CONVERSES OF THE CHAUCHY-SCHWARZ INEQUALITY IN THE C^{\star}-FRAMEWORK

CONSTANTIN P. NICULESCU

Abstract. We present several multiplicative and addtive converses of the Cauchy-Schwarz inequality in the framework of C^{\star}-algebra theory. Our results complements those obtained by M. Fujii, T. Furuta, R. Nakamoto and Sin-Ei Takahasi [4] and S. Izumino, H. Mori and Y. Seo [6].

The classical Cauchy-Schwarz inequality asserts that

$$
|<x, y>|^{2} \leq<x, x>\cdot<y, y>
$$

for every x, y in a vector space E endowed with a hermitian product $<., .>$. There are two ways to formulate a converse to it. In the multiplicative approach (initiated by G. Polya and G. Szegö [11]), we are looking for a positive constant k such that

$$
|<x, y>|^{2} \geq k<x, x>\cdot<y, y>
$$

for all x, y in a suitable cone. The restriction to cones is motivated by the formula

$$
\cos (x, y)=\frac{<x, y>}{\left\langle x, x>^{1 / 2} \cdot<y, y>^{1 / 2}\right.} .
$$

The additive approach (initiated by N. Ozeki [6]) refers to inequalities such as

$$
k+|<x, y>|^{2} \geq<x, x>\cdot<y, y>
$$

with $k>0$.
The aim of our paper is to discuss both these types of converses in the framework of C^{\star}-algebra theory and complements recent papers by M. Fujii, T. Furuta, R. Nakamoto and Sin-Ei Takahasi [4] and S. Izumino, H. Mori and Y. Seo [6].

1. Multiplicative converses

Let \mathfrak{A} be a C^{\star}-algebra and let φ be a positive functional on \mathfrak{A}. Then the formula

$$
<A, B>=\varphi\left(B^{\star} A\right)
$$

defines a hermitian product on \mathfrak{A} (first considered by Gelfand, Naimark and Segal), so that

$$
|<A, B>| \leq\langle A, A\rangle^{1 / 2} \cdot\langle B, B\rangle^{1 / 2}
$$

for every $A, B \in \mathfrak{A}$.

1991 Mathematics Subject Classification. Primary 46L05; Secondary 35J25, 46L80.
Key words and phrases. C^{\star}-algebra, self-adjoint element, positive functional.
Presented to the 17th International Conference on Operator Theory, Timisoara, June 22-26, 1998.

Partially supported by CNCSIS Grant D4. Published in Analele Universităţii din Craiova, seria matematică-informatică, $\mathbf{2 5}$ (1999), 22-28.

A partial (multiplicative) converse of this Cauchy-Schwarz inequality is as follows:

Theorem 1.1. Suppose that $A, B \in \operatorname{Re} \mathfrak{A}$ and

$$
\omega B \leq A \leq \Omega B
$$

for some scalars $\omega, \Omega>0$. Then

$$
\frac{\mathrm{Re}\langle A, B\rangle}{\langle A, A\rangle^{1 / 2} \cdot\langle B, B\rangle^{1 / 2}} \geq \frac{2}{\sqrt{\frac{\omega}{\Omega}}+\sqrt{\frac{\Omega}{\omega}}}
$$

in each of the following two cases:
i) $A B=B A$ (i.e., A and B commute);
ii) φ verifies the condition $\varphi(X Y)=\overline{\varphi(Y X)}$ for every $X, Y \in \mathfrak{A}$ (particularly, this is the case if φ is a trace).
Proof. We start noticing the inequality

$$
\begin{equation*}
\operatorname{Re} \varphi((A-\Omega B)(A-\omega B)) \leq 0 . \tag{*}
\end{equation*}
$$

For, when A and B commute, $A-\omega B$ and $\Omega B-A$ are commutative positive elements and thus their square roots commute too. Consequently

$$
(A-\omega B)(\Omega B-A)=(A-\omega B)^{1 / 2}(\Omega B-A)(A-\omega B)^{1 / 2} \geq 0 .
$$

In the case ii), we have

$$
\begin{aligned}
\varphi((\Omega B-A)(A-\omega B)) & =\varphi\left((\Omega B-A)^{1 / 2}(\Omega B-A)^{1 / 2}(A-\omega B)\right)= \\
& =\varphi\left((\Omega B-A)^{1 / 2}(A-\omega B)(\Omega B-A)^{1 / 2}\right) \geq 0 .
\end{aligned}
$$

Once (*) established we have

$$
\begin{aligned}
0 & \geq \operatorname{Re}\langle A-\omega B, A-\Omega B\rangle= \\
& =\langle A, A\rangle-(\omega+\Omega) \operatorname{Re}\langle A, B\rangle+\omega \Omega\langle B, B\rangle
\end{aligned}
$$

which yields

$$
\begin{aligned}
\left(\sqrt{\frac{\omega}{\Omega}}+\sqrt{\frac{\Omega}{\omega}}\right) \operatorname{Re}\langle A, B\rangle & \geq \frac{1}{\sqrt{\omega \Omega}}\langle A, A\rangle+\sqrt{\omega \Omega}\langle B, B\rangle \geq \\
& \geq\langle A, A\rangle^{1 / 2} \cdot\langle B, B\rangle^{1 / 2}+\langle B, B\rangle^{1 / 2} \cdot\langle A, A\rangle^{1 / 2}
\end{aligned}
$$

Given a self-adjoint element $C \in \mathfrak{A}$, its spectral bounds are defined by the formulas

$$
\omega_{C}=\inf \sigma(C), \quad \Omega_{C}=\sup \sigma(C) ;
$$

accordingly, C is called strictly positive (i.e., $C>0$) if $\omega_{C}>0$. If \mathfrak{A} is unital (with unit I) and A and B are strictly positive then

$$
\omega_{A} I \leq A \leq \Omega_{A} I \quad \text { and } \quad \omega_{B} I \leq B \leq \Omega_{B} I
$$

which yields

$$
\frac{\omega_{A}}{\Omega_{B}} B \leq A \leq \frac{\Omega_{A}}{\omega_{B}} B .
$$

Corollary 1.2. (W. Greub and W. Rheinboldt [5]). If H is Hilbert space and $A, B \in L(H, H)$ are two strictly positive operators such that $A B=B A$, then

$$
\frac{<A x, B x>}{<A x, A x>^{1 / 2}<B x, B x>^{1 / 2}} \geq \frac{2}{\sqrt{\frac{\omega_{A} \omega_{B}}{\Omega_{A} \Omega_{B}}}+\sqrt{\frac{\Omega_{A} \Omega_{B}}{\omega_{A} \omega_{B}}}}
$$

for every $x \in \mathbb{R}^{n}, x \neq 0$.
This inequality corresponds to the case where $\mathfrak{A}=L(H, H)$ and φ is the positive functional given by

$$
\varphi(A)=<A x, x>
$$

Notice that $\varphi(A B)=\overline{\varphi(B A)}$ for every self-adjoint operators $A, B \in L(H, H)$.
In turn, the inequality of Greub and Rheinboldt extends many other classical inequalities such as that of Polya and Szegö (which represents the case of diagonal matrices) and that of L. V. Kantorovich (which represents the case where $A, B \in$ $\operatorname{Re} M_{n}(\mathbb{C})$ and $\left.B=A^{-1}\right)$:

Corollary 1.3. (G. Polya and G. Szegö [11]). Suppose that $0<a \leq a_{1}, \ldots, a_{n} \leq A$ and $0<b \leq b_{1}, \ldots, b_{n} \leq B$. Then

$$
\frac{\sum_{k=1}^{n} a_{k} b_{k}}{\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n} b_{k}^{2}\right)^{1 / 2}} \geq \frac{2}{\sqrt{\frac{a b}{A B}}+\sqrt{\frac{A B}{a b}}}
$$

The particular case where $a_{k} b_{k}=1$ for all k has been previously settled by P. Schweitzer. This later case can be further improved on as follows:

$$
\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_{k}}\right) \leq \frac{(A+a)^{2}}{4 A a}+\frac{\left[1+(-1)^{n-1}\right](A-a)^{2}}{8 A a n^{2}}
$$

for every $0<a \leq a_{1}, \ldots, a_{n} \leq A$.
The corresponding continuous analogue (as well as the weighted analogue) also works. More generally, if (X, Σ, μ) is a probability space and $f, g \in L^{\infty}(\mu)$, with $0 \leq a \leq f \leq A, 0 \leq b \leq g \leq B$, then

$$
\int_{X} f g d \mu \geq \frac{2}{\sqrt{\frac{a b}{A B}}+\sqrt{\frac{A B}{a b}}}\left(\int_{X} f^{2} d \mu\right)^{1 / 2}\left(\int_{X} g^{2} d \mu\right)^{1 / 2}
$$

This fact corresponds to the commutative C^{\star}-algebra $L^{\infty}(\mu)$ and the positive functional

$$
\varphi(f)=\int_{X} f d \mu
$$

Corollary 1.4.

$$
\frac{\text { Trace } A B}{\left(\text { Trace } A^{2}\right)^{1 / 2}\left(\text { Trace } B^{2}\right)^{1 / 2}} \geq \frac{2}{\sqrt{\frac{\omega_{A} \omega_{B}}{\Omega_{A} \Omega_{B}}}+\sqrt{\frac{\Omega_{A} \Omega_{B}}{\omega_{A} \omega_{B}}}}
$$

for every strictly positive matrices $A, B \in \operatorname{Re} M_{n}(\mathbb{C})$.
This result corresponds to the case where $\mathfrak{A}=M_{n}(\mathbb{C})$ and $\varphi=$ Trace. Of course, we can replace $M_{n}(\mathbb{C})$ by the ideal of all Hilbert-Schmidt operators on a Hilbert space, due to the fact that the product of any two such operators is of trace class.

2. An additive converse

In the C^{\star}-algebra framework the $A M-Q M$ inequality works as follows:

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{k=1}^{n} A_{k}\right|^{2} \leq \frac{1}{n} \sum_{k=1}^{n}\left|A_{k}\right|^{2} \tag{2.1}
\end{equation*}
$$

for all families A_{1}, \ldots, A_{n} of elements in a unital C^{\star}-algebra; as usually the modulus is defined by the formula $|T|^{2}=T^{\star} T$.

We can formulate a partial additive converse to it, which for $\mathfrak{A}=\mathbb{C}$ is due to L . G. Khanin [8]:

Proposition 2.1. Let \mathfrak{A} be a unital C^{\star}-algebra, with unit I and let A_{1}, \ldots, A_{n} be positive elements in \mathfrak{A}, with $0 \leq m \cdot I \leq A_{1}, \ldots, A_{n} \leq M \cdot I$. Then

$$
\frac{1}{n} \sum_{k=1}^{n} A_{k}^{2}-\left(\frac{1}{n} \sum_{k=1}^{n} A_{k}\right)^{2} \leq \frac{(M-m)^{2}}{4} \cdot I
$$

The equality occurs when n is odd, half of the A_{n} 's are $m \cdot I$ and half are $M \cdot I$.
Proof. In fact, the functional calculus with self-adjoint elements assures us that

$$
\begin{equation*}
0 \leq(M \cdot I-A)(A-m \cdot I) \leq \frac{(M-m)^{2}}{4} \cdot I \tag{2.2}
\end{equation*}
$$

for every $A \in \mathfrak{A}$ such that $m \cdot I \leq A \leq M \cdot I$. The left side inequality in (2.2) yields $A_{k}^{2} \leq(M+m) A_{k}-M m \cdot I$ and thus

$$
\begin{aligned}
\frac{1}{n} \sum_{k=1}^{n} A_{k}^{2}-\left(\frac{1}{n} \sum_{k=1}^{n} A_{k}\right)^{2} & \leq(M+m)\left(\frac{1}{n} \sum_{k=1}^{n} A_{k}\right)-M m \cdot I-\left(\frac{1}{n} \sum_{k=1}^{n} A_{k}\right)^{2} \\
& \leq\left(M \cdot I-\frac{1}{n} \sum_{k=1}^{n} A_{k}\right)\left(\frac{1}{n} \sum_{k=1}^{n} A_{k}-m \cdot I\right) \\
& \leq \frac{(M-m)^{2}}{4} \cdot I
\end{aligned}
$$

the last step being motivated by the right side inequality in (2.2).
Based on the variance inequality in the noncommutative probability theory, S. Izumino, H. Mori and Y. Seo [6], have obtained another additive converse of the Cauchy-Schwarz inequality in the noncommutative setting:

Proposition 2.2. Let A and B be positive operators on the Hilbert space H, satisfying $0<m_{1} I \leq A \leq M_{1} I$ and $0<m_{1} I \leq A \leq M_{1} I$ respectively. Then for any unit vector $x \in H$,

$$
\left\langle A^{2} x, x\right\rangle\left\langle B^{2} x, x\right\rangle-\left\langle A^{2} \bigsqcup_{1 / 2} B^{2} x, x\right\rangle^{2} \leq \frac{1}{4 \gamma^{2}}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}
$$

where $\gamma=\max \left\{m_{1} / M_{1}, m_{2} / M_{2}\right\}$ and $A^{2} \natural_{1 / 2} B^{2}$ denotes the Kubo-Ando geometric mean of A^{2} and B^{2} i.e.,

$$
A^{2} \natural_{1 / 2} B^{2}=A\left(A^{-1} B^{2} A^{-1}\right)^{1 / 2} A .
$$

3. Hilbert C^{\star}-Modules and Cauchy-Schwarz Inequality

Let \mathcal{B} be a C^{\star} - algebra with norm $\|\cdot\|$.
A pre-Hilbert \mathcal{B}-module is a complex vector space E which is also a right \mathcal{B}-module equipped with a map $<., .>: E \times E \rightarrow \mathcal{B}$, which is linear in the first variable and satisfies the following relations for all $x, y \in E$ and all $b \in \mathcal{B}$:
i) $<x, x>\geq 0$
ii) $\left.\langle x, y\rangle^{\star}=<y, x\right\rangle$
iii) $\langle x b, y>=<x, y>b$.

It is easy to see that the scalar multiplication and the right \mathcal{B}-module structure of E are compatible in the sense that

$$
(\lambda x) b=\lambda(x b)=x(\lambda b)
$$

for every $\lambda \in \mathbb{C}, x \in E, b \in \mathcal{B}$.
Every C^{\star} - algebra can be seen as a pre-Hilbert module over itself letting

$$
<A, B>=B^{\star} A
$$

A more sophisticated example is $E=\mathcal{H}_{B}$, the space of all sequences $\left(A_{n}\right)_{n}$ of elements of \mathcal{B} such that $\sum_{n} A_{n}^{\star} A_{n}$ converges. In this case,

$$
<\left(A_{n}\right)_{n},\left(B_{n}\right)_{n}>=\sum_{n} B_{n}^{\star} A_{n}
$$

Let us mention also that every complex vector space endowed with a hermitian product constitutes a pre-Hilbert \mathbb{C}-module.
Lemma 3.1. (Paschke's extension of the the Cauchy-Schwarz inequality). Let E be a pre-Hilbert \mathcal{B}-module and set

$$
\|x\|=\|<x, x>\|^{1 / 2}, \quad x \in E .
$$

Then $E=(E,\|\cdot\|)$ is a normed vector space and the following inequalities hold:

$$
\begin{aligned}
\|x b\| & \leq\|x\| \cdot\|b\| \\
\|<x, y>\| & \leq\|x\| \cdot\|y\|
\end{aligned}
$$

for every $x, y \in E$ and every $b \in \mathcal{B}$.
See [10], or [7], for details.
However, it is conceivable that like in the case of the triangle inequality, a stronger form of the Cauchy-Schwarz inequality (avoiding the presence of the norms) works in the setting of pre-Hilbert \mathcal{B}-modules. During the 17 th Conference on Operator Theory in Timişoara (June 22-26, 1998) we proposed several candidates such as:

$$
\begin{equation*}
|<x, y>| \leq \frac{1}{2}\left(u^{\star}<x, x>^{1 / 2} u+v^{\star}<y, y>^{1 / 2} v\right) \tag{3.1}
\end{equation*}
$$

where u and v are suitable elements of \mathcal{B} with $\|u\| \leq\|y\|^{1 / 2}$ and $\|v\| \leq\|x\|^{1 / 2}$.
Notice that (3.1) is straightforward in the commutative case.
Leaving open the problem mentionned above, we end this paper with the following result, representing a converse Cauchy-Schwarz type inequality:

Proposition 3.2. Let E be a pre-Hilbert \mathcal{B}-module. Then

$$
\operatorname{Re}<x, y>\geq \frac{1}{\sqrt{\frac{\omega}{\Omega}}+\sqrt{\frac{\Omega}{\omega}}}\left(<x, x>^{1 / 2} \cdot<y, y>^{1 / 2}+<y, y>^{1 / 2} \cdot<x, x>^{1 / 2}\right)
$$

for every $x, y \in E$ and every $\omega, \Omega>0$ for which $\operatorname{Re}<x-\omega y, x-\Omega y>\leq 0$.
Proof. In fact, by our hypothesis,

$$
\begin{aligned}
0 & \geq \operatorname{Re}<x-\omega y, x-\Omega y>= \\
& =<x, x>-(\omega+\Omega) \operatorname{Re}<x, y>+\omega \Omega<y, y>
\end{aligned}
$$

which yields

$$
\begin{aligned}
\left(\sqrt{\frac{\omega}{\Omega}}+\sqrt{\frac{\Omega}{\omega}}\right) \operatorname{Re} & <x, y>\geq \frac{1}{\sqrt{\omega \Omega}}<x, x>+\sqrt{\omega \Omega}<y, y>\geq \\
& \geq<x, x>^{1 / 2} \cdot<y, y>^{1 / 2}+<y, y>^{1 / 2} \cdot<x, x>^{1 / 2}
\end{aligned}
$$

Corollary 3.3. Let E be a vector space endowed with a hermitian product $<., .>$. Then

$$
\frac{\operatorname{Re}<x, y>}{<x, x>^{1 / 2} \cdot<y, y>^{1 / 2}} \geq \frac{2}{\sqrt{\frac{\omega}{\Omega}}+\sqrt{\frac{\Omega}{\omega}}}
$$

for every $x, y \in E$ and every $\omega, \Omega>0$ for which $\operatorname{Re}<x-\omega y, x-\Omega y>\leq 0$.

References

[1] T. Ando and F. Hiai, Hölder type inequalities for matrices, Mathematical Inequalities and Applications, 1 (1998), 1-30.
[2] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, 1961.
[3] R. Bellman, Converses of Schwarz's inequality, Duke Math. J., 23 (1956), 429-434.
[4] M. Fujii, T. Furuta, R. Nakamoto and Sin-Ei Takahasi, Operator inequalities and covariance in noncommutative probability, Math. Japonica, 46 (1997), 317-320.
[5] W. Greub and W. Rheinboldt, On a generalization of an inequality of L. V. Kantorovich, Proc. Amer. Math. Soc., 10 (1957), 407-415.
[6] S. Izumino, H. Mori and Y. Seo, On Ozeki's Inequality, J. of Inequal. \& Appl., 2 (1998), 235-253.
[7] K. K. Jensen and K. Thomsen, Elements of KK-theory, Birkhäuser, Boston•Basel•Berlin, 1991.
[8] L. G. Khanin, Problem M 1083, Kvant, 18 (1988), $\mathrm{n}^{0} 1$; solution in Kvant 18 (1988), $\mathrm{n}^{0} 5$, p. 35.
[9] A. Madansky, Bounds on the expectation of a convex function of a multivariate random variable, Ann. Mat. Stat. 30 (1959), 743-746.
[10] W. Paschke, Inner product modules over B^{\star}-algebras, Trans. Amer. Math. Soc., 182 (1973), 443-468.
[11] G. Polya and G. Szegö, Aufgaben und Lehrsätze aus Analysis, vol. I, Springer Verlag, 1925.
[12] G. Watson, Serial correlation in regression analysis, Biometrica 42 (1955), 327-341.
University of Craiova, Department of Mathematics, Craiova 1100, ROMANIA
E-mail address: tempus@oltenia.ro

