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Abstract. A well known result due to van der Waerden asserts that
given a finite partition of N, one of the subsets contains arbitrarily long finite
arithmetic progressions. We shall show that actually all abelian semigroups
play a similar combinatorial property. Our approach depends on techniques
from topological dynamics and it was inspired by a paper due to Furstenberg
[1].

1. Introduction

In what follows A will denote an abelian semigroup endowed with a law of multipli-
cation ∗ :

∑×A → A with elements of a countable semigroup
∑

, such that, denoting
both semigroups additively, the following two conditions are fulfilled:

0 ∗ x = 0

(α + β) ∗ x = α ∗ x + β ∗ x.

The simplest example of such a structure on every semigroup A is the natural
multiplication with elements of N,

0 ∗ x = x

n ∗ x = x + ... + x︸ ︷︷ ︸
n times

if n > 0.

At the other extreme there are exotic examples such as
∑

=
∞∏

n=1
GL(n,Z), A =

(C?)N
?

and
(α ∗ x)(n) = (det α(n))x(n) , for n > 0.

We shall call the ordered finite subsets of A configurations in A. A configuration
Q = {y1, ..., yn} mimics (modulo ∗) the configuration P = {x1, ..., xn} provided there
exist α ∈ ∑ \ {0} and z ∈ A such that

yk = z + α ∗ xk for all k.

0Partially supported by CNCSU Grant no. 3006/B15/1994.
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Notice that mimicry is not in general an equivalency relation and could be trivial
in the presence of torsion.

If P is an arithmetic progression and Q mimics P , then Q is also an arithmetic
progression. Due to that fact, the following theorem extends the van der Waerden
aforementioned result:

Theorem 1. Suppose that both A and
∑

are groups. Then for every configuration
P in A and every finite partition

A = C1 ∪ ... ∪ Cr

one of the sets Ck contains a configuration Q that mimics P.
Moreover, the semigroup version is valid provided

∑
and A are both commutative.

Theorem l has been announced (for ∗ the natural multiplication with elements
of N) at The XVth Operator Theory Conference, Timisoara, June 6 - 10, 1994. See
[4], which includes also the remark that Theorem l can fail without the assumption
on commutativity of A. It is perhaps worthwhile to mention that the above result
depends heavily on the concept of mimicry we work with. For example, α cannot be
eliminated by considering only translates. See the two-pieces partition

( ∞⋃
n = - ∞

{ z | 2n ≤ Re z < 2n + 1}
) ⋃ ( ∞⋃

n = - ∞
{ z | 2n + 1 ≤ Re z < 2n + 2}

)

of C and the configuration P = {0, 1, i, 1 + i} .
The proof of Theorem l relies on an extension of Birkhoff recurrence theorem,

which in the discrete case was first noticed by Furstenberg and Weiss [2] (see also
[1]):

Theorem 2. Let Φ1 , ... , ΦN : G × X → X be pairwise commuting continuous
actions of the recurrent group G on a compact metric space X. Then there exist
points x in X and sequences (sn)n in S such that sn →∞ and

Φ1(sn, x) → x , . . . , ΦN(sn, x) → x

simultaneously as n →∞.

The precise meaning of the term recurrent group will be given in the next section.
We shall only mention here that all locally compact noncompact abelian groups as
well as all discrete countable groups are recurrent. Theorem 2 will be proved by
induction, the initial step being a particular case of Poincaré recurrence theorem.
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For the sake of completeness, the basic facts on Poincaré recurrence (for actions of
locally compact groups) will be detailed in the next section.

It is not very clear wheather Theorem 2 can be in turn derived from Theorem l.
However, the later is strong enough to motivate significant cases of recurrence such
as the translation on the n− dimensional torus Tn. See section 5 for details.

2. Review on Poincaré recurrence

In what follows X will denote a locally compact Hausdorff space on which acts con-
tinuously a σ− compact noncompact group G = (G, ·), with unit e. Then there is
defined a continuous function Φ : G × X → X, Φ(g, x) = gx, called a continuous
action, so that the following conditions are fulfilled:

A1) ex = x, (∀ ) x ∈ X
A2) g(hx) = (gh)x, ( ∀) g, h ∈ G, (∀ ) x ∈ X.
As a consequence, for each g in G, the mapping

Φg : X → X, Φg(x) = gx

is a homeomorphism.
Letting x in X, the set Gx = {gx| g ∈ G} is known as the orbit (or trajectory) of x.

The actions such that Gx = X for every x ∈ X are said to be minimal ; particularly,
this is the case when the action is transitive i.e., when X itself is an orbit. In the
sequel we shall be interested in the behavior of orbits when g approaches infinity i.e.,
eventually outside each compact subset of G.

Given a neighbourhood V of x, we say that x returns to V provided for each
compact subset K of G there exists a g such that gx ∈ G. A point x is called
recurrent (with respect to a fixed action) if it returns in each neighbourhood of it
i.e., there exists a sequence (gn)n in G such that

gn →∞ and gn → x.

Theorem 3. (Poincaré recurrence theorem) Assume the existence of a probability
Radon measure µ on X, invariant under the action Φ i.e.,

µ(Φ−1
g (B)) = µ(B)

for every Borel subset B of X.
Let A be an open subset of X such that µ(A) > 0. Then almost every point of A

returns to A.

Proof. For each compact neighbourhood K of e, consider the set

AK = {x | x ∈ A and gx /∈ A for all g ∈ G \ K} .
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Clearly, AK is closed. We shall show that µ(AK) = 0. For, given n ∈ N? , choose
a family {g1, ..., gn} of elements of G \ K such that

gk+p ... gk+1gk ∈ G \ K provided 1 ≤ k ≤ ... ≤ k + p ≤ n.

We use here the fact that G is noncompact.
The sets Φ−1

gk ... g1
(AK) are mutually disjoint because

Φ−1
g (AK) ∩ AK = Ø for all g ∈ G \ K.

Then

1 = µ(X) ≥
n∑

k = 1

µ(Φ−1
gk ... g1

(AK)) = n · µ(AK)

which leads to the conclusion that µ(AK) = 0.
The proof ends by considering an exhaustion of G by an increasing set of compact

subsets Kn (such that Kn ⊂ Int Kn for all n). In fact, every point of A \ ∪∞n = 0AKn

returns to A. 2

Corollary 4. Suppose in addition that X is a separable metric space. Then almost
every point of X is recurrent.

Proof. Cover X by countable many open balls of radius ε/2 and apply the result
of Theorem 3 above to each of them. We obtain that almost every point of X returns
to within ε to itself. Since ε > 0 is arbitrary, we conclude that almost every point of
X is recurrent. 2

A classical result due to Kakutani and Markov guarantees the existence of in-
variant probability Radon measures for each continuous action of a locally compact
abelian group on a compact metric space. See [5], p. 59. Since the action of every lo-
cally compact abelian semigroup can be embeded into the action of a locally compact
abelian group, from Theorem 3 and the discussion above we infer the following

Corollary 5. (Birkhoff recurrence theorem). Suppose Φ is a continuous action of a
σ - compact noncompact abelian semigroup S on a compact metric space X. Then
there exist sequences (sn)n of elements of S and points x ∈ X such that

sn →∞ and snx → x

as n →∞.
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The result of Corolary 5 applies primarily to the dynamical systems associated to
hamiltonians,

dx

dt
= −∂H

∂y

dy

dt
=

∂H

∂x
.

The fact that Lebesgue measure is invariant under the action of such a system is
known as Liouville‘s theorem.

Clearly, the condition of abelianity in Corollary 5 above can be relaxed up to
amenability and even beyond that. Think at the case of a discrete group (e.g. SL(2,
Z) ) that contains a subgroup isomorphic to Z. In this connection it seems worthwhile
to put things in an abstract setting:

Definition 6. A σ - compact noncompact semigroup S is said to be recurrent pro-
vided the assertion of Birkhoff recurrence theorem is valid for all continuous actions
of S on any compact metric space.

Recurrence can be derived (even in a stronger form) in pure topological terms
when the action is exerted by a metrizable group.

Proposition 7. Suppose that G is a σ− compact noncompact metrizable group and
Φ : G×X → X, Φ(g, x) = gx, is a continuous action of G on a compact metrizable
space.

Then Φ admits uniformly recurrent points (i.e. points z ∈ X such that for any
ε > 0 there exists R > 0 such that in any open ball in G with diameter ≥ R there
exists a g with d(gz, z) < ε ).

Proof. Assume first that Φ is minimal. We shall show that each point of X is
uniformly recurrent.

In fact, let U be a nonempty open subset of X. Then the set ∪g∈Gg−1U is open,
nonempty and invariant, so is complement is closed and invariant. Because Φ is
minimal, it follows that

X = ∪g∈Gg−1U.

Taking into account the compactness of X we can find g1, ... , gN in G such that

X = ∪N
k = 0g

−1
k U. (1)
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Since G is metrizable, we can assume the topology of G is given by a right invariant
metric d. See [3], Theorem 8.3. Then choose

R = max {d(e, gk) | 0 ≤ k ≤ N} .

If x ∈ X and g ∈ G, then by (1) we infer that one of the points g0gx , ... , gNgx
belongs to U. Or,

gkg ∈ BR(g) for k = 0, ..., N.

When Φ is not minimal, an easy application of Zorn ’ s Lemma yields that the
restriction of Φ to a certain nonempty closed subset of X is minimal. 2

Proposition 7 allows us to include in the list of recurrent groups examples such as
∞∏

n = 1
U(n), SL(n,Z), S(∞) =lim→ S(n) (the infinite symmetric group) and GL(∞,Fq).

3. Multiple recurrence

The aim of this section is to extend Birkhoff recurrence theorem to families of pairwise
commuting actions.Our approach was inspired by previous work due to Furstenberg
and Weiss, who treated a special case. See [1] and [2] for details.

As in the precedent section, G will denote a σ− compact noncompact group and
Φ : G ×X → X, Φ(g, x) = gx, a continuous action of G on a compact metric space
X.

A closed subset A of X is called recurrent provided for any ε > 0 and any compact
subset H of G there exist points x and y in A and g in G \ H such that

d (gx, y) < ε.

A natural question is the following: When the points of a recurrent set are recur-
rent ?

Let us call a subset A of X homogeneous (respectively weakly homogeneous), with
respect to Φ, provided there exists a group G of homeomorphisms of X, commuting
with Φ (i.e., Φ(g, · ) ◦ S = S ◦ Φ(g, · ) for every g ∈ G and every S ∈ G ),which
leave A invariant and act transitively (respectively minimally) on A.

Proposition 8. Every weakly homogeneous recurrent set contains a recurrent point.

Because every homeomorphism S ∈ G maps recurrent points into recurrent points,
from Proposition 8 we infer immediately the following :
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Theorem 9. If A is a homogeneous recurrent set, then every point of A is recurrent.
If A is weakly homogeneous and recurrent, then A contains a dense subset of recurrent
points.

In order to prove Proposition 8 we need a technical lemma:

Lemma 10. Suppose A is a weakly homogeneous recurrent set. Then for any ε > 0
and any compact subset H of G there exist points z ∈ A and g ∈G \ H such that

d(gz, z) < ε.

Proof. Our argument needs two steps :
Step 1. Under the above hypotheses, for any ε > 0, any y ∈ A and any compact

subset H of G there exist x ∈ A and g ∈ G \ H such that

d(gx, y) < ε.

In fact, because A is weakly homogeneous, there exist sequences (xn)n and (yn)n

in A and sequences (gn)n in G such that

gn →∞ and d(gnxn , yn) → 0

as n →∞.
Because A is compact, we can assume (by passing to a subsequence if necessary)

that (yn)n is convergent, say to u. Then u has the property that for every ε > 0 and
every compact subset H of G there exist x ∈ A and g ∈ G \ H such that d(gx, u) < ε.
The set of all such u is closed and invariant under G. Because G acts minimally on
A, the aforementioned property holds for every point of A.

Step 2. Let H be a compact subset of G and let ε > 0. We shall exhibit inductively
a sequence (zn)n of elements of A, one of which will satisfy the required condition for
z.

Set ε1 = ε/2 and choose arbitrarily z0 in A. By Step 1, there exist z1 ∈ A and
g1 ∈ G \ H such that

d(g1z1 , z0) < ε1.

Now choose ε2 ∈ (0, ∞) such that

d(z, z1) < ε2 in A implies d(g1z, z0) < ε1.

Again by Step 1, we can choose z2 ∈ A and g2 ∈ G \ (H ∪ g−1H) such that

d(g2z2 , z1) < ε2.
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Then we shall have g1g2 /∈ H and

d(g1g2z2 , z0) < ε1.

Proceeding this way, succesive εk, zk, gk are chosen so that

gigi + 1 ... gj /∈ H

d(gigi + 1 ...gjzj, zi) < εj + 1

ε/2 = ε1 > ε2 > . . . > εi > . . . > εj

whenever i < j.
Because A is compact, for some i < j we shall have d(zi , zj) < ε1 so that

d(gigi + 1 . . . gjzj , zj) < εj + 1 + ε1 < ε.

The proof ends by letting g = gigi + 1 ...gj and z = zj for the corresponding pair
(i, j). 2

Proof of Proposition 8. Let A be a weakly homogeneous recurrent set for Φ
and put

F (x) = lim inf
g→∞ d(gx, x), x ∈ X.

Clearly, a point x is recurrent if F(x) = 0, so we shall be looking for points
vanishing F. In this setting, let us remark that F is upper semicontinuous, so it has
a point of continuity (say u) when restricted to A. We shall show that F(u) = 0.

In fact, if F(u) > 0, then we can find a relatively open nonempty subset V of A
and a δ > 0 such that

F (x) > δ for every x ∈ V.

Let G be as in the definition of a weakly homogeneous subset. Then
⋃

S∈G
S(V )

is a G - invariant open subset of A for which, by the minimality and compactness of
A , there exists a finite subset G0 of G such that

A =
⋃

S∈G0

S(V) .

For each S ∈ G0 ,

F (S−1x) = lim inf
g →∞ d(gS−1x, S−1x) =

= lim inf
g→∞ d(S−1gx, S−1x)
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and thus for δ > 0 given above we can choose a ε > 0 such that

F (x) < ε implies F (S−1x) < δ.

Letting ε̃ as the minimum of the corresponding ε′ s, we shall have F (x) ≥ ε̃ for
all x ∈ A. In fact, then F (y) = F (S−1

0 x) < δ, in contradiction with the choice of δ.
However, by Lemma 10 above can’t be such a ε̃ and thus we conclude that F (u) =

0. 2

We can prove now the following generalization of Birkhoff recurrence theorem:

Theorem 11. Let Φ1 , . . . , ΦN be continuous actions of the recurrent group G on
the compact metric space X, such that

Φj(g, Φk(h, ·)) = Φk(g, Φj(h, ·))

for all j,k ∈ {1, ..., N} and all g,h ∈ G. Then there exist points x in X and sequences
(gn)n in G such that gn →∞ and

Φ1(gn, x) → x, ..., ΦN(gn, x) → x

as n→∞.

Proof. This is done by induction on N. For N = 1, the assertion follows from
Corollary 5.

Suppose the result has been established for all families of N - 1 commuting actions
and we are given N commutting actions Φ1, ..., ΦN . We can attach to them the action

Φ : G×XN → XN , Φ(g, x1, ..., xN) = (Φ1(g, x1), ..., ΦN(g, xN)).

Let G0 be the group generated by all homeomorphisms Φi(g, · ), where i ∈
{1, ..., N} and g ∈ G. Without loss of generality we can assume that G0 acts minimally
on X . Then the group

G = { T × ...× T | T ∈ G0}
acts minimally on the diagonal ∆ of XN and commutes with Φ.

∆ is also a recurrent set for Φ. In fact, by using the induction hypotheses for the
N - 1 actions

Φ1(g, ΦN(g−1, x)), . . . , ΦN−1(g, ΦN(g−1, x))

we obtain a sequence (gn)n of elements of G and a point z of X such that gn → ∞
and

Φ1(gn, ΦN(g−1
n , x)) → x, . . . , ΦN−1(gn, ΦN(g−1

n , x)) → x.



Birkhoff recurrence theorem and combinatorial properties of abelian semigroups 10

Then, for n sufficiently large,

d(Φ(gn, u), v) < ε

where u = (ΦN(g−1
n , x), . . . , ΦN(g−1

n , x)) and v = (z, . . . , z). Because u and
v both belongs to ∆, it follows that ∆ is a weakly homogeneous recurrent set for Φ
and Proposition 8 applies. 2

Theorem 2 can now be derived easily from Theorem 11, due to the fact that
all continuous actions of abelian semigroups extend to continuous actions of abelian
groups and abelian groups are recurrent.

4. Proof of Theorem 1

We consider
∑

endowed with the discrete topology. Let P = {x1, ..., xp} be a config-
uration in A and let

A = C1 ∪ ... ∪ Cr

a finite partition of A. Consider the compact Hausdorff space

Ω = {1, ... , r}A

endowed with the product topologgy and let ξ be the point of Ω given by

ξ(x) = k if and only if x ∈ Ck.

Then the actions Φk :
∑×Ω → Ω (k ∈ {1, ..., p}) given by

Φk(α, ω) = ω(x + α ∗ xk)

are continuous and mutually commuting. We use here the commutativity of A .
The smallest closed subset X of Ω, containing ξ and invariant under the action of

Φ1, ..., Φp , is precisely the closure of the sequence of translates of ξ i.e.

X =

{
ξ(x +

p∑

i = l

αk ∗ xk) | αk ∈
∑

, 1 ≤ k ≤ p

}
.

Consequently, X is compact and separable and thus metrisable. By Theorem 3,
there exist η ∈ X and α ∈ ∑ \ {0} such that

Φ1(α, η)(0) = ... = Φp(α, η)(0)

i.e. η(α ∗x1) = ... = η(α ∗xp). Due to the definition of X , one can find a z ∈ A such
that

ξ(z + α ∗ x1) = ... = ξ(z + α ∗ xp)

so letting k the common value, the later means that z + α ∗ x1 ,..., z + α ∗ xp belong
to Ck . 2
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5. Groups extensions and recurrence

Let Φ : G×X → X, Φ(g, x) = gx, a continuous action (of a σ− compact noncompact
group on a compact metric space ) and let K be a compact metric group, with unit
1; as in section 2, the group operations will be denoted multiplicatively and e will
designate the unit of G.

By a (K− valuated) cocycle of Φ we shall mean any continuous function α :
G×X → K that satisfies the following two conditions:

C1) α(e, x) = 1
C2) α(gh, x) = α(g, hx) · α(h, x).
One can attach to each cocycle α of Φ a group extension Φoα K : G×X ×K →

X ×K (the skew product of Φ by K), where

(Φoα K)(g, (x, k)) = (gx, α(g, x)k).

Lemma 12. A point (x, k) ∈ X × K is recurrent for Φ oα K if and only if x is
recurrent for Φ.

Proof. Notice first that the sets {x} × K are homogeneous. In fact, a family of
homeomorphisms of X ×K, commuting with Φoα K, consists of the mappings

(x, k) → (x, kk
′
),

where k
′
runs over K. It remains to apply Theorem 9 in conjunction with the fact

that {x} ×K is recurrent for Φoα K if and only if x is recurrent for Φ. 2

Corollary 13. Let G and K be as above and let χ : G → K a morphism of contin-
uous groups. Then there exists a sequence (gn)n of elements of G such that gn →∞
and χ(gn) → 1.

Consequently, letting fixed two such morphisms χ1 and χ2, each point of K is
recurrent with respect to the action

Φ : G×K → K, Φ(g, k) = χ1(g) χ2(g).

Proof. It suffices to notice that Φ is essentially a group extension of the constant
action G× {1} → {1} via the cocycle

α(g, 1, k) = (1, χ1(g)χ2(g)). 2

For finite groups, Corollary 13 asserts their periodicity.
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The group morphisms χ : Z →K are of the form χ(n) = kn
0 ( for a suitable k0)and

any cocycle α of Φ(n, k) = kn
1 k k−n

2 is associated to a pair of continuous functions
fl , f2 : G → K by the formulas

α(0, k) = 1

α(1, k) = f1(k)f2(k)

α(2, k) = f1(k0k)f1(k)f2(kk0)

...

A very special case of the above discussion is as follows:

Proposition 14. Let K be a compact metrizable group and let k1, ... , kp be elements
of K. Then there exist sequences (mn)n of natural numbers such that mn →∞ and

kmn
1 → k1 , ... , kmn

p → kp

simultaneously as n →∞.

The restriction on compactness in Proposition 14 above appears to be essential.
Think at the abelian group

{(
a 0
0 b

)
| a, b ∈ R?

}
.

Proposition 14 was previously known for K = T. For K = S3 (viewed as the
group of unitary quaternions) and K = U(n) it yields non-commutative counterparts
that extend (in different ways) the case of T.

Not surprisingly, Proposition 14 can be derived from Theorem 1. In fact, consider
the natural multiplication α : N×K → K, α(n, k) = kn , and let d be an invariant
metric on K. As a configuration in K we take {1, k1, ..., kp} . Then by considering
succesive partitions of diameters < l / 2n , we get a sequence (mn)n of naturals such
that 1, kmn

1 ,... , kmn
p are within 1 / 2n of each other. Consequently,

kmn
1 → 1 , ... , kmn

p → 1

as n →∞ and thus
kmn + 1

1 → k1 , ... , kmn +1
p → kp

as n →∞.
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