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Abstract

In this paper we prove that there exists a solution for the semilinear
elliptic system -Au = f(z,u) —v+pin Q, -Av = Ju —yv + h in
Q, u=wv=0ondQ where @ C RY (2< N <7) is a bounded
domain with smooth boundary, § and v are positive constants, f is a
discontinuous sublinear nonlinearity with some specific properties and
p and h belong to LY(Q).
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1 Introduction
The purpose of this note is to study the elliptic system:

—Au=f(z,u)—v+p in
(P) —Av=0u—"yv+h in Q
u=v=>0 on 0f),

where  is a smooth bounded domain in RN (2< N <7), § and ~ are
positive constants such that v + A\; > /3, p and h belong to L'(Q) and
f:Q xR — R satisfies some properties, which will be mentioned latter.
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The solutions (u,v) of this system represent steady state solutions of
reaction diffusion systems derived from several applications, such as math-
ematical biology, chemical reactions and combustion theory. There is an
extensive bibliography concerning this subject (see [CF], [FM], [LM], [Ro],
[Si] and references therein). The review, even partial, of their results is out
of the scope of this note.

Notice that the second equation in (P) yields v in terms of u. Then (P)
is equivalent to the integro-differential equation

, —Au+ Bu= f(z,u)+q(xr) in
(7) { u=20 on 02,

where Bu is the solution of the problem

—Av+yv =0u in ()
v=20 on oS}

1
and ¢ =p— SB (h) € L' (Q) . In other words B = § (~A 4 )", under zero

Dirichlet boundary conditions on 0f2.

By the LP theory of linear elliptic equations, B can be viewed as a bounded
linear operator from L? () into W?2P (Q) N H{ (Q); also, by the Schauder
theory, B maps the Holder space C* (ﬁ) into C?t (ﬁ)

Let us define the operator

=-A+B:L*Q)— L*(Q), with D(T) = H*(Q) N Hy (Q).

It is easy to observe that 7' is symmetric on its domain D(7T) i.e.,

(Tuy, uz) = (uy, Tug) for all uy, uy € D(T), where (-, -) denotes the L?— inner
product.

If 0 <A <X < A3 <...and (p,)r denote respectiely the eigenvalues
and the eigenfunctions of —A in Q under zero Dirichlet boundary condi-
tions, then one can verify easily that the ¢, ’s are also eigenfunctions of T’
corresponding to the modified eigenvalues

S\kZ)\k-f—

Ck=1,2... .
v+ Ak

A more detailed analysis shows that the spectrum o (7') of T' consists
precisely of these eigenvalues; this is a simple consequence of the fact that



for every A € p(T) = C\ o (T), the resolvent operator Ty = (T — X) ™" is
compact (see [FM], Corollary 1.2).

We know that 7} is a positive operator if y+X; > V0 and 20—~ < \ <
A1 (see [FM], Corollary 1.3). This is a maximum principle for the equation

—Au+Bu—Au=g(zr) inQ
{ u=20 on 0S.

Moreover, it says that a strong maximum principle holds: if g € C ()
and g > 0 in €2, then v > 0 in €2 and the outward normal derivative satisfies
the inequality ? < 0.

Suppose thaty f: Q2 xR — R satisfies the following assumptions:

(f1) f is a Caratheodory function on  x (R\ A), where A C R is a
set with no finite point of accumulation (in fact, we will take A = {a} since
that will simplify the notations. The arguments in the general case are quite
similar.);

(f2) There exists m € p(T) N (=X, v — 2v/9] such that the function
w: QxR —R,w(z,t)=mt+ f(z,t), is strictly monotone in the second
variable;

(f3) There exist ¢, k € R, with 0 < k < Ay, such that: |f (z,1)| < c+klt],
for every (z,t) € Q x R.

Put

o4 (z) =limsup f (z,t) — f(z,a) and o_ (z) = f (z,a) — liminf f (z,1).

t—a t—a

Definition 1 A pair of functions (u,v) € EXE, where E = [ Wol’p (Q),
1<p< 'y

is said to be a solution of the problem (P) if

/Vu-Vgodx—/f(a:,u)@dx—ir/vgodx—/pgodxe
Q Q

Q Q

€] / oy (2) pde — / o (z) pdr, / oy (1) pdi—

[u=a, $<0] [u=a, $>0] [u=a, >0]

- [ e @ed

[u=a, p<0]



and

/VU-Vgpdw—5/ugpd$+7/vg0dx—/hgodx:0,
Q Q

Q 0
for every p € C? (Q), with o =0 on OQ.

Definition 2 A functionu € E= () Wy"(Q) is said to be a solution
L<p<yy

of the problem (P') if

/Vu~V(pdx—l—/goBuda:—/f(:c,u)gpd:c—/qwd:cG
Q Q

Q Q

€ / oy (2)pdr — / o (2)pda, / oy (2) o do—

fu=a, $<0] [u=a, $>0] [u=a, >0]

- [ e @edl,

[u=a, p<0]
for every ¢ € C* (ﬁ) , with ¢ =0 on 0S).

It is easy to observe that w is a solution of the problem (P’) iff the pair
(u, v = Bu+ %Bh) is a solution of the problem (P).

The main result of this paper is as follows:

Theorem 3 The problem (P) has a solution.

2 The L? case

In this section we consider the problem (P) under the above conditions,
except the fact that p and h belong to L?(Q). Then, also ¢ € L*(Q).
As in [AB], we set

T, (x) = {lim inf f (z,t),limsup f (z,t)

t—a t—a

and
~  f(zys) if (z,s) ¢ Qx{a}
f(z,5) = { T.(z) if (z,s) € Qx{a} °



Definition 4 A pair (u,v) € (HE (Q) N H2(Q))? is said to be a solution of
the problem (P) if

—Au(z)+v(x)—p(z) e fz,u(z)) ae in
—Av(x)+yv(z) =0u(x) ae inQ.

Definition 5 A function u € H} () N H?(Q) is said to be a solution of the
problem (P') if

—Au(z)+ Bu(z) —q(z) € f(zx,u(z)) a.e in .

1
Clearly: w is a solution of the problem (P’) iff the pair (u, v = Bu+ SBh)

is a solution of the problem (P).
By (£2) it is possible to define a single-valued function g : @ x R — R
by letting

(2.1) = a, ift —ma €T, ()
I = s, with w (z,s) =t, if t —ma ¢ T, (z)
t
Set G (z,t) = [ g (x,7) dr. Since |g (z,t) | < ¢1 + cot], then |G (z,t) | <
0
cs|t] + c4lt|?. Hence
G(z,u) € LY(Q), ifu € L* ().

As in [AB], we consider the functional J : L?(2) — R, given by the
formula

1
J(u) = [{G(z,u) — zuT_,u—ul_,q}dx.
ftetn =

Clearly, J is well defined on L? () and, in a standard way, one can prove
that J € C' (L*(Q),R), with

dJ(u)p = /(g (z,u) — T — T_pq) pdx, Yo € L*(Q).

The following result uses some ideas and techniques of Ambrosetti and
Badiale (see [AB],Thm. 1).



Theorem 6 Under the aforementioned conditions, there exists a solution
u € H (Q) N H?(Q) of the problem (P'). Moreover, the set

Qu={x€Q:u(z)=a}
has Lebesgque measure |Q2,| = 0 and therefore u satisfies
—Au(x)+ Bu(z)—q(x) = f(z,u(z)) a.e in.

Proof. From (f2), we have that

G(x,u) > 5 ! u? — cs|ul. (2.1)

(k+m)

Let u € L?(Q) be an arbitrary element and let ¢ = T_,,u € HJ (Q) N
H?(Q). Then
— Ao+ Bp+me =u.

Multiplying both sides by ¢ and integrating over €2 we get

/ (Ve + oBy)dz +m / Pdr = / wpde <[ uls-olz.  (22)
Q Q Q

According to [FM], Remark 1.6, we have the inequality

/ (VP +Bo)dr > A || ¢ [l (V) ¢ € HE (D). (2.3)
Q
and thus by (2.2) and (2.3) we infer that
1
/ WTopde <[ oll Tt 1bS ~—— [ B () e I2(Q).  (24)
AN +m

1

Q

From (2.1) and (2.4) it follows that

L L 2—0 u u 2
100> (5~ g ) 1 el 9w e 12(@).

Since 0 < k < Ay, J is bounded from below and coercive. Then by [St],
Thm. 1.2, it follows that there exists a ug € L? () such that

J(up) = igl(lél) J(u). (2.5)

6



Set u=T_,,(uo+q) € Hy ()N H? (). Since uy is a critical point for J,
it follows that

[ 60) =Tt = Ty e =0, (¥) € ()
Q
so that g (z,ug) = T . (ug + q). Hence
— Au(x)+ Bu(z) — q(x) = uy — mu. (2.6)

)
Since ug(z) —mu(z) € f (x,u (z)) ae. in Q, it follows that u is a solution
of the problem (P’ ).
Our next goal is to prove that [, = 0.

Because u € H? (), a well known result of Stampacchia shows that
Au(x) =0 a.e. in €©,. Then

Bu(z) —q(x) € f (z,u(z)) ae. in Q

which implies
Bu(z) —q(x) € T, (z) a.e. in €.

For € > 0 small enough, we have
Bu (z) — q(z) +ex (z) € T, (z) a.e. in Q,
where x € L*(Q) is the function

—1, if Bu(z) — q () > 5 (liminf,_, f (z,¢) + limsup,_, f (,t))
X (z) = 1, if Bu(z) —q(z) < § (liminf,_, f (z,t) + limsup,_, f (z,1)) .
0, ifzxe\Q,

Clearly,

d
0> —=J (uo +ex) = dJ (uo +ex) (x) 2/[9($,UO+€X)—€Tmx—u]dez

Qq
= /g(:z:,uo—i-sx)xda:—a/XT_mxd:U—a/de.
Qu Qa Qa

From (2.6) we obtain

ug +ex = Bu—q+ma+ ey a.e. in (.

7



This implies that
g (x,up+ex) =a a.e. in Q.
Consequently

d
d—g(](uo—l—ax) za/xd:v—e/xT_mxdx—a/de: —a/xT_mxdx <0.

a a a a

Now, from the positivity of T'_,,, we conclude that y = 0 a.e. in €2,. Then
|€2,] = 0 and this ends the proof. B

3 Proof of Theorem 1.1

Let (gn),>; be an arbitrary sequence in L? (92) such that
¢n — qin L' (Q), as n — oo,. (3.1)
According to Theorem 2.1, for each n € N, the problem

(P,) — Au+ Bu=f(x,u)+gq, inQ
" u=20 on 0f2,

admits a solution u,, € H} () N H? (Q) with the following properties:
1) u, = T 1 (uo + ¢n) = g(z,up,), where ug, is the global minimizer of
the functional J, : L? (2) — R, given by

In (u) = /{G(x, u) — %uT_mu —uT G} dz;
Q

2) Q| =1{r €Q:u,(z) =a}|=0.
We shall prove that the sequence {u,},, is bounded in L' (Q). For,
observe that

1 1
0=J,0) > J,(u,) > - — U, 2—/unTmndx.
= 500> (555 ~ o) e s

Since T, is a self-adjoint operator on L*(Q2), we have

1 1
0= ( - >> lun = [T, (32




Because u,, € H} () N H?(Q), we can infer, via standard regularity
results (see [B], Thm. IX.25), that T",,u, € H*(Q). Or,

H*(Q)— C (), (3.3)

so that T_,,u, € C (ﬁ) . Here we need the assumption that N < 7. From
this fact and (3.2), we obtain

1 1
T ot |lso n AT > - — un |2 . 3.4
T | !q (o ) I B G

By (3.1), (3.3) and (3.4) we infer the existence of a constant ¢; > 0 such
that

cr || un HgSH Tty || e .

Because of the continuity of 7_,, and an estimate given in [B], Thm.
IX.25, we can find a constant cg > 0 such that

| wp [|2< s, (V) > 1.

Moreover, the sequence (uy),>1 is bounded in W, 7” (Q), for every 1 <

p < . In fact,

N
N -1

| wn [[1,= sup /Vun -Vuwdzx <
=1
Q

ol v =

< sup /f(x,un)wdx+ sup /qnwdx—i- sup /wBunde
|

ol =1 Jeoll, =1 full, =1

< wp|www/@+Mwwm% wp|mwm/mawﬂwaM§a
ol =1 J loll, =1 J

compact —

Here we have used the fact that p’ > N and thus W% (Q) C(Q).
By the compactness of the embedding Wy (Q) — L' (Q), there exists a
we () Wy (Q) such that

1<p<xy

u, — u a.e. and strongly in L' (Q);
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u, — u weakly in Wy (Q).
Then from (£2) it follows that
f(z,u, () — f(z,u(x)) a.e. on [u# a
and the Dominated Convergence Theorem yields
[ 1w — [ fau)d
[u#al [u#al

Multiplying (P,) with ¢ € C?(Q), ¢ = 0 on 052, and integrating over
(), we obtain

/Vun-Vgod:U~|—/goBunda:— / f(x,u, (x) pdr— / f(z,u(x))pde—

Q [u#a] [u=d]
- [apdi= [ f@un@)ed— [ f@ul)eds (35)
Q [u=a] [u=a]
It is easy to observe that the left hand of the above equality tends to
/Vngoda:—i—/ngudx—/f(x,u(a:))@dx—/qgodx. (3.6)
Q Q Q Q

For the right hand, notice that by Fatou Lemma we have

lim inf / (f (zyu, () — f(z,u(x))) pdr >

n—oo

[u=ad]

> lim inf / (f (2, un (2)) = f (2, u(2))) o dat

o [u=a,p>0]
timint [ (o @) - f (@) pds >
[u=a,p<0]
> / oy (z)p(x) de — / o_ ()¢ () d. (3.7)
[u=a,p<0] [u=a,p>0]

10



Similarly,

lim sup / (f (@un (2)) — f (2,0 (2))) o < / ot (2) o (z) di

- [u=ada] [u=a,p>0]

- / o_(z)p(z) d. (3.8)
[u=a,p<0]
Clearly, from (3.5) — (3.8), it follows that u is a solution of the problem
1
(P'). Thus, the pair (u,v = Bu + gBh) is a solution of the problem (P)

and the claim is proved. &

Remark 1 If v = 0 = 0 and h = 0, then the result above shows that the
semilinear elliptic problem

{—Au:f(:v,u)—i—p in Q

u=20 on 0S) "’
has a solution w € E= () Wy" (Q), in the sense that
1<p<y
/Vu~chdx - /f(x,u)gpdx - /pcpdx €
Q Q Q
el [ wwed- [ o @edn [ o
[u=a, p<0] [u=a, p>0] [u=a, p>0]
- / 0— (:L‘) ¥ dl’},
[u=a, p<0]

for every ¢ € C? (ﬁ) , with @ = 0 on 0S.
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