GRADIENT ESTIMATES FOR NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT TERM

FLORICA CÎRSTEA

ABSTRACT. Let $N \geq 2$ and $\Omega \subseteq \mathbb{R}^N$ denote a domain containing the origin 0. In this talk, we present recent gradient estimates for the positive solutions $u \in C^2(\Omega \setminus \{0\})$ of nonlinear elliptic equations such as

$$\operatorname{div}(|x|^{\sigma}|\nabla u|^{p-2}\nabla u) = |x|^{-\tau} u^{q} |\nabla u|^{m} \quad \text{in } \Omega \setminus \{0\}.$$

We assume throughout that m, p, q, σ and τ are real parameters satisfying 1 $and <math>\min\{k, \ell, m, q\} > 0$, where k := m + q - p + 1 and $\ell := q + 1 - \sigma - \tau$. This is joint work with Joshua Ching (The University of Sydney).

F. C. CÎRSTEA: SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF SYDNEY, NSW 2006, AUSTRALIA

1