Computer Science Deparment
 

A. Matei, Three weak formulations for an obstacle model and their relationship, to appear.

A. Matei, M. Osiceanu, A variational formulation governed by two bipotentials for a frictionless contact model, Mathematical Modelling and Analysis, to appear.

A. Matei, Weak solutions for contact models involving a class of generalized materials, Nonlinear Analysis: Real World Applications, Volume 72,2023,103863,ISSN 1468-1218, https://doi.org/10.1016/j.nonrwa.2023.103863.

A. Matei, M. Osiceanu, Weak solvability via bipotentials and approximation results for a class of bilateral frictional contact problems, Communications in Nonlinear Science and Numerical Simulation,Volume 119,2023,107135,ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2023.107135.

A. Matei, M. Osiceanu, Weak solvability via bipotentials for contact problems with power-law friction, Journal of Mathematical Analysis and Applications,Volume 524, Issue 1,2023,127064,ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2023.127064.

M. Chivu Cojocaru, A. Matei, Weak solutions via two-field Lagrange multipliers for boundary value problems in mathematical physics, Mathematical Modelling and Analysis, Volume 27, Issue 4, 561--572, 2022. https://doi.org/10.3846/mma.2022.15827.

A. Matei, A Three-Field Variational Formulation for a Frictional Contact Problem with Prescribed Normal Stress, Fractal Fract., Volume 6, Issue 11, 651 (2022).

A. Matei, M. Osiceanu, Two-Field Weak Solutions for a Class of Contact Models, Mathematics 2022, 10(3), 369; https://doi.org/10.3390/math10030369 - 25 Jan 2022.

A. Matei, On a class of generalized saddle-point problems arising from contact mechanics. Fixed Point Theory Algorithms Sci Eng 2022, 16 (2022). https://doi.org/10.1186/s13663-022-00726-7

W. Han, A. Matei, Well-posedness of a general class of elliptic mixed hemivariational-variational inequalities, Nonlinear Analysis: Real World Applications,Volume 66, 2022,103553, ISSN 1468-1218, https://doi.org/10.1016/j.nonrwa.2022.103553.

W. Han, A. Matei, Minimax Principles for Elliptic Mixed Hemivariational-Variational Inequalities, Nonlinear Analysis: Real World Applications, 64 (2022) 103448, https://doi.org/10.1016/j.nonrwa.2021.103448.

M. Chivu Cojocaru, A. Matei, Variational approaches for contact models with multi-contact zones, Mediterr. J. Math. 19, 228 (2022). https://doi.org/10.1007/s00009-022-02144-w.

A. Matei, M. Osiceanu, Two-field variational formulations for a class of nonlinear mechanical models, Mathematics and Mechanics of Solids, first published online: 10 January 2022; https://doi.org/10.1177/10812865211066123, {\bf 27} (11) (2022):2532-2547.

A. Matei, On a new class of abstract mixed variational-hemivariational problems, Communications in Nonlinear Science and Numerical Simulation, Available online 14 September 2021, Volume 104, January 2022, 106046, https://doi.org/10.1016/j.cnsns.2021.106046.

M. Chivu Cojocaru, A. Matei, Saddle point formulations for a class of nonlinear boundary value problems, Bull. Math. Soc. Sci. Math. Roumanie, Tome 64 (112), No. 4, 355-368, 2021.

Chivu Cojocaru, M., and Matei, A. (2020). On a class of saddle point problems and convergence results. Mathematical Modelling and Analysis, 25(4), 608-621. https://doi.org/10.3846/mma.2020.11140.

Chivu Cojocaru, M., Matei, A. On the Weak Solvability Via Lagrange Multipliers for a Bingham Model. Mediterr. J. Math. 17, 164 (2020). https://doi.org/10.1007/s00009-020-01596-2

N. Cindea, A. Matei, S. Micu, C. Ni\c{t}\u{a}, Boundary optimal control for antiplane problems with power-law friction, Applied Mathematics and Computation,Volume 386, 1 December 2020, 125448. https://doi.org/10.1016/j.amc.2020.125448

A. Matei, M. Sofonea, Solvability and optimization for a class of mixed variational problems, OPTIMIZATION, 69:5, 1097-1116, 2020, DOI: 10.1080/02331934.2019.1676242

Sofonea, M., Matei, A. Convergence and Optimization Results for a History-Dependent Variational Problem. Acta Appl Math 169(1), 157--182 (2020).https://doi.org/10.1007/s10440-019-00293-x

N. Cindea, A. Matei, S. Micu, C. Ni\c{t}\u{a}, Boundary optimal controlfor antiplane problems with power-law friction, archives-ouvertes.fr, hal-02176637

A. Matei, On the relationship between alternative variational formulations of a frictional contact model, Journal of Mathematical Analysis and Applications, Volume 480, Issue 1, 1 December 2019, 123391. https://doi.org/10.1016/j.jmaa.2019.123391,

M. Sofonea, A. Matei, Y. Xiao, Optimal control for a class of mixed variational problems, Z. Angew. Math. Phys. (2019) 70: 127. https://doi.org/10.1007/s00033-019-1173-4.

M. Chivu Cojocaru, A. Matei, Well-posedness for a class of frictional contact models via mixed variational formulations, https://doi.org/10.1016/j.nonrwa.2018.10.009, Nonlinear Analysis: Real World Applications, Published online 2018, to appear 47 (2019, JUNE) 127--141.

A. Matei, A mixed hemivariational–variational problem and applications, Computers and Mathematics with Applications (CAMWA) Available online 4 October 2018, https://doi.org/10.1016/j.camwa.2018.08.068.

M. Chivu Cojocaru, A. Matei, Well-posedness for a class of frictional contact models via mixed variational formulations, https://doi.org/10.1016/j.nonrwa.2018.10.009, Nonlinear Analysis: Real World Applications, Published online 2018, to appear 47 (2019, JUNE) 127-141.

A. Matei, S. Sitzmann, K. Willner, B. Wohlmuth, A mixed variational formulation for a class of contact problems in viscoelasticity Applicable Analysis, 97(8) 2018, 1340-1356. http://dx.doi.org/10.1080/00036811.2017.1359569.

A. Matei, S. Micu, C. Nita, Optimal control for antiplane frictional contact problems involving nonlinearly elastic materials of Hencky type Mathematics and Mechanics of Solids, pp. 308–328, vol 23(3), 2018.

A. Matei, S. Micu, Boundary Optimal Control for a Frictional Contact Problem with Normal Compliance, Appl Math Optim, 78(2), pp 379-401, October 2018. doi:10.1007/s00245-017-9410-8.

A. Matei (2016) On the Weak Solvability and the Optimal Control of a Frictional Contact Problem with Normal Compliance.(conference paper, first online 2017) In: Bociu L., Désidéri JA., Habbal A. (eds) System Modeling and Optimization. CSMO 2015. IFIP Advances in Information and Communication Technology, vol 494, pages 370-379. Springer, Cham, Print ISBN 978-3-319-55794-6, Online ISBN 978-3-319-55795-3, https://doi.org/10.1007/978-3-319-55795-3_35

A. Matei, M. Sofonea, A mixed variational formulation for a piezoelectric frictional contact problem, IMA Journal of Applied Mathematics, IMA J Appl Math (2017) 82 (2): 334-354.

A. Matei, Weak solvability via Lagrange multipliers for contact problems involving multi-contact zones, Mathematics and Mechanics of Solids, vol. 21 no. 7, 826-841, 2016.

M. Sofonea and A. Matei, A mixed variational problem with applications in contact mechanics, Zeitschrift für angewandte Mathematik und Physik (ZAMP), Volume 66, Issue 6, Page 3573-3589, 2015.

M. M. Boureanu, A. Matei, Singular and degenerate boundary value problems related to the electricity theory, Mathematical Problems in Engineering, volume 2015 (2015), article ID 865261, http://dx.doi.org/10.1155/2015/865261

A. Matei, Two abstract mixed variational problems and applications in Contact Mechanics, Nonlinear Analysis Series B: Real World Application, Vol. 22, April 2015, 592-603. http://dx.doi.org/10.1016/j.nonrwa.2014.09.014.

M. Sofonea and A. Matei, History-dependent Mixed Variational Problems in Contact Mechanics, Journal of Global Optimization, DOI 10.1007/s10898-014-0193-z, Volume 61, Issue 3 (2015), Page 591-614.

D. Danciu, A. Matei, S. Micu and I. Roventa, Nonlinear Feedback Control and Artificial Intelligence Computational Methods applied to a Dissipative Dynamic Contact Problem. DOI: 10.5220/0005055005280539 In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2014), pages 528-539, ISBN: 978-989-758-039-0.

M. Barboteu, A. Matei and M. Sofonea, On the behavior of the solution of a viscoplastic contact problem, Quarterly of Applied Mathematics, published electronically: September 25, 2014, DOI: http://dx.doi.org/10.1090/S0033-569X-2014-01345-4, Vol. LXXII, Number 4, 2014, pages 625-647.

A. Matei, Weak Solutions via Lagrange Multipliers for a Slip-dependent Frictional Contact Model, IAENG International Journal of Applied Mathematics, 44 (3), 2014, 151-156. Special issue WCE 2014-ICAEM; http://www.iaeng.org/IJAM/issues_v44/issue_3/index.html.

A. Matei, A mixed variational formulation for a slip-dependent frictional contact model, Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2014, 2-4 July, 2014, London, U.K., vol II, pp 750-754 (ISBN: 978-988-19253-5-0).

A. Matei, An existence result for a mixed variational problem arising from Contact Mechanics, Nonlinear Analysis: Real World Applications, online 20 May 2014, DOI: 10.1016/j.nonrwa.2014.01.010, vol. 20, December 2014, 74-81.

A. Matei, A variational approach via bipotentials for a class of frictional contact problems, Acta Applicandae Mathematicae, DOI: 10.1007/s10440-014-9868-1.

A. Matei, An evolutionary mixed variational problem arising from frictional contact mechanics, Mathematics and Mechanics of Solids, 19(3) May 2014, 225 - 241.

M. Boureanu, A. Matei and M. Sofonea, Nonlinear problems with p(.)-growth conditions and applications to antiplane contact models, Advanced Nonlinear Studies (ISSN 1536-1365), 14(2014), 295-313.

A. Matei, On the solvability of mixed variational problems with solution-dependent sets of Lagrange multipliers, Proceedings of The Royal Society of Edinburgh,Section: A Mathematics, published online 25 September 2013; 143(05), October 2013, 1047-1059, http://dx.doi.org/10.1017/S0308210512000637; ISSN: 0308-2105.

S. Hueeber, A. Matei, B. Wohlmuth, A contact problem for electro-elastic materials, Journal of Applied Mathematics and Mechanics (ZAMM), DOI:10.1002/zamm.201200235, 93 (10-11), 789-800, October 2013. Special Issue: Mathematical Modeling: Contact Mechanics, Phase Transition, Multiscale Problems. In Memory of Cheistof Eck (Online ISSN: 1521-4001 Print ISSN 0044-2267)

A. Matei, Weak solvability via Lagrange multipliers for two frictional contact models, Proceedings of 11-th French-Romanian Conference on Applied Mathematics, 2012, Bucharest, Annals of the University of Bucharest (mathematical series), 4(LXII), 179-191, 2013.

I. Andrei, N. Costea and A. Matei, Antiplane shear deformation of piezoelectric bodies in contact with a conductive support, Journal of Global Optimization, DOI 10.1007/s10898-011-9815-x; Volume 56, Issue 1, pp 103-119, May 2013.

A. Matei, A variational approach via bipotentials for unilateral contact problems, Journal of Mathematical Analysis and Applications, Online August 2012, Volume 397, Issue 1, 1 January 2013, Pages 371–380. DOI: 10.1016/j.jmaa.2012.07.065.

A. Matei and M. Sofonea, Dual formulation of a viscoplastic contact problem with unilateral constraint, Proceedings of 10th French-Romanian Conference on Applied Mathematics, 2010, Poitiers, France, Discrete and Continuous Dynamical Systems - Series S(DCDS-S), 6(6), 1587-1598, 2013.

M. Barboteu, A. Matei and M. Sofonea, Analysis of Quasistatic Viscoplastic Contact Problems with Normal Compliance, The Quarterly Journal of Mechanics and Applied Mathematics, DOI: 10.1093/qjmam/hbs016, 65(4), 555-579, 2012.

S. Cleja-Tigoiu and A. Matei, Rate Boundary Value Problems and Variational Inequalities in Rate-Independent Finite Elasto-Plasticity, Mathematics and Mechanics of Solids, ISSN 1081-2865, DOI: 10.1177/1081286511426915, 17(6): 557-586, August 2012.

M. Boureanu, A. Matei and M. Sofonea, Analysis of a Contact Problem for Electro-elastic-visco-plastic Materials, Communications on Pure and Applied Analysis, ISSN 1534-0392(print), ISSN 1553-5258(online), 11(3), 1185-1203, doi: 10.3934/cpaa.2012.11.1185 Published MAY 2012

N. Costea and A. Matei, Contact models leading to variational-hemivariational inequalities, Journal of Mathematical Analysis and Applications, ISSN 0022-247X, available online 12 August 2011, DOI:10.1016/j.jmaa.2011.08.025, Volume 386, Issue 2, 15 February 2012, Pages 647-660.

M. Sofonea and A. Matei, History-dependent Quasivariational Inequalities arising in Contact Mechanics, European Journal of Applied Mathematics, ISSN 0956-7925, EISSN 1469-4425, DOI:10.1017/S0956792511000192, vol. 22, 471-491, 2011.

A. Matei and R. Ciurcea, Weak solutions for contact problems involving viscoelastic materials with long memory, Mathematics and Mechanics of Solids, ISSN 1081-2865, DOI: 10.1177/1081286511400515, Volume 16 Issue 4 June 2011, 393 - 405.

A. Matei and C. Niculescu, Weak solutions via bipotentials in mechanics of deformable solids, J. Math. Anal. Appl., DOI: 10.1016/j.jmaa.2010.12.016, Volume 379, Issue 1, 1 July 2011, Pages 15-25,ISSN 0022-247X.

A. Matei and S. Micu, Boundary optimal control for nonlinear antiplane problems, Nonlinear Analysis: Theory, Methods and Applications, DOI:10.1016/j.na.2010.10.034, 74 (5), 1641 - 1652, ISSN 0362-546X, 2011.

A. Matei and R. Ciurcea, Contact problems for nonlinearly elastic materials: weak solvability involving dual Lagrange multipliers, The ANZIAM Journal, ISSN 1446-1811, DOI: 10.1017/S1446181111000629, 52, 160-178, 2010.

A. Matei and R. Ciurcea, Weak solvability for a class of contact problems, Annals of the Academy of Romanian Scientists Series on Mathematics and its Applications, 2(1), 25-44, ISSN 2066--6594, 2010.

N. Costea and A. Matei, Weak solutions for nonlinear antiplane problems leading to hemivariational inequalities, Nonlinear Analysis: Theory, Methods and Applications, DOI 10.1016/j.na.2010.01.002, 72, 3669-3680, ISSN0362-546X, 2010.

M. Boureanu and A. Matei, Weak solutions for antiplane models involving elastic materials with degeneracies, ZAMP, ISSN 0044-2275, DOI 10.1007/s00033-009-0008-0, 61(1), 73-85, 2010.

A. Matei, A variational approach for an electro-elastic unilateral contact problem, Mathematical Modelling and Analysis, 14(3), 323-334, ISSN 1392-6292 print, ISSN 1648-3510 online, 2009.

R. Ciurcea and A. Matei, Solvability of a mixed variational problem, Ann. Univ. Craiova, 36(1), 105-111, 2009, ISSN 1223-6934.

M. Sofonea, C. Avramescu and A. Matei, A Fixed point result with applications in the study of viscoplastic frictionless contact problems, Communications on Pure and Applied Analysis, 7(3), 645--658, 2008, ISSN 1534-0392 (print) ISSN 1553-5258 (electronic).

A. Matei, Mixed variational formulations in contact mechanics for elasto-piezoelectric materials, Proceedings of International Conference - Trends and Challenges in Applied Mathematics (ICTCAM, Bucharest), Conference Proceedings,pp. 255-259, 2008.

S. Hueeber, A. Matei and B. Wohlmuth, Efficient algorithms for problems with friction, SIAM Journal on Scientific Computing, vol. 29, 70-92, 2007, ISSN 1064-8275.

M. Sofonea and A. Matei, An elastic contact problem with adhesion and normal compliance, Journal of Applied Analysis, 12(1), 2006, ISSN 1425-6908.

M. Sofonea, C. Niculescu and A. Matei, An antiplane contact problem for viscoelastic materials with long-term memory, Mathematical Modelling and Analysis, 11(2), 2006, ISSN 1392-6292 print, ISSN 1648-3510 online.

S. Hueeber, A. Matei and B. Wohlmuth, A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto -piezoelectricity, Bull. Math. Soc. Math. Roumanie, 48 (96), 2, 2005, 209-232, ISSN 1220 3874.

M. Sofonea and A. Matei, A mixed variational formulation for the Signorini frictionless problem in viscoplasticity, Annals Univ. Ovidius Constanta, 12(2), 157-170, 2004.

T.-V. Hoarau-Mantel and A. Matei, Frictional antiplane contact problems for viscoelastic materials with long-term memory, Annals Univ. Craiova, vol.32, 200-206, 2005 (Proceedings of 7-th French-Romanian Conference on Applied Mathematics, 2004, University of Craiova, Romania), ISSN 1223-6934.

N. Hemici and A. Matei, A frictionless contact problem with adhesion between two elastic bodies, Annals Univ. Craiova, 30(2), 90-99, 2003, ISSN 1223-6934.

A. Matei, Antiplane contact problem for viscoelastic materials, Annals Univ. Craiova, 30 , 169-178, 2003 (Proceeding s of 6-th French-Romanian Conference on Applied Mathematics, 2002, Perpignan, France), ISSN 1223-6934.

M. Sofonea and A. Matei, A fixed point result for operators defined on spaces of vector-valued continuous functions, Annals Univ. Craiova, 29, 19-22, 2002, ISSN 1223-6934.

M. Sofonea and A. Matei, Elastic antiplane contact problem with adhesion, Journal of Applied Mathematics and Physics (ZAMP), 53 , 962-972, 2002.

A. Matei, L. Jianu and M. Sofonea, Quasistatic elasto-visco-plastic problems with friction, Annals Univ. Bucharest, Math., 51, 23-38, 2002.

T.-V. Hoarau-Mantel and A. Matei, Analysis of a viscoelastic antiplane contact problem with slip dependent friction, International Journal of Applied Mathematics and Computer Science, 12(1), 51-59, ISSN 1641-876X, 2002.

A. Matei, Results on quasistatic antiplane contact problems with slip dependent friction, Seminar on fixed point theory Cluj-Napoca, III, 255-261, 2002 ( Proceedings of the International Conference on Nonlinear Operators, Differential Equations and Applications, 2001, Cluj- Napoca, Romania).

A. Matei, V.V. Motreanu and M. Sofonea, On the Signorini frictionless contact problem for linear viscoelastic materials, Applicable Analysis, 80, 177-199, 2001.

A. Matei, V.V. Motreanu and M. Sofonea, A quasistatic antiplane contact problem with slip dependent friction, Advances in Nonlinear Variational Inequalities, 4(2), 1-21, 2001.

A. Matei, Variational analysis for a Signorini contact problem, Annals. Univ. Craiova, XXVIII, 59-67 (Proceedings of the National Conference of Nonlinear Analysis and Applications, University of Craiova, Romania, 2001), ISSN 1223-6934.

M. Sofonea and A. Matei, A quasistatic frictionless contact problem with normal compliance, Annals Univ. Craiova, 27, 43-56, ISSN 1223-6934, 2000.

A. Matei, Shape memory and pseudo-elasticity, remarkable properties for a Cu-Zn-Al alloy, Scientific communications, 1, 125-132, 2000 ( Proceedings of 3-th Conference of the Romanian Mathematical Society, 1999).

July 10, 2023 |