Balancing Transformations for Infinite-Dimensional Systems

Tilman Selig∗
in collaboration with Timo Reis†

February 12, 2013

We consider model reduction by balanced truncation for infinite-dimensional linear systems. The goal is to apply balancing and truncation to L^2-well-posed linear system with a nuclear Hankel operator in order to obtain a finite dimensional system approximating the input-output behavior in the H_∞ norm.

Our main result is that we explicitly construct pseudo-similarity transformations from factors of the gramians in analogy to the finite dimensional transformations in [3]. These possibly unbounded transformations can be applied to the generators (A, B, C) of the system and yield a new well-posed system on ℓ_2, which is balanced in the sense that its gramians are both equal to a diagonal operator on ℓ_2. This also generalizes results on ℓ_2 balanced realizations from [1] to a larger class of systems. Subsequently, a balanced realization may be truncated, making an error which is bounded by the Hankel singular values as recently proved by [2]. Moreover, we consider reduced transformations which yield the truncated system directly. It should be mentioned that we do not need any controllability or observability assumptions for our approach.

References

∗Institut für Mathematik, Technische Universität Ilmenau, Weimarer Str. 25, 98693 Ilmenau, Germany. e-mail: tilman.selig@tu-ilmenau.de, phone:+49 3677-693254.

†Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany