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Facultatea de Ştiinţe Exacte, Universitatea din Craiova, 200585, România
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Objectives: The aim of this paper is to answer the question: Do the controls of a vanishing viscosity

approximation of the one dimensional linear wave equation converge to a control of the conservative limit

equation? The characteristic of our viscous term is that it contains the fractional power α of the Dirichlet

Laplace operator. Through the parameter α we may increase or decrease the strength of the high frequencies

damping which allows us to cover a large class of dissipative mechanisms. The viscous term, being multiplied

by a small parameter ε devoted to tend to zero, vanishes in the limit. Our analysis enables us to evaluate the

magnitude of the controls needed for each eigenmode and to show their uniform boundedness with respect to

ε, under the assumption that α ∈ [0, 1) \
{

1
2

}
. It follows that, under this assumption, our starting question has

a positive answer.

Summary: For T > 0 and ε ∈ (0, 1) we consider the following one dimensional perturbed wave equation

(1)


utt(t, x)− ∂2

xxu(t, x) + 2ε(−∂2
xx)

αut(t, x) + ε2(−∂2
xx)

2αu(t, x) = vε(t)f(x) (t, x) ∈ (0, T )× (0, π)

u(t, 0) = u(t, π) = 0 t ∈ (0, T )

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ (0, π).

We intend to control the solution of (1) by using a control vε(t), depending only on time and acting on the

system through a given shape function in space f(x). Such types of controls are often used and sometimes

called ”lumped” or ”bilinear” (see, for instance [1]). The profile where our control acts belong to L2(0, π) and

verifies f̂n ̸= 0 for any n ∈ N∗. In order to justify the damping mechanism introduced in (1), which involves

the fractional power α of the Laplace operator, let us point out that sometimes it may be useful to control the

amount of dissipation introduced in the system not only by means of the vanishing parameter ε but also by

an adequate choice of the differential operator. In (1) this is achieved through the parameter α. Note that, if

α ∈
[
0, 1

2

)
, the imaginary parts of the eigenvalues λn dominate the real ones and (1) has the same hyperbolic

character as in the limit case ε = 0. On the contrary, if α ∈
(
1
2 , 1

)
, (1) has a parabolic type. In this case we are

dealing with a truly singular control problem and the pass to the limit is sensibly more difficult. Finally, let us

remark that α = 1
2 is a singular case in which the basic controllability properties (such as spectral controllability)

do not hold and the case α = 1 has been studied in [4] for a slightly different problem.

In this paper we reduce the controllability problem to a moment problem. The advantage of this method

consists in the fact that the solutions of the moment problem are given in terms of an explicit biorthogonal

sequence to a family Λ of exponential functions. Now, the main task is to show that there exists a biorthogonal

sequence and to evaluate its L2−norm. In order to do that, we define a family (Ψm(z))m∈Z∗ of entire functions

of exponential type independent of ε (see, for instance, [6]) such that Ψm(iλn) = δmn. The inverse Fourier



transform of (Ψm)m∈Z∗ will give us the biorthogonal sequence (θm)m∈Z∗ that we are looking for. Such a

method was used for the first time by Paley and Wiener [5] and, in the context of control problems, by Fattorini

and Russell in the pioneering articles [2, 3] to prove the controllability of the one dimensional heat equation.
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