Workshop APPLIED MATHEMATICS: METHODS AND MODELING CRAIOVA, MAY 7 - 8, 2017

Perturbed fractional eigenvalue problems

Maria Fărcășeanu

Department of Mathematics, University of Craiova, 200585 Craiova, Romania

farcaseanu.maria@yahoo.com

Abstract: Let $\Omega \subset \mathbb{R}^N$ $(N \ge 2)$ be a bounded domain with Lipschitz boundary. For each $p \in (1,\infty)$ and $s \in (0,1)$, we denote by $(-\Delta_p)^s$ the fractional (s,p)-Laplacian operator. We study the existence of nontrivial solutions for a perturbation of the eigenvalue problem $(-\Delta_p)^s u = \lambda |u|^{p-2}u$, in Ω , u = 0, in $\mathbb{R}^N \setminus \Omega$, with a fractional (t,q)-Laplacian operator in the left-hand side of the equation, when $t \in (0,1)$ and $q \in (1,\infty)$ are such that s - N/p = t - N/q. We show that nontrivial solutions for the perturbed eigenvalue problem exists if and only if parameter λ is strictly larger than the first eigenvalue of the (s,p)-Laplacian. This talk is based on some recent results obtained in collaboration with Mihai Mihăilescu and Denisa Stancu-Dumitru.