

A SHORT PROOF OF BURNSIDE'S FORMULA FOR THE GAMMA FUNCTION

CONSTANTIN P. NICULESCU ${ }^{1 *}$ AND FLORIN POPOVICI ${ }^{2}$
Communicated by Zs. Pales

Abstract. We present simple proofs for Burnside's asymptotic formula and for its extension to positive real numbers.

1. Introduction

Burnside's asymptotic formula for factorial n asserts that

$$
\begin{equation*}
n!\sim \sqrt{2 \pi}\left(\frac{n+1 / 2}{e}\right)^{n+1 / 2} \tag{B}
\end{equation*}
$$

in the sense that the ratio of the two sides tends to 1 as $n \rightarrow \infty$. This provides a more efficient estimation of the factorial, comparing to Stirling's formula,

$$
\begin{equation*}
n!\sim \sqrt{2 \pi} n^{n+1 / 2} e^{-n} \tag{S}
\end{equation*}
$$

Indeed, for $n=100$, the exact value of 100 ! with 24 digits is

$$
\text { 9. } 332621544394415268169924 \times 10^{157} \text {. }
$$

Burnside's formula yields the approximation

$$
100!\approx 9.336491570312414838264959 \times 10^{157}
$$

while Stirling's formula is less precise, offering only the approximation

$$
100!\approx 9.324847625269343247764756 \times 10^{157}
$$

Date: Received: Apr. 28, 2014; Accepted: Aug. 11, 2014.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 33B15; Secondary 26B25, 41A30.
Key words and phrases. Burnside's asymptotic formula, Gamma function, log-convex function.

The aim of the present paper is to present a short (and elementary) proof of Burnside's asymptotic formula and to extend it to positive real numbers. The main ingredients are Wallis' s product formula for π and the property of logconvexity of the Gamma function.

2. The proof of Burnside's formula

The starting point is the following result concerning the monotonicity of the function $\left(1+\frac{1}{x}\right)^{x+\alpha}$ on the interval $[1, \infty)$.

Lemma 2.1. (I. Schur [6], Problem 168, page 38). Let $\alpha \in \mathbb{R}$. The sequence $a_{\alpha}(n)=\left(1+\frac{1}{n}\right)^{n+\alpha}$ is decreasing if $\alpha \in\left[\frac{1}{2}, \infty\right)$, and increasing for $n \geq N(\alpha)$ if $\alpha \in(-\infty, 1 / 2)$.

According to Lemma 1 above, for $\alpha \in(0,1 / 2)$ arbitrarily fixed, there is a positive integer $N(\alpha)$ such that

$$
\left(1+\frac{1}{k}\right)^{k+\alpha}<e<\left(1+\frac{1}{k}\right)^{k+1 / 2}
$$

for all $k \geq N(\alpha)$. As a consequence,

$$
\prod_{k=n}^{2 n}\left(\frac{k+1}{k}\right)^{k+\alpha}<e^{n+1}<\prod_{k=n}^{2 n}\left(\frac{k+1}{k}\right)^{k+1 / 2}
$$

for all $n \geq N(\alpha)$, equivalently,

$$
\frac{(2 n+1)^{2 n+\alpha}}{n^{n+\alpha}} \cdot \frac{1}{(n+1) \cdots(2 n)}<e^{n+1}<\frac{(2 n+1)^{2 n+1 / 2}}{n^{n+1 / 2}} \cdot \frac{1}{(n+1) \cdots(2 n)} .
$$

This can be restated as

$$
\begin{aligned}
\frac{2^{2 n+\alpha}\left(n+\frac{1}{2}\right)^{n+1 / 2}\left(1+\frac{1}{2 n}\right)^{n+\alpha}}{\sqrt{n+\frac{1}{2}}} & \cdot \frac{n!}{(2 n)!}<e^{n+1} \\
& <\frac{2^{2 n+1 / 2}\left(n+\frac{1}{2}\right)^{n+1 / 2}\left(1+\frac{1}{2 n}\right)^{n+1 / 2}}{\sqrt{n+\frac{1}{2}}} \cdot \frac{n!}{(2 n)!},
\end{aligned}
$$

whence

$$
\begin{aligned}
& \frac{1}{\sqrt{2 n+1}} \cdot \frac{(2 n)!!}{(2 n-1)!!} \cdot \frac{2^{\alpha+1 / 2}\left(1+\frac{1}{2 n}\right)^{n+\alpha}}{\sqrt{e}}<n!\left(\frac{e}{n+\frac{1}{2}}\right)^{n+1 / 2} \\
&<\frac{1}{\sqrt{2 n+1}} \cdot \frac{(2 n)!!}{(2 n-1)!!} \cdot \frac{2\left(1+\frac{1}{2 n}\right)^{n+1 / 2}}{\sqrt{e}}
\end{aligned}
$$

for all $n \geq N(\alpha)$. Here $n!!=n \cdot(n-2) \cdots 4 \cdot 2$ if n is even, and $n \cdot(n-2) \cdots 3 \cdot 1$ if n is odd.

Taking into account Wallis's formula,

$$
\lim _{n \rightarrow \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdots(2 n) \cdot(2 n)}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdots(2 n-1) \cdot(2 n-1) \cdot(2 n+1)}=\frac{\pi}{2}
$$

that is,

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2 n+1}} \cdot \frac{(2 n)!!}{(2 n-1)!!}=\sqrt{\frac{\pi}{2}}
$$

we arrive easily at Burnside's formula for factorial n :

$$
n!\sim \sqrt{2 \pi}\left(\frac{n+1 / 2}{e}\right)^{n+1 / 2}
$$

3. The extension of Burnside's formula for the Gamma function

Our next goal is to derive from Burnside's formula the following asymptotic formula for the Gamma function:
Theorem 3.1. (R. J. Wilton [7]). $\Gamma(x+1) \sim \sqrt{2 \pi}\left(\frac{x+1 / 2}{e}\right)^{x+1 / 2}$ as $x \rightarrow \infty$.
The proof of the above theorem will be done by estimating the function

$$
f(x)=\Gamma(x+1)\left(\frac{e}{x+1 / 2}\right)^{x+1 / 2}
$$

for large values of x. We shall need the following double inequality:
Lemma 3.2. $\lfloor x\rfloor!x^{\{x\}} \leq \Gamma(x+1) \leq\lfloor x\rfloor!(\lfloor x\rfloor+1)^{\{x\}}$ for all $x \geq 1$.
Here $\lfloor x\rfloor$ denotes the largest integer less than or equal to x and $\{x\}=x-\lfloor x\rfloor$.
Proof. Our argument is based on the property of log-convexity of the Gamma function:

$$
\Gamma((1-\lambda) x+\lambda y) \leq \Gamma(x)^{1-\lambda} \Gamma(y)^{\lambda}
$$

for all $x, y>0$ and $\lambda \in[0,1]$. See [5], Theorem 2.2.4, pp. 69-70.
If x is a positive number, then $\lfloor x\rfloor+1 \leq x+1<\lfloor x\rfloor+2$, which yields

$$
x+1=(1-\{x\})(\lfloor x\rfloor+1)+\{x\}(\lfloor x\rfloor+2) .
$$

Therefore,

$$
\begin{aligned}
\Gamma(x+1) & \leq \Gamma(\lfloor x\rfloor+1)^{1-\{x\}} \Gamma(\lfloor x\rfloor+2)^{\{x\}} \\
& =\lfloor x\rfloor!^{1-\{x\}}(\lfloor x\rfloor+1)!^{\{x\}} \\
& \leq\lfloor x\rfloor!(\lfloor x\rfloor+1)^{x-\lfloor x\rfloor} .
\end{aligned}
$$

In a similar way, taking into account that $\lfloor x\rfloor+1=\{x\} x+(1-\{x\})(x+1)$, we obtain

$$
\lfloor x\rfloor!=\Gamma(\lfloor x\rfloor+1) \leq \Gamma(x)^{\{x\}} \Gamma(x+1)^{1-\{x\}}=\frac{\Gamma(x+1)}{x^{x-\lfloor x\rfloor}},
$$

whence $\lfloor x\rfloor!x^{x-\lfloor x\rfloor} \leq \Gamma(x+1)$. The proof is done.

According to Lemma 2,

$$
\begin{align*}
f(x) & \geq\lfloor x\rfloor!x^{\{x\}} \cdot \frac{e^{x+1 / 2}}{(x+1 / 2)^{x+1 / 2}} \\
& =\Gamma(\lfloor x\rfloor+1) \cdot \frac{e^{\lfloor x\rfloor+1 / 2}}{(\lfloor x\rfloor+1 / 2)^{\lfloor x\rfloor+1 / 2}} \cdot \frac{e^{\{x\}}(\lfloor x\rfloor+1 / 2)^{\lfloor x\rfloor+1 / 2} x^{\{x\}}}{(x+1 / 2)^{x+1 / 2}} \\
& =f(\lfloor x\rfloor) \cdot\left(\frac{\lfloor x\rfloor+1 / 2}{x+1 / 2}\right)^{\lfloor x\rfloor+1 / 2} \cdot e^{\{x\}} \cdot\left(\frac{x}{x+1 / 2}\right)^{\{x\}} \\
& =f(\lfloor x\rfloor) \cdot\left(\frac{x}{x+1 / 2}\right)^{\{x\}} \cdot\left(\frac{e}{\left(1+\frac{\{x\}}{\lfloor x\rfloor+1 / 2}\right)^{\frac{\lfloor x\rfloor+1 / 2}{\{x\}}}}\right)^{\{x\}} \\
& \geq f(\lfloor x\rfloor) \cdot\left(\frac{x}{x+1 / 2}\right)^{\{x\}} \cdot \tag{LW}
\end{align*}
$$

Similarly,

$$
\begin{align*}
f(x) & =\Gamma(x+1)\left(\frac{e}{x+1 / 2}\right)^{x+1 / 2} \\
& \leq\lfloor x\rfloor!\left(\frac{e}{x+1 / 2}\right)^{x+1 / 2}(\lfloor x\rfloor+1)^{\{x\}} \\
& =f(\lfloor x\rfloor)\left(\frac{\lfloor x\rfloor+1 / 2}{x+1 / 2}\right)^{\lfloor x\rfloor+1 / 2}\left(\frac{\lfloor x\rfloor+1}{x+1 / 2}\right)^{\{x\}} e^{\{x\}} \\
& =f(\lfloor x\rfloor)\left(\frac{e}{\left(1+\frac{\{x\}}{\lfloor x\rfloor+1 / 2}\right)^{\frac{\lfloor x\rfloor+1 / 2}{\{x\}}}}\right)^{\{x\}}\left(\frac{\lfloor x\rfloor+1}{x+1 / 2}\right)^{\{x\}} . \tag{RW}
\end{align*}
$$

The formulas $(L W)$ and $(R W)$ show that

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} f(n)
$$

and this fact combined with Burnside's formula (B) allows us to conclude that the limit of f at infinity is $\sqrt{2 \pi}$, that is,

$$
\lim _{x \rightarrow \infty} \Gamma(x+1)\left(\frac{e}{x+1 / 2}\right)^{x+1 / 2}=\sqrt{2 \pi}
$$

This ends the proof of Wilton's asymptotic formula.
It seems very likely that the above technique can be adapted to cover more accurate asymptotic formulas such as that of Gosper [4],

$$
n!\sim \sqrt{2 \pi\left(n+\frac{1}{6}\right)}\left(\frac{n}{e}\right)^{n}
$$

and of its extension to real numbers. This is also supported by our joint paper with D. E. Dutkay [3].

Additional information concerning the approximation of the Gamma function may be found in the recent paper of G. D. Anderson, M. Vuorinen and X. Zhang [1].

References

1. G.D. Anderson, M. Vuorinen and X. Zhang, Topics in Special Functions III. In vol. Analytic Number Theory, Approximation Theory and Special Functions (G.V. Milovanović and M.Th. Rassias eds.), pp. 297-345, Springer, 2014.
2. W. Burnside, A rapidly convergent series for $\log N!$, Messenger Math. 46 (1917), 157-159.
3. D.E. Dutkay, C.P. Niculescu and F. Popovici, A note on Stirling's formula for the Gamma function, Journal of Prime Research in Mathematics 8 (2012), 1-4.
4. R.W. Gosper, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA 75 (1978) 40-42.
5. C.P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.
6. G. Pólya and G. Szegö, Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions. Reprint of the 1978 edition. Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1998.
7. J.R. Wilton, A proof of Burnside's formula for $\log \Gamma(x+1)$ and certain allied properties of the Riemann s-function, Messenger Math. 52 (1922), 90-93.
${ }^{1}$ The Academy of Romanian Scientists, Splaiul Independentei No. 54, Bucharest, RO-050094 Romania.

E-mail address: cpniculescu@gmail.com
${ }^{2}$ College Grigore Moisil, Brasov, Romania.
E-mail address: popovici.florin@yahoo.com

