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Abstract. Given a density d de�ned on the Borel subsets of [0;1); the
limit at in�nity in density of a function f : [0;1) ! R is zero if each of
the sets ft : jf(t)j � "g has zero density whenever " > 0: It is proved that
every Lebesgue integrable function f : [0;1) ! R veri�es this type of be-
havior at in�nity with respect to a scale of densities including the usual one,
d(A) = limr!1

m(A\[0;r))
r

:

The analogy between convergent series and integrals over the positive semi-axis
was an elegant and fruitful subject present in all major treatises of mathematical
analysis published during the 20th Century. As was noted by G. H. Hardy in his
Course of Pure Mathematics [4], p. 324, there is one fundamental property of a
convergent in�nite series in regard to which the analogy between in�nite series and
in�nite integrals breaks down. If

P
an is convergent then an ! 0; but it is not

always true, even when f : [0;1)! R is positive, that if
R1
0
f(x)dx is convergent

then f(x)! 0 as x!1. Due to the prominent role played by negligible sets one
might expect that a conclusion of the type

f(x)! 0 as x runs to 1 outside a negligible set

must be working. That this is not the case is shown by the integrable function

f(x) =
1X
n=1

�[n;n+2�n)(x); x 2 [0;1):

Surprisingly, the analogy can be re-established if the usual limit is replaced by
limit in density. This fact is implicit in a famous paper by B. O. Koopman and
J. von Neumann [6] dedicated to weakly mixing transformations, and was recently
made explicit and extended by us [10] to a scale of densities measuring how thin
are the various Borel subsets of R.
The aim of the present note is to provide a short argument for this general result

along Koopman-von Neumann�s ideas.
In what follows we shall adopt the convention used in dynamical system theory

for the iterates of a function f = f(x);

f (0)(x) = x and f (n)(x) = (f � f � � � � � f| {z })
n times

(x) for n � 1:

Note that f (n)(x) does not mean the nth derivative of f(x); a function that we
never use in this paper.
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The density of order 0 (the usual density) is de�ned by the formula

d0(A) = lim
r!1

1

r

Z
A\[0;r)

dt

= lim
r!1

m (A \ [0; r))
r

;

where m denotes the Lebesgue measure. This applies whenever the limit exists and
corresponds to the limiting relative frequency in probability theory. Notice that
every set of �nite measure has zero density. The union of intervals

S1
n=1(n; n+1=n)

provides an example of a set of in�nite measure having zero density.
The next density in our scale, the density of order 1, is nothing but the contin-

uous analogue of harmonic density from number theory:

d1(A) = lim
r!1

1

ln r

Z
A\[1;r)

dt

t
:

See [3], p. 241. The higher order densities are introduced via the formulas

dn(A) = lim
r!1

1

ln(n) r

Z
A\[exp(n�1) 1;r)

d�n; n � 1;

where

d�n =
dtQn�1

k=0 ln
(k) t

represents the Abel measure of order n � 1:
Given a real-valued function f de�ned on an interval [�;1), its limit in density

of order n at in�nity,
` = (dn)- lim

x!1
f(x);

is de�ned by the condition that each of the sets ft � � : jf(t)� `j � "g has zero
density of order n, whenever " > 0:

Lemma 1. d0(A) = 0 implies d1(A) = 0:

Proof. Since d0(A) = 0; for " > 0 arbitrarily �xed there is an s � 1 such that
m (A \ [1; t))

t
<
"

3

whenever t � s: Then, according to the formula of integration by parts for absolutely
continuous functions ([5], Corollary 18.20, p. 287), for every r > max fs; eg we have

1

ln r

Z
A\[1;r)

dt

t
=

1

ln r

Z s

1

�A\[1;r)(t)

t
dt+

1

ln r

Z r

s

�A\[s;r)(t)

t
dt

� ln s

ln r
+

1

ln r

Z r

s

1

t

d

dt

�Z t

s

�A\[s;r)(�)d�

�
dt

<
"

3
+

1

ln r

�
1

r

Z r

s

�A\[s;r)(�)d� +

Z r

s

�
1

t

Z t

s

�A\[s;r)(�)d�

�
dt

t

�
=
"

3
+
m (A \ [s; r))

r ln r
+

1

ln r

Z r

s

�
m (A \ [s; t))

t

�
dt

t

<
"

3
+

"

3 ln r
+
"

3
< ";
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whence

lim
r!1

1

ln r

Z
A\[1;r)

dt

t
= 0:

�

A similar argument shows that in general

dn(A) = 0 implies dn+1(A) = 0;

and thus the existence of limit in density of order n assures the existence of limit
in density of order n+ 1.
As we mentioned above, the notion of limit in density can be traced back to the

paper [6] by B. O. Koopman and J. von Neumann. Their basic remark concerns the
connection between convergence in density of order 0 and convergence of certain
arithmetic means:

Lemma 2. Suppose that f : [0;1)! R is a nonnegative locally integrable function.
Then

lim
x!1

1

x

Z x

0

f(t)dt = 0 implies (d0)- lim
x!1

f(x) = 0;

and the converse holds if in addition f is bounded.

Corollary 1. If f 2 L1(0;1), then (d0)- lim
x!1

f(x) = 0:

Even when f is also continuous the conclusion of Corollary 1 cannot be improved
to usual convergence to 0. However this happens in two important particular cases:
a) f is uniformly continuous (this case is known as Barb¼alat�s Lemma [9]); and
b) f 2 L1(0;1) is a nonnegative nonincreasing function (see [4], p. 324, who
attributed this result to Abel). The monotonicity assumption in case b) can be
relaxed considerably by asking only the existence of a constant C > 0 such that
f(t) � Cf(x) for any t 2 [x; 2x] and any x > 0. See [8].
In the case of series, Olivier and Abel have proved that the sequence of terms of

any convergent positive series
P
an veri�es the condition nan ! 0 provided that it

is nonincreasing. See the paper by M. Goar [2] for the story of this nice result. In
2003, T. �alát and V. Toma [12] made the important remark that the monotonicity
condition can be dropped if the convergence of (nan)n is weakened to convergence
in density. The corresponding result for integrals appeared in our recent paper [10]:

Theorem 1. If f 2 L1(0;1); then
(d0)- lim

x!1
xf(x) = 0:

Surprisingly, this result can be extended to the entire scale of densities mentioned
above:

Theorem 2. If f 2 L1(0;1), then

(dn)� lim
x!1

�Yn

k=0
ln(k) x

�
f(x) = 0

for every n 2 N:

The statement of Theorem 2 was mentioned in [10], p. 746, without any proof.
Here we show how this result can be obtained from the following analogue of the
Koopman-von Neumann Lemma for densities of higher order.
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Lemma 3. Suppose that f : [0;1)! R is a nonnegative function which is locally
integrable with respect to the Abel measure of order n � 1: Then

lim
x!1

1

ln(n) x

Z x

a

f(t)d�n = 0 implies (dn)- lim
x!1

f(x) = 0;

and the converse holds if in addition f belongs to one of the spaces Lp(d�n), for
p 2 [1;1]:

Proof. If

lim
x!1

1

ln(n) x

Z x

0

f(t)d�n = 0;

then the sets A" = fx > 0 : f(x) � "g associated to " > 0 verify the condition
dn (A") = 0 due to the fact that

1

ln(n) x

Z
A"\[exp(n�1) 1;x)

d�n �
1

" ln(n) x

Z x

exp(n�1) 1

f(t)d�n ! 0

as x!1. Therefore (dn)� limx!1 f(x) = 0:
Conversely, if (dn)� limx!1 f(x) = 0; then for " > 0 arbitrarily �xed there is a

set J of zero density of order n; outside which f < ": For x > 0 su¢ ciently large
we have

0 � 1

ln(n) x

Z x

exp(n�1) 1

f(t)d�n =
1

ln(n) x

Z
[exp(n�1) 1;x)\J

f(t)d�n

+
1

ln(n) x

Z
[exp(n�1) 1;x)nJ

f(t)d�n

� 1

ln(n) x

Z
[exp(n�1) 1;x)\J

f(t)d�n + "

and it remains to prove that

lim
x!1

1

ln(n) x

Z
[exp(n�1) 1;x)\J

f(t)d�n = 0:

If f 2 L1(d�n); this follows from the inequality

1

ln(n) x

Z
A\[exp(n�1) 1;x)\J

f(t)d�n �
1

ln(n) x

Z 1

exp(n�1) 1

f(t)d�n;

while if f 2 L1(d�n) we have to notice that

0 � 1

ln(n) x

Z
[exp(n�1) 1;x)\J

f(t)d�n �
 

1

ln(n) x

Z
[exp(n�1) 1;x)\J

d�n

!
kfkL1(d�n) :

If f 2 Lp(d�n) for some p 2 (1;1); then

0 � 1

ln(n) x

Z
[exp(n�1) 1;x)\J

f(t)d�n

�
 

1

ln(n) x

Z
A\[exp(n�1) 1;x)\J

d�n

!1�1=p�
1

ln(n) x

Z x

exp(n�1) 1

fp(t)d�n

�1=p

�
�

1

ln(n) x

�1=p 
1

ln(n) x

Z
A\[exp(n�1) 1;x)\J

d�n

!1�1=p
kfkLp(d�n) ;
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according to Hölder�s inequality. The conclusion is now clear. �

Proof of Theorem 2. Notice �rst that

(�) lim
x!1

1

ln(n) x

Z x

exp(n�1) 1

jf(t)j ln(n) tdt = 0:

In fact, for " > 0 arbitrarily �xed there is a number � > exp(n�1) 1 such thatR1
�
jf(t)jdt < "=2. Then for x > � we have

0 � 1

ln(n) x

Z x

exp(n�1) 1

jf(t)j ln(n) tdt

=
1

ln(n) x

Z �

exp(n�1) 1

jf(t)j ln(n) tdt+
Z x

�

jf(t)j ln
(n) t

ln(n) x
dt

� ln(n) �

ln(n) x
kfkL1 +

Z 1

�

jf(t)jdt < ln(n) �

ln(n) x
kfkL1 +

"

2
;

and we can choose x" large enough such that ln
(n) �= ln(n) x < "= (2 kfkL1) for

every x � x": This ends the proof of the formula (�). Now the conclusion of
Theorem 2 follows from Lemma 3 when applied to the locally integrable function�Qn

k=0 ln
(k) x

�
f(x). �

A di¤erent approach of the behavior at in�nity of an integrable function has
been recently described by E. Lesigne [7].
In the discrete case (that is, in the case of series), important applications of

convergence in density can be found in the monograph of Furstenberg [1], dedicated
to the ergodic approach of Szemerédi�s theorem. See also the preprint [11]. However,
as far as we know, the continuous case is still largely unexplored.
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