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Abstract. Given a density d de�ned on the Borel subsets of [0;1); the
limit in density of a function f : [0;1) ! R is zero (abbreviated, (d)-
limx!1 f(x) = 0) if there exists a set S of zero density such that f(x) ! 0

as x runs to 1 outside S. It is proved that the behavior at in�nity of
every Lebesgue integrable function f 2 L1(0;1) satis�es the relations (d(n))-
limx!1

�Qn
k=0 ln

(k) x
�
f(x) = 0, where (d(n))n is a scale of densities includ-

ing the usual one, d(0)(A) = limr!1
m(A\[0;r))

r
:

The analogy between convergent series and integrals over the positive semi-axis is
an interesting topic from classical real analysis that �ows continuously from the old
days of mathematics to contemporary research. However, there is a fundamental
property of convergent series in regard to which this analogy fails. Precisely, ifP
an is a convergent series then an ! 0; but it is not always true, even when

f : [0;1) ! R is positive, that if
R1
0
f(x)dx is convergent then f(x) ! 0 as

x!1: An example is provided by the function

f(x) =

�
1 for x 2 [n; n+ 1=2n]; n 2 N
0 otherwise.

This example makes clear that in order to re-establish the analogy between series
and integrals is necessary to consider a more general concept of limit at in�nity that
leaves o¤ certain subsets of R+.
In order to put this in an abstract setting we will start with a family I of

measurable subsets of R+ considered to be "small" or "negligible", that veri�es the
following four conditions:

PI1): I is closed under �nite unions;
PI2): I is hereditary (A � B 2 I and A measurable imply A 2 I);
PI3): I contains all bounded measurable subsets of R+;
PI4): R+ =2 I.

Such a family is called a proper ideal. We say that ` 2 R is the limit at in�nity
of a function f : [a;1)! R modulo the proper ideal I; abbreviated,

(1) ` = (I)- lim
x!1

f(x);

if for every " > 0 there exists a subset F" 2 I outside which jf(x)� `j < ":
Due to the property of heredity, the above concept of limit is equivalent to the

fact that each of the sets fx : jf(x)� `j � "g belongs to I whenever " > 0:
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One can consider also the limit at in�nity leaving a set S in I;

(2) ` = lim
x!1
x=2S

f(x);

with the meaning that f(x)! ` as x runs to 1; outside S:
The usual limit at in�nity corresponds to the case where I is the proper ideal

Mb of all bounded measurable sets included in R+: In this case the two concepts of
limit at in�nity (1) and (2) are equivalent. In general only one implication works:
the existence of limit (2) implies the limit (1).
Our problem mentioned above makes use of the idealMf ; consisting of all mea-

surable subsets of R+ with �nite measure.
The sum of a convergent series

P
n2N an is precisely the integral of the sequence

of its terms with respect to the counting measure,

c(A) = number of elements in A:

Indeed, X
n2N

an =

Z
N
andc(n):

The bounded subsets of N (endowed with the discrete metric) are the �nite
sets and thus they are the same with the subsets of N of �nite measure. In the
continuous case (that is, of R endowed with the Lebesgue measure m), there are
sets of �nite measure that are not bounded. It is precisely this fact that makes the
di¤erence between the behavior of series and integrals.

Theorem 1. If f : [a;1) ! R is a Lebesgue integrable function, then for every
� > 0 there exists a measurable subset S of [a;1) such that m(S) < � and

lim
x!1
x=2S

f(x) = 0:

Proof. Since f is integrable, one can choose an increasing sequence (an)n of positive
numbers such that Z 1

an

jf(x)j dx < 1

n3

for every natural number n: Then the sets

Sn =

�
x 2 [an; an+1) : jf(x)j �

1

n

�
are measurable and their union has �nite measure because

m(Sn) = n

Z 1

an

1

n
�Sn(x)dx � n

Z 1

an

jf(x)j dx � 1

n2
:

Therefore
lim
x!1

m(S \ [x;1)) = 0;

and thus by replacing S by S \ [aN ;1) for N large enough we may assume that
m(S) < �:
Given " > 0; we denote by n(") the smallest integer not less than max f1=";Ng :

Then for every x in the set [an(");1)nS we have

jf(x)j < 1

n(")
< ";

and the proof is done. �
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A consequence of Theorem 1 is Barb¼alat�s Lemma, an important tool for the
analysis of the asymptotic behavior of nonlinear second order equations with forc-
ing. See [6].

Corollary 1. (Barb¼alat�s Lemma [1]). If f 2 L1([0;1)) and f is uniformly con-
tinuous, then f(x)! 0 as x!1:

Proof. Since f is uniformly continuous, for " > 0 arbitrarily �xed there is �(") >
0 such that

x; y 2 [0;1); jx� yj < �(")) jf(x)� f(y)j < "

2
:

According to Theorem 1, there is a measurable subset S withm(S) < �(")=2 outside
which f(x) ! 0 as x ! 1: This gives us an x" such that jf(x)j < "=2 for every
x 2 [x";1)nS:
As S has �nite measure, it admits a covering (In)n consisting of pairwise disjoint

open intervals such that
P

nm(In) < �("):
Therefore, if x 2 [x";1) \ S; then necessarily x belongs to an interval [x" +

k�("); x"+ (k+1)�(")) for some k 2 N: Since the length of this interval is precisely
�("); it must contain elements y � x" not in S: Then

jf(x)j � jf(x)� f(y)j+ jf(y)j < "

2
+
"

2
= ";

and the proof is done. �

It is worth to notice that while Barb¼alat�s Lemma remains valid in the context
of improper Riemann integrability, the conclusion of Theorem 1 fails such an ex-
tension. An example is provided by the zigzag function f : [0;1)! R joining the
points (0; 0), ( 12 ; 1); (1; 0), (1+

1
4 ;�1), (1+

1
2 ; 0); and so on. A series representation

of this function can be obtained by considering the tent function of base [a; b] :

T[a;b](x) =
2

b� a min fx� a; b� xg�[a;b](x); x 2 R:

Indeed,

f(x) = T[0;1](x)� T[1;1+ 1
2 ]
(x) + T[1;1+ 1

2 ]
(x)� T[1+ 1

2 ;1+
1
2+

1
3 ]
(x) + � � � .

Theorem 1 is just the top of the iceberg. In our recent paper [7] we were able
to deepen the similarity between series and integrals by considering weighted limits
associated to a scale of proper ideals

I(0) � I(1) � I(2) � � � � ;
each of them consisting of the sets where a certain density vanishes. The densities
are aimed to measure how thin are the various Borel subsets of R+. The concept
of set of zero density was �rst considered by B. O. Koopman and J. von Neumann
[4] in a famous paper dedicated to weakly mixing transformations.
The purpose of the present note is to improve the main result in [7] and to o¤er

a much simpler argument.
In order to smooth our presentation we will adopt the convention used in dy-

namical system theory for the iterates of a function f = f(x) :

f (0)(x) = x and f (n)(x) = (f � f � � � � � f| {z })
n times

(x) for n � 1:
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The density of order 0 (the usual density) is de�ned by the formula

d(0)(A) = lim
r!1

1

r

Z
A\[0;r)

dt

= lim
r!1

m (A \ [0; r))
r

:

This corresponds to the limiting relative frequency in probability theory. The next
density in our scale, the density of order 1, is nothing but the continuous analogue
of harmonic density from number theory,

d(1)(A) = lim
x!1

1

lnx

Z
A\[1;x)

dt

t
:

See [3], p. 241. Sometimes d(0) is denoted as d; and d(1) as dh: These two densities
are the �rst terms of the following scale of densities,

d(n)(A) = lim
x!1

1

ln(n) x

Z
A\[exp(n�1) 1;x)

d�n; n � 0;

where exp(�1) 1 = 0 and

d�0 = dt and d�n =
dtQn�1

k=0 ln
(k) t

for n � 1:

Given a real-valued function f de�ned on an interval [a;1), its limit in density
of order n at in�nity,

` = (d(n))- lim
x!1

f(x);

is de�ned as the limit modulo the proper ideal of all sets of zero density of order n.

Lemma 1. d(n)(A) = 0 implies d(n+1)(A) = 0, and thus the existence of limit in
density of order n implies the existence of limit in density of order n+ 1:

Proof. We will consider here the case where n � 1: The case where n = 0 can be
treated similarly.
Let " > 0: Since d(n)(A) = 0 one can choose a number s � exp(n�1) 1 such that

1

ln(n) x

Z
A\[exp(n�1) 1;x)

dtQn�1
k=0 ln

(k) t
<
"

3
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for every x � s: Then for x > max
n
s; exp(n) 1; exp(n)

�
3
" ln

(n+1) s
�o

we have

0 � 1

ln(n+1) x

Z
A\[exp(n) 1;x)

dtQn
k=0 ln

(k) t

=
1

ln(n+1) x

Z
A\[exp(n) 1;s)

dtQn
k=0 ln

(k) t

+
1

ln(n+1) x

Z
A\[s;x)

dtQn
k=0 ln

(k) t

� ln(n+1) s

ln(n+1) x
+

1

ln(n+1) x

Z x

s

1

ln(n) t

d

dt

 Z t

s

�A\[s;x)(t)d�Qn�1
k=0 ln

(k) �

!
dt

<
"

3
+

1

ln(n+1) x

 
1

ln(n) x

Z x

s

�A\[s;x)(t)d�Qn�1
k=0 ln

(k) �
+

+

Z x

s

1�
ln(n) t

�2Qn�1
k=0 ln

(k) t

 Z t

s

�A\[s;x)(t)d�Qn�1
k=0 ln

(k) �

!
dt

1CA
<
"

3
+

"

3 ln(n+1) x
+

"

3 ln(n+1) x

Z x

s

dtQn
k=0 ln

(k) t

<
2"

3
+

"

3 ln(n+1) x

�
ln(n+1) x� ln(n+1) s

�
< "

and the proof is done. �

Another notable fact is the equivalence of limit in density of order n with that
of limit at in�nity leaving a set of zero density of order n.

Theorem 2. For every measurable function f : [a;1) ! R the following two
conditions are equivalent:
i) (d(n))-limx!1 f(x) = 0;
ii) there exists a subset S � [a;1) of zero density of order n, such that

lim
x!1
x=2S

f(x) = 0:

Proof. The implication ii)) i) is clear. We will detail the implication i)) ii) in
the case where n � 1 (the argument when n = 0 being similar).
According to our hypothesis each of the sets

S" = fx 2 [a;1) : jf(x)j � "g ; " > 0;

has zero density of order n: Since d(n)(S1) = 0; one can choose an element x1 2
[a;1) \ [exp(n�1) 1;1) such that

1

ln(n) x

Z
S1\[exp(n�1) 1;x)

d�n < 1

for every x > x1: Since d(n)(S1=2) = 0; one can choose an element x2 > x1 such
that

1

ln(n) x

Z
S1=2\[exp(n�1) 1;x)

d�n <
1

2
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for every x > x2: By induction one obtains a strictly increasing sequence (xk)k such
that limk!1 xk =1 and

1

ln(n) x

Z
S1=k\[exp(n�1) 1;x)

d�n <
1

k

for all x > xk: Consider the set

S =
1[
k=1

�
S1=k \ [xk; xk+1)

�
:

We will show that d(n)(S) = 0 and limx!1 f j[a;1)nS = 0:
In fact, for " > 0 arbitrarily �xed put N = b1="c+ 1: Then every x � xN lies in

an interval [xp; xp+1); whence

S \ [a; x) =
 1[
k=1

�
S1=k \ [xk; xk+1)

�!
\ [a; x)

=

 
p[
k=1

�
S1=k \ [xk; xk+1)

�!
\ [a; x)

� S1=p \ [x1; x) � S1=p \ [a; x):

Therefore for every x � xN we get

1

ln(n) x

Z
S\[exp(n�1) 1;x)

d�n

� 1

ln(n) x

Z
S1=p\[exp(n�1) 1;x)

d�n <
1

p
� 1

N
< ";

and thus d(n)(S) = 0:
Since every x 2 [xN ;1)nS belongs to a set [xk; xk+1)nS1=k for some k � N; it

follows that

jf(x)j < 1

k
� 1

N
< ";

and thus limx!1; x=2S f(x) = 0. The proof is done. �

We state now the main result of our paper.

Theorem 3. If f 2 L1(0;1), then

(d(n))� lim
x!1

�Yn

k=0
ln(k) x

�
f(x) = 0

for every n 2 N:

B. O. Koopman and J. von Neumann [4] have introduced the concept of con-
vergence in density in connection with the convergence of certain weighted arith-
metic means. More precisely, they proved that every locally integrable function
f : [0;1)! R that veri�es the condition

lim
x!1

1

x

Z x

0

jf(t)j dt = 0;

veri�es also the condition (d(0))-limx!1 f(x) = 0: This fact can be extended to
densities of all orders.
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Lemma 2. Suppose that f : [0;1)! R is a locally integrable function and n is a
positive integer. Then

lim
x!1

1

ln(n) x

Z x

exp(n�1) 1

jf(t)jd�n = 0 implies (d(n))- lim
x!1

f(x) = 0;

and the converse holds if in addition f is bounded.

Proof. The �rst assertion follows by reductio ad absurdum. Indeed, according to
Theorem 2, if (d(n))-limx!1 f(x) = 0 fails, then for some "0 > 0 the set

S"0 =
n
x 2 [exp(n�1) 1;1) : jf(x)j � "0

o
does not have zero density of order n: Consequently there exist a positive num-
ber C and an increasing sequence (xk)k of elements of (exp(n�1) 1;1) such that
limk!1 xk =1 and

1

ln(n) xk

Z
S"0\[exp(n�1) 1;xk)

d�n � C

for every k: Then

1

ln(n) xk

Z xk

exp(n�1) 1

jf(t)j d�n

� 1

ln(n) xk

Z
S"0\[exp(n�1) 1;xk)

jf(t)j d�n

� "0

ln(n) xk

Z
S"0\[exp(n�1) 1;xk)

d�n � C"0;

which contradicts our hypothesis.
As concerns the second assertion, assume (d(n))-limx!1 f(x) = 0 and �x ar-

bitrarily " > 0: Since the set S" =
�
x 2 [exp(n�1) 1;1) : jf(x)j � "=2

	
has zero

density of order n; there must exist a number x" � exp(n�1) 1 such that
1

ln(n) x

Z
S"\[exp(n�1) 1;x)

d�n <
"

2M

for every x > x": Here M = supx�0 jf(x)j: Then for x > x" we have

0 � 1

ln(n) x

Z x

exp(n�1) 1

jf(t)j d�n

� 1

ln(n) x

Z
[exp(n�1) 1;x)nS"

jf(t)j d�n

+
1

ln(n) x

Z
[exp(n�1) 1;x)\S"

jf(t)j d�n

<
"

2
+M � "

2M
= ";

and the proof is done. �
Lemma 3. If ! : [a;1) ! R is a nonincreasing, di¤erentiable, and bounded
function and f : [a;1) ! R is a function locally integrable with respect to !d�n;
then

lim
x!1

!(x)

Z x

a

f(t)d�n = 0:
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Proof. The nontrivial case is when !(x) > 0 for every x. Given " > 0; one can
choose y > 0 such that����Z x

y

!(t)f(t)d�n

���� < "

3
for every x > y:

According to the formula of integration by parts for absolutely continuous func-
tions,

!(x)

Z x

a

f(t)d�n = !(x)

Z x

a

f(t)
dtQn�1

k=0 ln
(k) t

= !(x)

 Z y

a

f(t)
dtQn�1

k=0 ln
(k) t

+

Z x

y

1

!(t)
!(t)f(t)

dtQn�1
k=0 ln

(k) t

!

= !(x)

 Z y

a

f(t)
dtQn�1

k=0 ln
(k) t

+

Z x

y

1

!(t)

d

dt

 Z t

y

!(s)f(s)
dsQn�1

k=0 ln
(k) s

!
dt

!

= !(x)

 Z y

a

f(t)
dtQn�1

k=0 ln
(k) t

+
1

!(x)

Z x

y

!(s)f(s)
dsQn�1

k=0 ln
(k) s

�
Z x

y

!0(t)

!2(t)

 Z t

y

!(s)f(s)
dsQn�1

k=0 ln
(k) s

!
dt

!
:

On the other hand, for x > y su¢ ciently large we have�����!(x)
Z y

a

f(t)
dtQn�1

k=0 ln
(k) t

+

Z x

y

!(s)f(s)
dsQn�1

k=0 ln
(k) s

�����
� !(x)

�����
Z y

a

f(t)
dtQn�1

k=0 ln
(k) t

�����+ "

3
� 2"

3
;

and�����!(x)
Z x

y

!0(t)

!2(t)

 Z t

y

!(s)f(s)
dsQn�1

k=0 ln
(k) s

!
dt

�����
� !(x)

Z x

y

����� !0(t)!2(t)

 Z t

y

!(s)f(s)
dsQn�1

k=0 ln
(k) s

!����� dt
� "

3
!(x)

Z x

y

�!0(t)
!2(t)

dt

� "

3
!(x)

�
1

!(y)
� 1

!(x)

�
� "

3
;

whence
��!(x) R x

a
f(t)d�n

�� � " for x su¢ ciently large. �
We are now in a position to detail the proof of Theorem 3. The function f

being integrable on [a;1), it follows that the product
�Qn

k=0 ln
(k) x

�
f is locally

integrable with respect to the measure !(x)d�n, where !(x) = 1= ln
(n) x: According

to Lemma 3,

lim
x!1

1

ln(n) x

Z x

a

�Yn

k=0
ln(k) x

�
f(t)

dtQn�1
k=0 ln

(k) t
= 0;
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so by Lemma 2 we conclude that (d(n))-limx!1

�Qn
k=0 ln

(k) x
�
f(x) = 0:

A di¤erent approach of the behavior at in�nity of an integrable function has
been recently described by E. Lesigne [5].
It is worth to notice here the existence of a discrete companion of Theorem 3,

working for positive series. The details are the same, with the di¤erence that the
role of Lebesgue measure over [0;1) is taken by the counting measure over the
nonnegative integers.
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