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To the memory of Tiberiu Popoviciu, on the occasion of his 110th birthday anniversary

Abstract. T. Popoviciu [11] has proved in 1965 an interesting characteriza-
tion of the convex functions of one real variable, relating the arithmetic mean
of its values and the values taken at the barycenters of certain subfamilies of
the given family of points. The aim of our paper is to prove an integral ana-
logue in the framework of absolutely continuous probability measures on the
real line.

1. Introduction

Fifty one years ago Tiberiu Popoviciu [11] published a striking result concerning
the averaging properties of convex functions. Its essence is as follows:

Theorem 1. If f is a convex function on an interval I, then
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for all x; y; z 2 I. The inequality is strict when f is strictly convex and the points
x; y; z are di¤erent from each other.

The book of Niculescu and Persson [6] o¤ers three di¤erent proofs; see Theorem
1.1.8, p. 12, Remark 1.5.5, p. 33 and the comments after Theorem 1.5.7 at p.
35). Many useful comments can be found in the monographs of Mitrinovíc [4] and
Peµcaríc, Proschan and Tong [9]. Some re�nements of (P ) appeared in [7], while in
[1] is outlined a higher dimensional analogue of Popoviciu�s inequality.
A Riemann integral analogue of Theorem 1 concerning convex functions de�ned

on compact intervals is presented in [5]. An important step in deriving that analogue
is the following remark:

Lemma 1. The inequality
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holds for all convex functions f : [a; b] ! R whose restrictions to the interval�
5a+3b
8 ; 3a+5b8

�
are a¢ ne functions.
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Lemma 1 warns that the Riemann integral analogue of Popoviciu�s inequality is
not just (R-IP ) (as it might appear at a �rst glance). Some extra terms should be
added to work for all convex functions. See [5] for details.
The aim of this paper is to discuss the continuous analogue of (P ) within the

framework of absolutely continuous probability measures � = 'dx on R having the
property that

(B)
Z
R
jxj'(x)dx <1:

The condition (B) assures that � has a barycenter, precisely the point

b� =

Z
R
x'(x)d�(x):

This framework encompasses a large variety of measures. First, the probability
measures 'dx supported by a compact interval [a; b] (and having the barycen-
ters

R b
a
x'(x)dx): Some other interesting examples on noncompact intervals are

(� log x)�(0;1)dx; (e�x)�(0;1)dx and
1p
2�
e�x

2=2dx; their barycenters are respec-
tively 1/4, 1 and 0.
In the next section we will describe an algorithm leading to an extension of

Lemma 1 in this framework (and generating integral analogues of Popoviciu�s in-
equality. This algorithm is illustrated in two special cases (those of the probability
measures 12 (sinx)�[0;�]dx and (e

�x)�(0;1)dx) in Sections 3 and 4 respectively. The
paper ends with conclusions and some open problems

2. The integral extension

We start searching for an extension of Lemma 1.

Problem 1. Let � = 'dx be a probability measure supported by an interval I that
veri�es the condition

R
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the inequality asked above is equivalent to the following one:

(IP )
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The next Lemma collects some useful remarks simplifying the analysis of the
inequality (IP ):

Lemma 2. (i) The set of all convex functions f 2 L1('(x)dx) which verify the
inequality (IP ) is a convex cone.
(ii) The inequality (IP ) works (as an equality) for every a¢ ne function.
(iii) One can reduce the analysis of (IP ) to the case of continuous convex func-

tions, by modifying the values at the �nite endpoints (if necessary).

Proof. The assertions (i) and (iii) are clear. The assertion (ii) reduces the case of
a¢ ne functions Ax+B to the case of the identity function, f(x) = x: In this case,Z

I

f(x)'(x)dx+ f

�Z
I

x'(x)dx

�
= 2

Z
I

x'(x)dx:

On the other hand, denoting Ix� = I \ (�1; x]; we have
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and the proof of (ii) is done. �

Lemma 3 and Lemma 4 below provide a density argument that reduce the proof
of inequality (IP ) to the case of piecewise linear convex functions.

Lemma 3. Suppose that the function f veri�es the assumptions accompanying
(IP ): Then for every " > 0 there exists a piecewise linear convex function f" such
that Z

R
jf(x)� f"(x)j'(x)dx < ":
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Lemma 4. (T. Popoviciu [10]; see also [6], p. 34): Let f : [a; b]! R be a piecewise
linear convex function. Then f is the sum of an a¢ ne function and a linear com-
bination, with positive coe¢ cients, of translates of the absolute value function. In
other words, f is of the form

f(x) = Ax+B +
nX
k=1

�k (x� ck)+

for suitable A;B 2 R and suitable nonnegative coe¢ cients �1; : : : ; �n.

As a consequence of the last three lemmas the proof of inequality (IP ) reduces
to the case of convex functions of the form

f(x) = (x� c)+;

where c is a real parameter. In other words, the critical case is that of inequalities
of the formZ
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equivalently,

(IPS)
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The analysis of this simpli�ed form of the inequality (IP ) gives in principle the
intervals where f must be a¢ ne. Unfortunately, at this level of generality the
continuation will be too intricate and the reader will not see the forest for the trees.
Thus, for the sake of clarity, we will detail in the next two sections the particular
cases of the probability measures 12 (sinx)�[0;�]dx and (e

�x)�(0;1)dx respectively.

3. The case of � = 1
2 (sinx)�[0;�]dx

The probability measure � = 1
2 (sinx)�[0;�]dx has the barycenter b� =

�
2 and

the inequality (IPS) is equivalent to the fact that
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If c � 0; we have
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If c 2 [0; �=2]; the expression E becomes
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Using elementary calculus one can easily show that E < 0: See Fig. 1 for the graph
of E in this case.
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Figure 1. The graph of the function 3
2x� � �

1
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3
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2x cos 2x



6 CONSTANTIN P. NICULESCU AND GABRIEL T. PR µAJITUR µA

When c 2 [�=2; �];

E =
1
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and E � 0 if and only if c 2 [u�; v�]; where

u� = 1: 782 848 790 ::: and v� = 2:412 885 603:::

are the two roots of the equation

1

2
� � x� 1

2
sinx� 1

4
sin 2x+

1

2
sin 4x� 1

2
x cos 2x� 1

2
x cos 4x = 0

in the interval [�=2; �]. See also Fig. 2.
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Figure 2. The graph of the function E on the interval [�=2; �].

Consequently, the analogue of Lemma 1 in the case of the probability measure
1
2 (sinx)�[0;�]dx is as follows:

Lemma 5. In the case of the probability measure � = 1
2 (sinx)�[0;�]dx; the in-

equality

1
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Z �

0

f(x) sinxdx+ f
��
2
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� 4
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f

�
t+ x

2

�
sin tdt

�
sinxdx

works for all continuous convex functions f : [0; �] ! R whose restrictions to the
intervals [0; u�] and [v�; �=2] are a¢ ne functions.
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Proof. In fact, the above formula works precisely for all convex functions f : [0; �]!
R in the closed convex cone generated by the a¢ ne functions and the functions of
the form (x � c)+ with c 2 [u�; v�]. See remarks (1)-(4) in Section 2. On the
intervals [0; u�] and [v�; �=2] these functions should be a¢ ne since the limit of a
pointwise convergent sequence of a¢ ne functions is itself a¢ ne. �

In the general case of an arbitrary continuous convex function F on [0; �], the
analogue of Popoviciu�s inequality results form Lemma 5, by applying it to the
function

f(x) =

8><>:
F (0) + F (u�)�F (0)

u� x if x 2 [0; u�]
F (x) if x 2 [u�; v�]

f (v�) + f(�=2)�f(v�)
�=2�v� (x� v�) if x 2 [v�; �=2]:

4. The case of � = (e�x)�(0;1)dx

The barycenter of the probability measure (e�x)�(0;1)dx is 1 and the inequality
(IPS) is equivalent to the fact that

E =

Z 1

0

(x� c)+e�xdx+ (1� c)� 2
Z 1

0

�Z x

0

(t+ x� 2c) e�tdt
�
e�xdx

is nonnegative.
If c � 0; the inequality (IPS) fails because
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0

(x� c)e�xdx+ (1� c)� 2
Z 1

0

�Z x

0

(t+ x� 2c) e�tdt
�
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= 2� 2c� 2
Z 1

0

�
x� e�x � xe�x + 2c

�
e�x � 1

�
+ 1
�
e�xdx

= 2� 2c� 2
�
5

4
� c
�
= �1

2
< 0:

If c � 0; the inequality (IPS) is equivalent to

E =

Z 1

c

(x� c)e�xdx+ (1� c)+

� 2
Z 2c

c

�Z x

2c�x
(t+ x� 2c) e�tdt

�
e�xdx� 2

Z 1

2c

�Z x

0

(t+ x� 2c) e�tdt
�
e�xdx

= e�c + (1� c)+ � 2
Z 2c

c

�
ex�2c � e�x + 2ce�x � 2xe�x

�
e�xdx

� 2
Z 1

2c

�
x� 2c� e�x + 2ce�x � 2xe�x + 1

�
e�xdx

= e�c + (1� c)+ � 2e�2c
�
c+ e�2c + ce�2c � 1

�
+ 2e�2c

�
e�2c + ce�2c � 2

�
= e�c + (1� c)+ � 2e�2c (c+ 1) � 0:

Thus

E =

�
e�c + 1� c� 2e�2c (c+ 1) if c 2 [0; 1]

e�c � 2e�2c (c+ 1) if c 2 [1;1);
and (using calculus) one can prove that

E � 0 if and only if c 2 [0; c�] [ [d�;1);
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where
c� = 0:520 120 114 :::

is the positive solution of the equation e�x + 1� x� 2e�2x (x+ 1) = 0 and
d� = 1: 678 346 990:::

and d� = 1: 678 346 990::: is the solution of the equation e�x � 2e�2x (x+ 1) = 0:
Combining this fact with Lemma 2 above we infer the following result:

Lemma 6. In the case of the probability measure � = (e�x)�(0;1)dx; the inequalityZ 1

0

f(x)e�xdx+ f (1) � 4
ZZ

f(t;x)2(0;1)2: t<xg
f

�
x+ t

2

�
e�x�tdxdt

works for all continuous convex functions f 2 L1(�) whose restrictions to the in-
terval [c�; d�] are a¢ ne functions.

Proof. In fact, the above formula works precisely for all convex functions f :
(0;1) ! R in the closed convex cone generated by the a¢ ne functions and the
functions of the form (x + c)+ with c 2 [0; c�] [ [d�;1). In the interval [c�; d�)
these functions should be a¢ ne since the limit of a pointwise convergent sequence
of a¢ ne functions is itself a¢ ne. �

In the general case of an arbitrary continuous convex function F on [0;1), the
analogue of Popoviciu�s inequality results form Lemma 6, by applying it to the
convex function

f(x) =

�
F (x) if x 2 [0; c�] [ [d�;1)

F (c�) + F (d�)�F (c�)
d��c� (x� c�) if x 2 [c�; d�];

obtained from F by replacing the portion over [c�; d�] by the a¢ ne function joinings
the points (c�; F (c�)) and (d�; F (d�)) :

5. Conclusions and some open problems

The two examples detailed above outline a big di¤erence between the discrete
Popoviciu�s inequality and its continuous analogue. While the discrete case works
for all convex functions, the continuous case imposes certain restrictions (that
depend on the measure under attention).
An interesting phenomenon is the existence of probability measure on R for which

its corresponding Popoviciu�s inequality works only for a¢ ne functions. Indeed, if
�1 = '1dx and �2 = '2dx are absolutely continuous probability measures on R
having the property thatZ

R
jxj'k(x)dx <1 for k = 1; 2;

then � = ('1 + '2)dx also admits barycenter and the cone C of convex functions
for which the integral Popoviciu�s inequality works for � equals the intersections of
the cones C1 and C2 corresponding to �1 and �2 respectively.
We end our paper with some open problems that might be of interest.

Problem 2. The measure 1
2 (sinx)�[0;�]dx is symmetric with respect to its barycen-

ter �=2 but the interval [u�; v�] that appears in Lemma 4 is not. How can this fact
be explained?
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Problem 3. How will the integral analogue of Popoviciu�s inequality look in the
case of the Gaussian measure 1p

2�
e�x

2=2dx?

Our algorithm seems not practical in this case because it leads to the evaluation
of integrals containing the error function

erf(x) =
2p
�

Z x

0

e�x
2=2dx:

Problem 4. How do the various integral analogues of Popoviciu�s inequality relate
to other known inequalities?
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