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a b s t r a c t

We establish the complete bifurcation diagram for a class of nonlinear problems on the
whole space. Ourmodel corresponds to a class of semilinear elliptic equations with logistic
type nonlinearity and absorption. Since this problem arises in population dynamics or in
fishery or huntingmanagement, we are interested only in situations allowing the existence
of positive solutions. The proofs combine elliptic estimates with the method of sub- and
super-solutions.
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1. Introduction and the main results

Bifurcation problems have a long history and their treatment dates back to the XVIIIth century. One of the first bifurcation
problems is related to the buckling of a thin rod under thrust and was investigated by Daniel Bernoulli and Euler around
1744. In the case in which the rod is free to rotate at both end points, this yields the one-dimensional bifurcation problem{u′′ + λ sin u = 0 in (0, L)

0 ≤ u ≤ π
u′(0) = u′(L) = 0.

In this paperwe are concernedwith the existence, uniqueness or the non-existence of positive solutions of the eigenvalue
logistic problem with absorption

−∆u = λ (V (x)u− f (u)) in RN ,N ≥ 3, (1)

where V is a smooth sign-changing potential and f : [0,∞) → [0,∞) is a smooth function. Equations of this type
arise in the study of population dynamics. In this case, the unknown u corresponds to the density of a population, the
potential V describes the birth rate of the population, while the term −f (u) in (1) signifies the fact that the population
is self-limiting. In the region where V is positive (resp., negative) the population has positive (resp., negative) birth rate.
Since u describes a population density, we are interested in investigating only positive solutions of problem (1). Bifurcation
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problems of this type, as well as the associated evolution equations, are naturally related to certain physical phenomena.
For example, super-diffusivity equations of this type have been proposed by de Gennes [1] as a model for long-range van
der Waals interactions in thin films spreading on solid surfaces. Such equations appear in the study of cellular automata
and interacting particle systems with self-organized criticality, as well as to describe the flow over an impermeable plate.
We alsomention Brusselator type reactions, the combustion theory, dynamics of population, the Fitzhugh–Nagumo system,
morphogenesis, superconductivity, superfluids, the buckling of the Euler rod, the appearance of Taylor vortices, and the
onset of oscillations in an electric circuit.
Problem (1) may be treated as a linear perturbation of the logistic equation on the whole space

∆u = f (u) in RN ,

but also as a nonlinear perturbation of a related linear eigenvalue problemwith anisotropic potential on the whole space. We
recall in what follows the results that we need later. LetΩ be an arbitrary open set in RN , N ≥ 3. Consider the eigenvalue
problem{

−∆u = λV (x)u inΩ,
u = 0 on ∂Ω. (2)

Problems of this type have a long history. IfΩ is bounded and V ≡ 1, problem (2) is related to the Riesz–Fredholm theory
of self-adjoint and compact operators. The case of a non-constant potential V has been first considered in the pioneering
papers of Bocher [2], Hess and Kato [3], Minakshisundaran and Pleijel [4,5]. For instance, Minakshisundaran and Pleijel [4,
5] studied the case where Ω is bounded, V ∈ L∞(Ω), V ≥ 0 in Ω and V > 0 in Ω0 ⊂ Ω with |Ω0| > 0. An important
contribution in the study of the anisotropic eigenvalue problem (2) ifΩ is bounded has been given by Cuesta [6] under the
assumption that V is a given potential which may change sign and satisfying

(H) V+ 6= 0, and V ∈ Ls(Ω) for some s > N/2.

We have denoted V+(x) = max{V (x), 0}. Obviously, V = V+ − V−, where V−(x) = max{−V (x), 0}.
In order to find the principal eigenvalue of (2), Cuesta [6] proved that the minimization problem

min
{∫

Ω

|∇u|2dx; u ∈ H10 (Ω),
∫
Ω

V (x)u2dx = 1
}

has a solution ϕ1 = ϕ1(Ω) ≥ 0 which is an eigenfunction of (2) corresponding to the eigenvalue λ1(Ω) =
∫
Ω
|∇ϕ1|

2dx.
Moreover, the least positive eigenvalue λ1(Ω) is simple, isolated in the spectrum and it is the unique eigenvalue associated
to a nonnegative eigenfunction.
Throughout this paper the sign-changing potential V : RN → R is assumed to be a Hölder function that satisfies

(V) V ∈ L∞(RN), V+ = V1 + V2 6= 0, V1 ∈ LN/2(RN), lim
|x|→∞

|x|2V2(x) = 0.

We suppose that the nonlinear absorption term f : [0,∞)→ [0,∞) is a C1-function such that

(f1) f (0) = f ′(0) = 0 and lim infu↘0
f ′(u)
u > 0;

(f2) the mapping f (u)/u is increasing in (0,+∞).
This assumption implies limu→+∞ f (u) = +∞. We impose that f has a superlinear growth at infinity, in the sense

that
(f3) limu→+∞

f (u)
u > ‖V‖L∞ .

Our framework includes the following important particular cases:
(i) f (u) = u2 that corresponds to the Fisher equation [7,8] and the Kolmogoroff–Petrovsky–Piscounoff equation [9] (see
also [10] for a comprehensive treatment of these equations);

(ii) f (u) = u(N+2)/(N−2) (for N ≥ 6) which is related to the conform scalar curvature equation, cf. [11].

For any R > 0, denote BR = {x ∈ RN; |x| < R} and set

λ1(R) = min
{∫
BR
|∇u|2dx; u ∈ H10 (BR),

∫
BR
V (x)u2dx = 1

}
. (3)

Consequently, the mapping R 7−→ λ1(R) is decreasing and so, there exists

λ∗ := lim
R→∞

λ1(R) ≥ 0.

We first state a sufficient condition so that λ∗ is positive. For this aim we impose the additional assumptions

there exists A, α > 0 such that V+(x) ≤ A|x|−2−α, for all x ∈ RN (4)

and

lim
x→0
|x|2(N−1)/NV2(x) = 0. (5)
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Theorem 1.1. Assume that V satisfies conditions (V), (4) and (5).
Then λ∗ > 0.

Our main result asserts that λ∗ plays a crucial role for the nonlinear eigenvalue logistic problem
−∆u = λ (V (x)u− f (u)) in RN ,
u > 0 in RN ,
lim
|x|→∞

u(x) = 0.
(6)

The following existence and non-existence results show that λ∗ serves as a bifurcation point in our problem (6).

Theorem 1.2. Assume that V and f satisfy the assumptions (V), (4), (f1), (f2) and (f3).
Then the following hold:
(i) problem (6) has a unique solution for any λ > λ∗;
(ii) problem (6) does not have any solution for all λ ≤ λ∗.

The additional condition (4) implies that V+ ∈ LN/2(RN), which does not follow from the basic hypothesis (V). As we
shall see in the next section, this growth assumption is essential in order to establish the existence of positive solutions of
(1) decaying to zero at infinity.
In particular, Theorem 1.2 shows that if V (x) < 0 for sufficiently large |x| (that is, if the population has negative birth

rate) then any positive solution (that is, the population density) of (1) tends to zero as |x| → ∞.

2. Existence of solutions for λ large

We show in this section that λ∗ plays a crucial role in our analysis, in the sense that the logistic equation (1) has entire
positive solutions if λ is sufficiently large. However, at this stage, we are not able to establish that this solution decays to
zero at infinity.

Proposition 2.1. Assume that the functions V and f satisfy conditions (V), (f1), (f2) and (f3). Then the problem{
−∆u = λ (V (x)u− f (u)) in RN ,
u > 0 in RN

(7)

has at least one solution, for any λ > λ∗.
Proof. For any R > 0, consider the boundary value problem{

−∆u = λ (V (x)u− f (u)) in BR,
u > 0 in BR,
u = 0 on ∂BR.

(8)

We first prove that problem (8) has at least one solution, for any λ > λ1(R). Indeed, the function u(x) = M is a super-
solution of (8), for any M large enough. This follows from (f3) and the boundedness of V . Next, in order to find a positive
sub-solution, let us consider the problem

min
u∈H10 (BR)

∫
BR

(
|∇u|2 − λV (x)u2

)
dx.

Since λ > λ1(R), it follows that the least eigenvalue µ1 is negative. Moreover, the corresponding eigenfunction e1 satisfies{
−∆e1 − λV (x)e1 = µ1e1 in BR,
e1 > 0 in BR,
e1 = 0 on ∂BR.

(9)

Then the function u(x) = εe1(x) is a sub-solution of the problem (8). Indeed, it is enough to check that

−∆(εe1)− λεVe1 + λf (εe1) ≤ 0 in BR,

that is, by (9),

εµ1e1 + λf (εe1) ≤ 0 in BR. (10)

But

f (εe1) = εf ′(0)e1 + εe1o(1), as ε→ 0.

So, since f ′(0) = 0, relation (10) becomes

εe1 (µ1 + o(1)) ≤ 0

which is true, provided ε > 0 is small enough, due to the fact that µ1 < 0.
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Fix λ > λ∗ and an arbitrary sequence R1 < R2 < · · · < Rn < · · · of positive numbers such that Rn →∞ and λ1(R1) < λ.
Let un be the solution of (8) on BRn . Fix a positive number M such that f (M)/M > ‖V‖L∞(RN ). The above arguments show
that we can assume that un ≤ M in BRn , for any n ≥ 1. Since un+1 is a super-solution of (8) for R = Rn, we can also assume
that un ≤ un+1 in BRn . Thus the function u(x) := limn→∞ un(x) exists and is well defined and positive inRN . Standard elliptic
regularity arguments imply that u is a solution of problem (7). �

The above result shows the importance of assumption (4) in the statement of Theorem 1.2. Indeed, assuming that V
satisfies only the hypothesis (V), it is not clear whether or not the solution constructed in the proof of Proposition 2.1 tends
to 0 as |x| → ∞. However, it is easy to observe that if λ > λ∗ and V satisfies (4) then problem (6) has at least one solution.
Indeed, we first observe that

u(x) =
{
εe1(x), if x ∈ BR
0, if x 6∈ BR

(11)

is a sub-solution of problem (6), for some fixed R > 0, where e1 satisfies (9). Next, we observe that u(x) = n/(1+ |x|2) is a
super-solution of (6). Indeed, u satisfies

−∆u(x) =
2[n(1+ |x|2)− 4|x|2]

(1+ |x|2]2
u(x), x ∈ RN .

It follows that u is a super-solution of (6) provided

2[n(1+ |x|2)− 4|x|2]
(1+ |x|2)2

≥ λV (x)− λf
(

n
1+ |x|2

)
, x ∈ RN .

This inequality follows from (f3) and (4), provided that n is large enough.

3. Proof of Theorem 1.1

For any R > 0, fix arbitrarily u ∈ H10 (BR) such that
∫
BR
V (x)u2dx = 1. We have

1 =
∫
BR
V (x)u2dx ≤

∫
BR
V+(x)u2dx =

∫
BR
V1(x)u2dx+

∫
BR
V2(x)u2dx.

Since V1 ∈ LN/2(RN), using the Cauchy–Schwarz inequality and Sobolev embeddings we obtain∫
BR
V1(x)u2dx ≤ ‖V1‖LN/2(BR)‖u‖

2
L2∗ (BR)

≤ C1‖V1‖LN/2(RN )

∫
BR
|∇u|2dx, (12)

where 2∗ = 2N/(N − 2).
Fix ε > 0. By our assumption (V), there exists positive numbers δ, R1 and R such that R−1 < δ < R1 < R such that for all

x ∈ BR satisfying |x| ≥ R1 we have

|x|2V2(x) ≤ ε. (13)

On the other hand, by (V), for any x ∈ BR with |x| ≤ δ we have

|x|2(N−1)/NV2(x) ≤ ε. (14)

DefineΩ := ω1 ∪ ω2, where ω1 := BR \ BR1 , ω2 := Bδ \ B1/R, and ω := BR1 \ Bδ .
By (13) and Hardy’s inequality we find∫

ω1

V2(x)u2dx ≤ ε
∫
ω1

u2

|x|2
dx ≤ C2ε

∫
BR
|∇u|2dx. (15)

Now using (14) and Hölder’s inequality we obtain∫
ω2

V2(x)u2dx ≤ ε
∫
ω2

u2

|x|2(N−1)/N
dx

≤ ε

[∫
ω2

(
1

|x|2(N−1)/N
dx
)N/2

dx

]2/N
‖u‖2

L2? (BR)

≤ Cε
(∫ δ

1/R

1
sN−1

sN−1ωNds
)2/N ∫

BR
|∇u|2dx

≤ C3

(
δ −

1
R

)2/N ∫
BR
|∇u|2dx. (16)
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By compactness and our assumption (V), there exists a finite covering of ω by the closed balls Br1(x1), . . . , Brk(xk) such that,
for all 1 ≤ j ≤ k

if |x− xj| ≤ rj then |x− xj|2(N−1)/NV2(x) ≤ ε. (17)

There exists r > 0 such that, for any 1 ≤ j ≤ k

if |x− xj| ≤ r then |x− xj|2(N−1)/NV2(x) ≤
ε

k
.

Define A := ∪kj=1 Br(xj). The above estimate, Hölder’s inequality and Sobolev embeddings yield∫
Br (xj)

V2(x)u2dx ≤
ε

k

∫
Br (xj)

u2

|x− xj|2(N−1)/N
dx

≤
ε

k

[∫
Br (xj)

(
|x− xj|−2(N−1)/N

)N/2
dx

]2/N
‖u‖2

L2? (BR)

≤ C
ε

k

(∫
Br

1
|x|N−1

dx
)2/N ∫

BR
|∇u|2dx

= C
ε

k

(∫ r

0

1
sN−1

sN−1ωNds
)2/N ∫

BR
|∇u|2dx

= C ′
∫
BR
|∇u|2dx,

for any j = 1, . . . , k. By addition we find∫
A
V2(x)u2dx ≤ C4

∫
BR
|∇u|2dx. (18)

It follows from (17) that V2 ∈ L∞(ω \ A). Actually, if x ∈ ω \ A it follows that there exists j ∈ {1, . . . , k} such that
rj > |x− xj| > r > 0. Thus,

V2(x) ≤ r−2(N−1)/Nε.

Hence ∫
ω\A
V2(x)u2dx ≤ εr−2(N−1)/N

∫
ω\A
u2dx ≤ C5

∫
BR
|∇u|2dx. (19)

Now from inequalities (12), (15), (16), (18) and (19) we have

λ1(R) ≥
{
C1‖V1‖LN/2(RN ) + C2ε + C3

(
δ − R−1

)2/N
+ C4 + C5

}−1
and passing to the limit as R→∞we conclude that

λ∗ ≥
(
C1‖V1‖LN/2(RN ) + C2ε + C3δ

2/N
+ C4 + C5

)−1
> 0.

This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

We split the proof of our main result into several steps. Throughout this section we assume that the hypotheses of
Theorem 1.2 are fulfilled.

Proposition 4.1. Let u be an arbitrary solution of problem (6). Then there exists C > 0 such that |u(x)| ≤ C |x|2−N for all x ∈ RN .

Proof. Let ωN be the surface area of the unit sphere in RN . Consider the function V+u as a Newtonian potential and define

v(x) =
1

(N − 2)ωN

∫
RN

V+(y)u(y)
|x− y|N−2

dy.

A straightforward computation shows that

−∆v = V+(x)u in RN . (20)

But, by (4) and since u is bounded,

V+(y)u(y) ≤ C |y|−2−α, for all y ∈ RN .
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So, by Lemma 2.3 in Li and Ni [11],

v(x) ≤ C |x|−α, for all x ∈ RN ,

provided that α < N − 2. Setw(x) = Cv(x)− u(x). Hencew(x)→ 0 as |x| → ∞. Let us choose C sufficiently large so that
w(0) > 0. We claim that this implies

w(x) > 0, for all x ∈ RN . (21)

Indeed, if not, let x0 ∈ RN be a local minimum point ofw. This means thatw(x0) < 0, ∇w(x0) = 0 and∆w(x0) ≥ 0. But

∆w(x0) = −CV+(x0)u(x0)+ λ (V (x0)u(x0)− f (u(x0))) < 0,

provided that C > λ. This contradiction implies (21). Consequently,

u(x) ≤ Cv(x) ≤ C |x|−α, for any x ∈ RN .

So, using (4) again,

V+(x)u(x) ≤ C |x|−2−2α, for all x ∈ RN .

Lemma 2.3 in [11] yields the improved estimate

v(x) ≤ C |x|−2α, for all x ∈ RN ,

provided that 2α < N−2, and so on. Let nα be the largest integer such that nαα < N−2. Repeating nα+1 times the above
argument based on Lemma 2.3 (i) and (iii) in [11] we obtain

u(x) ≤ C |x|2−N , for all x ∈ RN . �

Proposition 4.2. Let u be a solution of problem (6). Then V+u, V−u, f (u) ∈ L1(RN), and u ∈ H1(RN).

Proof. For any R > 0 consider the average function

u(R) =
1

ωNRN−1

∫
∂BR
u(x)dσ =

1
ωN

∫
∂B1
u(rx)dσ ,

where ωN denotes the surface area of SN−1. Then

u′(R) =
1
ωN

∫
∂B1

∂u
∂ν
(rx)dσ =

1
ωNRN−1

∫
∂BR

∂u
∂ν
(x)dσ =

1
ωNRN−1

∫
BR
∆u(x)dx.

Hence

ωNRN−1u′(R) = −λ
∫
BR
(V (x)u− f (u)) dx

= −λ

∫
BR
V+(x)udx+ λ

∫
BR

(
V−(x)u+ f (u)

)
dx. (22)

By Proposition 4.1, there exists C > 0 such that |u(r)| ≤ Cr−N+2, for any r > 0. So, by (4),∫
1≤|x|≤r

V+(x)udx ≤ CA
∫
1≤|x|≤r

|x|−N−αdx ≤ C,

where C does not depend on r . This implies V+u ∈ L1(RN).
By contradiction, assume that V−u + f (u) 6∈ L1(RN). So, by (22), u′(r) > 0 if r is sufficiently large. It follows that u(r)

does not converge to 0 as r → ∞, which contradicts Proposition 4.1. So, V−u + f (u) ∈ L1(RN). Next, in order to establish
that u ∈ L2(RN), we observe that our assumption (f1) implies the existence of some positive numbers a and δ such that
f ′(t) > at , for any 0 < t < δ. This implies f (t) > at2/2, for any 0 < t < δ. Since u decays to 0 at infinity, it follows that the
set {x ∈ RN; u(x) ≥ δ} is compact. Hence∫

RN
u2dx =

∫
[u≥δ]

u2dx+
∫
[u<δ]

u2dx

≤

∫
[u≥δ]

u2dx+
2
a

∫
[u<δ]

f (u)dx

< +∞,

since f (u) ∈ L1(RN).
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It remains to prove that ∇u ∈ L2(RN)N . We first observe that after multiplication by u in (1) and integration we find∫
BR
|∇u|2dx−

∫
∂BR
u(x)

∂u
∂ν
(x)dσ = λ

∫
BR
(V (x)u− f (u)) dx,

for any r > 0. Since Vu − f (u) ∈ L1(RN), it follows that the left-hand side has a finite limit as r → ∞. Arguing by
contradiction and assuming that ∇u 6∈ L2(RN)N , it follows that there exists R0 > 0 such that∫

∂BR
u(x)

∂u
∂ν
(x)dσ ≥

1
2

∫
BR
|∇u|2dx, for any R ≥ R0. (23)

Define the functions

A(R) :=
∫
∂BR
u(x)

∂u
∂ν
(x)dσ ;

B(R) :=
∫
∂BR
u2(x)dσ ;

C(R) =
∫
BR
|∇u(x)|2dx.

The integro-differential inequality (23) can be rewritten as

A(R) ≥
1
2
C(R), for any R ≥ R0. (24)

On the other hand, by the Cauchy–Schwarz inequality,

A2(R) ≤
(∫

∂BR
u2dσ

)(∫
∂BR

∣∣∣∣ ∂u∂ν
∣∣∣∣2 dσ

)
≤ B(R)C ′(R).

Now using (24) we obtain

C ′(R) ≥
C2(R)
4B(R)

, for any R ≥ R0.

Hence

d
dr

[
4
C(r)
+

∫ r

0

dt
B(t)

]
r=R
≤ 0, for any R ≥ R0. (25)

But, since u ∈ L2(RN), it follows that
∫
∞

0 B(t)dt converges, so

lim
R→∞

∫ R

0

dt
B(t)
= +∞. (26)

On the other hand, our assumption |∇u| 6∈ L2(RN) implies

lim
R→∞

1
C(R)

= 0. (27)

Relations (25)–(27) yield a contradiction, so our proof is complete. �

Proposition 4.3. Let u and v be two distinct solutions of problem (6). Then

lim
R→∞

∫
∂BR
u(x)

∂v

∂ν
(x)dσ = 0.

Proof. By multiplication with v in (6) and integration on BR we find∫
BR
∇u · ∇vdx−

∫
∂BR
u
∂v

∂ν
dσ = λ

∫
BR
(V (x)uv − f (u)v) dx.

So, by Proposition 4.2, there exists a finite limR→∞
∫
∂BR
u ∂v
∂ν
dσ . But, by the Cauchy–Schwarz inequality,∣∣∣∣∫

∂BR
u
∂v

∂ν
dσ
∣∣∣∣ ≤ (∫

∂BR
u2dσ

)1/2 (∫
∂BR
|∇v|2dσ

)1/2
. (28)
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Since u, |∇v| ∈ L2(RN), it follows that the integral∫
∞

0

(∫
∂BR
(u2 + |∇v|2)dσ

)
dx

is convergent. Hence

lim
R→∞

∫
∂BR
(u2 + |∇v|2)dσ = 0. (29)

Our conclusion now follows by relations (28) and (29). �

Proof of Theorem 1.2 Concluded. (i) The existence of a solution followswith the arguments given in the preceding section.
In order to establish the uniqueness, let u and v be two solutions of (6).We can assumewithout loss of generality that u ≤ v.
This follows from the fact that u = min{u, v} is a super-solution of (6) and u defined in (11) is an arbitrary small sub-solution.
So, it is sufficient to consider the ordered pair consisting of the corresponding solution and v.
Since u and v are solutions we have, by Green’s formula,∫

∂BR

(
u
∂v

∂ν
− v

∂u
∂ν

)
dσ = λ

∫
BR
uv
(
f (v)
v
−
f (u)
u

)
dx.

By Proposition 4.3, the left-hand side converges to 0 as R→∞. So, (f1) and our assumption u ≤ v force u = v in RN .
(ii) Arguing by contradiction, let λ ≤ λ∗ be such that problem (6) has a solution for this λ. Therefore∫

BR
|∇u|2dx−

∫
∂BR
u
∂u
∂ν
dσ = λ

∫
BR

(
V (x)u2 − f (u)u

)
dx.

By Propositions 4.2 and 4.3 and letting R→∞we find∫
RN
|∇u|2dx < λ

∫
RN
V (x)u2dx. (30)

On the other hand, using the definition of λ∗ and (3) we obtain

λ∗
∫

RN
Vζ 2dx ≤

∫
RN
|∇ζ |2dx, (31)

for any ζ ∈ C20 (R
N) such that

∫
RN Vζ

2dx > 0.
Fix ζ ∈ C20 (R

N) such that 0 ≤ ζ ≤ 1, ζ (x) = 1 if |x| ≤ 1, and ζ (x) = 0 if |x| ≥ 2. For any n ≥ 1 defineΨn(x) = ζn(x)u(x),
where ζn(x) = ζ (|x|/n). ThusΨn(x)→ u(x) as n→∞, for any x ∈ RN . Since u ∈ H1(RN), the Sobolev embedding theorem
implies that u ∈ L2N/(N−2)(RN). So, the Lebesgue dominated convergence theorem yields

Ψn → u in L2N/(N−2)(RN).

We claim that

∇Ψn → ∇u in L2(RN)N . (32)

Indeed, letΩn := {x ∈ RN; n < |x| < 2n}. Applying Hölder’s inequality we find

‖∇Ψn −∇u‖L2(RN ) ≤ ‖(ζn − 1)∇u‖L2(RN ) + ‖u∇ζn‖L2(Ωn)
≤ ‖(ζn − 1)∇u‖L2(RN ) + ‖u‖L2N/(N−2)(Ωn) · ‖∇ζn‖LN (RN ). (33)

But, since |∇u| ∈ L2(RN), it follows by Lebesgue’s dominated convergence theorem that

lim
n→∞
‖(ζn − 1)∇u‖L2(RN ) = 0. (34)

Next, we observe that

‖∇ζn‖LN (RN ) = ‖∇ζ‖LN (RN ). (35)

Since u ∈ L2N/(N−2)(RN) then

lim
n→∞
‖u‖L2N/(N−2)(Ωn) = 0. (36)

Relations (33)–(36) imply our claim (32).
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Since V±u2 ∈ L1(RN) and V±Ψ 2n ≤ V
±u2, it follows by Lebesgue’s dominated convergence theorem that

lim
n→∞

∫
RN
V±Ψ 2n dx =

∫
RN
V±u2dx.

Consequently

lim
n→∞

∫
RN
VΨ 2n dx =

∫
RN
Vu2dx. (37)

So, by (30) and (37), it follows that there exists n0 ≥ 1 such that∫
RN
VΨ 2n dx > 0, for any n ≥ n0.

This means that we can write (31) for ζ replaced by Ψn ∈ C20 (R
N). Then using (32) and (37) we find∫

RN
|∇u|2dx ≥ λ∗

∫
RN
Vu2dx. (38)

Relations (30) and (38) yield a contradiction, so problem (6) has no solution if λ ≤ λ∗. �
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