corollary 4. (Weierstrass Approximation Theorem). If f belongs to C([a, b]), then
there exists a sequence of polynomials that converges to f uniformly on [a, b].

Proof. We can restrict to the case where [a, b] = [0, 1] (by performing the linear
change of variable t = (x − a)/(b − a)). Then we apply Theorem 6 for M = [0, 1],
γ(s, t) = (s − t)2 and Tn the nth Bernstein operator,

Tn(f)(t) =
n∑

k=0

(
n

k

)
tk(1 − t)n−kf (k/n) .

In fact,

Tn(γ(·, t))(t) =
t(1 − t)

n
for all t ∈ [0, 1]. This computation is part of Bernstein’s classical proof of the
Weierstrass Approximation Theorem. See [6], pp. 290–292. �
Corollary 5. (Féjer Approximation Theorem). The Cesàro averages of the Fourier
partial sums of a continuous function f of period 2π converge uniformly to f.

Proof. We have to consider the Féjer kernels

Kn(t) =




1
2n

(
sin nt

2

sin t
2

)2

if t �= 2kπ, k ∈ Z

n
2 if t = 2kπ, k ∈ Z.
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A direct computation shows that

Kn(t) =
1
2

+
1
n

n−1∑
m=1

m∑
k=1

cos kt.

The result of Corollary 5 follows from Theorem 6, applied to M = R mod 2π,
γ(s, t) = 1 − cos(s − t) and the sequence of operators

Tn(f)(t) =
1
π

∫ π

−π

Kn(t − s)f(s)ds. �

Since Lemma 1 does not work for all metric spaces, we cannot use arbitrary
separating functions in the case of noncompact metric spaces. However we can
still formulate a Korovkin type criterion of convergence for operators acting on
the Banach lattice BUC(M) (of all uniformly continuous bounded functions on
the metric space M, endowed with the sup norm).

Theorem 7. Suppose that M is a metric space and

Tn : BUC(M) → BUC(M) (n ∈ N)

is a sequence of positive linear operators such that Tn(1) → 1 uniformly and

Tn(d(·, t)α)(t) → 0 uniformly in t, (14)

for a positive real number α. Then Tn(f) → f, uniformly for each f ∈ BUC(M).

The usual technique of mollification for approximating the continuous func-
tions by smooth functions can be derived as a consequence of Theorem 7. In the
next theorem, a mollifier is meant as any continuous function ϕ : RN → R such
that

ϕ(x) ≤ C(1 + ‖x‖)−p for some C > 0 and p > N

and ∫
RN

ϕ(x)dx = 1.

The standard mollifier is the function ϕ(x) = (2π)−N/2
e−‖x‖2/2.

Theorem 8. If ϕ : RN → R is a mollifier and f ∈ BUC(RN ), then

nN

∫
RN

ϕ (n(y − x)) f(y)dy → f(x)

uniformly on RN .

Proof. We apply Theorem 7 for M = RN , α ∈ (p − N) arbitrarily fixed, and the
sequence of operators

Tn(f)(x) = nN

∫
RN

ϕ (n(y − x)) f(y)ds.
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In order to prove that the condition (14) is fulfilled we need the following
estimate:

‖y − x‖α ϕ (n(y − x)) ≤ nN ‖y − x‖α

C(1 + n ‖y − x‖)p

≤ nN−α

C(1 + n ‖y − x‖)p−α
.

Then

0 ≤ Tn(‖· − x‖α)(x) = nN

∫
RN

ϕ (n(y − x)) ‖y − x‖α
ds

≤ C′ 1
nα

∫
RN

ds

(1 + n ‖y − x‖)p−α
,

where C′ is a constant and the integral in the right-hand side is convergent because
p−α > N . Consequently Tn(‖· − x‖α)(x) → 0 uniformly, as n → ∞, and the proof
is complete. �

The technique of mollification works outside the framework of continuous
functions. It would be interesting to enlarge the theory above to encompass some
spaces of differentiable functions (for example, the Sobolev spaces). A nice account
of the most significant developments in the Korovkin theory (including Bauer’s
approach [3] in terms of Choquet boundary) can be found in the monograph [1].

4. Absolute continuity and PDE

There are many instances when the concept of absolute continuity appears in
PDE (see [8]) but we shall restrict here to the remarkable theorem of F. Rellich
concerning the compact embedding of Sobolev spaces.

Theorem 9. If Ω is a bounded open subset of RN then the canonical injection

i : H̊m+1(Ω) → H̊m(Ω)

is compact.

Recall that H̊m(Ω) is the closure of C∞
c (Ω) into Hm(Ω), the Sobolev space

of all functions f : Ω → R that have weak derivatives Dαf ∈ L2
(
RN
)

of all orders
α with |α| ≤ m. The natural norm on Hm(Ω) (and thus on H̊m(Ω)) is

||f ||Hm =


 ∑

|α|≤m

∫
Ω

|Dαf(x)|2 dx




1/2

.

Before to enter the details of Theorem 9, we shall discuss an easy (though
important) application, related to a property of absolute continuity of compact
operators.
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Lemma 2. (Ehrling’s Lemma). Assume that E, F, G are Banach spaces. If T ∈
L(E, F ) is a compact linear operator and S ∈ L(F, G) is an one-to-one bounded
linear operator, then for every ε > 0 there is a δ(ε) > 0 such that

‖Tx‖ ≤ ε ‖x‖ + δ(ε) ‖S(Tx)‖ for all x ∈ E.

The proof is similar to the proof of Lemma 1, and we shall omit the details.

By combining Ehrling’s Lemma with Theorem 9 we get the estimate

||f ||Hm−1 ≤ ε ||f ||Hm + δ(ε) ||f ||L2 for all f ∈ H̊m(Ω),

which yields

||f ||Hm−1 ≤ 1
2


 ∑

|α|=m

∫
Ω

|Dαf(x)|2 dx




1/2

+
1
2
||f ||Hm−1 + δ(1/2) ||f ||L2

that is,

||f ||Hm−1 ≤


 ∑

|α|=m

∫
Ω

|Dαf(x)|2 dx




1/2

+ 2δ(1/2) ||f ||L2 .

Therefore the norm ||·||Hm is equivalent to the norm

|f |Hm =


 ∑

|α|=m

∫
Ω

|Dαf(x)|2 dx




1/2

+ ||f ||L2 .

The above renorming argument is typical for many Banach spaces of differ-
entiable functions. See [8].

The usual proof of Theorem 9 (and its generalization to the case of Sobolev
spaces W̊m,p(Ω)) is obtained via the mollification technique described in Theorem
8. However it is possible to provide an alternative argument based on Fourier
transform.

Indeed, H̊m(Ω) can be viewed as a subspace of H̊m(RN ). The later space has
a very simple description in terms of Fourier transform:

H̊m(RN ) =
{

f ∈ L2
(
R

N
)

:
∫

RN

(
1 + ||ξ||2

)m ∣∣∣f̂(ξ)
∣∣∣2 dξ < ∞

}

Moreover, ||·||Hm on H̊m(RN ) is equivalent to the norm || |·| ||Hm , where

|| |f | ||Hm =
(∫

RN

(
1 + ||ξ||2

)m ∣∣∣f̂(ξ)
∣∣∣2 dξ

)1/2

.

This gives us a constant C (m) > 0 such that ||·||Hm ≤ C(m)|| |·| ||Hm .
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Let ε > 0. Then there is number A > 0 such that 1 + ||ξ||2 ≥ C(m− 1)/ε for
||ξ|| ≥ A. Consequently, for every sequence (fk)k of functions in the unit ball of
H̊m(RN ) we have

||fj − fk||2Hm−1 ≤ C(m − 1)
∫

RN

(
1 + ||ξ||2

)m−1 ∣∣∣f̂j(ξ) − f̂k(ξ)
∣∣∣2 dξ (15)

≤ ε

∫
‖ξ‖>A

(
1 + ||ξ||2

)m ∣∣∣f̂j(ξ) − f̂k(ξ)
∣∣∣2 dξ

+ δ(ε)
∫
‖ξ‖≤A

∣∣∣f̂j(ξ) − f̂k(ξ)
∣∣∣2 dξ.

The Fourier transform of every function in H̊m(Ω) is holomorphic on C
N , and the

Cauchy-Schwarz inequality shows that for every compact subset K ⊂ CN there is
a constant M = M(K) > 0 such that

sup
ξ∈K

∣∣∣f̂(ξ)
∣∣∣ ≤ M ||f ||Hm

for all functions f ∈ H̊m(Ω). Therefore the functions (f̂k)k are uniformly bounded
on the compact subsets of CN . Because they are holomorphic, a compactness
principle due to P. Montel assures us that a subsequence should be uniformly
convergent on each compact subset of CN . See [5], p. 209. Taking into account
the estimate (15), that subsequence should also verify lim sup

j,k→∞
||fj − fk||2Hm−1 = 0.

The proof of Theorem 9 is done. �
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[5] B. Chabat, Introduction à l’analyse complexe, Tome 1, Ed. Mir, Moscou, 1990.

[6] K.R. Davidson and A.P. Donsig, Real Analysis with Real Applications, Prentice Hall,
Inc., Upper Saddle River, N.J., 2002.

[7] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge
University Press, 1995.

[8] L.C. Evans, Partial Differential Equations, American Mathematical Society, Provi-
dence, R.I., 3rd Printing, 2002.



214 C.P. Niculescu

[9] A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du
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