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Abstract

A probabilistic extension of Lagrange’s barycentric identity is proved and used to pro-
vide new insights into the mechanism of Jensen’s inequality. In particular, it is shown that
every instance of Jensen’s inequality comes from an identity.
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1 Introduction

An important mathematical tool that relates the scalar product and the cross product in an
Euclidean space is provided by Lagrange’s algebraic identity,

‖u‖2 ‖v‖2 = 〈u, v〉2 + ‖u× v‖2 . (LAI)

Lagrange [6], who was interested in the metric geometry of tetrahedra, considered only the case
of 3-dimensional space. The general case, and the attached inequality, |〈u, v〉| ≤ ‖u‖ ‖v‖ , were
first proved by Cauchy [4] in his celebrated Cours d’Analyse.

In a paper from 1783, devoted to the location of barycenter of a mass system, Lagrange
[7] proved an identity even more general, which will be referred to as Lagrange’s barycentric
identity: For every family of points z, x1, ..., xn in the Euclidean space R3 and every family of
positive weights p1, ..., pn with

∑n
k=1 pk = 1, we have

n∑
k=1

pk ‖z − xk‖2 =

∥∥∥∥∥z −
n∑
k=1

pkxk

∥∥∥∥∥
2

+
∑

1≤i<j≤n

pipj ‖xi − xj‖2. (LBI)

The roots and various ramifications of the identities (LAI) and (LBI) made the subject of
a recent paper [5].
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The aim of the present paper is to extend Lagrange’s barycentric identity to a probabilistic
framework and to provide in this way new insights into the mechanism of Jensen’s inequality.
In particular, we prove that every instance of Jensen’s inequality comes from an identity. See
Theorem 3. Thus, the case of Cauchy’s inequality (which follows from Lagrange’s algebraic
identity) is typical for most known inequalities. Even more, each instance of Jensen’s inequality
can be paired by a converse, a fact that explains the usefulness of these kind of inequalities in
the different applications of mathematics.

2 A first generalization of Lagrange’s barycentric identity

In what follows, C denotes a subset of the Euclidean space RN (or, more generally, of a real
Hilbert space), on which there is defined a real measure µ =

∑n
i=1 piδxi

whose weights pi are
all nonzero and sum up to 1. We also assume that the barycenter of µ,

bµ =

∫
C

xdµ(x) =

n∑
i=1

pixi,

belongs to C\ {x1, ..., xn} .
Theorem 1. Under the above assumptions on C and µ, every function f : C → R verifies the
following generalization of Lagrange’s barycentric identity:

n∑
i=1

pif(xi) = f (bµ) +
∑

1≤i<j≤n

pipj 〈s(xi)− s(xj), xi − xj〉 , (GL)

where

s(x) =
f(x)− f(bµ)

‖x− bµ‖
· x− bµ
‖x− bµ‖

for x ∈ C\ {bµ} .

In the case of functions of one real variable, s(x) is precisely the slope of the secant line
joining the points (x, f(x)) and (bµ, f(bµ)) .

Proof: The proof of (GL) is based on the formulas giving the expression of the above mentioned
secant lines,

f(xi) = f (bµ) + 〈s(xi), xi − bµ〉 , for i ∈ {1, ..., n}.
Then,

n∑
i=1

pif(xi)− f (bµ) =

n∑
i=1

pi (f(xi)− f (bµ)) =

n∑
i=1

pi 〈s(xi), xi − bµ〉

=

n∑
i=1

pi〈s(xi),
n∑
j=1

pjxi −
n∑
j=1

pjxj〉 =

n∑
i=1

n∑
j=1

pipj 〈s(xi), xi − xj〉

=
1

2

n∑
i=1

n∑
j=1

pipj 〈s(xi)− s(xj), xi − xj〉

=
∑

1≤i<j≤n

pipj 〈s(xi)− s(xj), xi − xj〉 ,
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and the proof of (GL) is done.

Remark 1. When f is a continuously differentiable function defined on a convex subset C of
RN , one can state the identity (GL) in terms of gradients. Indeed, according to the fundamental
theorem of integral calculus,

f(xi)− f(bµ) =

∫ 1

0

〈∇f(txi + (1− t)bµ), xi − bµ〉dt,

so that by repeating the argument of Theorem 1 we get the identity

n∑
i=1

pif(xi) = f (bµ)

+
∑

1≤i<j≤n

pipj

∫ 1

0

〈∇f(txi + (1− t)bµ)−∇f(txj + (1− t)bµ), xi − xj〉dt. (GL0)

Moreover, in this case the restriction bµ /∈ {x1, ..., xn} can be discarded by defining s(bµ) =
∇f(bµ).

The identity (GL0) (i.e., the smooth version of the identity (GL)) can be seen as a convex-
ification of the fundamental formula of integral calculus. It is the first term in a sequence of
identities obtained from Taylor’s formulas of different orders via convexification. See Section 5
below.

The identity (GL) reduces to Lagrange’s barycentric identity when f is the square norm
function on the Euclidean space. Indeed, this function is continuously differentiable with
∇f(x) = 2x, and we can use the smooth variant (GL0) of (GL). The resulting identity is
precisely Lagrange’s barycentric identity (LBI) for z = 0. However, due to the translation
invariance of the Euclidean metric, this particular case covers (LBI) in full generality.

Our generalization of Lagrange’s identity has a continuous analogue in the framework of
real measures µ supported by a subset C of RN that verify the conditions

µ(C) = 1 and bµ =

∫
C

xdµ(x) ∈ C.

Precisely, for every (µ-) integrable function f : C → R the following analogue of the identity
(GL) holds true:∫

C

f(x)dµ(x)− f(bµ) =
1

2

∫
C

∫
C

〈s(x)− s(y), x− y〉 dµ(x)dµ(y).

The details are practically the same as in the case of Theorem 1.
From the probabilistic point of view, the identity (GL) provides a formula indicating how

much the expectation E(f ;µ) of f, relative to the discrete probability measure µ =
∑n
i=1 piδxi

,
differs from the value of f at the barycenter bµ of µ.
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When f = ‖·‖2 , we noticed above that

E(f ;µ)− f (bµ) =
∑

1≤i<j≤n

pipj 〈s(xi)− s(xj), xi − xj〉 ,

so, in this case E(f ;µ)− f (bµ) equals the variance of the given probability measure µ,

σ2
µ =

∑
1≤i<j≤n

pipj ‖xi − xj‖2 .

More generally, from Remark 1 one can infer easily the following result:

Theorem 2. If f is continuously differentiable, then

|E(f ;µ)− f (bµ)| ≤ ‖∇f‖Lip σ2
µ,

where

‖∇f‖Lip = sup

{
‖∇f(x)−∇f(y)‖

‖x− y‖
: x, y ∈ C, x 6= y

}
is the Lipschitz constant of ∇f .

More estimates (from above and from below) of the variance are obtained in Example 1
below.

The double sum

SV 2
µ (f) =

∑
1≤i<j≤n

pipj 〈s(xi)− s(xj), xi − xj〉 ,

represents a measure of how far the slopes of f at x1, ..., xn are spread out and will be referred
to as the slope variance. Using the slope variance, one can put the identity (GL) in the following
probabilistic form,

E(f ;µ) = f (bµ) + SV 2
µ (f).

Clearly, the slope variance is linear and can take negative values (unlike the usual variance
which is nonnegative). Indeed, in the case of the function f(x) = 〈Ax, x〉, x ∈ RN , attached to
a symmetric matrix A with real coefficients, the slope variance corresponding to the discrete
probability measure µ =

∑n
i=1 piδxi , is

SV 2
µ (f) =

∑
1≤i<j≤n

pipj 〈A(xi − xj), xi − xj〉 .

Then the condition SV 2
µ (f) ≥ 0 for every µ is equivalent to 〈Ax, x〉 ≥ 0 for every x ∈ RN .
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3 Two examples illustrating (GL)

Example 1. By applying the identity (GL) to the function f(x) = 1/x for a family of points
x1, ..., xn contained in the interval [m,M ] ⊂ (0,∞), and positive weights p1, ..., pn that sum to
1, we get a formula relating the (weighted) arithmetic mean A =

∑n
i=1 pixi of these points to

their (weighted) harmonic mean H =
(∑n

i=1
pi
xi

)−1

:

A

H
− 1 =

∑
1≤i<j≤n

pipj
(xi − xj)2

xixj
.

Thus, the variance σ2
µ =

∑
1≤i<j≤n pipj(xi − xj)

2 of the given family (with respect to the

discrete probability measure µ =
∑n
i=1 piδxi) verifies the two sided inequality

m2

(
A

H
− 1

)
≤ σ2

µ ≤M2

(
A

H
− 1

)
.

As a consequence, we infer the following estimate for the discrepancy between the harmonic
mean and the arithmetic mean of a family of points as above

1 +
σ2
µ

M2
≤ A

H
≤ 1 +

σ2
µ

m2
.

A better upper bound for σ2, precisely

σ2
µ ≤ (M −A) (A−m) ,

was found by Bhatia and Davis [2], but their result is also a consequence of the identity (GL)
when applied to the function f(x) = x2, x ∈ [m,M ]. Indeed, in this case the identity (GL)
becomes

n∑
i=1

pi (M − xi) (xi −m) = (M −A) (A−m)− σ2
µ.

Example 2. Our second example enriches the list of identities verified by the square norm
function in the Euclidean space:

6
(
‖x1‖2 + ‖x2‖2 + ‖x3‖2

)
+ 2 ‖x1 + x2 + x3‖2

= 3
(
‖x1 + x2‖2 + ‖x2 + x3‖2 + ‖x3 + x1‖2

)
+

∑
1≤i<j≤3

‖xi − xj‖2 . (N)

For the proof of (N), divide both sides by 18 and notice that in that form it can be derived
from (GL) as follows:
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‖x1‖2 + ‖x2‖2 + ‖x3‖2

3
+

∥∥∥∥x1 + x2 + x3
3

∥∥∥∥2
− 2

3

(∥∥∥∥x1 + x2
2

∥∥∥∥2 +

∥∥∥∥x2 + x3
2

∥∥∥∥2 +

∥∥∥∥x3 + x1
2

∥∥∥∥2
)

=
‖x1‖2 + ‖x2‖2 + ‖x3‖2

3
−
∥∥∥∥x1 + x2 + x3

3

∥∥∥∥2
− 2

(∥∥x1+x2

2

∥∥2 +
∥∥x2+x3

2

∥∥2 +
∥∥x3+x1

2

∥∥2
3

−
∥∥∥∥x1 + x2 + x3

3

∥∥∥∥2
)

=
1

18

∑
1≤i<j≤3

‖xi − xj‖2 .

From (N) one can immediately infer the inequality

‖x1‖2 + ‖x2‖2 + ‖x3‖2

3
+

∥∥∥∥x1 + x2 + x3
3

∥∥∥∥2
≥ 2

3

(∥∥∥∥x1 + x2
2

∥∥∥∥2 +

∥∥∥∥x2 + x3
2

∥∥∥∥2 +

∥∥∥∥x3 + x1
2

∥∥∥∥2
)
,

which illustrates the phenomenon of (2D)-convexity as developed in [1]. This is also related to
Popoviciu’s characterization of convexity. See [8], p. 12.

4 The connection of (GL) with Jensen’s inequality

Very close to our generalization of Lagrange’s barycentric identity is Jensen’s inequality for
convex functions. Indeed, if f is a convex function on an interval [a, b], then the slopes

sc(x) =
f(x)− f(c)

x− c
,

of the secant lines passing to an arbitrarily fixed point (c, f(c)), are nondecreasing on [a, b]\{c}.
See [8], Theorem 1.3.1, p. 20. As a consequence, all products (sc(xi)− sc(xj)) (xi − xj) are
nonnegative, a fact that allows us to infer from the identity (GL) the discrete form of Jensen’s
inequality:

f (bµ) ≤
n∑
i=1

pif(xi) (J)

for every family of points x1, ..., xn ∈ [a, b] and every family of nonnegative weights p1, ..., pn
such that

∑n
i=1 pi = 1. The integral form of this inequality can be established in the same

manner, via a suitable extension of (GL) that will be described in the next section.
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Remark 2. According to Remark 1, a function f of class C1 verifies Jensen’s inequality if its
gradient is monotone in the sense that

〈∇f(x)−∇f(y), x− y〉 ≥ 0

for all x, y. An application to matrix analysis can be easily exhibited by considering the space
Mn(R) of all n× n-dimensional real matrices, when endowed with the Hilbert-Schmidt norm

‖A‖HS =

 n∑
i,j=1

a2ij

1/2

for A = (aij)
n
i,j=1.

This is a Hilbert norm associated to the scalar product

〈A,B〉 = traceAB,

which makes Mn(R) isomorphic to the Euclidean space Rn×n.
We will show that the function f(A) = ln detA is concave on the subset Sn++ of all positively

definite matrices A ∈ Mn(R). Taking into account that ∇f(A) = A−1 (see [3], pp. 641-642 ),
the monotonicity of the gradient of f is equivalent to

trace
((
A−1 −B−1

)
(A−B)

)
n ≤ 0

for every A,B ∈ Sn++. Since traceXY = traceY X, we have

trace
((
A−1 −B−1

)
(A−B)

)
= −trace

(
A−1 (A−B)B−1(A−B)

)
= −trace

(
A−1/2

(
A−B)B−1(A−B

)
A−1/2

)
≤ 0,

because A−1/2 (A−B)B−1(A−B)A−1/2 equals(
A−1/2 (A−B)B−1/2

)(
A−1/2 (A−B)B−1/2

)∗
.

Here A∗ denote the transpose of A. It is worth noticing that the log-concavity of the function
det is a particular case of the famous Brunn-Minkowski inequality. See [8], Section 3.12.

Jensen’s inequality (J) can work even for nonconvex functions provided the barycenters bµ
are well placed. Indeed, the fact that the slopes from some point bµ are nondecreasing is not
characteristic to convex functions. See the case of polynomials of 4th degree, which is presented
in [10].

Given a real-valued function f on an interval [a, b] assumed to be bounded from below, we
define its convex hull co(f) as the supremum of all convex functions h ≤ f. Of course, f =
co (f) when f is convex. The convex hull of a zigzag function is a convex polygonal function.

If f meets co(f) at an interior point bµ, then clearly f verifies Jensen’s inequality (J) for
every family of points x1, ..., xn ∈ [a, b] and every family of nonnegative weights p1, ..., pn such
that

∑n
i=1 pi = 1 and

∑n
i=1 pixi = bµ. It turns out that this condition simply means that f

has a support line at bµ that is,

f(x) ≥ f(bµ) + λ(x− bµ),
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for some λ ∈ R. See [8], Lemma 1.5.1, p. 30.
We didn’t exploit here the fact that the identity (GL) actually works for families of real

weights rather than of positive weights. The interested reader will find a more systematic
approach of Jensen’s inequality for nonconvex functions and signed measures in [9].

5 Higher order extensions of (LBI)

The smooth extension of Lagrange’s barycentric identity (as indicated in Remark 1 above)
is just the first step in an infinite string of identities resulting from Taylor’s formulas with
integral remainder via our convexification procedure. Each such identity adds more insight into
the mechanism of Jensen’s inequality, a fact that will be made clear by considering Taylor’s
formula of second order.

Given a differentiable function f of class C2, defined on a convex open subset U ⊂ RN , this
formula asserts that for every two points z and x in U,

f (z) = f(x) + 〈∇f(x), z − x〉+

∫ 1

0

(1− t)〈∇2f(x+ t(z − x)) (z − x) , z − x〉dt. (T )

Here ∇f(x) and ∇2f(x) represents respectively the gradient and the Hessian matrix of f at x.
Under the presence on U of a discrete Borel measure µ =

∑n
i=1 piδxi of total mass 1, whose

barycenter bµ =
∫
U
xdµ(x) =

∑n
i=1 pixi belongs to U, we can infer from Taylor’s formula the

following fact:

f (bµ) =

n∑
i=1

pif (bµ) =

n∑
i=1

pif(xi) +

n∑
i=1

pi〈∇f(xi), bµ − xi〉

+

n∑
i=1

pi

∫ 1

0

(1− t)〈∇2f(xi + t(bµ − xi)) (bµ − xi) , bµ − xi〉dt

=

n∑
i=1

pif(xi)−
n∑
i=1

n∑
j=1

pipj〈∇f(xi), xi − xj〉

+

n∑
i=1

pi

∫ 1

0

(1− t)〈∇2f(xi + t(bµ − xi)) (bµ − xi) , bµ − xi〉dt.

This can be put in a more symmetric way by summing it side by side with the formula obtained
by interchanging i and j. The resulting identity is as follows:

Theorem 3. Under the above assumptions on f and µ =
∑n
i=1 piδxi

,

f (bµ) +
1

2

n∑
i=1

n∑
j=1

pipj〈∇f(xi)−∇f(xj), xi − xj〉 (GL1)

=

n∑
i=1

pif(xi) +

n∑
i=1

pi

∫ 1

0

(1− t)〈∇2f(xi + t(bµ − xi)) (bµ − xi) , bµ − xi〉dt.
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Taking into account that the Hessian matrix of a smooth convex function is positive semidef-
inite, one can infer from the identity (GL1) the following upper estimate of Jensen’s inequality:

Theorem 4. Suppose that K is a compact convex subset of the Euclidean space RN , endowed
with a Borel probability measure µ, and f is a convex function of class C1, defined on a neigh-
borhood of K. Then

1

2

∫
K

∫
K

〈∇f(x)−∇f(y), x− y〉dµ(x)dµ(y) ≥
∫
K

f(x)dµ(x)− f(bµ) ≥ 0.

It is worth noticing that Theorem 4 provides a converse to each illustration of Jensen’s
inequality. For example, in the case of the concave function ln det (see Remark 2 above), this
converse reads as

ln det

(
n∑
i=1

piAi

)
−

n∑
i=1

pi ln detAi ≤ −
∑

1≤i<j≤n

pipj trace
(
A−1
i −A

−1
j

)
(Ai −Aj)),

for every family A1, ..., An of positive definite matrices and every family p1, ..., pn of positive
numbers that sum to 1.
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