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Introduction

In many areas of science, we need to recover the initial data of
a physical system from partial observation over some finite time
interval. In oceanography and meteorology, this problem is known as
data assimilation. It also arises in medical imaging, for instance in
thermoacoustic tomography where the problem is to recover an initial
data for a 3D wave type equation from surface measurement [8].

In the last decade, new algorithms based on time reversal (see Fink
[4, 5]) appeared to answer this question. We can mention, for instance,
the Back and Forth Nudging proposed by Auroux and Blum [1], the
Time Reversal Focusing by Phung and Zhang [10], the algorithm
proposed by Ito, Ramdani and Tucsnak [7] and finally, the one we
will consider here, the forward–backward observers based algorithm
proposed by Ramdani, Tucsnak and Weiss [11].

Under some assumptions, we prove that this algorithm allows to re-
construct the observable part of the initial state, i.e. the part which
contributes to the measurement, and give necessary and sufficient con-
ditions to get exponential decay.

The dynamical system

Let X and Y be two Hilbert spaces, A : D(A) → X a skew-adjoint
operator (possibly unbounded), and C ∈ L(X,Y ). We consider the
system

{

ż(t) = Az(t), ∀ t ≥ 0,
z(0) = z0 ∈ X.

(1)

Such a system is often used to model vibrating system (acoustic or
elastic waves) or quantum system (Schrödinger equation).

We observe system (1) via the operator C during a finite time interval
(0, τ ) with τ > 0, leading to the measurement

y(t) = Cz(t), ∀ t ∈ (0, τ ). (2)

The inverse problem

Considering systems (1)–(2), a natural question arises

Is it possible to recover z0 of (1) from the

measurement y given by (2) ?

If we denote Ψτ : X → L2
ℓoc([0,∞), Y ) the continuous linear

operator which associates z0 to the measurement y, i.e. y = Ψτz0, it
is clear that the problem is well-posed if Ψτ is left-invertible. In other
words, it is well-posed if there exists a constant kτ > 0 such that

‖Ψτx‖ ≥ kτ‖x‖, ∀ x ∈ X. (3)

If the above inequality (3) holds, we say that (1)–(2) (or (A,C)) is
exactly observable.

The iterative algorithm

Under some assumptions, Ramdani, Tucsnak and Weiss [11] proposed
the iterative use of the following back and forth observers (4)–(5) to
reconstruct z0 from y. In our case, these assumptions are equivalent to
the exact observability assumption (3) (see [11, Proposition 3.7]).
Let A+ = A − γC∗C and A− = −A − γC∗C be the generator
of the two exponentially stable C0-semigroups (denoted T

+ and T
−

respectively) for all γ > 0 (see Liu [9] or [11, Proposition 3.7]), and
let z+0 ∈ X be the initial guess (usually z+0 = 0). Then the algorithm
reads: for all n ∈ N

∗







ż+n (t) = A+z+n (t) + γC∗y(t), ∀ t ∈ (0, τ ),
z+1 (0) = z+0 ,

z+n (0) = z−n−1(0), ∀ n ≥ 2,
(4)

{

ż−n (t) = −A−z−n (t)− γC∗y(t), ∀ t ∈ (0, τ ),
z−n (τ ) = z+n (τ ), ∀ n ≥ 1.

(5)

Convergence of the algorithm

Denoting e+n = z+n − z and e−n = z−n − z, one can easily show that e+n
and e−n are the respective solutions of







ė+n (t) = A+e+n (t), ∀ t ∈ (0, τ ),
e+1 (0) = z+0 − z0,

e+n (0) = z−n−1(0)− z0, ∀ n ≥ 2,

{

ė−n (t) = −A−e−n (t), ∀ t ∈ (0, τ ),
e−n (τ ) = z+n (τ )− z(τ ), ∀ n ≥ 1.

Then for all n ∈ N
∗

∥

∥e−n (0)
∥

∥ =
∥

∥

∥

(

T
−
τ T

+
τ

)n
e+1 (0)

∥

∥

∥
≤

∥

∥T
−
τ T

+
τ
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∥

n ∥
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∥

∥ ,

which can be rewritten

∥

∥z−n (0)− z0
∥

∥ ≤
∥

∥T
−
τ T

+
τ

∥

∥

n ∥
∥z+0 − z0

∥

∥ , ∀ n ∈ N
∗.

By the exponential stability of T+ and T
−, there exists a τ > 0 such

that
∥

∥T
−
τ T

+
τ

∥

∥ < 1. (6)

Ito, Ramdani and Tucsnak [7, Lemma 2.2] show that every time of
observability (i.e. every time τ > 0 such that (3) holds) leads to (6).

In other words, z−n (0) converges exponentially to z0: there exists a
constant α ∈ (0, 1) such that

∥

∥z−n (0)− z0
∥

∥ ≤ αn
∥

∥z+0 − z0
∥

∥ , ∀ n ≤ 1.

The convergence of the algo-
rithm by back and forth ob-
servers can be summarize by
this illustration:

Partial reconstruction of z0

Note that systems (4)–(5) are always well defined without the exact
observability assumption. Then two questions arise naturally:

1. Given arbitrary C and τ > 0, does the algorithm con-

verge ?

2. If it does, what is the limit of z−n (0), and how is it related

to z0 ?

Using the operator Ψτ , we have the orthogonal decomposition

X = KerΨτ ⊕ Ran (Ψτ )
∗. (7)

Theorem .With the previous definitions and notation, and de-

noting by Π the orthogonal projector from X onto Ran (Ψτ )
∗, the

following statements hold true:

1.We have for all z0, z
+
0 ∈ X

∥

∥(I − Π)
(

z−n (0)− z0
)∥

∥ =
∥

∥(I − Π)
(

z+0 − z0
)∥

∥ , ∀ n ≥ 1.

2. The sequence
(∥

∥Π
(

z−n (0)− z0
)∥

∥

)

n≥1 is strictly decreasing and

verifies
∥

∥Π
(

z−n (0)− z0
)∥

∥ −→ 0, n → ∞.

3. The rate of convergence is exponential, i.e. there exists a con-

stant α ∈ (0, 1), independent of z0 and z+0 , such that

∥

∥Π
(

z−n (0)− z0
)∥

∥ ≤ αn
∥

∥Π
(

z+0 − z0
)∥

∥ , ∀ n ≥ 1,

if and only if Ran (Ψτ )
∗ is closed in X.

In general, it is difficult to characterise the projector Π. However, if

the initial guess z+0 belongs to Ran (Ψτ )
∗ (for instance, z+0 = 0), then

all iterative approximations z−n (0) belong to Ran (Ψτ )
∗.

Corollary . Under the assumptions of the previous Theorem, if

z+0 ∈ Ran (Ψτ )
∗, then

∥

∥z−n (0)− Πz0
∥

∥ −→ 0, n → ∞.

Furthermore, the decay rate is exponential if and only if Ran (Ψτ )
∗

is closed in X.

Generalization and example

Using the framework of well-posed linear systems, we can use a result
of Curtain and Weiss [3] to handle the case of (some) unbounded
observation operators and derive a result similar to Theorem ??

(formally, we also take A± = ±A − γC∗C, with a suitably chosen
γ > 0).

Let Ω be a bounded open subset of RN , N ≥ 2, with smooth boundary
∂Ω = Γ0∪Γ1, Γ0∩Γ1 = ∅ and Γ0 and Γ1 being relatively open in ∂Ω.
Denote by ν the unit normal vector of Γ1 pointing towards the exterior
of Ω. Consider the following wave system















ẅ(x, t)−∆w(x, t) = 0, ∀x ∈ Ω, t > 0,
w(x, t) = 0, ∀x ∈ Γ0, t > 0,
w(x, t) = u(x, t), ∀x ∈ Γ1, t > 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), ∀x ∈ Ω,

(8)

with u the input function (the control), and (w0, w1) the initial state.
We observe this system on Γ1, leading to

y(x, t) = −
∂(−∆)−1ẇ(x, t)

∂ν
, ∀x ∈ Γ1, t > 0. (9)

Using a result of Guo and Zhang [6], we can show that the system
(8)–(9) fits into the framework of well-posed linear systems and we
can thus apply the generalization of the main Theorem to recover the
observable part of the initial data (w0, w1).

For instance, let us consider the following configuration.

We can easily obtain two subdo-
mains of Ω (the striped ones), us-
ing the geometric optic condition of
Bardos, Lebeau and Rauch [2], such
that all initial data with support in
the left (resp. right) one are observ-
able (resp. unobservable).

Simulations

We used Gmsha to mesh our domain, and GetDPb to discretize (4)–(5)
by finite elements in space and a Crank-Nicolson scheme in time.

We choose a suitable initial data to bring out these inclusions (in partic-
ular w1 ≡ 0). We perform some simulations (using GMSH and GetDP)
and obtain 6% of relative error (in L2(Ω)) on the reconstruction of the
observable part of the data after three iterations.

The initial position and its reconstruction after 3 iterations
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