WELL-POSEDNESS AND CONTROLLABILITY ISSUES FOR SWITCHING MODELS IN CARDIOLOGY

AURORA MARICA AND KARL KUNISCH

ABSTRACT. In this poster, we will consider the Mitchell-Schaeffer model [6]

(0.1)
$$\begin{cases} v_t = \Delta v + \frac{hv^2(1-v)}{\tau_{in}} - \frac{v}{\tau_{out}} + J_{stim}, & x \in \Omega, t \in (0,T] \\ h_t = \begin{cases} -\frac{h}{\tau_{close}}, & v > v_{gate}, \\ \frac{1-h}{\tau_{open}}, & v < v_{gate} \end{cases}, & x \in \Omega, t \in (0,T] \\ \frac{\partial v}{\partial \nu} = 0, & x \in \partial\Omega, t \in (0,T] \\ v(x,0) = v^0(x), h(x,0) = h^0(x), & x \in \Omega. \end{cases}$$

This is a ionic model involving two ionic currents (the second and the third term in the right hand side of the first equation). Here, $\Omega \subset \mathbb{R}^3$ is an open, bounded and Lipschitz domain occupied by the heart, v is the transmembrane electric potential, h is the gating variable modelling the potassium gate regulating the action potential duration and ν is the outward normal vector to $\partial\Omega$. The parameters τ_{in} , τ_{out} , τ_{open} and τ_{close} are four positive time constants for the inward sodium current, outside potassium current and for the gating variable. The stimulus current J_{stim} is an external current applied in brief pulses by the experimenter. We will also consider the Fenton-Karma model [3] involving three ionic currents corresponding to sodium, calcium and potassium, with two gating variables f and s (f/s standing for fast/slow):

$$(0.2) \qquad \qquad \begin{cases} v_t = \triangle v - (J_{fast} + J_{slow} + J_{ung}) + J_{stim}, & x \in \Omega, t \in (0, T] \\ f_t = \begin{cases} -\frac{f}{\tau_{fclose}}, & v > v_{fgate}, \\ \frac{1-f}{\tau_{fopen}}, & v < v_{fgate} \end{cases}, & x \in \overline{\Omega}, t \in (0, T] \\ s_t = \begin{cases} -\frac{s}{\tau_{sclose}}, & v > v_{sgate}, \\ \frac{1-s}{\tau_{sopen}}, & v < v_{sgate}, \end{cases}, & x \in \overline{\Omega}, t \in (0, T] \\ \frac{\partial v}{\partial \nu} = 0, & x \in \partial\Omega, t \in (0, T] \\ v(x, 0) = v^0(x), \ f(x, 0) = f^0(x), \ s(x, 0) = s^0(x), \quad x \in \Omega. \end{cases}$$

The fast inward current J_{fast} takes the form

$$J_{fast} := -\frac{fQ(v)}{\tau_{fast}}, \text{ where } Q(v) := \begin{cases} (v - v^*)(1 - v), & v > v^* \\ 0, & v \le v^* \end{cases}$$

and τ_{fast} is the *characteristic time* for this current. It is responsible for the depolarization of the membrane and only depends on the inactivation-reactivation gate f, i.e., it inactivates this current after depolarization an activates it after re-polarization. The *slow inward current* J_{slow} takes the form

$$J_{slow} := -\frac{s\sigma(v)}{\tau_{slow}}, \text{ where } \sigma(v) := \frac{1 + \tanh(k(v - v_{\sigma}))}{2}.$$

The ungated (slow outward) current J_{ung} is a piecewise linear function, is responsible for the re-polarization of the membrane and takes the explicit form

$$J_{ung} := P(v), \text{ where } P(v) := \begin{cases} \frac{1}{\tau_r}, & v > v^* \\ \frac{v}{\tau_{out}}, & v \le v^*. \end{cases}$$

In the first part of the presentation, we will consider the well-posedness problem associated to these two models. For the existence part, we will apply a Faedo-Galerkin technique to construct approximate solutions [5]. The main difficulty with respect to other models appearing in cardiology and involving the same kind of nonlinearity in the equation of v (bidomain or Fitz-Hugh Nagumo models [2]) is the presence of the discontinuous coefficients with respect to v in the gating equations verified by h, f or s leading to ODEs systems with discontinuous nonlinearities for which the appropriate solutions are those of Filippov type [1], [4], so that the gating equations will be interpreted as differential inclusions. The last part of the presentation will be devoted to some control problems associated to these to models.

AURORA MARICA AND KARL KUNISCH

References

- [1] J. P. Aubin, A. Cellina, *Differential inclusions*, A Series of Comprehensive Studies in Mathematics, Vol. 264, Springer-Verlag, 1984.
- [2] Y. Bourgault, Y. Coudière, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, 10(2009), 458–482.
- [3] F. Fenton, A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrilation, Chaos, 8(1)(1998), 20–47.
- [4] A. F. Filippov, Differential equations with discontinuous righthand sides, Kluwer Academic Publishers, 1988.
- [5] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, 1969.
- [6] C. C. Mitchell, D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, 65(2003), 767–793.

Aurora Marica, Karl Kunisch^a

 a University of Graz, Institute for Mathematics and Scientific Computing Heinrichstrasse 36, A-8010, Graz, Austria

E-mail address: aurora.marica@uni-graz.at, karl.kunisch@uni-graz.at

 $\mathbf{2}$