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Abstract. We develop a new framework for the Jensen-type inequalities that
allows us to deal with functions not necessarily convex and Borel measures not
necessarily positive.

It is well known the important role played by the classical inequality of Jensen
in probability theory, economics, statistical physics, information theory etc. See
[5] and [6]. In recent years, a number of authors have noticed the possibility to
extend this inequality to the framework of functions that are mixed convex (in the
sense of the existence of one in�ection point). See [1], [2] and [4]. In all these
papers one assumes that both the function and the measure under consideration
verify certain conditions of symmetry. However the inequality of Jensen is much
more general as shows the following simple remark. Suppose that K is a convex
subset of the Euclidean space RN carrying a Borel probability measure �. Then
every �-integrable function f : K ! R that admits a supporting hyperplane at the
barycenter of �;

(B) b� =

Z
K

xd�(x);

veri�es the Jensen inequality

(J) f(b�) �
Z
K

f(x)d�(x):

Indeed, the existence of a supporting hyperplane at b� is equivalent to the exis-
tence of an a¢ ne function h(x) = hx; vi+ c such that

f(b�) = h(b�) and f(x) � h(x) for all x 2 K:

Then

f(b�) = h(b�) = h

�Z
K

xd�(x)

�
=

Z
K

h(x)d�(x) �
Z
K

f(x)d�(x):

As is well known, the convexity assures the existence of a supporting hyperplane
at each interior point. See [5], Theorem 3.7.1, p. 128. This explains why Jensen�s
inequality works nicely in that context. The aim of our paper is to extend the valid-
ity of Jensen�s inequality outside mixed convexity and also outside the framework
of Borel probability measures.
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In order to make our approach easily understandable we will restrict ourselves to
the case of functions of one real variable. However most of our results extends easily
to higher dimensions, by replacing the usual intervals by N -dimensional intervals
and symmetry with respect to a point by symmetry with respect to a hyperplane.
See Example 3 below.
We start with the following version of the Jensen inequality for mixed convex

functions that discards any assumption on the symmetry of the involved measure.

Theorem 1. Suppose that f is a real-valued function de�ned on an interval [a; b]
and c is a point in [a; a+b2 ] such that:
i) f(c� x) + f(c+ x) = 2f(c) whenever c� x 2 [a; b];
ii) f j[c;b] is convex.
Then

f (b�) �
Z b

a

f(x)d�(x);

for every Borel probability measure � on [a; b] whose barycenter lies in the interval
[2c� a; b]:
The last inequality works in the reverse direction when f j[c;b] is concave.

Proof. The case where c = a is covered by the classical inequality of Jensen so we
may assume that c 2 (a; a+b2 ): In this case the point 2c � a is interior to [a; b]: By
our hypotheses, the barycenter b� lies in the interval [2c� a; b] : If b� = b, then
� = �b and the conclusion of Theorem 1 is clear. If b� is interior to [a; b]; we will
denote by h the a¢ ne function joining the points (a; f(a)) and (2c � a; f(2c � a))
and we will consider the function

(1) g(x) =

�
h(x) if x 2 [a; 2c� a]
f(x) if x 2 [2c� a; b]:

Clearly, g is convex and this fact motivates the existence of a support line ` of g at
b�: See [5], Lemma 1.5.1, p. 30. Since h � f; then necessarily ` is a support line at
b� also for f: By a remark above, this ends the proof. �

A useful consequence of Theorem 1 in the case of absolutely continuous measures
is as follows:

Corollary 1. Suppose that f : [�b; b] ! R is an odd function, whose restriction
to [0; b] is convex and p : [�b; b]! [0;1) is a nondecreasing function that does not
vanish on (�b=3; b]: Then for every a 2 [�b=3; b);

f

 
1R b

a
p(x)dx

Z b

a

xp(x)dx

!
� 1R b

a
p(x)dx

Z b

a

f(x)p(x)dx:

Proof. The case where a � 0 is covered by the classical inequality of Jensen.
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If a < 0; thenZ b

a

(x+ a)p(x)dx �
Z �3a

a

(x+ a)p(x)dx

=

Z �a

a

(x+ a)p(x)dx+

Z �3a

�a
(x+ a)p(x)dx

�
Z �a

a

(x+ a)p(x)dx+ p(�a)
Z �3a

�a
(x+ a)dx

=

Z �a

a

(x+ a)p(x)dx� p(�a)
Z �a

a

(x+ a)dx

=

Z �a

a

(x+ a) (p(x)� p(�a)) dx � 0;

and thus Theorem 1 applies. �

An inspection of the argument of Corollary 1 shows that the monotonicity hy-
pothesis on p can be relaxed by asking only the integrability of p and the fact that
p(x) � p(�a) � p(y) for all x and y with x � �a � y: However, simple examples
show that the restriction a 2 [�b=3; b] in Corollary 1 cannot be dropped.
Consider now the discrete version of Theorem 1.

Corollary 2. Suppose that f is a real-valued function de�ned on an interval I that
contains the origin such that f jI\[0;1) is a convex function and f(�x) = �f(x)
whenever x and �x belong to I: Then for every family of points a1; :::; an of I and
every family of weights p1; :::; pn 2 [0;1) such that

Pn
k=1 pk = 1 and

nX
k=1

pkak +min fa1; :::; ang � 0;

we have

f

 
nX
k=1

pkak

!
�

nX
k=1

pkf(ak):

The conclusion of Corollary 2 can be considerably improved when all weights pk
are equal.

Corollary 3. Suppose that f is a real-valued function de�ned on an interval I that
contains the origin. If f jI\[0;1) is a convex function and f(�x) = �f(x) whenever
x and �x belong to I; then for every family of points a1; :::; an of I such that

nX
k=1

ak + (n� 2)min fa1; :::; ang � 0

we have

f

 
1

n

nX
k=1

ak

!
� 1

n

nX
k=1

f(ak):

Proof. It su¢ ces to consider the case where a1 � � � � � an and a1 < 0. According
to our hypothesis,

Pn
k=1 ak > 0 and

1

n� 1

nX
k=2

ak � �a1 � �a2:
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By Corollary 2,

f

 
1

n� 1

nX
k=2

ak

!
� 1

n� 1

nX
k=2

f(ak);

and taking into account the function g given by the formula (1) we infer that

f

 
1

n

nX
k=1

ak

!
� g

 
1

n

nX
k=1

ak

!
= g

 
1

n
� a1 +

n� 1
n

� 1

n� 1

nX
k=2

ak

!

� 1

n
g(a1) +

n� 1
n

g(
1

n� 1

nX
k=2

ak)

=
1

n
f(a1) +

n� 1
n

f(
1

n� 1

nX
k=2

ak) �
1

n

nX
k=1

f(ak):

The proof is complete. �
A simple example illustrating Corollary 3 is

tan

�
x+ y + z

3

�
� tanx+ tan y + tan z

3
;

for every x; y; z 2 (��=6; �=2) with x+ y + z +min fx; y; zg � 0:
Starting with the pioneering work of J. F. Ste¤ensen [8], a great deal of research

was done to extend the Jensen inequality outside the framework of probability
measures. An account on the present state of art can be found in the monograph
[5], Sections 4.1 and 4.2. We will recall here some basic facts for the convenience
of the reader.

De�nition 1. A Ste¤ensen-Popoviciu measure is any real Borel measure � on a
compact convex set K such that �(K) > 0 andZ

K

f(x) d�(x) � 0 for every continuous convex function f : K ! R+:

In the case of intervals, a complete characterization of this class of measures is
o¤ered by the following result, independently due to T. Popoviciu [7], and A. M.
Fink [3]:

Lemma 1. Let � be a real Borel measure on an interval [a; b] with �([a; b]) > 0:
Then � is a Ste¤ensen-Popoviciu measure if, and only if, it veri�es the following
condition of endpoints positivity,Z t

a

(t� x) d�(x) � 0 and
Z b

t

(x� t) d�(x) � 0

for every t 2 [a; b]:

See [5], p. 179, for details.

Example 1. A discrete measure � =
Pn

k=1 pk �xk (supported by the points x1 �
::: � xn) is a Ste¤ensen-Popoviciu measure if it veri�es Ste¤ensen�s condition

(2)
nX

k=1

pk > 0; and 0 �
mX
k=1

pk �
nX

k=1

pk; for every m 2 f1; :::; ng:

A concrete example is o¤ered by the discrete measure 5
9� 3a+b4

� 1
9� a+b2

+ 5
9� a+3b4

.
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Example 2. According to Lemma 1,
�

x2

a2 �
1
6

�
dx is an example of absolutely con-

tinuous measure on the interval [�a; a] that is also a Ste¤ensen-Popoviciu measure.
As a consequence,

�
x2

a2 �
1
6

�
dxdy provides an example of Ste¤ensen-Popoviciu

measure on any rectangle [�a; b] � [c; d] with 0 < a < b and c < d: Indeed, if
h : [�a; b]� [c; d]! R is a nonnegative convex function, then

x!
 Z d

c

h(x; y)dy

!
is also a nonnegative convex function, whenceZ a

�a

Z d

c

h(x; y)

�
x2

a2
� 1
6

�
dxdy � 0:

This yields Z b

�a

Z d

c

h(x; y)

�
x2

a2
� 1
6

�
dxdy � 0;

and thus
�
x2

a2 �
1
6

�
dxdy is a Ste¤ensen-Popoviciu measure on the rectangle [�a; b]�

[c; d]: Since this class of measures is closed under addition, we infer that�
x2

a2
+
y2

c2
� 1
3

�
dxdy

is a Ste¤ensen-Popoviciu measure on the rectangle [�a; b] � [�c; d], whenever 0 <
a < b and 0 < c < d:

The Ste¤ensen-Popoviciu measures provide the natural framework for the Jensen
inequality:

Theorem 2. Suppose that � is a Ste¤ensen-Popoviciu measure on a compact con-
vex set K (part of a locally convex separated space E). Then � admits a barycenter
b� and for every continuous convex function f on K;

f(b�) �
1

�(K)

Z
K

f(x) d�(x):

For details, see [5], Theorem 4.2.1, pp. 184-185. When E is the Euclidean space
RN ; the barycenter b� is given by the formula (B) above.
It is worth to mention that the argument of Theorem 1 remains valid in the

context of Ste¤ensen-Popoviciu measures of total mass 1. Even more importantly,
it can be adapted to the case of functions of two or more variables.

Example 3. Suppose f : [�1; 2] � [�1; 1] ! R is a function with the following
two properties: i) f(�x; y) = �f(x; y) for every x 2 [�1; 1] and y 2 [�1; 1]; and
ii) f j[0;2]�[�1;1] is a convex function. According to Example 2, (x2 � 1

6 )dxdy is a
Ste¤ensen-Popoviciu measure on the rectangle [�1; 2] � [�1; 1] (of total mass 10

3

and barycenter b� =
�
7
5 ; 0
�
): Since 7

5 > 1; an argument similar to that used in the
proof of Theorem 1 leads us to the following Jensen-type inequality:

f

�
7

5
; 0

�
� 3

10

ZZ
[�1;2]�[�1;1]

f(x; y)(x2 � 1
6
)dxdy:

The above discussion leads us to the concept of almost convexity, whose 1-
dimensional version is as follows:
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De�nition 2. A real-valued function f de�ned on an interval I is left almost convex
if it is integrable and there is a pair of interior points c < d in I such that
i) f j[c;1)\I is convex; and
ii) f � h on (�1; c]\I; where h is the a¢ ne function joining the points (c; f(c))

and (d; f(d)):

The concept of right almost convexity can be introduced in a similar way.
The following result extends Theorem 1 above.

Theorem 3. Suppose that f : [a; b]! R is a left almost convex function and � is
a Ste¤ensen-Popoviciu measure on [a; b] with barycenter b�. If c < d are interior
points to [a; b] as in De�nition 2 such that
i) b� � c ; and
ii)
R d
a
((f(x)� f(c)) (d� c)� (f(d)� f(c)) (x� c)) d� � 0;

then

f(b�) �
1

�([a; b])

Z b

a

f(x) d�(x):

Proof. If h is the a¢ ne function joining the points (c; f(c)) and (d; f(d)); then the
function

g(x) =

�
h(x) if x 2 [a; d]
f(x) if x 2 [d; b]

is convex and g(b�) = f(b�): According to Theorem 2,

f(b�) = g(b�) �
1

�([a; b])

Z b

a

g(x) d�(x)

=
1

�([a; b])

Z d

a

h(x) d�(x) +
1

�([a; b])

Z b

d

f(x) d�(x)

� 1

�([a; b])

Z d

a

f(x) d�(x) +
1

�([a; b])

Z b

d

f(x) d�(x)

=
1

�([a; b])

Z b

a

f(x) d�(x)

and the proof is complete. �

An illustration of Theorem 3 is o¤ered by the following constrained optimization
problem: Find

M = max
(x;y;z)2


�
tan

�
2x� y + 3z

4

�
� 2 tanx� tan y + 3 tan z

4

�
;

where 
 is the set of triplets x � y � z in [��=3; �=3) such that 2x � y + 3z � 0
and

(3)
�

3
p
3
(2 tanx� tan y + 3 tan z) � 2x� y + 3z:

The answer is M = 0. Indeed, according to (2), the measure 1
2�x �

1
4�y +

3
4�z is

Ste¤ensen-Popoviciu on the interval [��=3; �=3] and the constraint (3) coincides
with the inequality ii) in Theorem 3 (when applied to the tangent function for
a = ��=3; c = 0 and b = d = �=3).
Of course, the phenomenon of almost convexity is present also in higher dimen-

sions, at least for functions de�ned on N -dimensional intervals (or on other convex
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sets with a special geometry). It would be interesting in that context to prove a
characterization of the Ste¤ensen-Popoviciu measures (comparable to that o¤ered
by Lemma 1).
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