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Dumitru Busneag

Preface

This monograph, structured on 5 chapters, contains some notions of classical
algebra, lattices theory, universal algebras, theory of categories which will be useful
for the last part of thisbook and which will be devoted to the study of some algebraic
categories that have their origin in mathematical logic. In writing this book | have
mainly used papers[12]-[34] (revised and improved); the first germ of this book is my
monograph [30]. Several sections on advanced topics have been added, and the

References have been considerably expanded.

This book also contains some taken over resultsin anew context for some
reference papers of mathematical literature (see References); when some results or

proofs were taken ad literam from other papers | have mentioned.

Thetitle of this monograph Categories of algebraic logic is justified because
here we have included many algebras with origin in mathematical logic (it isthe case
of Boole algebras, Heyting algebras, residuated lattices, Hilbert algebras, Hertz

algebras and Wajsberg algebras).
Asthetitle indicates, the main emphasisis on agebraic methods.

Taking into consideration the algebraic character of this monograph, | have not
insisted much on their origin, the reader could easily clarify the aspects by consulting

the papers [2], [8], [35], [37], [49], [58], [73], [75], [76], [80] and [81].
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Concerning the citations of some resultsin this book ,| have to say that if | have
mentioned for example Result x.y.z it meansthat | refer to theresult z contained

in the paragraph y of the chapter x.

This book is self-containing, thus no previous knowledge in algebraor in logic
is requested. The reader should, however, be familiar with standard mathematical

reasoning and denotation.

Chapter 1 (Preliminary notions) is dedicated to some very often used notions
in any mathematical branch. So, | have included notions about sets, binary relations,

equivaence relations, functions and others.

In Chapter 2 (Ordered sets) we have presented basic notions on ordered sets
(semilattices, lattices) and there are also presented Bool€e' s elementary a gebras

notions.

Chapter 3 (Topicson Universal algebra) contains the basic notions of
Universal Algebra, necessary for presenting some mathematical resultsin their own
language. The presentation of the main results on the varieties of algebras will have an
important role because they will permit, in the following chapters, the presentation of

many results from the equational categories (often met in algebra).

Chapter 4 (Topics on theory of categories) contains basic results from
Category’ stheory. | have included this chapter for presenting some results from
previous chapters from the category’s theory view point and because they will be

needed to present in the same spirit some results from Chapter 5.

Chapter 5 (Algebras of logic), the main chapter of this monograph, contains

agebraic notions relative to algebras with origin in mathematical logic; here | have
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included Heyting ,Hilbert, Hertz algebras, residuated lattices and Wajsberg al gebras.
This chapter contains classical resultsand my origina results relative to these
categories of agebras(more of these results have their originsin my Ph. D. Thesis:

Contributionsto the study of Hilbert algebras).

Thisbook isdidactic in its spirit, so it is mainly addressed to the studentsin the
mathematical and computer science faculties (including post-graduate students, as well
asthe Ph.D. studentsin this field of mathematics); it could also be used by math

teachers and also by everybody who worksin algebraic logic.

Preliminary versions have been tested in several graduate coursesin algebra
which | teach to the students from the Faculty of Mathematical and Computer Science

in Craiova.

Taking into consideration that order relation appears not only in algebra but
also in other mathematical domains, we consider that this monograph is useful to a

large category of mathematical users.

It is a pleasure for me to thank Professor Constantin Naistasescu,
Correspondent member of the Romanian Academy, and Professor Geor ge Geor gescu
from the Faculty of Mathematical and Computer Science, University of Bucharest, for

the discussions which led to this book structure.

We also thank to Dr.Doc.Nicolae Popescu, Correspondent member of the
Romanian Academy and the Official referee for this book on behalf of the
Mathematical Section of the Romanian Academy, for his careful and competent

reading and for sugessting several improvements.
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This monograph (like other published books) was not possible without the
effort of my colleague Dana Piciu (who was not only a precious collaborator, with
whom | took several discussions concerning this book, but she also assured the
typewriting and correction procedures); | use this moment to thank her for the
collaboration in achieving this book and also in achieving, in the future, some other

necessary algebraic books for mathematical study.

| would also like to thank my colleague Mihai Cosoveanu from the English
Department of the University of Craiova for his precious help in supervising the
English text and my son Catalin Busneag for his assistance in the manuscript

preparation process.

Craiova, February 17, 2006 . Prof. univ. Dr. Dumitru Busneag
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Rel(A)
Echiv(A)

Alp

[M] (or card(M))

14
N(N*)
2(7%)
Q(Q*)
Q)
R(R*)
R,
C(C*)

U

A

(A, <)

= O

inf (S)
sup(S)

I ndex of Symbols

: abbreviation for if and only if

thatis

: logical implication (equivalence)

: universal (existential) quantifier

: thedlement x belongstothe set A
:theset A isincluded in B

:the set A isdtrictly included in the set B

: intersection of the sets A and B

: union of the sets A and B

: difference of the sets A and B

: symmetrical difference of the sets A and B

: the power set of M

: the complementary subset of A relativeto M
: the cartesian product of the sets A and B

: the diagonal of cartesian product A" A

: the cartesian product A" A

: the set of dl binary relations on A

: the set of al equivalencerelations on A

: the quotient set of A by equivalence relation p
: the cardinal of set M (if M isfinite M|

isthe number of elements of M)

: identity function of the set A
: the set of natural numbers (non nulles)

: the set of integer numbers (non nulles)
: the set of rational numbers (non nulles)

: the set of strictly positive rational numbers
: the set of real numbers (non nulles)

: the set of strictly positive real numbers

: the set of complex numbers (non nulles)
: relation of isomorphism

: relation of order

- ordered set A

: the smallest (bottom) element in an ordered set
: the greatest (top) element ia an ordered set

: theinfimum of the set S

: the supremum of the set S
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XAy Jinf {x,y}
(L, A, V) :lattice L
(8] : theideal generated by S
[S : thefilter generated by S
(L) :the set of all ideals of lattice L
F(L) : the set of dl filters of lattice L
Spec(L) : the spectrum of lattice L (the set of all primeidealsof L)
a* : the pseudocomplement of the element a
a : the complement of the element a
a—b : the pseudocomplement of arelativeto b
L/l : the quotient lattice of lattice L by ideal |
Con(A) : the set of al congruences of A
[S] : the subalgebra generated by S
e (Y) : the congruence generated by Y
Hom(A, B) : the set of al morphisms from A to B in a category
A~B : the objects A and B are isomorphic
A%B : the objects A and B are not isomorphic
c’ : the dual of category C
Sets : the category of sets
Pre : the category of preordered sets
Ord : the category of ordered sets
Ld(0,1) : the category of bounded distributive lattices
B : the category of Boole algebras
Top : the category of topological spaces
Ker(f,g) : the kernél of couple of morphisms (f,g)
Coker (f,9) : the cokernel of couple of morphisms (f,g)
Ker(f) : the kerndl of the morphism f
Coker (f) : the cokernel of the morphism f
ha(h®) : the functor (cofunctor) associated with A
?I A : the coproducts of the family (A;)ic, of objects
O A : the products of the family (A,)c, of objects
;% A  the inductive limit of the family (A;)ic; of objects
ﬂ'j,g; A  the colimit of the family (A))ic; of objects
MCN : the fibred coproduct of M with N over P
P
MO N - the fibred product of M with N over P

P

Ds(A) : the set of dl deductive systems of a Hilbert agebra A
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Chapter 1

SETSAND FUNCTIONS

1.1. Sets. Operationson sets

In this book we will consider the sets in the way they were seen by
GEORG CANTOR - the first mathematician who initiated their systematical study
(known in mathematics as the naive theory of sets).

We ask the reader to consult books [59] and [79] to find more information
about the paradoxes which imply this view point and the way they could be
eliminated.

Definition 1.1.1. If A and B are two sets, we say that A isincluded in B
(or Aisasubset of B) if all elementsof A arein B; in thiscasewewrite A<B;
in the opposite casewewrite AZB.
So, we have: AcB iff xeA =>xeB
AEZB iff thereisx€A such that x¢ZB.
We say that the sets A and B are equal if for every x, xeA<=xeB.
So, A=B < AcB and BSA.

We say that A is strictly included in B (wewrite ACB) if AcB and A+B.
It is accepted the existence of a set which doesn’'t contain elements denoted

by & and it is caled the empty set.It isimmediate to deduce that for every set A,
<A (because if by contrary we suppose JZA, then there is xed such that

x&¢A —which isacontradiction!).
A different set from the empty set will be called non-empty.

For aset T, we denote by P(T) the set of al his subsets (clearly, @, Te
P(T)); P(T) iscalled power set of T .

Thefollowing result isimmediate:

If Tisasetand A, B, CeP (T), then
(i) AcA;

(if) If AcB and BSA, then A=B;

(iii) If AcB and BSC, then AcC.
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In this book we will use the notion of family of elements, indexed by a
index set | .

So, by (x))ic; we will denote afamily of elements and by (A)) i, afamily of
sets indexed by the index set |.

Foraset T and A, BEP(T) we define
ANB = {X&T : xeA and xeB},
AUB = {X&T : x€A or xeB},
A\B = {x&T : x€A and x¢B},
AAB = (A\B) U (B\A).

If ANB=Q, the sets A and B will be called digoints.

The operations N, U, \ and A are caled intersection, union, difference
and symmetrical difference respectively.

In particular, T\A will be denoted by C+ (A) (or C(A) if there is no danger
of confusion) and will be called the complementary of A inT.

Clearly, for A, BEP(T) we have
A\B = AN(+(B),
AaB = (AUB)\ (ANB) = (ANC+(B))U(C+(A)NB),
CT(®) =T, CT(T) =,
AUCT(A) =T, AﬂCT(A) =@ and CT(CT(A)) =A.
Also, for XeT we have
XZANB < xX€A or X¢B,
X¢AUB < x¢A and x¢B,
Xx¢A\B < x¢A or xeB,
XZAAB < (x¢A and x¢B) or (XA and xeB),
x¢(Cr (A)= x€A.
From the above, it is immediate that if A, BeP(T), then

Cr (ANB)=C+(A)uC+(B) and C+(AUB)=C+(A)NC+(B).
These two last equalities are known as De Morgan' s relations.
For anon-empty family (A;)ie, of subsets of T we define

I A ={XET : x€A,foreveryicl} and
i
UA ={x€T : thereexistsicl such that x€A;}.
i |
So, in agenera context the De Morgan’ srelations are true.

If (A)ie isafamily of subsetsof T, then
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c-§1 AZ=UC(A) ad ¢, BIA %= 1C(A).

9
@i g i
Thefollowing result isimmediate :

Proposition 1.1.2. If T isasetand A, B, CeP(T), then
(i) An(BNC)=(ANnB)nC and AU(BUC)=(AUB)UC;
(il) AnB=BNA and AUB=BUA ;

(i) ANT=A and AU =A;

(iv) AnA=A and AUA=A.

Remark 1.1.3. 1. From (i) we deduce that the operations U and N are
associative, from (ii) we deduce that both are commutative, from (iii) we deduce

that T and & are neutral elements for N and respectively U, and by (iv) we deduce
that N and U are idempotent operations on P(T).
2. By double inclusion we can provethat if A, B, C € P(T) then

AN(BUC)=(ANB)U(ANC) and AU(BNC)=(AUB)N(AUC),
that is, the operations of intersection and union are distributive one relative to
another.

Proposition 1.1.4. If A, B, C&€P(T), then
(i) AA(BAC)=(AAB)AC;

(ii) AAB=BAA;

(i) AAD=A and AAA=OD;

(iv) AN(BAC)=(ANB)A(ANC).

Proof. (i). By double inclusion we can immediately prove that
A (BAC)=(AaB)AC=[ANC+(B)NCH{O)]U[CH(A)NBNCH(O)]U

U[C+A)NC+(B)NCIU(AN B N C).

Another proof is in [32] by using the characteristic function (see also
Proposition 1.3.12).

(i), (iii). Clearly.

(iv). By double inclusion or using the distributivity of the intersection

relative to union. |

Definition 1.1.5. For two objects x and y, by ordered pair of these
objects we mean the denoted set by (X, y) and defined by (x, y)={{x}, {X, y}}.
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It is immediate that if x and y are two objects such that x=y, then
(X, y)#(y, x) and if (x, y) and (u, v) are two ordered pairs, then (X, y) = (u, v) <
x=uand y=v; in particular we have (x, y)=(y, X) & x=y.

Definition 1.1.6. If A and B are two sas, the set denoted by

AxB ={(a, b): acA and beB} is called the cartesian product of the sets A
and B.

Clearly :

AxB+xJ < A+ and B+,

AxB=C < A=C or B=U,

AxB=BxA < A=B,

A'cA and B'SB = A’x<B'cAxB.
If A, B, Carethree sets, we will define AxBx<C=(AxB)xC.
The element ((a, b), ¢) from AxB>=C will be denoted by (a, b, ).
More generdly, if Ay, Aa, ..., An (N=3) are setswe will write

A< Apx <AL =((L((Ar<A)XAZ)X L)XAY).
If A is a finite set, we denote by |A| the numbers of elements of A.

Clearly, if A and B are finite subsets of aset M, then AUB is afinite subset of M
and |AUB|=]A| + |B| - JANBI.

Now, we will present a genera result known as principle of inclusion and
exclusion:

Proposition 1.1.7. Let M be a finite set and M1, M, ..., M, subsets of
M. Then

im
i=1
et ()M, G C M|
Proof. By mathematical induction relative to n. For n=1 the equality from
enounce is equivalent with |[M4|=|M4|, which istrue. For n=2 we must show that
(1) IMiUMo=IMy| + [Mg| - M1nM|

which is also true, because the el ements from M ;M are commune in M and M.
Suppose that the equality from the enounce is true for every m subsets of
M with m <n and we will proveit for n subsetsMy, My, ..., M,,.

= é. |Mi|- é.
1£ifEn 1Ei<jEn

M CM |+ &

1fi<j<kEn

M; CM; C M-
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n-1
If wedenote N = UM, , thenfrom (1) we have
ot
@ |0 = NUM=IN - N
i=1

-l n-1
But NmM,;?JMiQmMn: UM, CM_,), so we apply mathematica
1 %) i=1

n-1
induction for U(M, 1 M,,). Since

i=1

Mam,) 1M 1M,)=(M1im,) 1M,
(Miam,) 1M M) 1 (M eM,)=(M IM, 1M, ) 1M, , etc, we obtain

©)
n-1 n-1
|NCMn|:U(M|IMn) :é|MiIMn_ é|MiIMjIMn+
i=1 i=1 If£i<jEn-1
+ é|Mi I Mj I M, I M| - ----+(' 1)n_2 i Mi"
1fi<j<kEn-1 i=1

If we apply mathematical induction for |N| we obtain

n-1

n-1
|N|:UMi‘:é.|Mi|_ é.MiIMj|+
) i=1 i=1 1£i<jgn-1
o n_zn-l
aM M M- ()T Mi‘
1£i<j<kEn-1 i=1

so, by (3) and (4) therelation (2) will become
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UMi‘:|N|+|Mn|' INCM,|=

i=1

ab o & 1 o)
:g’a|Mi|+|Mn|+' é |MiIMj|+é|MiIMnZ+
i=1 (4] i<jEn-1 i=1
+€ & MM IM|+ AM M IM[Z- .+
1£i < j<kEn- 1 1£i<jEn-1 7]
& Lt v
+é( 1) ‘I Mila-
i=1 a

e
'( 1)n-3 é|Mi1IMiZI“"IMin_2IMn

1£i,<ip<..<iy ,EN-1

(|

I M
=1

:én.|Mi|' é.|Mi | Mj|+
i=1

1£i<jEn

+ é|Mi | Mj | Mk|' ---+(' 1)n_l

1fi<j<kEn

|Mi‘.

i=1

By the principle of mathematical induction, the equality from enounce is
true for every natural numbern. |

1.2. Binary relation on a set. Equivalencerelations

Definition 1.2.1. If A is a set, by binary relation on A we mean every

subset p of the cartesian product AxA. If a, b€A and (a, b)ep we say that the
element aisin relation p with b.

Wewill alsowrite apb to denote that (a, b)ep.

For a set A we denote by Rel(A) the set of al binary relations on A
(that is, Rel(A)=P(AxA)).

Therdation Ap,={(a, @) : acA} will be caled the diagonal of a cartesian
product Ax<A; wealsodenote V, = AXA.

For peRel(A) we define p™={(a, b)EAXA : (b, 8 €p}. Clearly, (p™)'=p,
50, if we have 0€Rd (A) suchthat p< 6 = p'c 0™
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Definition 1.2.2. For p, p’€Rel(A) we define his composition pop’ by
pop'={(a, b)eAxA : thereis ceA suchthat (a, c)ep’ and (c, b)&p}.

It isimmediate the following result :

Proposition 1.2.3. Let p,p’, p”’€Rel(A). Then

(i) pora=Ancp=p;

(i) (pop’)op”=po(p'op”);

(i) pSp’= pop”Sp’op” and popSpTop’;

(iv) (pop’)'=p""op™;

(v) (pup)'=p*up’*; more general, if (p) e isa family of binary
relationson A, then

1
0
gaiJ rz = Ur i_l .
7]
For neN and peRéd (A) we define
iD, forn=0

n_1
r=igo ) forn3 1.
II.ELah&zl%

n times

It isimmediate that for every m, n €N, then pMop"=p™".

Definition 1.2.4. A relation peRe (A) will be called
(i) reflexive, if Aa Sp;

(ii) symmetric, if pcp™;

(iii) anti-symmetric, if pnp'SAan;

(iv) transitive, if p°cp.

It isimmediate the following result

Proposition 1.2.5. A relation peRe(A) is reflexive (symmetric, anti-
symmetric, transitive) iff p' is reflexive (symmetric, anti-symmetric,
transitive).

Definition 1.2.6. A relation pcRel(A) will be called an equivalence on
A if it isreflexive, symmetric and transitive.
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By Echiv(A) we denote the set of all equivalence relations on A; clearly,
Anp, VA = AXAEECh|V(A)

Proposition 1.2.7. If p€Echiv(A), then p*=p and p’=p.

Proof. Since p is symmetric, then pSp™. If (a, b)ep™, then (b, A€pcp™ =
(b, €p™ = (a b)p, hence picp, that is, p'=p. Since p is transitive we have
p?Cp. Let (x,y)Ep. From (x,x)Ep and (x,y)Ep=(X,y)Epop=p? hence p<p? that
o 2
is, p=p. B

Proposition 1.2.8. Let py, p2 € Echiv (A).
Then piop2< Echiv (A) iff P1 o P2=pP2° P1.

Inthiscasep;op,= [ r¢.

r ¢ Echiv(A)
ryrolre

Proof. If py, pa piop2EEchiv(A), then (piop2)™=piop, (by Proposition
1.2.7.). By Proposition 1.2.3 we have (p10p2) = psops'=p.0p1, SO p1op2=p20p1.

Conversely, suppose that p;0p,=p,op;.

Since AaSp1, p2=> Aa= ApcAp S propy, thatis, piop, isreflexive. Since
(prop2) '=pztopri=p.opi=piop,, we deduce that piop, is symmetric. From
(p12p2)*= (prop2)o(propa) = pro(pzopr)opz = pro(piopz)ops = piiopy’ = prop, We
deducethat piop, istransitive, so there is an equivalence relation on A.

SUPPOSE NOW that pops=psopy and let p’ €Echiv (A) such thet ps, psSp'.
Then piop, Sp'op’=p’,hence r,or, i 1rC«o.
ré Ecl,hiv£A)

Since p1, p.€Echiv (A) and piop,€Echiv (A) =p1 ,p.Spiop, =0Spiop,,
that |S, 0= piop2 .M

For pcRel (A), we define the equivalence relation on A generated by p

by
(r)y= 1Jr¢
r ? Eghiv(A)

Clearly, the relation <p> is characterized by the conditions: pc<p> and if

p’€Echiv(A) such that pcp’ = <p>Cp’ (that is, <p> is the lowest equivalence
relation, relative to inclusion, which contains p).
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Lemma 1.2.9. Let peRel(A) and r =A,UpUp™. Then the relation r
has the following properties:

(M psr;

(i) I isreflexiveand symmetric;

(iii) If p" is another reflexive and symmetric relation on A such that
pSp’ ,then r cp'.

Proof. (i ). Clearly .
(i). From AxSr we deduce tha r s reflexive;  since

T2 (AaUpUpY) =AU U Y =AAUpUT=T  we deduce that T is
symmetric.

(iii). If p’is reflexive and symmetric such that p<p’, then p'cp™=p’.
Since A Sp’ wededucethat r =A UpUpcp’.m

Lemma 1.2.10. Let pcRel(A) reflexive and symmetric and r=ur".
n31

Then r hasthefollowing properties:
(i) psr ;
(i) r isan equivalencerelation on A;
(iii) If p’€Echiv(A) suchthat pcp’, then r <p'.

Proof. (i). Clearly .
(ii). Since ApsSpSr wededucethat Ayt , hence r isreflexive. Since
p issymmetric and for every neN*, (p")™* = (p)" = p", we deduce that
_ -1 .1 ) _
r =&ur"? :U(r“)lzur":r ,
n3 1 7] n3l n3l
hence r is symmetric. Let now (X, y)Er or ; then there is zEA such that
(X, 2), (z, y)Er , hencethere exist m, neN* such that (x, z)€p™ and (z, y)€p". It
isimmediate that (x, y)€p"op™=p™™ <t ,s0r i r ,hence r istransitive, that s,
r €Echiv (A).
(iii). Let now p’€Echiv(A) such that p<p’. Sincep "< (p")"'=p’ for every
neN*wededucethat r = Ur"cp’. m

n3l

From Lemmas 1.2.9 and 1.2.10 we deduce :
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Theorem 1.2.11. If p€Rel(A), then

(M=uUl.Urur?)”.

n31

Proposition 1.2.12. Let p, p’eRel (A). Then
(i) (pup’)’=p’Up’?U(pop’)U(p’op);
(i) If p, p’€Echiv(A), then pup’€Echiv(A) iff pop’, p'op S pUp'.

Proof. (i). We have (X, y)E(pUp')2= (pupe(pUp’) < thereiszeA such
that (x, 2)epU p” and (z, y)epUp’ < [(X, 2€p and (z, y)Ep] or [(X, 2Ep’ and
(z y)ep'] or [(x, 2)€p” and (z, y)€p] or (x, 2)Ep and (z, y)€p'] = (X, y)Ep® or
(X, Y)Ep™Z or (X, y)Epep’ or (X, Y)Ep'op < (X, Y)Ep Up'2U(pop’)U(p’ep), hence
(pUp)? = p°UpU(pep)U(p’op).

(ii).,="". We have p> = p, p”>=p’ and (pUp’)? = pUp’. So, the relation
from (i) is equivalent with pUp'=pUp’U(pop")U(p’op), hence pop’Spup” and
popSpuUp’.

< By hypothesis  and relation () we  deduce
(pUP")’=p*Up 2 U(pep”)U(p’op)=puUp’U(pop’)U(p’op)SpUp’, hence pup’ is
transitive. Since AaSp and AASp'=AaSpUp’, hence pUp’ is reflexive. If
(x, y)epup'= (x, y)ep or (X, y)ep' = (y, X)ep or (y, X)ep’= (y, X)EpUp’,
hence pUp’ issymmetric, that is, an equivalenceon A. B

’

Proposition 1.2.13. Let A be a set and peRel(A) with the following
properties:

(i) For every XA, thereisy€A such that (y,x) ((x, y))Ep;
(i) poprop=p.
Then pop™ (pop) EEchiv(A).

Proof.

We have pop™'={(x, y) : thereis zEA such that (x, 2)€p™ and (z, y)Ep}.

So, to prove A,Spop™ we must show that for every x€A, (x, X)Epop™
<thereis z€EA such that (z, X)Ep (which is assured by(i)). We deduce that pop™
is reflexive (analogous for p™op).
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If (x,y)€ popt= thereisz€A such that (x, z)Ep™ and (z, y)Ep < there
is zEA such that (y, 2€p™ and (z, X)Ep < (y, X)Epop™, hence popt s
symmetric (analogous for p*op). Since (pop™)e(pop™) = (pop™op)op™ = pop™ we
deduce that pop™ is also transitive, so is an equivalence. Analogous for p™op. m

Definition 1.2.14. If p€Echiv (A) and acA, by the equivalence class of
a relative to p we understand the set [a], = {XEA : (X, a)Ep} (since p isin
particular reflexive, we deducethat ac[a],, so [a],+© for every acA).

Theset Alp ={[a] ,: acA} iscalled thequotient set of A by relation p.

Proposition 1.2.15. If p€Echiv (A), then

(i) ulal=A;

(i) If a, beA then [a],=[b],< (a b)Ep;

(iii) If a, beA,then [a],=[b], or [a],N[b],=L.

Proof. (i). Because for every acA, ac[a], we deduce the inclusion from
right to left; because the other inclusion is clear, we deduce the requested equality.

(ii). If [a],= [b],, since ac[4d], we deduce that ac[b], hence (a, b)Ep.

Let now (ab)ep and x€[4d],; then (x,a)Ep. By the transitivity of p we
deduce that (x, b)Ep, hence x€[b],, so we obtain the inclusion [&], <[b],.
Analogous we deduce that [b] ,=[al,, that is, [a],=[b],.

(iii). Suppose that [&],N[b],#<. Then there is x€A such that (x, &),
(x, b)Ep, hence (a, b)Ep, that is, [al, = [b], (by (ii)). m

Definition 1.2.16. By partition of a set M we under stand a family (M))ie,
of subsetsof M which satisfies the following conditions:

(i) Forevery i,jel,i#j = M; "M;=0;
i)y UM, =M .

Remark 1.2.17. From Proposition 1.2.15 we deduce that if p is an
equivalence relation on the set A, then the set of equivalence classes relative to p
determine a partition of A.

1.3. Functional relations. Notion of function. Classes of functions
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Definition 1.3.1. Let A, B be two sets. A subset RcAxB will be called
functional relation if

(i) for every acA thereisbeB such that (a, b)eR,;

(i) (a, b), (&, b)ER =Db=Db".

Wecall function (or mapping) a triplef=(A, B, R) where A and B are
two non-empty setsand R <€ AxB isafunctional relation .

In this case, for every acA there is an unique element beB such that

(a, b)eR; we denote b=f(a) and the element b will be called the image of a by f.
The set A will be called the domain (or definition domain of f) and B will be called
the codomain of f ; we usually say that f is a function defined on A with valuesin

B, writingby f: A —Bor A 34® B.
The functional relation R will be also called the graphic of f (we denote R

by Gy, so Gs ={(a, f(a)) : acA}).

Iff: A->Bandf’: A'>B’ are two functions, we say that they are equal
(and we write f=f ") if A=A’, B=B’ and f(a)=f '(a) for every acA. For aset A,
the function 15:A —A, 1a(@)=afor every acA is called identity function on A (in
particular it is possible to talk about identity function on the empty set 15).

If A=O then there is an unique function f : @ —B (which isthe inclusion

of @ inB).If A0 and B=, thenitisclear that there doesn't exist a function
from A to B.

If f : A —B is a function, A’CA and B'cB then we denote
f(A)={f (@ : acA’} and f * (B")={acA:f (8)€B’}, (f(A") will be caled the
image of A’ by f and f *(B’) contraimage of B’ by f ).

In particular, we denote Im(f)=f (A). Clearly, f(2)=0 andf Y@ )=0.

Definition 1.3.2. For two functions f:A —B and g:B —C we call their
composition the function denoted by gof :A —C and defined by
(gof)(@=g(f(a)) for every acA.

Proposition 133 If we have three functions
A¥#® B%4® C 3%4® D then

(1) ho(gef)=(hog)of;
(ii) fola=1gof=f.

Proof.(i). Indeed, ho(gof) and (hog)of have A as domain of definition, D
as codomain and for every acA, (ho(gef))(@=((hog)ef)(@=h(g(f(a))).
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(i).Clearly. m

Proposition 1.3.4. Let f:A —»B, A", A” €A, B’, B”"<SB and (Ai)ici, (Bj) jes
two families of subsets of A and respective B. Then

i) A'cA”=>fA)<cfA");

(i) B’CB”:f '1(B’)Cf B™;

(iii) fg;el A—I |f A);

(iv) f%‘b

ORE |B,;': 1)

i3 g 3

wi) f § B——Uf '(8,).

iTa ina

Proof. (i). If bef(A"), then b=f(a) with acA’; since A" < A" we deduce
that bef(A™), that is, f(A")<f(A").

(ii). Analogous asin the case of (i).

(iii). Because for every kel, | A <A, by (i) we deduce that

i |
1 A—I £(A hencefgem?i 1F(A).
i TN
(|v). The equality follows immediately from the following equivalences :

be fgjp, %’@ there is ac UA such that b=f(a) < there is o€l such that
il i

ac A and b=f(a)< thereisioel such that bef( A )< be U f(A).

e, 0
(v). Follows immediately from the equivalences: ac f 'G | B, T«
g
f@e | B, ofor every jeJ f(@€B < for every j€J, acf'(B)
ihJ
sac 1 17(8)).
iia

(vi). Analogous asfor (iv). m
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Definition 1.3.5. A function f : A — B will becalled

(i) injective or oneto-one, if for every a, a'€A, axa'=>f(a)=f(a’)
(equivalent with f(a)=f(a’)=a=a);

(ii) surjective or onto, if for every beB, there is acA such that

b=f(a);
(ii1) bijective, if it issimultaneoudly injective and surjective.

If f: A —B isbijective thefunction f *: B —A defined by f (b)=a
< b=f(a) (beB and acA) will be called theinverse of f.
It isimmediateto seethat f ‘of =1, and fof *=15.

Proposition 1.3.6. Let f :A —B and g :B —C two functions.
(i) If f and g are injective (surjective; bijective) then gof is injective
(surjective, bijective; in thislast case, (gof) *=f 1o g™*);

(ii) If gof is injective (surjective, bijective) then f is injective, (g is
surjective; f isinjective and g issurjective).

Proof. (i). Let a, @ €A such that (gof)(a)=(gef)(&). Then g(f(a))=g(f(a)).
Since g is injective we deduce that f(a)=f(a’); since f is injective we deduce that
a=d, that is, gof isinjective.

We suppose f and g are surjective and let ceC; since g is surjective, c=g(b)
with beB. By the surjectivity of f we deduce that b=f(a) with acA, so
c=g(b)=g(f(a))=(gef)(a), that is, gof issurjective.

If f and g are bijective, then the bijectivity of gof isimmediate. To prove
the equality (gof) * =f "og ™, let c€C. We have c=g(b) with beB and b=f(a) with
acA. Since (gof)(a)=g(f(a))=g(b)=c, we deduce that (gof)*(c) = a= f Y(b) =
f {9 ™(0)=(f "og™)(c), that i, (gof) *=f "o g™

(if). We suppose that gof isinjective and let a, @' €A such that f(a)=f(a’).
Then g(f(a))=g(f(a)) = (gof)(a)=(gef)(a)=>a=a, that is, f isinjective.

If gof is surjective, for ceC, there is acA such that (gof)(a)=c <
g(f(a))=c, that is, g is surjective.

If gof is bijective, then in particular gof is injective and surjective, hence
f isinjective and g surjective. B
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Proposition 1.3.7. Let M and N two sets and f:M—N a function.
Between the sets P(M) and P(N) we define the functions f« : P(M)—P(N) and
f : P(N)=P(M) by f.(A)=f(A), for every A €P(M) and f'(B) = f }(B), for
every BEP(N).

Thefollowing are equivalent :

(i) fisinjective;

(if) f«isinjective;

(ifi) f of.=Lopy;

(iv) f issurjective;

(v) f(ANB)=f(A)Nf(B), for every A, BEP(M);

(vi) f(CuA)SCnf (A), for every AcP(M);

(vii) If g, h:L =M aretwo functionssuch that fog="foh,theng=h;

(viii) Thereisafunction g:N —M such that gof = 1y.

Proof. We will prove the implications using the following schema:
= (ii)=(iii)=(iv)=(v)=(vi)=(vii)=(i) and the equivalence (i) < (viii) .

()=(ii). Let A, A’€P(M) such that f-(A)=f.(A") =f(A)=f(A").

If x€A, then f(x)ef(A)=>f(x)ef(A")= thereis x’€A’ such that f(x)=f(x").

Since f isinjective, then x=x"€A’, that is, ACA’; analogous A’CA, hence A=A,
that is, f« isinjective.

(ii)=(iii). For A€P(M) we must show that (f of.)(A) = A<f (f (A))=A.
Theinclusion A<f (f (A)) is true for every function f. For the converse inclusion,
if xef(f(A))=f(x)ef(A)= there is xX'€A such that f(x)=Ff(x")=>f.({x})=f.({x})
= {x}={x}=>x=xX'EA, thatis, f (f(A))SA, hence f *(f(A)) = A .

(iii)=(iv). Since f of.=1py), for every A€P(M), f (f.(A))=A, o, if we
denote by B=f.(A)€P(N), then f (B)=A, which means f  is surjective.

(iv)=(v). Let A, BEP(M) and A’, B'€P(N) such that A=f"(A") and
B=f *(B"). Then f(ANB)=f(f *(A)nf *(B"))=f(f '(A'NB")).

We want to show that f(f {(A))nf(f *(B"))<f(f *(A’NB")).

If yef(f (AN * (B")=yef(f (A") and yef(f (B'))= there exist
x'ef{(A’) and x”ef'(B’) such tha y=f(x")=f(x’"). Since x’ef (A’) and
x"ef(B)=>f(x)€A’ and f(x)EB’, hence yEA'NB’. Since y = f(x) =
x'ef YA'NB’), that is, yef(f (A’NB")).

So, f(ANB)2f(A)Nf(B); since the inclusion f(ANB)<f(A)Nf(B) is clearly
true for every function f, we deduce that f(ANB)=f(A)Nf(B).
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(V)=(vi). For AeP(M) we have f(A)Nf(CuA)=F(ANCuA)=f(D)=D,
hence f(CuA)<S Caf (A).

(vi)=(vii). Let g, h: L—M two functions such that fog=foh and suppose
by contrary that there is x€L such that g(x)#h(x), which is, g(x)€Cw{h(X)};
then f(90)) €f(Cm{h()}) € Cnf(h({x})=Cn{f(h(x))} hence
f(g(x))=f(h(x)) © (fog)(x) # (foh)(x) < fog=foh, acontradiction!.

(vii)=(i). Let x, x’eM such that f(x)=f(x") and suppose by contrary that
x=x'. We denote L = {x, X'} and define g, h : L—M, g(x)=x, g(x)=x’, h(x)=x’,
h(x")=x, then g=h and fog=foh, acontradiction!.

()= (viii). If we define g:N—-M, g(y)=x if y=f(x) with xeM and y, if
y&f(M), then by the injectivity of f, we deduce that g is correctly defined and
clearly gof=1y .

(viil)=(i). If x, x’eM and f(x)=f(x"), then g(f(x))=g(f(x"))=>x=x", which
meansf isinjective. B

Proposition 1.3.8. With the notations from the above proposition, the
following assertions are equivalent :

(i) f issurjective;

(if) f« issurjective;

(|||) f*Of*zlp(N);

(iv) f isinjective;

(v) f(CuA)2Cnf(A), for every A€P(M) ;

(vi) If g, h:N—P aretwo functionssuch that gof = hof, then g=h;

(vii) Thereisafunction g:N—M such that fog=1y.

Proof. | will prove the implications (i)=(ii)=(iii))=(iv)=(v)=(vi)=(i)
and the equivalence (i) < (vii).

(i)=(ii). Let BEP(N) and yeB; then there is x,€M such that f(x,) =y.

If we denote A={x,: yeB} =M , thenf (A)=B<f.(A)=B.

(ii)=(iii). We need to prove that for every BEP(N), f(f'(B))=B. The
inclusion f(f *(B))<B is true for every function f. Let now yeB; since f. is
surjective, there is A<M such that f-(A)={y} < f(A)={y}, hence there is x€A
such that y=f(x); since yeB=xecf (B)=>y=f(x)cf(f *(B)), so we also have the
contrary inclusion B<f(f ™ (B)), hence the equality B=f(f ~*(B)).
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(i)=(@v). If By, B,eP(N) and f(B)=f(By), then
£u(f (BL)=F(f" (B2)) < Loy (B1)=1pgy (B2) < B1=B,, that means f* is injective.

(iv)=(v). Let AcM; to prove that f(CuA)2Cnf (A), we must show that
f(CwA)Uf(A)=N < f(CuWAUA)=N<f(M)=N. Suppose by contrary that there is
YoEN such that for every xeM, f(X)#Yo, that means, f'({yo})=@ =f ({yo})=9.

Sincef (@)=0 = f ({yo})=f (D); but f" is supposed injective, hence {yo}=T, a
contradiction!.

(V)= (vi). In particular for A=M we have

f(CuM)2Cnf (M) £(D)2Cnf (M) D2Cnf (M) =Ff(M)=N.

If g, h:N—P are two functions such that gof=hof, then for every yeN,
there is xeM such that f(x)=y (because f(M)=N), and <o
9(y)=9(f(x))=(gof)(x)=(hof)(x)=h(f(x)) = h(y), which means g=h.

(vi)=(i). Suppose by contrary that there is yo€N such that f (X)# yo, for
every xeM. We define g, h : N—{0, 1} by: g(y)=0, for every yeN and

10, for yI N-{y.}
(y)=.|_ _ -
11 for y=y;

Clearly g=h and gef=hof, acontradiction, hencef issurjective.

(i)=(vii). If for every yeN we consider a unique x,&f *({y}), we obtain a
functiong: N—M, g(y) = x,, which clearly verifies the equality fog =1y,

(vii)=>(i). For yeN, if we write that f(g(y)) = vy, then y = f(x), with
X = g(y)EM, which meansthat f issurjective.m

From the above propositions we deduce

Corollary 1.3.9. With the notations from Proposition 1.3.7, the
following assertions are equivalent :

(i) f isbhijective;

(i) f(CwA)=Cnf(A), for every AcP(M);

(i) f-and f "arebijective;

(iv) Thereisafunction g:N—M such that fog =1y and gef =1y.

Proposition 3.10. Let M be a finite set and f:M—M a function. The
following assertions are equivalent :

(i) f is injective;

(i) f is surjective;

(iii) f is bijective.
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Proof. We prove the implications: (i)=(ii)=(iii)=>(i).
(i)=(ii). If f is injective, then f(M) and M have the same number of
elements; sincef (M)<=M we deduce that f (M) = M, which means f is surjective.

(if)=(iii). If f is surjective, then for every yeM there is a unique x,EM
such that f(x,) =y, that means f isinjective.

(iii)=(i). Clearly. m

Proposition 1.3.11. Let M and N be two finite setswith m, respective n
elements. Then

() Thenumber of functionsfrom M to N isequal with n™;

(i) If m = n, the number of bijective functions from M to N is equal
with m!;

(iif) If m < n, the number of injective functions from M to N is equal
with A™;

(iv) If m > n, the number of surjective functions from M to N is
equal with n™ - C}(n- 2)" +C2(n- 2)" - ...+(- )" 'C™*.

Proof. (i). By mathematical induction relative to m; if m=1, then the set M
contain only one element, so we have n = n* functions from M to N. Supposing the
enounce true for M sets with maximum m-1 elements.

If M is aset with m elements, it is possible to write M = M"U{Xg}, with
XoEM and M’ a subset of M with m-1 elements such that xo& M’.

For every yeN and g : M'—N a function, we consider f 4 , : M—N,
fg, y(X)=0(x) if xeM’ and y if x=X,, we deduce that to every function g: M’'—N we
could assign n distinct functions from M to N whose restrictions to M’ are equa

with g. By applying hypothesis of induction for the functions from M’ to N, we
deduce that from M to N we could define n-n™* = n™ functions.

(ii). Mathematical induction relative to m; if m=1, the sets M and N have
only one element, so there is only a bijective function from M to N.

Suppose the enounce true for al sets M’ and N’ both having almost m-1
elements and let M and N sets both having m elements. If we write M=M"U{X¢},
with xo€M and M’ subset of M with m-1 elements xo& M’, then every hijective
function f: M—N is determined by f(xo)€N and a bijective function ggM’—N’,
where N'=N \ {f (xo)}. Because we can choose f(X) in m kinds and g in (m-1)!

kinds (by induction hypothesis) we deduce that from M to N we can define (m-1)!-
m=m! bijective functions.
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(iii). If :M—N isinjective, taking f(M)<=N as codomain for f, we deduce
that f determines a bijective function f :M—f(M), f (x)=f(x), for every xeM, and
f(M) has m elements. Conversely, if we choose in N a part N” of its with m
eements, then we can establish m! bijective functions from M to N’ (by (ii)).
Because the numbers of subsets N’ of N with m elements are equal withC.", we

deduce that we can construct m! C;"' = A" injective functions from M to N.

(iv). Let'sconsider M={Xy, X2, ....Xm} , N={ Y1, V2, ...,.yn} and M; the set of all
functions from M to N such that y; is not an image of any elements of M,
i =1,2,...,n.

So, if we denote by F. the set of functions from M to N, the set of
surjective functions S7 from M to N will be the complementary of
M;U M,U.. ..U M, in F, so by Proposition 1.1.7 we have:

so| =[F2[- [UM,|=n"- [OM;| =n"- M|+ & |M,CM,|-
(1) i=1 i=1 i=1 IEi<jEn

- A MMM+ A D MM, M|

1fi<j<kEn

Because M; is in fact the set of all functions defined on M with values in

N\ {yi }, MinM; the set of &l functions defined on M with valuesin N\{y; , y;} ...,
by (i) we obtain
2 IMi|=(n-1)™, IMinM;|=(n-2)", ..., etc,
(IM1NM; N...NMy|=0, because M;NM;, N...NM=D).
Since the sums which appear in (1) have, respective, C}, CZ, ..., C" equal
terms, from (2), we obtain for relation (1)

ISt |= n" - Ci(n-2)"+C2(n- 2)"- ..+(-)"'Clt. m

For anon-empty set M and AcP(M) we define g : M—{0,1},
j0, for xi A

X)= -
= for xi A

for every xeM; thefunction @ will be called the characteristic function of A .

Proposition 1.3.12. If A, B&P(M), then
(i) A=B < ¢a=0e;

(i) 92=0, eu=1;

(iii) @ane=0a @8, (PAZZ(PA§
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(V) @aus=0a+Ps- QA Pg;
(V) @a\8=0a-9a @8, ] c, A=1-0n;

(Vi) @aa=0at05- 20708 .
Proof.
(i).”=>". Clearly.
“<”. Suppose that pa=@g and let X€A; then @A (X) = ¢ (X)=1, hence

X€EB, thatis, ASB. Analogous BSA, hence A=B.
(ii). Clearly.

(iii). For x&eM we have the cases: (XZA, X¢B) or (X€A, X¢B) or  (XZA,
XEB) or (x€A, XEB). In every above situationswe have @ang (X)=@a (X)@s(X).
SINceANA=A = Qa =QaPa=0a >
(iv), (v). Analogous with (iii).
(vi). Wehave(PAAB:(P(A\B)U( BA\A)—P a\BT P\ A —QA\BPB\A =
=@Pa- QAP+ Ps- PBPA— P (A\ B) n (BN A)= Qa0 —20APB
(snce(A\B)N (B\A)=L). m

Let M be aset and p€Echiv (M). The function p,m : M—M / p defined by

Pom (X)=[X], for every XxeM is surjective; p, v will be caled canonical surjective
function.

Proposition 1.3.13. Let M and N two sets, p€Echiv (M), p’€Echiv (N)
and f : M—N afunction with the following property :
x,y)ep = (f(x), f(y))ep’, for every x, yeM.
Then, there is a unique function T M/p—N/p~ such that the

diagram
f

<
z

pM,p pN,p/

|

M/p N/p’

iscommutative (i.e, pN,,,'ofz? °Pwm, py Where py ,, Pn,y’, arecanonical surjective
functions).
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Proof. For xeM, we denote by [X], the equivalence class of x modulo the
relation p. For xeM, we define f ([x],) = [f(X)],. If X, yEM such that [x],=[y],
< (X, y)ep = (f(x), f (y))ep’ (from enounce) = [f (X)],=[f (y)], ., that means, f
is correctly defined.

If xeM, then (f opw,,)(X)=f (Pu., (X)) = f ([(X],)=[F)],=pn. » (F (X))=
(pn, of)(X), that is, pu, yof= T opw, .

To prove the uniqueness of f , suppose that we have another function
£ M/p—N/p~ suchthat py,of=f ‘opy, ,, andlet XEM.

Thus 1 /([X],)= T "(Pw, y())=(T "o pu, J)=(pn, " oF)(X) = . (F(X)) =

[f ()]pr = (IX],), thatis, T=T’. m

Proposition 1.3.14. Let M and N two setsand f :M—N a function; we
denote by p ;therelation of M defined by

(x,y)ep = f()=t(y) (x,yeM).
Then
(i) prisanequivalencerelation on M;

(i) Thereisaunique bijectivefunction f : M /p— Im (f) such that
io f o Py, =f whereizlm(f)—Nistheinclusion.

Proof. (i). Clearly.

(if). With the notations from Proposition 1.3.13, for x€M we define
f'([x]rf ) =f(x). The function f is correcttly defined because if x, yeM and

X, =lyl,, & x y)ep « & f(x=f(y) (we will deduce immediately the
injectivity of f ). Since f isclearly surjective, we deducethat f is bijective. To
prove the uniqueness of f , let f; : M /ps—Im (f ) another bijective function such
that iefio py , =f and X€M. Then, (iofio py, , JX)=f(X) < f.([x],, ) =f(X) <=
(X, )=fX)=1(A,, ), thatis f,=7. m

Proposition 1.3.15. Let M be a finite set with m elements. Then the
number N, « of all equivalence relations defined on M such that the factor set

hask elements (k<m) isequal with

N =(WK){k™ - Ch(k- )" +C2(k- 2)" - ..+ (- ) 'clY.
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So, the number of equivalence relations defined on M is equal with
N:Nm' 1+Nm’2+...+Nm’m.

Proof. If p€Echiv (M), we have the canonical surjective function
Pwm,:M—=M/p.

If f: M—N isasurjective function, then following Proposition 1.3.14, we
obtain an equivalence relation on M : (X, y)ep ¢ < f(X)=f(y). More, if
g: N—N" isa bijective function , then the relations p; and py.r coincide because

(XY)Epget < (gof)(X) = (gof)(y) < a(f(X)=a(f(y)) < F)=f(y)<=(X, y)Epr.
So, if N has k elements, then k! surjective functions from M to N will

determine the same equivaence relation on M. In particular for N=M/p, by
Proposition 1.3.11 we deduce that

N = W/K)HK™ - Cik- )" +CE (k- 2)™ - .+ (- 9)'Ci ). m

Proposition 1.3.16. Let M be a non-empty set. Then the function which

assign to an equivalence relation p on M the partition {[x], : XEM } of M
generated by p is bijective.

Proof. We denote by Part (M) the set of al partitions of M and consider
f : Echiv(M)—Part(M) the function which assign to every congruence relation p of
M, the partition of M relativeto p: f(p)={[X], : XEM }.

Also, we define g : Part(M)—Echiv(M) by : if P=(M,) ¢, isapartition of
M, we define the relation g(P) on M by : (x, y )€ g(P)< thereisi&l such that x,

yEMi.
The reflexivity and symmetry of g(P) is immediate.
Let (X, y).(y, 2€9(P). So, there exist iy, io€l suchthat x, ye M, andy, ze M, ; if

i1#i, then M, IM; = @, a contradiction (because y is a commune €lement),
hence i1= iy S0, X, ZEM;, hence (x, 2)I g(P). So, g(P) is transitive, hence
g(P)€ Echiv(M), that means gis correctly defined.

For every xeM;, the equivalence class X of x modulo g(P) is equa with
M. Indeed, yeM; & (X, y)€g(P) & ye X ©&M;=X.

So, we obtain that g isthe inverse function of f, hencef isbijective. m

Now we can mark some considerations relative to the set of natural
numbers.
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Definition 1.3.17. A Peano triple isatriple (N, 0, s), where N is a non-
empty set, 06N and s:N — N isafunction such that :

Py: 0¢s(N);
P,: s isaninjectivefunction ;

Ps;: If PENis such that (neP=s(n)eP ), then P=N.

Next, we accept as axiom the existence of a Peano triple (see [59] for more
information relative to this aspect).

Lemma1.3.18.1f (N, O, s) isa Peanotriple, then N={0} Us(N).

Proof. If we denote P={ 0} US(N), then P<N and since P verifies P;, we
deducethat P=N .=

Theorem 1.3.19. Let (N, 0, s) be a Peano triple and (N’, 0’, ") another
triplewith N’ non-empty set, 0N’ and s:N’ — N’ afunction. Then

(i) There is a unique function f:N—N’ such that f(0) = 0’, and the
diagram

N ® N

1|

N ¥#4® N
iscommutative (i.e. f o s=5"of);
(i) If (N’, 0’, &) isanother Peanotriple, then f is bijective.

Proof. (i). To prove the existence of f, we will consider al relations
R=NxN’ such that:
r:(0,0) eR;

r: If (n, n")E€R, then (s(n), s'(n’))€R and by Ry, we will denote the
intersection of all theserelations.
We shall prove that Ryisafunctional relation, so f will be the function with

the graphic Ry (then, from (0, 0")eR, we deduce that f (0)=0" and if neN and
f (n)=n"eN’, (n, n")eR,, hence (s(n), s'(n"))ERy, that is, f(s(n))=s"(n")= s'(f (n))).
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To prove that Ryis afunctional relation, we will prove that for every neN,
there is n"eN’ such that (n, n")eR, and if we have neN, n’, n”’€N’ such that
(n, N )eR, and (n, n")eRy, thenn’=n"’.

For thefirst part, let P={nEN : thereisn’eN’ such that (n, n")ERy} =N.

Since (0, 0")eR, we deduce that 0OcP. Let now neP and n"eN’ such that
(n, n")€R,. From the definition of Ry we deduce that (s(n), s'(n"))€Ry; so, we

obtain that s(n)eP, and because (N, O, s) is aPeano triple, we deduce that P=N.
For the second part, let

Q={neN:ifn,n”eN’"and (n, n’), (n,N")ERy=> n"=n""}=N; we will
prove that 0€Q.

For this, we prove that if (0, n")eR, then n"=0". If by contrary, n” # 0’,
then we consider the relation Ri=R, \{(0, n)}NxN’. From n’ # 0’ we deduce
that (0, 0")eR; and if for meN’ we have (n, m€R;, then (n, M)€R, and
(n, m) #(0,n). So, (s(n), s'(M)ER, and since (s(n), s'(m)) # (0, n’) (by Py),
we deduce that (s(n), s'(m))ER; . Since R; verifies r; and r, , then we deduce
that Ry=R; —acontradiction (sincetheinclusion of R; in Ryisstrict).

To prove that 0€Q, let n’, n”’eN’ such that (0, n’), (0, n"")€R,. Then, by
the above, we deduce that n"=n""=0’, hence 0€Q.

Let now n€Q and n"eN’ such that (n, n")eR,; we shall prove that if
(s(n),n"")ERy, then n’’=s'(n"). Suppose by contrary that n’’# s'(n”) we consider the
relation R, = Ry \{(s (n), n’")}. We will prove that R, verifiesr; and r».

Indeed, (0, 0")€R; (because 0 # s(n)) and if (p, p’)ER,, then (p, p’) €Ry
and (p, p") # (s(n),n").

We deduce that (s(p), s'(p’))€Ro and if suppose (s(p), s'(p")) = (s(n), "),
then s(p) =s(n), hence p=n. Also, s'(p’)=n"’. Then (n,n")ER, and (n, p")ERy;
because neQ=n"=p’, hence n’’=s'(p")=s'(n"), in contradiction with n’” # s(n’).
So, (s(p), s'(p")) # (s(n), n”’), hence (s(p), s'(p"))ERe, that means, R satisfies ry
and r,. Again we deduce that Ry,CR, —which is a contradiction!

Hence (s(n), n)eR, = n’’=s'(n’), so, if r, seN’ and
(s(n), ), (s(n), s)ERy, thenr =s=¢5'(n"), hence s(n)Q, that is, Q=N.

For the uniqueness of f, suppose that there is f":N—N’ such that f ’(0)=0’
and s'(f '(n)) =f ’(s(n)) for every neN.
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If we consider P={n&eN : f(n)=f '(n)} €N, then 0P and if neP (hence
f(n) =f ’(n)), then s'(f(n)) = s'(f '(n)) = f(s(n)) =f ’(s(n))=s(n)P, so P=N, that
is, f=f".

(if).To prove the injectivity of f , we consider P={neN: if meN and

f(m)=f(n)=m=n} =N and we shall firstly provethat 0cP. Let us consider meN
such that f(0)=f(m) and we shall prove that m=0. If by contrary m # 0, then m=s(n)

with neN and by equaity f(m)=f(0) we deduce f(s(n))=f(0)=0’, hence

s'(f(n))=0’, which is a contradiction because by hypothesis (N, 0’, s") isa Peano
triple.

Let now neP; to prove s(n)eP, let meN such that f(m)=Ff(s(n)).

Then m # 0 (by contrary we obtain that 0’=f(0)=f(s(n))=s'(f(n)), whichisa
contradiction), so, by Lemma 1.3.18, m=s(p) with peN and the equaity
f(m)=f(s(n)) implies f(s(p))=Ff(s(n)) = s'(f(p))=s'(f(n)), hence f(p)=f(n); because

neP, then n=p hence m=s(p)=s(n).
To prove the surjectivity of f, we consider

P'={n"eN’ : thereisneN such that n'=f (n)} =N’.

Since f(0)=0" we deduce that 0'cP’. Let now n’€P’; then there is neN
such that n’=f (n). Since s'(n")=s'(f(n))=f(s(n)), we deduce that s'(n")eP’ and
because (N’, 0', s') is a Peano triple, we deduce that P'=N’, hencef is surjective,
hence bijective. B

Remark 1.3.20. Following Theorem 1.3.19 (called the theorem of
recurrence) a Peano tripleis unigue up to a bijection.

In what follows by (N, 0, s) we will denote a Peano triple; the elements of

N will be called natural numbers.
The element O will be caled zero.

We denote by 1=5(0), 2=5(1), 3=5(2), hence N={0, 1, 2, ...}. The function
s will be called successor function. The axioms P; — P; are known as Peano
axiom's (the axiom P; will be called the mathematical induction axiom).

1.4. The kernd (equalizer) and cokerne (coequalizer) of a couple of
functions
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Definition 1.4.1. Let f, g: A—B acouple of functions. A pair (K, i) with

K aset and i: K—A a function will be called the kerndl (equalizer) of the
couple (f, g) if thefollowing conditions are verified:

0] foi = goi;
(i) For every pair (K', i) with K’ set and i’ : K'—A such that foi'=
gei’, thereisa uniquefunction u : K’—K such that icu =1".

Theorem 1.4.2. For every couple of functionsf, g : A—B thereisthe
kernel of the couple (f, g) unique up to a bijection (in the sense that if (K, i)

and (K’, i) are two kernels for the couple (f, g), then there is a bijective
function u: K—K’suchthati’ou=1i).

Proof. To prove the existence of kernel, we consider K={xeA: f(x)=g(x)}
andi : K—A theinclusion function (K will be possible to be the empty set ).

Clearly foi=goi. Let now (K’,i") withi’ : K’—A such that foi’=gei’. For
acK’, since f (i'(a))=g (i'(a)) we deduce that i'(@)eK. If we define u:K’'—K by
u(a) =i’'(a), for every acK’, theniou=i".

If u:K'—=K isanother function such that iou'=i’, then for every acK” we
have i(u’'(a))=u(a), hence u’'(a)=i'(a)=u(a), that is, u=u’.

To prove the uniqueness of kerndl, let (K, i) and (K’, i) be two kernels for
couple (f, g).

Since (K, i) is a kernel for couple (f, g) we deduce the existence of a
function u:K —K’ such that i’ou=i. Anaogous, we deduce the existence of another
function u”:K’—K such that iou’=i".

We deduce that i o(uou’)=i" and io(u’ou)=i. Sincei’o 1, ,=i" and io1«=i, by
the uniqueness from Definition 1.4.1, we deduce that uou’=1,, and u’ou=1, that

is, uishijectiveandi’ou=i. |

Remark 1.4.3. We will denote (K, i) = Ker (f, g) (or only K=Ker(f, g) if
thereisno danger of confusion).

Definition 1.4.4. Let f, g :A—B a couple of functions. A pair (P, p)

with P aset and p : B—P afunction will be called the cokernel (coequalizer) of
the couple (f,g) if the following conditions are verified :

(i) pof=pog;
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(i) For every pair (P ’, p’) with P’ set and p’ : B—P’ such that
p’of = p’og, thereisauniquefunction v :P—P’ such that vop=p’.

Theorem 1.4.5. For every pair of functions f, g : A—B, thereis the
cokernel of the pair (f, g) unique up to a bijection (in the sense that if (P, p)

and (P’, p) are two cokernels for the couple (f, g), then there is a bijection
u: P—P’ such that p’ou=p).

Proof. We prove only the existence of cokernel of pair (f, g) because the
uniqueness will be proved in the same way asin the case of kernel.

We consider the binary relation on B : p = {(f(x), g(x)) : x€A} and let

<p> the equivalence relation of B generated by p (see Theorem 1.2.11).
We will prove that the pair (B / <p>, p<,>, ) is the cokernel of the couple

(f,9). Since for every x€A we have (f(x), g(x))ep<<p> we deduce that
(F(X), 9(X))E<p>, hence pes s (F (X))=Peps, 6((¥)), that is, Pey», sof=pqps, e°0.

Let now a par (P, p") with P a set and p":B—P such that p'of=p’og.
Then for every xeA, p'(f(x))=p’(9(x)), hence (f(x), g(x))Ep ,~ (see Proposition
1.3.14), s0 pSpy . Since py- is an equivalence relation on B, by the definition of
<p> we deduce that <p>Sp,-.

By Proposition 1.3.13 there is a function o : B/<p>—B/p, such that
0°P<p>, 8= Py 5 - LEL B:B/ppy—Im(p~) the bijection given by Proposition 1.3.14.

We have p’=i’ofo p, B wherei’: Im (p’)— P’ is the inclusion mapping.

It we denote v=i‘oBea, then vop,  =(i"opoa)ep, =
=(i"oB)o(ao p<r>,5)=(i,°B)° Pre= i"o(Bo p, ooB )=p".

If we adso have v":B/<p>—F such that v'op,  =p’, then
Vie Py g= Vo P, g Since Py, is surjective, we deduce that v'=v

(by Proposition 1.3.8). m

Remark 4.6. We denote (B/<p>, p<,>,B):Coker (f, g) (or Bl/<p>=
Coker (f,g) if thereisno danger of confusion).

1. 5. Direct product (coproduct) of afamily of sets
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Definition 1.5.1. Let (M) be a non-empty family of sets. We call the
direct product of this family apair (P, (pi)ici), Where P isanon-empty set
and (p)ic; isafamily of functions p;: P® M; for every il | suchthat :

For every other pair (P’ (pi )ia) composed by theset P” and a family of
functions p’: P—M; (i €l), thereis a unigque function u:P’—P such that
piou =p;’ forever il I.

Theorem 1.5.2. For every non-empty family of sets (M))ic, thereis his
direct product which isunique up to a bijection.

Proof. The uniqueness of direct product. If (P, (p)ie) and (P, (pi Niel)
are two direct products of the family (M;)ic;, then by the universality property of
direct product there exist u:P’—P and v:P—P’ such that piocu = p;" and p;"ov = pj for
every il l.

We deduce that pie (uov) =p; and p’i o (vou) = py’ for every il I. Since
polp = p, P’ olp = p’ for every il I, by the uniqueness of direct product we
deduce that uov = 15 and vou=1p, hence u isabijection.

The existence of direct product. Let P={f : |- nU| M, : (i) €M; for every
icl}andp :P® M; p(f)=f()foril landfT P.

It is immediate that the pair (P, (p))ici) is the direct product of the family
(Miiei. N

Remark 1.5.3. The pair (P, (p)ic)) Which is the direct product of the

family of sets (M;)ic; will be denoted by O M; .
i |
For every j1 |, p: ® M, —M; is caled j-th projection. Usually, by direct
i

product we understand only the set P (omitting the explicit mention of
projections).

Since every function f:I— UM; is determined by f(i) for every il 1, if

il
wedenote f(i)=x 1 M;, then
OM; ={(X)ici: XiEM; for every i€l}.

If 1={1, 2, .., n}, then O M, coincides with M; x....x M, defined in
i

81.1.
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Thus, p: © M; —M; isdefined by pi((Xi)ier) = X;, jEI.
i

Let now (M))ic; and (M; ")ic; two non-empty families of non-empty sets
and (fi)iEI afamHy of functionsf;: M;—M/’, (lEI)

The function f:OM;® O Mi(, f((x)ie)=(fi(x))ier for every
X)ier€ () M, is caled the dlilrlect prolljtljct of the family (f))ie; of functions;, we
dencte IIfI = C) f; . The function is unique with the property that p;" of = fiop; for
every il |. N

It is immediate that O1,, =1g, ad so, if we have another family of

sets (M, ")ie; and afamily of functions (f;")ic; with f;: M;"—M,”’, (i€l), then

C)'%Efiq:o f 0= fi¢908% f; Q,
iM ] 7]

i il 9

Proposition 1.5.4. If for every i€l, f; is an injective (surjective,

bijective) function, then f =0 f, is injective (surjective, bijective).
i

Proof. Indeed, suppose that for every i€l, f; is injective and let
a, B OM, suchthat f (a)=f (B).

Then for every j€l, f (a)(§)=Ff (B)() <f; (o ())=f; (B ()). Since f; is
injective, we deduce that a (j)=p (j), hence a=p, that meansf is injective.

Suppose now that for every i€l, f; issurjective and let g€ O Mi( ,that is,
il

¢:1— UM and ¢(j)€ M;” for every j€J. Sincef; is surjective, there is x;€M; such
il
that f; (X;)=¢ (j). If we consider y:I— UM, defined by y (j)=Xx; for every j€l, then
ill

f (v)=o, that is, f issurjective. |

In the theory of sets, the dual notion of direct product is the notion of
coproduct of a family of sets (later we will talk about the notion of dualization -
see Definition 4.1.4).

Definition 1.5.5. We call coproduct of a non-empty family of sets

(My)ier, a pair (S, (a)ie ) with Sanon-empty set and o;:M;—S(i€l) afamily
of functions such that :
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For every set S” and a family (a9)ig of functions with «;*M;—S’
(iegl), thereisaunique function u:S—S’such that uca;=a | for ever i€l.

Theorem 1.5.6. For every non-empty family (M) of functions
thereisits coproduct which isunique up to a bijection.

Proof. The proof of the uniqueness is analogous as in the case of direct
product .

To prove the existence, for every il | we consider M_izMiX{i} and
S=UM; (we observe that for i j,M; I M, =@). We define for every il I,
il
a:Mi® S by a(x)=(x i) (xI M) and it is immediate that the pair
(S, (ay)ier) isthe coproduct of the family (Mjie . N

Remark 1.5.7. The coproduct of the family (M))ie; will be denoted

by CM, and will becalled disunctive union of the family (M), .
i

The functions (o)ic;, Which are injective, will be caled canonical
injections (as in the case of direct product, many times when we speak about the
direct sum we will mention only the subjacent set, the canonica injections are
implied).

Asin the case of direct product, if we have afamily of functions (f ))ig
with f; : Mj — Mg, (i€l), then the function f :CM,; ® CMi(defined by

il il
f((x, ))=(fi(x), i) for every il | and xI M is the unique function with the property
that o ofi=foa; for every il I; we denote f =C f, which will be called the
i

coproduct of (f )ie.

It is immediate that C1,, :1CM- and if we have another family of

functions (' Jier With f;’: M;"—M;” (i€}, then c@% £0=85 %% 1.9,
i 7] 8i1| ﬂgﬂl a

As in the case of direct product of a family of functions (f ;)ic; we have
an andogousresultand for f =C f; :
ill
Proposition 1.5.8. If for every i€l, f; is an injective (surjective,
bijective) function, then f =C f; isinjective (surjective, bijective) function.
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Proposition 1.5.9. Let (A)iel, (B))ie; be two families of functions such

that for every i, j€l, i #j, ANA; = BiNBj= @. If for every i€l thereis a
bijection f; : Ai—B, then thereisabijection f : UA ® UB,.

i i |
Proof. For every x€ UA thereis a unique i€l such that x€A,. If we

define f(x)=f(x), then it isimmediate that f isabijection. ®

Chapter 2
ORDERED SETS
2.1. Ordered sets. Semilattices. Lattices

Definition 2.1.1. An ordered set isa pair (A, £) where A is a nhon-empty
set and £ is a binary relation on A which is reflexive, anti-symmetric and
transitive. The relation £ will be called an order on A. For x, yl A we write
x<yif xE£yandx?!y.lIf therelation £ is only reflexive and transitive, the
pair (A, £) will be called a partially ordered set (or a poset).

If for x, yl A wedefinex 3 y iff y £ x, we obtain a new relation of order
on A. The pair (A, 3) will be denoted by A° and will be called the dual of (A, £).
As a conseguence of this result we can assert that to every statement that concerns
an order on a set A there is adual statement that concerns the corresponding dual
order on A; thisremark is the basic for the next very utile principle:

Principle of duality :To every theorem that concerns an ordered set A
there is a corresponding theorem that concerns the dual set A° ; this is obtained
by replacing each statement that involves £ , explicitly or implicitly, by its dual .

Let (A, <) beaposet and r an equivalence relation on A. We say that

r iscompatible with the order £ of A (or that r isacongruenceon (A, £)) if for
every x,y, z,t € Asuchthat (x,y)T r,(zt)l r and xEzb yE£t.

If r isareation of equivalence on A compatible with the preorder £,
then on the factor set A/r there will be possible to define a partia order by

[Xlp<[ylp & x<y.
Indeed, if we have X", y"€A such that [x], = [X], and [y'], = [y], then

(x, xX)ep, (Y, Y)EPp; since p isacongruence on (A, <) and x <y we deduce that
X" <y’, that is, the order on A/p is correctly defined.
The order defined on A/p will be called the preorder quotient.
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In what follows by (A, <) we shall denote an ordered set.
If there is no danger of confusion, in the case of an ordered set (A, <) we

mention only the subjacent set A (without mentioning the relation <, becauseit is
implied).

Definition 2.1.2. Leem,M T Aand Si A,S! /E
() missaid to be the lower bound of Sif for every sl S, m £ s; by inf (S)
we will denote the top element (when such exists) of the lower bounds of S.
The lower bound for A will be called the bottom element or the minimum
element of A (usually denoted by 0);
(ii) M issaid to bethe upper bound of Sif M isthelower bound for
Sin A°, that means, for every sl S, s£ M; by sup (S) wewill denote the bottom
element (when such element exists) of the upper bounds of S; the upper bound
for A will be called the top element or the maximum element of A (usually
denoted by 1).
A poset A with 0 and 1 will be called bounded.

If S={s1, %, ..., S} SA then we denote inf (S) = SSASA..AS, and
sup (S) =51V, V... Vs, (of courseg, if these exist!).

We say that two elements a, b of A are comparable if either a£ b or
b £ g if al pairs of lements of A are comparable then we say that A forms a

chain, or that £ is a total order on A. In contrast, we say that ab €A are
incomparable when as band b a

Fora bl A wedenote

(a b)={xeA: a<x<b}

[a b]={x€A: a<x<b}

(a, b]={xeA: a<x<b}

[a b)={xeA: a<x<b}; these subsets of A will be called intervalsin A.

For a, bl A we say that ais covered by b (or that b covers @) if a< b
and if we have a £ ¢ £ b, then a=c or c=b; we denote this by using the notation

a<bh.
Many ordered sets A can be represented by their means of a Hasse

diagram; in such a diagram we represent the elements of A by small circles"o" in

such way that if a < b then the circle representing a is lower in the diagram than
that representing b; now connect these two circles with straight lines (we remark
that the intersections of two straight lines can’t be an element of the set A).

This procedure can always be carried out when the set A isfinite, and
even in the infinite case the structure of A can sometimes be indicated.

Below are some examples of Hasse diagrams.
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Ms Ns

Definition 2.1.3. We say that an ordered set A is
(i) meet—semilattice, if for every two eements a, bl A there is
anb=inf{a, b};
(i) join—semilattice, if for every two elements a, bl A there is
avb=sup{a, b};
(iii) lattice, if it is both meet and join-semilattice (that is, for every two
elementsa, b1 AthereexissaA bandaUbinA);
(iv) inf-complete, if for every subset Si A thereisinf (S);
(v) sup—complete, if for every subset Si A thereissup(S);
(vi) complete if it is both inf and sup-complete (in this case A will be
called complete lattice);
The weaker notion of conditional completeness refers to a poset in which
sup(S) existsif Sisnon-empty and S has an upper bound, and dually.

Remark 2.1.4.

(i) If Alisacompletelattice, theninf (A =1 and sup (&) =0.

(ii) Every ordered set A which is inf-complete or sup-complete is a
complete lattice.

Suppose that A isinf-complete. If M [ A, then sup(M) = inf (M’), where
M’ is the set of all upper bounds of M (M’ is non-empty since 1= inf (1 M’).
Indeed, for every xIl M andy T M’ we have x £ y, hence x £ m = inf(M’), hence
mi M’, that means, m = sup (M). Analogous if we suppose L is sup-complete.

Theorem 2.1.5. Let L be a set endowed with two binary operations
AV L7 L ® L associative, commutative, idempotent and with the
absortion property (which is, for every x,yl L wehavex A (x vV y) =xand

XV (XAY)=X).
Then

(i) Forevery x,yi L,x Ay=x U xVvy=y;
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(ii) I1f we definefor x, yi L
xEyU xAy=x0 xvy=y,

then (L, £) isalatticewhere A and Vv playstherole of infimum and respective
supremum.

Proof. (i). If x Ay=x,sincey V(X Ay)=ybP yvx=yb xVy=y.
Dudly,if xVy=ybP X Ay=X.

(if). Sincex Ax=xbP XEx. IfxEyandy£xP xAy=xandy A X=Yy
P x=y.lfxEyandy£zb xAy=xandyUz=y.Then X Az=(XAY) A Z
=XA(YAZ=XAY=X, hencex £ z. S0, (L, £) isan ordered set.

We have to prove that for every x, yl L, inf{xy} = x A y and
sup{x,y}=x vV y.

Sincex V(XAyY)=xbP x AyEXx Anadogousx Ay £y. If we have
tl Lsuchthatt£x and tEyb tAX=ttAy=tandt A (XAY)= tAX)AY
StAy=th tEXAYy.

Anaogouswe will prove that sup{x,y} =x VvV y. &

Definition 2.1.6. An element mi A will be called :
(i) minimal, if we haveal A suchthat a£m,then m = a;
(i) maximal, if wehaveal A such that m £ awededucethat m = a.

Definition 2.1.7. If A is a meet-semilattice (r espective, join-semilattice)
we say that A’CA is a meet-sub-semilattice (respective, join -sub-semilattice), if
for every a, beA’ wehaveaAbeA’ (respective, avbeA?).

If Aisalattice, A’=A will be called sublattice, if for every a, beA” we
haveaAb, avbeA’.

Examples

1. Let N be the set of natura numbers and "%4' the relation of divisibility
on N. Then "% is an order relation on N; with respect to this order N is alattice,
where for m, nl N, m A n=(m, n) (the greatest common divisor of m and n) and
m Vv n=[m, n] (theleast common multiple of m and n).

Clearly, for the relation of divisibility the number 11 N is the initial

element and the number Ol N is the fina element. This order is not a total one,
since if we have two natura numbers m, n such tha (mn) = 1

(asthe examples 2 and 3) dones not have m | n or n%m.
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2. If K isoneof thesats N, Z, Q or R, then K become lattice relative to
the natural ordering and the natura ordering istotal .

3. Let M be aset and P(M) the set of al subsets of M; then (P(M), [ ) isa
complete lattice (called the lattice of power sets of M ; clearly, in thislattice 0 =
Jand1=M).

Let now A, A’ be two ordered sets (if there is no danger of confusion, we

will denote by £ the same relations of order from A and A’) and f : A—A’
afunction.

Definition 2.1.8. The function f is said to be a morphism of ordered set
or isotone (anti-isotone) function if for every a, bl A, a £ b implies
f(a) £ f(b) (f(b) £ f(a)) (alternativef is said monotone increasing (decreasing)).

If A, A" are meet (join) — semilattices, f will be called morphism of meet
(join) semilattices if for every a, beA, f (a A b) =f (a) A f (b) (respective
f(avb)y=f(@ Vv f(b)).

If A, A" are lattices, f will be called morphism of lattices if for every
a bl Awehavef(aAb)=f(a) Af(b)andf(aVv b)=f(a) Vv f(b).

Clearly, the morphisms of meet (join) — semilattices are isotone mappings
and the composition of two morphism of the same type is aso a morphism of the
same type.

The morphism of ordered sets f:A—A" will be called isomorphism of
ordered set if thereis g:A’—A a morphism of ordered sets such that fog = 1, and
gef = 1,; inthis case we write A=A,

Since the definition of isomorphism of ordered set implies that f is bijective,
an isomorphism f of ordered set is a bijective function for which f and g are order
preserving.

We note that simply choosing f to be an isotone bijection is not suffice to
imply that f is an isomorphism of ordered sets (see[9], p.13)

Analogous we define the notions of isomorphism for meet (join) —
semilattices and lattices.

Next we will establish the way how partially ordered sets determine ordered
sets (see Definition 2.1.1); for thislet (A, £) be a poset.
It is immediate that the relation r defined on A by: (x,y)i r O x£y and

y £ x isan equivalenceon A.

If x,y, X', y€A such that (x, X)€p, (y, y)Ep and x <y, then x < X/,
X'<x,y<y andy <y.Fromx<y,y<y = x<y andfromx’ <x and x<y’' =
X' <y’,thatis, pisacongruenceon (A, £).
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We consider A=A/r together with preorder quotient (defined at the
beginning of the paragraph) we have to prove that this preorder isin fact an order
on A (that means, r isanti-symmetric).

Indeed, let [x],.[y], T A such that[x], £[y], ., [y], £[x], and we have to
prove that[x], =[y],. We have x < y and y < x, hence(xy)ir,
therefore[x], =[y], .

Therefore, the canonical surjection p,: A® A isan isotone function.

Following Proposition 1.3.13 it is immediate that the gquotient set (K,E)

together with the canonical surjective function p,: A® A verify the following
property of universality:

For every ordered set (B,E) and every isotone function f : A® B thereis
an unique isotone function f: A® B suchthat fop, = f.

Let (I, <) beachanand (A, <) o family of ordered sets (mutually
digoint) . Then A= UA = C A (see Definition 1.5.5).

il i
We defineon A anorder < by :x<yiff x€A, yeA; and i<jor
{x,y} A and x<yinAy(i,j,keEl).

Definition 2.1.9. The ordered set (A, <) defined above will be called

the ordinal sum of the family of ordered sets (A, <)ie
In some books, (A, <) will be denoted by ,ﬁ A.

If1={12, ...}, _,T&lA isreplaced by A@...®A,.

Consider now asetl and P =0 A (see Definition 1.5.1).

il
For two elements x, YyEP, X = (X)iel, ¥ = (Vi)ies We define X<y & X <Y;
for every i€l. It isimmediate that (P, <) become an ordered set and canonical

projections (p)ie; (with pi: P —A; for every i€l) areisotone functionss .This
order on Pwill becalled direct product order .
Asin the case of the sum between (ordinal) the pair form from ordered set

(P, <) and the family of projections (pj)ic/ verifies the following property of
universality:
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Theorem 2.1.10. For every ordered set (P, <) and every family of
isotone functions (p'i)ier with p’;: P"—A, (i€l) thereis a unique isotone
function u:P"—P suchthat p,ou=p’, for every iel.

Proof. Asin the case of direct product of sets (see Theorem 1.5.2) it is
immediate that u: P'—P, u(x) =(p’i(x))ie; for every x&P verifies the conditions
of the enounce . m

Definition 2.1.11. The pair (P, (p)ic)) will be called the direct product of
thefamily (A, <)ier.

Supposethat | = {1, 2, ..., n}. On the direct product P = P;x...xP, we can

defineanew order on P if X = (X)1<i<n ¥ = (Yi)1<i<n €EP: X<y < thereis 1<s<n
suchthat X; = y1,..., Xe1 = Ys1 @Nd Xs < Y.

This order will be called lexicographical order (clearly if x,y €P and X
<y inlexicographica order, then x <y relative to product order).

Theorem 2.1.12. (Knaster [54]) Let L be a complete lattice and f:L —L
an isotone function. Then thereisacL such that f(a) = a.

Proof. Let A={xeL: x < f(x)}. Since 0€A we deduce that A # J; let
a=sup(A). For every XA, x < a, hence x < f(x) < f(a), so we deduce that a < f(a).
Then f(a) <f(f(a)), hencef(a)€A and sof(a) <a whichisa=1f(a). m

An interesting application of Theorem 2.1.12 is the proof of the following
important set-theoretic result:

Corollary 2.1.13. (Bernstein [4]) Let E and F two sets such that
therearetwo injections f:E—F and g:F—E. Then E and F are equipotent.

Proof. For a set M we consider ¢y : P(M)—P(M), cu(N)=Cu(N)
(complementary of N in M). Werecall the functions defined in Proposition 1.3.7 :

f. : P(E)—P(F), f«(G)=f(G), for every GSE and g- : P(F)—P(E), g-(H)=g(H), for
every HSF and consider the function h:P(E)—P(E), h=cgog.ocrof., which is
isotone (because if GKcE and GeK=f(G)<f(K)
= Ce(f(K)) Sce(f(G)) = 9(c(f(K))) 9(cHf(G))) = ce(a(c-(F(G)))) ce(a(c(f(K))) =
h(G)ch(K)). Since (P(E), <) is a complete lattice, then by Theorem of Knaster
(Theorem 2.1.12), there is GSE such that h(G)=G, and therefore cg(G) =
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(g-oCrof:)(G). We have that E = G U ¢(G) and F = f.(G) U c(f+ (G)), s0
f:G—f«(G) and g: c(f-(G))— c=(G) are bijections asin the next figure :

E F

< c(f(G))

G f

i (), if x1 G,
Then tE—F, t)=1 . .
1y, if xI G and g(y) =x

is a bijection, hence E and

F are equipotent. m

2.2. Ideals (filters) in alattice

Definition 2.2.1. Let A be a meet - semilatticeand F €A a non — empty
subset. F will be called filter of A if Fisa meet -sub-semilattice of A and for
everya, bl A,ifaf bandal F,thenbl F.

We denote by F(A) the set of filtersof A.
The dual notion for filter isthe notion of ideal for ajoin-semilattice:

Definition 2.2.2. Let A be a join - semilattice and | | A a nonempty
subset of A. | will becalled an ideal of A if | isajoin-sub-semilattice of A and
for every a, bl Awitha£b,if bl I, thenal I.

We denote by | (A) the set of ideals of A.

Remark 2.2.3. If A is alattice, then the notions of filter and ided have a
precise definition in A (since A is simultaneous meet and join-semilattice), so
AT FA) NIA).
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Since the intersection of afamily of filters (ideals) is aso afilter (ided), we
can define the notion of filter (ideal) generated by a non-empty set (which is, the
intersections of al filters(ideals) of A which contains S).

If Aisa meet (join) - semilattice, for £ ST A we denote by [S) ((S]) the
filter (ideal) generated by S.

Proposition 2.2.4. If A is a meet -semilattice and S A a non-empty
subset of A, then

[S9={acA: thereexist 51, S ..., W ES such that 5,AS, A...AS,<a}.

Proof. Let Fs={acA: there exist s, & ,..., $E€S such that sAS

A...As<a. It is immediate that Fs T F(A) and ST Fs, hence [S) | Fs. If
F'eF(A) suchthat ST F’ then FsSF’, hence FsSNF'=[S) that is, [S)=Fs. N

By the Principle of duality we have:

Proposition 2.2.5. If A is a join-semilattice and SI A is a non-empty
subset of A, then

(S={acA: thereexist s1, S ..., s €Ssuch that aE s,V s, V...V s}

So, (F(A),<) and (I(A),<) are lattices, where for Fy, F,eF(A) (respective 14,
I,€1(A)) we have FiAF,=F,NF, and F, vV F,=[F,UF,) (respective [1Al,=I;Nl, and

11 VIL=(11U13)]).

In facts, these two lattices are compl ete.

If A is ameet (join)-semilattice and al A, we denote by [a) ((a]) the filter
(ideal) generated by { a} .

It is immediate that: [a)={x€A:a<x} and (a]={x€A : x<a}; [a), ((d]) is
called the principal filter (ideal) generated by a.

Corollary 2.2.6. Let L be a lattice, acL, I, I3, 1,€l(L) and F, Fy,
F,eF(L). Then

0) (@& (lu{at]=l v(al={xeL: x<yva with yel};

(i) F@Z[Fu{a})=FVv[a)={xeL:yAra<x with yeF};

(i) [1VI, ={xeL:x<iyVi, withi€l;and i€l };

(iv) FiVF, ={xeL:fiaf,< x with fy€F; and f,eF,}.

Theorem 2.2.7. Let (A, £) bean ordered set. Then A isisomorphic with
a set of subsets of some set (ordered by inclusion).
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Proof. For every al A we consider M.={x€A |x<a} CA. Sincefor every a,
bl A, a £ b we have M,I M,, we deduce that the isomorphism of ordered set
a® M,foral A yelstotheresult. n

Definition 2.2.8.

(i) An ordered set A with the property that every non-empty subset of A
have an initial element is called well ordered (clearly, a well ordered set isinf-
complete and total ordered);

(ii) An ordered set A with the property that every total ordered non-
empty subset of A have an upper bound (lower bound) is called inductive
(co-inductive) ordered set.

In [31] (81 of Chapter 3, Theorem 1.21) it is proved that (N, £) is an
example of well ordered set.

Next, we accept that for every set M the axiom of choice istrue:

Thereis afunction s: P(M) ® M such that S(S)I S for every non-empty
subset S of M.

We recall amain result of Bourbaki and some important corollaries (for the
proof of these corollaries see [70]).

Lemma 2.2.9. (Bourbaki). If (A, £) isa non-empty ordered set, inductive
ordered and f : A ® A isa function such that f (a) £ a for every al A, then
thereexistsul A such that f (u) =u.

Corollary 2.2.10. (Hansdorf principle of maximality). Every ordered set
contain a maximal chain.

Corollary 2.2.11. (Zorn's lemma). Every non-empty set which is
inductive (co inductive) ordered set has a maximal (minimal) element.

Corollary 2.2.12. (Principle of maximal (minimal) element)). Let (A, £) be
an inductive (co inductive) ordered set and al A. Then there exists a maximal
(minimal) dement m,1 A such that a£ m, (m, £ a).

Corollary 2.2.13. (Kuratowski lemma). Every total ordered subset of an
ordered set is contained in a maximal chain.

Corollary 2.2.14. (Zermelo theorem). On every non-empty set A one can
introduce an order such that the set A becomewell ordered.
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Corollary 2.2.15. (Principle of transfinite induction). Let (A, £) be an
infinite well ordered set and P a given property. To provethat all elements of
a havetheproperty P, it is suffice to provethat:

(i) Theinitial lement 0 of A hasproperty P;

(ii) If for al A, all elementsxl A such that x < a has property P, then the
eement a hasproperty P.

2.3. Modular lattices. Distributive lattices

Proposition 2.3.1. Let (L,A,V) bealattice. Thefollowing identitiesin L
areequivalent :

(i) XA(YV2)=(XAY)V(XAZ);
(i) XV(YAD=(XVY)A(XV2).

Proof. ()= (ii). Supposethat (i) istrue. Then
XV(YAZ) = (XV(XAZ))V(YAZ) =XV[(XAZ)V(YAZ)] =XV[zA(XVY)] =
= (XAXVY)V(ZAKXVY)) = (zVX)AKXVY) = (XVY)A(XV2).

(it)=(i). Analogous. m

Definition 2.3.2. We say that a lattice (L,<) is distributive if L verifies
one of the equivalent conditions of Proposition 2.3.1.

Definition 2.3.3. We say that a lattice (L,<) is modular if for every
x,y,z1 Lwithz<sxwehavexU(yUz) =(xUy)Uz

We note that we have lattices which are not modular.
Indeed, if we consider the lattice usually denoted by Ns:

1

weremark that af£ ¢, butaU(bUc)=aUO0=aand (@Ub)Uc=1Uc=c? g,
hencecU(bUa) ! (cUb) Ua, that is, Ns isnot amodular lattice.
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A classical example of modular lattice is the lattice Lo(G) of normal
subgroups of agroup G (which is a sublattice of the lattice L (G) of the subgroups
of G - see[31]).

Theorem 2.3.4. (Dedekind). For every lattice L the following assertions

areequivalent :

(i) L ismodular;

(i) for everya, b, cl L,ifc£a thenaUb Uc) £ (aUb)Uc;

(iii) for every a, b, ¢l L we have ((alc) Ub) Uc = (alc) U (bUc);

(iv) for every a, b, cl L,ifa£ c, thenfromaUb=cUbandaUb=cUb
we deducethat a=c;

(v) L doesn’t contain sublatticesisomor phic with Ns.

Proof. Since in every lattice, if ¢ £ a then (@Ub) Uc £ aU(b Uc), the
equivalence (i) U (ii) it isimmediate.
(i) b (iii). FollowsfromaUcE£ c.
(i) P (). Let & b, ¢ T L such tha a £ c. Then a = a U ¢, hence
(@aUb)Uc=((aUc)Ub)Uc=(aUc)U(bUc)=aU(bUc).
(i) b (iv). We have a=alJ(aUb)=al(cUb)=a U (b U c)=(aUb)Uc=(cUb) Uc =c.
(iv) P (v). Clearly (by the above remark).
(V)P (i). Suppose by contrary that L is not modular. Then we have a, b, cin L
such that a £ ¢, and a U (b U c) * (a U b) U c. We remark that
buc< aU(Uc)<(@Ub)Uc<alb,bUc<b<aUb, aU(bUCE b and
bE£ (aUb) Uc. In this way we obtain a Hasse diagram for a sublattice of L
isomorphic with Ns:

aUb

(aUb) Uc
aU(Uc)

bUc

(we remark that (a U (bUc)) U b = aU ((bUc) Ub) = alb and ((@Ub) Uc) U b =
=((@Ub) Ub) Uc=b Uc), whichisacontradiction!. n

Theorem 2.3.5. (Scholander). Let L beasstand U, U: L~ L ® L two
binary operations. Thefollowing assertions ar e equivalent:

(i) (L, U, U isadistributivelattice;

(i) In L wehavethefollowing identitiestrue:
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1) xUxUy)=x;
2) xU(yUz=zUx)U(yUx).

Proof. (i) P (ii). Clearly .

(i) P (i). From (1) and (2) we deduce that x = x U (x Ux) = (xUx)U(x Ux);
xUx=xUx)YxUx)UxUx)=xUx)Ux;xUx=xU(xUx)U(xUx)) =
((x Ux) Ux)U((x Ux) Ux) = (x Ux) U(x W) =x;xUx=(xUx)U(xUx) =x,
so we deduce the idempotence of U and U.

For commutativity and dual absortion:

xUy=xU(yUy)=(yUx) U(yUx)=yUx;

xUy)Ux=(yUx)U(xUx)=xU(xUy) =x;

xU@yUx)=xUx)UyUx)=xUxUy)=xU(x Uy)U(x Uy)Ux))=
=(x Ux) U((x Uy) Ux)=x U((x Uy) Ux)=x Ux=x;

x Uy = (x Wy Ux))UyUy Ux)) = (y Ux)Uy Ux) =y Ux.

Associativity:

xU((xUy)Uz)=(xUxUy)U(xUz=xUxUz) =x;

xUyUz)=(xU(xUy)U2)U(yU((yUx)Uz)U(zU(xUy)U2)=
=(xU((xUy) U2))U((x Uy) U2) U(y U2)] = ((x Uy) Uz) U(x U(y U2));

(xUy)Uz=zU(yUx) = ((zUy) Ux) U(zU (yUx)) =

=[(xUy)U2) U(xU(yUz)] =xU(y U2).

So, by Theorem 2.1.5, (L, U, U) is alattice and from 2) we can deduce its

distributivity. n

Theorem 2.3.6. (Ferentinou-Nicolacopoulou). Let L be a set, Ol L and
U U: L~ L ® L two binary operations. The following assertions are
equivalent :
(i) (L, U, U) isadistributive lattice with 0;
(i) In L we havethe following identities:
HxUxUy) =x;
2)xUyU2)=@UxU0) Uy UXUO)).
Proof. (i) b (ii). Clearly.
(i) b (i). Weshall provethat x U0 = x and then we apply Theorem 2.3.5.
Indeed, x Ux=(x U(x U0))Ux U(xU0)) =xU(xUx)=x; xUx=xU
xUx)=x;xUy=xU(yUy)=(yUx U0)Uy U (x U0)=yUx U0); x U0 =
=xU0)U(xU0)=xUxU0)=x.n
Clearly, every distributive lattice is modular.
In what follows by Ld we denote the class of distributive lattices and by
Ld (0, 1) theclassof all bounded distributive lattices.
Examples
1. 1f L isachain, then LT Ld (O, 1).

2.(N,]), (P(M),i)eLd(0 1.
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Remark 2.3.7. Reasoning inductively relative to nl N*, we deduce
that if S, S, ..., S, are non-empty subsets of a distributive lattice L, then

il:Jl(US)zuiil:Jlf(i) | £ . sg

Theorem 2.3.8. For alattice L thefollowing assertions are equivalent :

() LT Ld;

(i) aU(Uc)£(@Ub)U@Uc)for everya,b,cl L;

(i) @Ub)U(bUcU(cUa =@Ub)UMmUCc U(cUa) for every
ab,d L;

(iv) For everya, b, cl L,ifaUc=bUcandaUc=bUc, thena=b;

(v) L doesn’t contain sublattices isomorphic with Ns or M, where we
recall that Ms hasthe following Hasse diagram

1

0

Proof. (i) U (ii). Follows from the remark that for every elementsa, b, cT L,
(aUb)U(aUc) £aU(bUc).
(i) b (iii). Supposethat LT Ldandleta b,cT L. Then @Ub)U(bU c) U
cUa) = (aUb) Ub) U(@Ub) Uc) U(cUa) = (bU(@Uc) U (bUc)) U(cU
a = (bU(@Uc) U (cUa) = (bUcUa)U(@uc)U(cUa)=(bUc)UbU
a)U@Uc)=(@aub)U(bUc) U(cUa).
(iii) P (i). We deduce immediate that L is modular, because if a, b, ¢ T L and
afc then(@Ub)Uc = (@aUb)U(bUcUc)=(@Ub)UbUcU(cUa =
(@Ub)UbUcU(cUa=@UbUbmUcUa=((aUbyUa U((Uc) =
aU(Uc).

With this remark, the distributivity of L followsin the following way:
aUbUc=@U@Ub)UmUc = (aU(cUa)U@UbU®UCc =
aU@UbUMbUcgUEcUa=aU(@@Ub UbOUCcU(CUa) =
(@U(@uUb) U(bUc))) U(cUa) = (by modularity) =aU (b Uc) U@Ub) U
(cUa) = (by modularity) = (aUb) U(aUc).

()P (iv). If aUc=bUcandaUc=bUc, thena=aU(aUc) = aU(bUc) =
(@Ub)U(aUc) = (aUb)U(bUc) = bU(@Uc)= bU(Uc)=h.
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(iv) b (v). Suppose by contrary that N5 or M5 are sublattices of L. In the case of
Ns we observethat bUc=bUa=0,bUc=bUa=1buta? candin the case of
Ms,bUa=bUc=0,bUa=bUc=1buta! c—whichisa contradiction!

(v) b (i). By Theorem 2.3.4, if L doesn’t have isomorphic sublattices with N5 then
L ismodular. Sincefor every a, b, cT L wehave (@aUb) U(bUc)U(cUa) £ (aU
b) U (b Uc) U (c U a), suppose by contrary that there are a, b, ¢ T L such that
(@aUb)U(bUc)U(cUa) <(@Ub)U(MmUc) U(cUa). Wedenote d=(aUb) U
(bUc)U(cUa),u=(@aUb)U(UcU(cUa),at=(dUa Uu, b¢=(dUb)Uu
and c¢= (d Uc) U u. The Hasse diagram of the set {d, a¢ b¢ c¢ u} is:

u

at ¢ c¢

Since{d, ag b¢ c¢ u} i L isasublattice, if we verify that the elements d, a¢
b¢ c¢ u are distinct, then the sublattice { d, ag b¢; c¢ u} will be isomorphic with Ms
- acontradiction !.

Sinced < u, we will verify the equalities a¢U b¢ = be¢U cé=c¢U a¢=u, a¢U
b¢= b¢U c¢= c¢U at= d and then we will have that the 5 elements d, a¢ b¢ c¢ u are
distinct.

By the modularity of L we obtain a¢=d U (@aUu), b¢=d Ub U u),
c¢=d U (c Uu) and by symmetry it is suffice to prove only the equality
atJee=d.

Indeed, a¢Uct = (dUa) Uu) U(dUc)Uu) =(dUa) U@Uc) Uu=
(@Ub) UbUc) U(cUa) Ua) UdUc)Uu =((bUc)Ua) UdUc)Uu =((bU
cUaU((aUb)Uc)U@Ub)UbUc) U (cUa) = (bUc)Ua) U((aUb) Uc)
=(bUc) U (aU(@@Ub) Uc)) = (by modularity) = (b Uc) U(((aUb) Uc) Ua)= (b
Uc) U((aUb)U(cUa)) = (by modularity) = d.n
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Corollary 2.3.9. A lattice L is distributive iff for every two ideals
LIT 1(L), 10UJ={iUj :il landjT J}.

Proof. Suppose that L is distributive. By Corollary 2.2.6, for tl 1 U J we
haveil I,jT Jsuchthatt£iUj,sot=(tUi)UtUj)=i¢Ujewithi¢c=tUiT 1
and je=tUjT1 J.

To prove the converse assertion, suppose by contrary that L is not
distributive and we have to prove that there are |, Ji | (L) which doesn’t verify the
hypothesis.

By Theorem 2.3.8, L contains a b, ¢ which together with O and 1
determine the lattices Ns or Ms.

Let | = (b], J=(c]. Since a £ b U c we deduce that al 1 U J. If we have
a=iUjwithil I andji J, thenj £ c, hencej £ aU c < b. We deduce that jT | and
a=iUjT I —whichisacontradiction! n

Corollary 2.3.10. Let LT Ld and I, JT I(L). If 1UJ and 1UJ are principal
ideals, then | and J are principal ideals.

Proof. Let | UJ=(x] and | UJ = (y]. By Corollary 2.3.9,y =i Uj withil |
andjl J. If c=xUiandb=xUj, thencl | and bl J. We have to prove that | = (]
and J= (b].

If by contrary J * (b], then we have a J, a> b and {X, a b, ¢, y} is
isomorphic with Ns —which is a contradiction!

Anaogous, if 1 1 (c], we find a sublattice of L isomorphic with Ms, which
isanew contradiction! n

Corollary 2.3.11. Let L bealatticeand x, yeL. Then (x] U(y] = (x Uy]
and (xUy] < (x] U(y]; if LeLd, then (x] U(y] = (x Uy].

Proof. The equality (x] U (y] = (x Uy] is immediate by double inclusion;
the inclusion (x U y]=(x] U (y] follows from Corollary 2.2.6. If LE€Ld, then by
Corollary 2.3.9, (x] U(y] ={i Uj : il (JandjT (]} = {iUj : i£xandj £y},
hence(x] U(y] I (x Uy], thatis, (x Uy]=(x] U(y]. n

Definition 2.3.12. Let L be a lattice. An element acL is called join
(meet)-irreducible (respective join(meet)-prim) if a = xvy (a = xXAy) with
X,yeL,thena=xor a=y (respective, a<xVvy (XAy< a)thena< xor agy
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(x<aor y<a)).lfL hasO, (1) an element acL is called atom (co-atom) if
az0and x<a,then x=00or x=a(a#1 anda<x,then x=aor x=1).

Theorem 2.3.13. Let L beadistributivelattice. Then

(i) acL isjoin (meet) —irreducibleiff is, respective, join (meet)-prim ;
(ilf L haveO, (1) then every atom (co-atom) isjoin(meet)- irreducible.

Proof.(i). ,”=". Let acL joinHrreducible and a< xVvy. Then a=aA(xVy)
= (anx)V(aay), hencea=aAx or a=aAy, thatis,a<xora<y.

"&", Suppose a = xVy. Then x < aand y < a Since a < xVy, by
hypothesisa< x or a<y, hencea= x or a=y, that is, a is join-irreducible.
Analogous for the case meet-irreducible equivalent with meet-prim.

(ii). Suppose L has 0 and let acL an atom such that a < xVvy. Since
anx <a and any < a thenanx =aAy =0or aAx =aor any= a. Thefirst caseis
impossible because 0 # a= (aAX)V(aAy), hence a< x or a<y. Anaogous for the
case of co-atoms. W

Proposition 2.3.14. Let L be a distributive lattice x, yeL, I€l(L) and
[(X) = (1U{x}]. Then

@) If xAye 1, 1()NI(y) =1;
(if) Thefollowing assertions are equivalent :

1) I isan meet-irreducible element in the lattice (I(L),<);
2) If x,yeL suchthat xAyel, then xel or yel.

Proof. (i).Let x, yeL such that xAyel. If zel(x)nl(y), then by
Corollary 2.3.9 there are t, rel such that z < xVvt and z < yVvr. We deduce that
zZ < (XVDA(YVD = (XAY)VXANV(EAY)V(EANEIL, hence zel, that is,
I(X)NI(y)Sl. Since the another inclusion is immediate, we deduce that
1) NI(y)=I.

(ii). )=2). Since | is supposed to be an meet-irreducible element in 1(L)
and by (i), I(x)NI(y) = I, we deduce that | = I(x) or | =1(y), hencex€l or yEl.

2)=1). Let Iy, I,€Il(L) such that 1=I;Nl>.

Suppose by contrary that | # 1, and | # 1, hence there exist x; €1, such that
x1¢1 and x,&€1, such that x,¢1. Then x;AX>€1:N15 =I; by hypothesis, X;€1 or X<l
—whichisacontradiction, hencel=l, or I=],. ®
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Dually, we deduce
Proposition 2.3.15. Let L be a distributive lattice x, yeL, FeF(L) and
F(x) = [FU{x}). Then

(i) If xvyeF, F(X)NF(y) = F;
(if) Thefollowing assertions are equivalent :

1) F ismeet-irreducible element in the lattice (F(L),<);
2) If x, yeL such that xvyeF, then xeF or yeF.

Definition 2.3.16. Let L be a distributive lattice. A proper ideal (filter)
of L will be called prime if it verifies one of the equivalent conditions from
Proposition 2. 3.14 (Proposition 2. 3.15).

Definition 2.3.17. Let L be a lattice (distributive). A proper ideal
(filter) of L will be called maximal if it is maximal element in the lattice (L)
(F(L)). Maximal filtersarealso called ultrafilters.

Corollary 2.3.18. (M.H. Stone). In a distributive lattice, every maximal
ideal (filter) isprime.

Proof. It is an immediate consequence of Propositions 2.3.14 and 2.3.15

because one maximal idea (filter) is an inf-irreducible element in the lattice
(L), ©)(FL), <) m

The following result isimmediate :

Proposition 2.3.19. If L is a distributive lattice, then I €l(L) isa prime
ideal iff L \ I isaprimefilter.

2.4. Theprimeideal (filter) theorem in a distributive lattice

Theorem 2.4.1. Let L beadistributivelattice, | €l(L) and FeF(L) such
that INF=@. Then thereis a primeideal (filter) P such that I1cP (F<P) and
PNF =@ (PNl =Q).

Proof. By dudity principle, it is suffice to prove the existence of the prime
ideal Psuchthat <P and PNF=Q .

Let F={l¢eI(L): IcI¢and IC"F=@}. Since |€F, we deduce that F,+. It
is immediate that (F,,<) is an inductive set, so by Zorn's Lemma (see Corollary
2.2.11) in F, we have a maximal element P with properties | <P and PNF=@. Since
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F+@ we deduce that P=L. We shall prove that Pisaprimeideal, hencelet x,yeL
such that xAyeP. Suppose by contrary that x¢P and y&P. Then
I=P<PV (x]=P(x) and by the maximality of P we deducethat P(x) NF+@.

By Corollary 2.2.6 we have z&€F such that z < tvx with teP. Analogous
we deduce that there is z¢F such that z¢ < tdvy with t6P. Then zAz¢ <
(tvX)A(tevy) = (IALQV(EAY)V(XALYV(XAY)EP, hence zAz¢&P. Since zAzGeF
we deduce that PNF+d, - which is a contradiction!. Hence x€P or yeP, that is, P
isaprimeideal. m

Corollary 2.4.2. Let L be a distributive lattice, 1 €l(L) and acL such
that a€¢l. Thenthereisaprimeideal P such that | <P and a¢P.

Proof. It is an immediate consequence of Theorem 2.4.1 for F=[a), because
if a¢l,theniNF=J. =

Analogous we deduce
Corollary 2.4.3. Let L be a distributive lattice, FEF(L) and acL such
that a¢F. Then thereis aprimefilter P such that FSP and a¢P.

Corollary 2.4.4. In a distributive lattice L, every ideal (filter) is the
intersection of all primeideals (filters) containingit.

Proof. It will suffice to prove for idealsFor Iel(L) we consider
l:=N{P:IcPand P is primeidea in L}.If I=I,, thenthereisacl;\l and by
Corollary 2.4.2 thereisaprimeidea Pin L suchthat 1P and a¢P. Sincel, <P
and acl; wededucethat acP, acontradiction!. m

Corollary 2.4.5. Let L be a distributive lattice and x,y€L such that
x%£y. Then thereisan primeideal (filter) P such that xeP and y&P.

Proof. We apply Theorem2.4.1for 1 =(y], F=[x). m

Definition 2.4.6. A family R of subsets of a set X will be called ring of
setsif for every A,B € R then ANB € R and AUB € R.

For adistributive lattice L we denote by Spec(L) the set of al prime ideals
of L; Spec(L) will be called the spectrum of L.
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We define o :L—P(Spec(L)) by ¢ (X) = {P=Spec(L): x¢P}.

Proposition 2.4.7. Let L beadistributivelattice. Then

(i) ¢.(0)=9 and ¢, (1) = Spec(L);

(i) @L(xvy)=o.L(x) U oL(y), for any x,yeL;

(i) oL(xAY) = @L(X) N @L(y), for any x,y€L;

(iv) @_ isan injectivefunction.

Proof.(i) Straigtforward.

(if). For PeSpec(L), by Definition 2.3.16 we have Pco (X)Uo.L(y) <
Pco. (X) or Peo(y) & x&P o y¢P < xVvy¢P < Peco(xVy), hence

PL(XVY) = oL(X) U oL(y).
(ii1). Analogous.

(iv). It follows from Corollary 2.4.5. m

Corollary 2.4.8. (Birkhoff, Stone) A lattice L is distributive iff it is
isomor phic with aring of sets.

Proof. "=".For X = Spec(L), by Proposition 2.4.7 we deduce that L is
isomorphic (as alattice) with ¢ (L) and ¢, (L) isaring of subsets of X.

“<" Clearly. m

Theorem 2.4.9. Let L be a distributive latticewith L1 and I €I(L), I=+L.
Then | iscontained in a maximal ideal of L.

Proof. It is immediate that if we denote &, = {J€l(L), J # L: ISJ} then
F i+ (because | €F, ) and (F,,<) isan inductive set, so we apply Zorn’s Lemma.
[

Analogous we deduce
Theorem 2.4.10. Let L be a distributive lattice with 0 and FEF(L),
F=L. Then Fiscontained in an ultrafilter.

Theorem 2.4.11. Let L be a distributive lattice with 0. Every element
x #+ 0of L iscontained in an ultrafilter.

2.5. Thefactorization of a bounded distributivelattice by an ideal
(filter)
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Let L be abounded distributive lattice, |€l(L) and FEF(L).

Lemma 2.5.1. Thefollowing assertions ar e equivalent:
(i) For every x, yeL thereisiel such that xVvi =yVi;
(ii) For every x, yeL thereisi, j€l such that xvi =yVj.

Proof.(i)=(ii). Clearly.
(if)=(i). Let x,y€L; by hypothesisthere arei, jcl such that xVi =yVj. If
weconsider k =ivjel, then (xVvi)vk = (yVj)VKk & xvk=yVvk. &

Analogous we deduce

Lemma 2.5.2. Thefollowing assertions ar e equivalent:
(i) For every x, yeL we haveieF such that XxAi = yAi;
(ii) For every x, yeL wehavei, j €eF such that xAi = yAj.

We consider on L the binary relations

0;: (X,y)€ 0, < thereis i€l such that xVi =yVi < therearei, j€l such
that x Vi = yVj;

O (X,y)€ 0 < thereis i€F such that XxAi = yAi < there are i, jeF
such that X Ai = yAj.

Proposition 2.5.3. 6, and 0 are congruenceson L.

Proof. It will suffice to prove only for 6,. Since for every xeL, xv0=xVvO0
and 0 € | we deduce that 6, is reflexive. The symmetry of 6, is clear. To prove the
transitivity of 0, let x, y, z€L such that (x,y), (y,2)€6,. Thus there are i, j€l such
that xvi=yvi and yvj=zvj. If we denote k=ivjel, we have
xVk=xV (iv))=(xVi)Vij=(y Vi) Vi=(yV]) Vi=(zV)) vi=zVKk, hence (x,2) € 6,.

To prove the compatibility of 6, with A and Vv, let X, y, z, teL such that
x,y), (zt) € 6,. Thentherearei, jel such that xvi=yvi and zVvj=tvj. If we denote
k=iVvje&l, then (xvVz) Vk=(yVt) VK, hence (xVvz, yVvt)€ 0,.

Also, we obtain: (XVi)A(zV))=(yViI)A(tV])

S (XAZ) VXAV A VIA)=(YADY VYA VEAD) V(I A)).
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If we denote k = (XA))V(zADV(IA)EL = (YA V(EAD)V(iA)EL, then
(XAZ)Vk=(yAt)Vr, hence (xAz, yAt)E 0. B

For xeL we denote by x/I (x/F) the equivalence class of x modulo 6, (6g)
and by L/l (L/F) the factor set L/ 6, (L/ 6 which in a natural way becomes a
bounded distributive lattice (because 6, and 6 show congruence on L ).

We aso denote by p:L—L/l (peL—L/F) the canonica surjective

morphism defined by p,(xX)=x/I (p(X)=x/F), for every x&L. The lattice L/l (L/F)
will be called quotient lattice (we say that we have factorized L by ideal | (filter

F).

Theorem 25.4. Let L be a disgtributive lattice with 0, I €l(L) and X,
yeL. Then

(i) x/l <yll & x<yvVifor someiel;

(i) x1 =0=0/1 & xe&l;

(iii) If FEF(L) and INF=@, then p,(F) isa proper filter of L/I.

Proof.(i). We have x/l < y/l < X/IAy/l = xll< (XAY)/I = Xl <
XAy, X)€ 6, & (XxAy)Vi=xVI for some i€l < (XVi)A(yVi) = xVi <
XVi< yVvi & x<yvifor someiel.

(ii). If x/1=0/1 then there isi<l such that xVvi = 0vi = i€l. Since X < XVi
we deduce that x€l. Conversdly, if x&l, since xvx = x = xV0 we deduce that
(x, 0)e 6, hencex/l =0=0/1.

(iii). Firstly we have to prove that p,(F) eF(L/l).

Clearly, if ope p(F), a = x/I, B = y/l with xyeF then
aAB = (XAY)/I€ p(F) (because X AyeF). Now let a, BEL/I, a < and suppose that
a = X/l with xeF; let § = y/l withy€eL. From o < § we deduce that x/I <y/I and by
(i) we obtain that x < yVi for some i€l. Then yvieF; since (yvi)/l = y/lVill =
y/1v0 =y/l we deduce that y/l € pi(F), hence p,(F) isafilter in L/I.

We shall prove that p(F)=L/l; if by contrary p(F) = L/I, then 0ep(F),
hence 0 = x/lep,(F) with xel.

We deduce that x/I = y/l with yeF, hence there is i€l such that
XVi =yVi. Sincey <yVi = xVi and x,i€l we deduce that y<l, hence INF= &,

which isacontradiction!. m
Anaogous we deduce
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Theorem 255. Let L be a distributive lattice with 1, FeF(L) and
X, YEL. Then

(i) XIF<ylF < x<yAifor someieF;

(i) xIF=1=1F < xeF;

(@ii)) If 1€l(L) and INF=@, then pg(l) isa proper ideal of L/F.

Remark 2.5.6. Although L doesn’'t have O, if I€l(L) then L/l has 0.

Indeed if we take o€l then, since for every xeL, X, < XV X we deduce that X/l <
x/lI, hencexy/l =0inL/I.

Anaogous, if FEF(L) and yocF, then yo/F =1 (in L/F).

2. 6. Complement and pseudocomplement in a lattice.
Boolean lattices. Boolean algebras.

Definition 2.6.1. Let L be a bounded lattice. We say that an element al L
is complemented if thereis ad¢ L suchthat aUa¢=0and aUa¢=1 (atwill be
called the complement of a).

If every element of L iscomplemented, we say that L is complemented.

If L is a lattice and a, b T L, a £ b, the relative complement for an
element xI [a, b] isthe element xd [a, b] (if it exists!) such that x U x¢= a and
x Ux¢=b.

We say that alattice L isrelatively complemented if every element x of L
iscomplemented in every interval [a,b] which contain x.

A relatively complemented distributive lattice is a distributive lattice such
that every element isrelatively complemented; such a lattice with O iscalled a
generalized Boolean algebra.

Lemma 2.6.2. If LT Ld(0, 1), then the complement of an element al L
(if it exists) isunique.

Proof. Let al L and a¢ a¢ttwo complements of a ThenaUa¢=aUa®=0
and aUa¢=a U a®t= 1, hence a¢= att(by Theorem 2.3.8 (iv)). n

Lemma 2.6.3. Every modular, bounded and complemented lattice L is
relatively complemented.
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Proof. Letb,c1 L,b£c, al [b,c] anda¢l L the complement of ainL. If
we consider a®t= (a¢Ub) UcT [b, c], then by a>b and by the modularity of L we
obtainaUa®= aU[(abJb)Uc] =[(aUadU(aUb)] Uc= (aUb)Uc= bUc=b
andaUat=aU(at)b)Uc]=(@Uatlb)U(aUc)=1Uc=c, hencea” isthe
relative complement of ain [b, c]. N

Theorem 2.6.4. Let L be areatively complemented distributive lattice.
TheninL anideal | isprimeiff | ismaximal.

Proof. If | is maximal, then by Corollary 2.3.18, | is prime. Suppose | isa
prime ided. If we consider Jel(L) such that 1CJ if we prove that J=L, then | will
be maximal. We choose xeJ\I, yel and zeL. By hypothesis x have a complement
x¢in [XAy, xVz]. Then XAXE&XAYEI; since | is prime we deduce that x¢|
(because x€1). Since | CJ we deduce that x¢=J. Since X vVXx&xVz and xVx¢J we
deduce that xvzeJ, therefore z€J, hence L=J. m

Theorem 2.6.5. (Nachbin).Let L be a distributive lattice such that
every primeideal of L ismaximal. Then L isrelatively complemented.

Proof. Suppose by contrary that there are ay, &, €L, ay<a<am and g
doesn’t have a complement in [ag, &)]. Then ag<a<ap. Let l(={xeL:ayAX < &} and
I; ={X€L:aAX < g Vy, for some yelg}. It is immediate that I, 1:€1(L), a€ly,
a€lo, &<l and oSl We remark that a,€1,, since by contrary, then a, < a; vy for

some y€Elq; thus if we denote yé&=(yAa,)Va, we have &y Vyt=a, and a;Ayt=ay,
hence a; has acomplement in [ay, &] —which isa contradiction!.
By the Theorem of prime ideal (Theorem 2.4.1), there is a prime idea J,

such that a,¢J, and 1:.SJ. If we denote F=[(L\Jy)U{a}) we shal prove that
FNly=3. Indeed, if FNly # @ then there is xeFNlgy such that yAa; < x for some
y&d.

But ayAX < &y, hence g Ay < ayAX < &. Then y€lg, henceyed,, whichisa
contradiction!. By applying again the Theorem of prime ideal, there is a prime

ideal J; such that 1, J;, and FNJ,=@. Thus J;£J,, hence J; is not maximal, whichis
acontradiction! m

Lemma 2.6.6. (De Morgan). Let LT Ld(0, 1), a, bl L having the
complementsag b¢l L. Then aUb and a Ub have also complementsin L and
(aUb)¢= a¢Ubg (a Ub)¢= atU b¢
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Proof. By Lemma 2.6.2 and duality principle, it is suffice to prove that
(aUb) U(atUbd = 0and (aUb) U (a¢U bg = 1.

Indeed, (aUb) U(a¢U b =(@aUbUad U(@UbUbd =0U0=0and
(@Ub)U(atUbg = (aUatUbg U(bUatUb)=1U1=1. n

Theorem 2.6.7. Let L be a bounded distributive lattice, (a);,1 L and
cl L acomplemented element.

(i) If |U|a. existsin L, then cU(_H a) :|U| (cUa);
(i) If _Ha,- existsin L, then cU(H a) =|UI (cUa).

Proof .(i). Suppose that a= Ha inL. Thena? a, hencecUa3 cUa, for
I

everyil I.Letb3 cUa, foreveryil I;thenc®)b3 c¢U(cUa)= (c¢Uc) U (c¢U
a) =1U(ctUa)=ctUa 3 a, for every il |, hencec¢Ub 3 a Thenc U(ctUb) 3
cUab (cUcQU((cUb)3 cUab O0U(cUb3cUab cUb3cUab
b3 cUa,hencchaziH(cUa).

(ii). By (i) using the principle of duality. m

Remark 2.6.8.1f LT Ld (0, 1) and al L have acomplement ad L, then atis
the greatest element of L such that a U at=0 (that is,
at=sup ({xT L : aUx=0}).

Following this remark we have

Definition 2.6.9. Let L be join-semilattice with 0 and al L. An element
a'l L will be called the pseudocomplement of a, if a"=sup {x1 L :aUx=

0}).

L will be called pseudocomplemented if every element of L has a
pseudocomplement.

A lattice L with 0 is called pseudocomplemented, if the join-semilattice

(L, A,0) ispseudocomplemented.

Lemma 2.6.10. Let L be a bounded modular lattice, al L and at a
complement of a. Then a¢is a pseudocomplement for a.

Proof. Indeed, if bl L such that at£ band bUa=0,thenb=bU1=
bU(@atUa) =atU((bUa) =atU0=at n
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Theorem 2.6.11. Let L be a pseudocomplemented distributive lattice
withO,R(L)={a*: al L} andD(L)={al L :a* =0}.

Then, for every a, b1 L we have:

0) aUa*=0andaUb=0U af b*;

(i) afb b a*3 b*;

(iii) af£a**,

(iv) ar = arx*:

(v)  (@Ub)* =a* Ub*;

(vi)  (aUb)** = a** Ub**;

(vi) aUb=00 a**Ub**=0;

(viii) aU(aUb)* =aUb*;

(x) 0=1 1*=0;

() al R(L) U a=a**;

x) abl R(L)P aUbl R(L)

(xii)  sup g,{a b} =(aUb)** = (a* Ub*)*;

(xiii) 0, 1T R(L), 11 D(L)and R(L)C D (L) ={1};

(xiv) abl D(L) P aUbl D(L);

(xv) al D(L)andafb b bl D(L);

(xvi) aUa"l D(L).

Proof. (i). It follows from the definition of a’; the equivalence follows
from the definition of b*.
(ii). Since b U b"= 0, then for a £ b, we deduce that a Ub"= 0, hence

*

f£a.

*

b
(iii). FromaUa" = 0wededucethat 8" Ua=0, henceaf (") =a"".
(iv). Froma£ a * and ii) we deduce that a"** £ a", hence using (iii) we
deducethata” £(@)"* =a™™*, s0a" =a "
(v). Wehave (@aUb) U@ Wb")=(@Va“ Ub") U (bUa" Ub)=0U0=
0. Let now x T L such that (a Ub) Ux = 0. We deduce that (a U x)U (b U x) = 0,
henceaUx= bUx=0.S0,x£a ,x£b", hencex £a  Ub". Anaogous for the

rest of assertions. n

Remark 2.6.12.

(i) The elements of R (L) are called regular and the elements of D(L) are
called dense.

(i) Fromiv) and x) we deducethat R(L) ={ al L:a * =a}.

(i) From xiv) and xv) we deduce that D(L) T F(L).
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Theorem 2.6.13. Let LT Ldand al L.
Thenf,: L ® (a] "~ [a), fa(X) = (x Ua, x Ua) for xI L is injective
morphism in Ld. If LT Ld(0, 1), then f, is an isomorphism in Ld (0, 1) iff ais
complemented.

Proof. It is immediate that f, is a morphismin Ld. Let now x, y T L such
that f, (X) = f. (y); thenx Ua=y Uaandx Ua=y Ua SinceLl Ld, thenx =y
(by Theorem 2.3.8), hencef, isinjective.

Suppose that LT Ld(0, 1). If f, is an isomorphism in Ld(0, 1), then for
(0,11 (a  [a thereis xI L suchthat f(x)=(0,1), hence aUx=0 and
aUx =1, therefore x = at

Conversely , if a¢l L isthe complement of a, for (u,v) 1 (a] ~ [a) if
consider x = (uUad) Uv , then f, (X) = (u, v), hence f, issurjective, that is, an
isomorphismin Ld(0,1). n

Definition 2.6.14. A Boolean lattice is a complemented bounded

distributive lattice.
Examples

1. The trivia chain 1 = {/A} and the chain 2 = {0, 1} (where 0¢= 1 and
1¢=0); infact, 1 and 2 are the only chains which are Boolean lattices.

2. For every set M, (P(M), ) is a Boolean lattice, where for every
X1 M, X¢=M\ X =Cy (X).

3. Letni N, n3 2and D, the set of all natural divisors of n.

The ordered set (D, | ) isaBoolean lattice iff nis square free (thusfor p,
ql Dn pUg=(p,q),pUq=[p,q,0=1,1=nandpt=n/p).

4. Foraset M, let 2¥ ={f : M ® 2}. We define on 2" an order by
f£g U f(x)£g(x) for every xI M. Thus (2", £) become a Boolean lattice
(wherefor f1 2, f ¢=1-f).

Definition 2.6.15. From Universal Algebra’'s point of view
(see Chapter 3), a Boolean algebra is an algebra (B, U, U, ¢ 0, 1) of type
(2, 2,1, 0,0) such that
Bx: (B,U,UT Ld;
B,: In B thefollowing identitiesaretrue
xU0=0,xU1l =1,xUx¢=0,x Ux¢=1.
We denote by B the class of Boolean algebras.
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If B, B,1 B,f:B;® B,iscaled morphism of Boolean algebrasif f isa
morphismin Ld (0, 1) and f (x¢ = (f (x))¢for every x T B..
The bijective morphisms from B will be called isomorphism.

Definition 2.6.16. By an ideal (filter) in a Boolean lattice B we
under stand the corresponding notions from the lattice (B, U, U). By | (B) (F(B))
we denotethe set of ideals (filters) of B.

Proposition 2.6.17. (Glivenko). Let (L, U, *, 0) be an
pseudocomplemented join-semilattice and R(L)={a* - al L}. Then, relative
totheinduced order from L, R(L) is becomes a Boolean algebra.

Proof. By Theorem 2.6.11 we deduce that L is bounded (1 = 0*) and for
a bl R(L),aUbl R(L) and sup r, {a b} = (@ Ub")", hence R(L) is a bounded
lattice and sub-meet-semilattice of L.

Sinceforeveryal R (L), aUa = (@ Ua™)" =0" =1andaUa’ =0we
deducethat a" is the complement of ain R(L). To prove the distributivity of R(L),
letx,y,z1T R(L). Thenx Uz £ xU(yUz andy U z£ x U(y U 2), hence
xUzUXUyUD =0ad(yUz Ux Uy U2 =0, hence

zU[xU(yU2)]" £x",y", thereforezU[x U(y U2)]" £x" Uy* and z
Ux U@y U2]" U " Uy")" =0 which implies that z U (x" U y")" £
[x U@y Uz)]™".

Since the left side of the above inequality isz U (x Uy) and theright side is
x U(y Uz2) (in R(L)), we deduce that z U (x Uy) £ x U (y U 2), that is, R(L) is
distributive. n

Lemma 2.6.18. Let B be a Boolean algebra and a, bl B such that
aUb=0andaUb=1Thenb=at

Proof. It isimmediate from Lemma?2.6.2. m

Lemma 2.6.19. If B is a Boolean algebra and a, b T B, then
(ad¢= a, (a Ub)¢=a¢U btand (a Ub)¢= a¢U bt

Proof. It isimmediate from Lemma 2.6.6. m

Proposition 2.6.20. For every set M, the Boolean algebras 2" and P(M)
areisomor phic.
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Proof. Let XTI P(M) and a, :M® 2,
30, for xI X
ax (x)=]

_+L for xI X °
Then the assignment X ® ay defines an isomorhism of Boolean algebras
a:PM® Y. n

For aBoolean algebraB and al B, we denote I[a] = [0, &].

Proposition 2.6.21. For every al B :

() ([a], U, U, *, 0, a) is a Boolean algebra, where for x 1 I[a],
X" =x¢Ua;

(i) a,:B® I[a],a,(x)=aUx,for xi B, isa surjective morphism of
Boolean algebras;

(ii) B»1[a] " | [ad.

Proof. (). | [a T Ld (0, 1) (as sublattice of B). For xi | [a],
xUx'=xUxtUa) =(xUx§ Ua=0Ua=0andx Ux" =x U (x¢U a)=
xUxgU(xUa)=1UxUa=xUa=a

(i). fx,y1T B, thenas,(x Uy) =aU(xUy) =(aUx) U@Uy) =
a;(x) Uaa(y), aa(xUy)=aU(xUy)=(@aUx)U(@Uy) = a.(x) Uaa(y),
a. (x = aUx¢=(@aVUa) U@Ux9 =aU (aUx9 =aU @Ux)t=(a, (X)),
a, (0) =0and a, (1) = a, hence a, isan surjective morphismin B.

(iii). It isimmediatethat a : B® | [a] * | [ad, a (x) = (aU x, a¢U x) for
x1 Bisamorphismin B.

For(y,2)T I[a  I[ad,sincea (yUz) =@U(yUz),atU(yUz) =
(@Uy) U(aUz), (aUy)U (atUz)=(y U0,0U2) =(y, 20 wededucethat a is
surjective. Let now X3, X, T B suchthat a (x) = a (xy). ThenaUx; =aUx, and
atU x; = a¢U x,, hence (aU x)U (atUx;) = (aUx,) U(atUx,) U (aUad Ux,
=@Uad Ux, U 1Ux;=1Ux, U x;,=x,, hencea isanisomorphismin B. n

2.7. The connections between Boolean rings and Boolean algebras

Definition 2.7.1. A ring (A, +, %, -, 0, 1) is called Boolean if a’ = afor
everyal A.
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Exemples

1. 2isaBooleanring (where1 + 1 = Q).

2. (P(X), b, ¢, ¢, £ X) with X a non-empty set and D the symmetrical
difference of sets.

Lemma 2.7.2. If A is a Boolean ring, then for every al A,a+a=0
and A iscommutative.

Proof. Froma+ a= (a+ &) we deduce that a+ a=a+ a+ a+ a, hence
a+a=0,thatis -a=a

Fora bl A, froma+b=(a+b)’>wededucethat a+b=a’+ab+ba+
+b?, henceab + ba=0,s0ab=- (ba) =ba n

The connections between Boolean agebras and Boolean rings are given
by:

Proposition 2.7.3. (i) If (A, +, x, -, 0, 1) is a Boolean ring, then the
relation relativetotheorder £ on A definedbyafb U ab=a, A becomea
Boolean lattice, wherefor a, bT A, aUb=ab,aUb=a+b + ab and
at=1 +a

(i) Conversely, if (A, U, U, ¢ 0, 1) is a Boolean algebra, then A
become a Boolean ring relative to operations +, xdefined for a, b T A by
a+b=(@UbgU(atUb), ab=aUband -a=a.

Proof. (i) Thefact that (A, £) is aposet isroutine. Let now a, b1 A. Since
a(ab) =&’ b=aband b (ab) = ab’ = abwe deducethat ab £ aand ab £ b. LetcT A
suchthat c£aandc£b, henceca=candcb=c. Thenc?ab=c*U cab=c U
¢ £ ab, hence the conclusion that ab=aUb.

Analogouswe provethataUb=a+ b+ ab.

SinceaU((Uc) =a(b+c+bc)=ab+ac+abcand (@aUb)U (aUc) =
=(ab) U (ac) = ab + ac + a’ bc = ab + ac + abc we deduce that aU (b Uc) = (aUb) U
(@Uc), hence AT Ld. Sinceforal A,aUat=aU(l+a=a(l+a=a+a’ =
ata=0OandaUat=aU(l+a =za+l+a+a(l+a=-a+l+a+ta++a=
l+atat+ta+a=1aU0=za-0=0andalU 1=za+l1l+a-l=za+a+1=1, we
deduce that (A, U, U, ¢ 0, 1) isaBoolean lattice.

(i) For a,b,cT A wehave
1. a+(b+c)=[aU(b+c)qd U[atU(b+ )] =
={aU[(bUcy U (beUc)¢ U{acU[(bUcq U(beUc)} =
={aU[(beUc) U(b Ucqd]} U{(atUb Ucy U (atUbeU o)} =
={aU[(beUcd U(cUb)} U{(atUb Ucy U (atUbeU )} =
=(aUbtUc U(@aUbUc)U(atUbUcd U(atUbtUc) =
=(@aUbUc)U@UbtUch U (b UctUadh U(cUatUbj
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Sincethe fina formis symmetric in a, b and ¢ we deducethat a+ (b + ¢) =
(a+b)+c
2. a+b=(aUb U(atUb)=(bUad U(@aUby=b+a
3. a+0=(auoyd U(atU0)=(aU1) U0 =a
4, a+a=(atUa)U@Ua) =0U0=0, deci -a=a.
5.a(bc)=aU(bUc)=(aUb)Uc=(ab) c
6.axl=aUl=a
7.a(b+c)=aU[(bUch U(btUc)] =(@aUbUch U(@aUbtUc)iar (ab) + (ac) =
(@aUb)+(aUc) = [(@aUb)U(aUc)d U[(aUb)¢U(aUc)] =[aUb U (atUcd] U
[(@Uby U(@aUc)] =[(@aUbUad U(a UbUch] U[(aUcUaf U(aUcUbd] =
=(@aUbUc U(@aUcUbg,so a(b+c)=ab+ac.

From 1-7 we deduce that (A, +, % -, 0, 1) is a Boolean ring (clearly,
a@=aUa=aforeveryal A). n

Theorem 2.74. Let (By, +, %, (B, +, ¥ two Boolean rings and
(B, U, U, ¢ 0 1), (B, U U ¢ 0, 1) the Boolean algebras induced (by
Proposition 2.7.3).

Thenf: B;® B,isamorphism of ringsiff f isamorphism of Boolean
algebras.

Proof. Routine by using Proposition 2.7.3. n

Theorem 2.7.5. Let By, B, Boolean algebrasand f : B; ® B, a mapping.
Thefollowing are equivalent :

(i) fisamorphism of Boolean algebras;

(ii) fisamorphism of bounded lattices;

(iii) f is a morphism of meet-semilattices and f(x9 = (f(x))¢for every
Xl Bq;

(iv) f is a morphism of join-semilattices and f(x§ = (f(x))¢for every
x|l Bj.

Proof. (i) P (ii). Clearly.

(ip ()f(x) U f(x§ = f(x U x§ = f(0) = 0 and analogous
f(x) Uf(x9 = f(x Uxd = (1) = 1, hence f(x9 = (f(x))¢

(iii) P (i). f isamorphism of join — semilattices since f(x Uy) = f(x®&U y®)
f=(f)((>,<<§J )yﬂ)fb = (f(xeU yg)e= (f(xg U f(yg)e= ((F())eU (f(y)9¢= f(x)®U f(y)s=

x) Uf(y).

Thusf(0) = f(x Ux® = f(x) U (f(x))¢= 0 and analogous f(1) = 1, hencef isa
morphism of Boolean algebras.

() b (iii). Clearly.

(iv). It is the duale of (iii), so the equivalence (iv) U (i) will be proved
analogously as the equivalence (i) U (iii). n
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Theorem 2.7.6. Let f : B; ® B, a morphism of Boolean algebras and
Ker(f) = f {0} = {xI By: f(x) = 0}. Then Ker(f) T 1(By) and f is injective iff
Ker(f) ={0}.

Proof. Let xI Ker(f) and yl B, suchthaty £ x. Then, sincef isisotone P
fly) Ef(x)=0P f(y)=0b yl Ker(f). If x, yl Ker(f), thenclearly x Uy T Ker (f),
henceKer(f)1 1(By).

Suppose that Ker (f) = {0} and let x, y T Ker(f) suchthat f(x) =f(y). Then
f(xUyd) = f(x)Uf(y9 = f(x)Uf(y)¢= f(x) U f(x)¢= 0, hence x Uy¢T Ker (f), which is,
x Uy¢= 0, hence x £ y. Analogous we deducey £ x, hencex = y.

The converseimplicationis clear sincef(0) =0. n

Theorem 2.7.7. Let f : B; ® B, be a morphism of Boolean algebras.
Thefollowing are equivalent:

(i) fisaisomorphism of Boolean algebras;

(ii) fissurjectiveand for every x, yl B;wehavex £y U f(x) £ f(y);

(i) f isinvertibleand f ™ isa morphism of Boolean algebras.

Proof. (i) b (ii). If f isaisomorphism, thenin particular f is onto.

Since every morphism of Boolean agebras is an isotone function, if
xXEy b f(X) £ f(y).

Suppose f(x) £ f(y). Then f(x) = f(x) U f(y) = f(x Uy); since f is injective
then x = x Uy, hencex £y.

(@ii) b (iii). We shall prove that f is injective. If f(xX) = f(y) b f(X) £ f(y)
andf(y) Ef(x) P x£yandy £x b x=y. Sincef issurjective, thereresult that f is
bijective hence invertible. We shall prove for example that
f i xUy)=f*x) Uf Yy) for every x, yl B,. Fromx, yl B, and f onto we deduce
that there are X, , y4l B; such that f(x,) = x and f(y)) =y, hence f ‘x Uy ) =
f (f(xa) Ufly)) = f *(f(xa Uyy) = x2 Uy = f (f(x) UF *(F(yy) =
f 1) Uf (y).

Anaogousf *(x Uy ) =f (x) Uf Y(y) and f (x9 = (f *(x))¢

(i) P (). Clearly. n

In aBoolean algebra (B, U, U, ¢ 0, 1), for x,yl B we define
x® y=x¢Uyandx « y=(x®y) U(y® x)= (x¢Uy) U (y¢Ux).

Theorem 2.7.8. Let B be a Boolean algebra.
Then for every x, y, ZI B we have:
(i) x£yU x® y=1;
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(i[i) x® 0=x¢GO0® x=1,x® 1=1,1® x=X%X, X® x=1, x¢® x =
=X, X® X¢=x¢

(i) x® (y® x)=1;

(iv) x® (y® z)=(x® y)® (x® 2z);

(v) x® (y® 2=(xUy)® z;

(vi) If xEy, then z® XE£z® ysi y® ZEX® z

(Vi) (x® y)Uy=y,xU(x® y)=xUy;

(viii) x® y)U(Y® 2) £ x® z

(ix) (x®Y)®y)®y=x®Yy,

X)) X®Yy)®y=(y® x)® x=xUy;

(xi) x® y=sup{zl B:xUz£y};

(xii) x® (yUz)=(x® y)U(x® 2);

(xiii) xUy)® z=(x® 2 U(y® 2);

(xiv) xU(y® 2)=xU[(xUy)® (xU2)];

(xv) x« y=10 x=vy.

Proof. (i). If x®y =1, thenx®Jy =10 x£y.
(iii). x® (y® x) =x¢U(ytJx)=1Uy¢=1
Analogous for the other relations. n

2.8. Filtersin a Boolean algebra

We recal that by a filter in a Boolean agebra (B,A,V, ,0,1) we

understand afilter in the lattice (B,A,V,0,1). Asin the case of lattices, by F(B) we
denote the set of filters of aBoolean algebraB.
A maximal (hence proper) filter of B will be called ultrafilter.

Asin the case of lattices (see Theorems 2.4.9 and 2.4.10) we deduce

Theorem 2.8.1. (i) In every Boolean algebra B there exist ultrafilters;
(ii) Every dement x = 0 of B iscontained in an ultrafilter.

Corollary 2.8.2. Let B be a Boolean algebra and x,yeB, x+y. Then we
have an ultrafilter U of B such that xeU and y¢U.

Proof. If x* y,thenx &« yandy £ x.
If x £y, then x Uy¢! O (because if x U y¢= 0, then x £ y). By Theorem
2.8.1, (ii), since x Uy¢= O thereis an ultrafilter U of B such that x Uyd U. Since
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x Uy¢E x, y¢and U isin particular afilter, we deduce that x, y¢ U. Clearly yl U
(because Ut B). n

Theorem 2.8.3. Let (B, U, U, ¢ 0, 1) be a Boolean algebra and F1 F(B).
On B we definethefollowing binary relations:
x~y U thereis fl Fsuchthat x Uf =y Uf,
x»yU x« yTF.

Then
not
(i) ~E =» =TIg
(i) r e isacongruenceon B;
(iii) If for every xI B we denote by x/F the equivalence class of x

relativetor g, B/F = {x/F : xI B}, and we definefor x,yl B, x/F Uy/F = (xUy)/F,
x/F Uy/F = (xUy)/F and (x/F)¢= x¢F, (B/F, U, U, ¢ 0, 1) becomes a Boolean
algebra (where0={0}/F = { xI B : x¢I F} and 1= {1}/F = F).

Proof.(i). Let x ~ y; then thereisfl F suchthat x Uf =y Uf. .

Then x¢U (x Uf) =x¢U (y Uf) b (x¢Ux) U (xaJf) = (xtJy) U (x¢UT) b
x¢Uf = (x¢Uy) U(x¢UT). Sincefl Fand f £ x¢Uf, then x¢UfT Fb xdyl F.
Analogousx Uyd F, hencex « yT F, thatis, x »¢ y.

Conversely, if X »ey P x« yIFP (x¢Uy)UXx Uyl F b x¢Uy,
x Uytl F.If we denote x¢Uy = f, and x Uye= f,, then fy, fl Fandx Uf, =x U (x¢
Uy)=(xUx9U(xUy)=xUy,yUf,=xUy,so,if f=f, Ufl F, thenxUf=y
Uf.

(ii). We shall provethat r  is acongruence on B (see Lemma 2.5.2).

Sincex¢Ux =11 F, then X r¢ X, hencer  is reflexive. As the symmetry is
immediate, to prove the transitivity of rg, let x,y,z1 Fsuchthat xrey andy re z
hence x¢Uy , x Uytl;y¢Uz yUz¢T F. Thenx¢Uz-x¢UzU(y Uyd=
(x¢U zUy)U (x¢Uz Uy(D 3 (x¢Uy) U(ye¢U?2). Sincex¢Uy, y¢U z1 F, then
x¢Uz1 F. Analogousx Uz¢l F, hencex rgz, thatisrgisan equivalence on B.

To probe the compatibility of r ¢ with the operations U ,U,¢ let x,y,zt T B
suchthat x rey and z r . Thenx¢Uy, z¢Utl Fb (x¢Uy) U(z¢Ut) T F. We have
(x¢Uy)U(zeUt) £ (x®y Ut)U(z¢Ut Uy) = (x¢Uzd U (y Ut) = (x Uz)¢U (y Ut),
hence (x Uz)¢U (y Ut)T F.

Analogous (y Ut)¢U (x Uz), hence (x Uz) re(y Ut).

Suppose that x rey. Then x « yl F and x& y¢= (x¢J yQU(y®t) x¢ =
(x Uy U(x¢Uy) =x « vy, hencex¢rr y¢

To prove the compatibility of r ¢ with U, suppose x rey and z r¢ t. Then
X¢r g y§ z¢r ¢ t¢and (x¢U z9r  (yeUtd U (x UZ)¢re(y Ut)eU (x Uz) re(y Ut).

(iii). Clearly, sincer r isacongruence on B. n
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Theorem 2.8.4. Let B;, B, two Boolean algebrasand f : B ® B, a
morphism of Boolean algebras. We denote F; = f({1}) = {xI B, : f(x) = 1}.
Then

(i) Fel F(By);

(i) fisaninjectivefunction iff F; ={1};

(iii) B4/ F¢ » Im(f) (where Im(f) = f(B,)).

Proof. (i). It follows from Theorem 2.7.6 and from Principle of duality.
(ii). If f isinjective and we have xI F;, thenfromf(x) =1=f(1) b x =1.If
F = {1} and f(x) = f(y), then f(x&J y) = f(x UyQ =1, hence x&Jy = x Uy¢= 1,
thereforex £y andy £ x, hencex = .
(iii). We consider the function a : B./F; ® f(B,) defined by a (x/F;) = f(X),
for every x/F; 1 B./F:.
Since for xyl By x/F = y// U x ~ .y U (x&y)UxUy9l F (by

Theorem 2.8.3) U f((x&y)UxUyd) = 10 f(xd&ly)=f(xUyd=10 f(x)=f(y) U
a(x/F) = o (y/Fs), we deduce that a is correctly defined and injective.

We have: o (X/F; Uy/F) = o ((x Uy) / ) = f( xUy ) = f(x)U f(y) =
o (X/F) U a (x/F); andogous we have a (x/F; U y/R) = a (x/F) U ( y/F) and
o (X¢F) = (o (X/F)) ¢ hence a is a morphism of Boolean algebras.

Lety =f(x) T f(By), xI By; then x/F; T By/F; and o ( x/F;) = f(x) =y, hence
o issurjective, that is, an isomorphism of Boolean algebras. n

Theorem 2.85. For a proper filter F of a Boolean algebra B the
following assertions ar e equivalent:

(i) Fisan ultrafilter;

(i) For every xI B\F, then xd F.

Proof. We remark that it is not possible to have x, x¢ F, because then
x Ux¢= 0l F, hence F = B, whichisacontradiction!.

(i) b (ii). Suppose F is an ultrafilter and let xI F. Then [FE{x}) = B. Since
Ol B, thereare x,,...x, Fsuchthat x; U... Ux,Ux =0, hencex; U... Ux, £ x¢
therefore xé¢ F.

(i) P (i). Suppose by contrary that thereis afilter F; in B such that F& F;
hence we have xi F; \ F. Then x& F, hence xd F;; since xI F, we deduce that
0l F,, henceF, = B, that is, Fisan ultrafilter. n

Theorem 2.8.6. For a proper filter F of a Boolean algebra B, the
following assertions ar e equivalent:

(i) Fisan ultrafilter;

(i) 0T Fand for every x, yl B, if x Uyl Fthenxl For yl F (that is, Fis
primefilter).
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Proof. (i) b (ii). Supposex Uy 1 Fand xi F.

Then [FE{x}) = B; since Ol B there is zI F such that z U x = 0. Since z,
x Uy Fthereresultsthat zU (x Uy) =(zUx) U(zUy)= 0U(zUy) =z Uyl F.
Sincez Uy £ y we deduce that yi F.

(i) b (i). Since for every xi B, x U x¢= 1, we deduce that xI F or x¢ F
hence by Theorem 2.8.5, F is an ultrafilter. n

Theorem 2.8.7. For a proper filter F of a Boolean algebra B, the
following assertions ar e equivalent:

(i) F isan ultrafilter;

(ii) BIF » 2.

Proof. (i) b (ii). We recall that B/F = {x/F : xI B} (see Theorem 2.8.3).
Let xI B suchthat x/F* 1. Then xi F and by Theorem 2.8.5, x4 F, hence x¢F = 1.
But (x/F)¢= x¢F, hence x/F = (x/F)®=1¢=0, so B/[F={0,1} » 2.

(i) b (i). If xI Fthen x/F1 1, hence x/F = 0 and x¢F = (x/F)¢= 0¢= 1,
therefore xd@ F, so, by Theorem 2.8.5 we deduce that F is an ultrafilter. n

Theorem 2.8.8. (Stone). For every Boolean algebra B thereisa st M
such that B is isomorphic with a Boolean subalgebra of the Boolean algebra

(P(M), 1).

Proof. We consider M = FM(B) the set of al ultrafilters of B and
us : B ® P(FM(B)), ug(x) = {FI FM(B) : xI F}. We shal prove that ug is an
injective morphism of Boolean algebras; then B will be isomorphic with ug(B).

If x,yl B and x ! y then by Corollary 2.8.2 we have FI FM(B) such that
xI F andyl F, hence Fl ug(x) and FI ug(y), therefore ug(x) * us(y).

Clearly, u(0) = £and u(1) = FM(B).

Let now x,yl Band FI FM(B). We have: FI us(xUy) U x Uyl FU xI F
and yl F, hence ug(x Uy) = ug(x) U ug(y).

By Theorem 2.8.6 we deduce that ug(x U y) = ug(x) U ug(y), and by

Theorem 2.8.5 we deduce that ug(x9 = (ug(X))¢ that is, ug is a morphism of
Boolean algebras. n

Definition 2.8.9. By field of sets on a set X we understand aring of sets
F of X suchthat for every AT F , then X \ AT F.

Clearly, a field of sets of a set X is a Boolean subalgebra of the Boolean
algebra(P(X), N, U, ¢, @, X).

So, Theorem 2.8.8 of Stone has the following form for Boolean algebras :
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Every Boolean algebra isisomorphic with a field of sets.

Remark. For the proof of Theorem 2.8.8 we can use the proof of
Proposition 2.4.7 and Corollary 2.4.8 (by working with ideals). This explains why
the forms of ¢, (from Proposition 2.4.8) and ug (from Theorem 2.8.8) are different.

From Corollary 2.4.7 and Theorem 2.8.8 we deduce :

Corollary 2.8.10. Every bounded distributive lattice can be embedded
by an one-to-one mor phism of bounded latticesin a Boolean algebra.

Theorem 2.8.11. (Glivenko). Let (L, U, *, 0) a pseudocomplemented
meet—semilatice. Then, relative to induced order from L, R(L) becomes a
Boolean algebraand L / D(L) » R(L) (as Boolean algebras).

Proof. By Theorem 2.6.11, R(L) = { a L : a= a**} and it is a bounded
sublattice of L. If al R(L), thena=a** and a*1 R(L). SinceaUa* =01 R(L) and
aUa* (in R(L)) = (& Ua**)* = 0* = 1, we deduce that a is (in R(L)) the
complement of a. N

Theorem 2.8.12. (Nachbin). A bounded distributive lattice L is a
Boolean latticeiff every primefilter of L ismaximal.

Proof. ([45]).“P ".It follows from Theorem 2.8.6.

“U”. Suppose that L contains an uncomplemented element a. Take the
filtersFo={xI L:aUx=1} andF,={ xI L : aUy £ x for someyl Fj}. Sinceais
uncomplemented, then O F,. By Theorem 2.4.1 there is a prime filter P, such that
F.i P.Letl=((L\P)E{a}]. Weremarkthat L\ P,1 I,sinceal landa F,i P,
impliesal L\ P;.

We have to prove that FoCl = A If by contrary there is xI FyCl, then
xI Fy and because L \ P, is an ideal, then x £ a Uy for some yl L \ P.. Then
1=aUx£aUyhenceyl Fp I Fi P, — which is a contradiction!. Thus,
Fo Cl = /£ and by Theorem 2.4.1 there is a prime filter P such that Fo | P and
PCI=/A ThenPi L\II Py, therefore Pisnot maximal. n

Theorem 2.8.13. (Nachbin). A bounded lattice L isa Boolean lattice iff
(Spec(L), | ) is unordered (that is, for every P,Ql Spec(L), P! Q, PEQ and
QE P).

Proof. “U”. Suppose that L is a Boolean lattice and that there exist P,
QI Spec(L) suchthat Q1 P, hencethereisal P suchthat al Q. Then ad P hence
af Q. So, we obtain that a, af Q and aU a¢t= 01 Q — which is a contradiction
(because Q is primeidea).
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“pb . Suppose that (Spec(L), | ) is unordered and that there is an element
al L which has no complementin L (clearly at 0, 1).

Set F, = {xI L: aUx = 1}1 F(L). Clearly, al F, and take D, = [F.E{a}) =
{xI L:x3 dUafor somedi Fj} (seeCorollary 2.2.6).

D, does not contain 0, sinceif by contrary OI D, then we have di F,(hence
dUa = 1) such d U a = 0, would mean that d is a complement of a — which is a
contradiction!.

By Theorem 2.4.1 we have Pl Spec(L) such that P C D, = /& Then
1i (a]UP, otherwise we have 1 = aU p for some pl P, hence pl D, contradicting
PCD, = £

By Theorem 2.4.1 there is an ideal QI Spec(L) such that (] UP I Q:
then Pl Q which isimpossible since (Spec(L), | ) is supposed unordered. n

2.9. Algebraic lattices

Definition 2.9.1. Let L bea complete latticeand a €L. The element aiis
called compact if we have X<L such that a < sup(X), then there is a finite

subset X;=X such that a< sup(Xy).
The complete lattice L is called algebraic (or compact generated) if
every element of H isthe supremum of some compact elements.

Theorem 2.9.2. Let (L, Vv, 0) be ajoin-semilattice. Then (I(L), <) isan
algebraic lattice.

Proof. The lattice (I(L), <) is complete since for every
(Ik)kEK’kH<Ik :kT(;KIk and kTUKIk =(kTEK I ={xeL: X < x.V...VvXy with x 1 1,

1<i<nand{ki, ...k} €K} (seeProposition 2.2.5).

We have to prove that for every acL, (g is a compact element in the
lattice (I(L), <); so we suppose that we have X<I(L) such that (a]<Vv{l€l(L):
leX}. By Proposition 2.2.5, a < x;V...VX, with x,€ly, keX, 1 <k <n. If we
consider X; ={ly, ..., In}, we deduce that (a]=V{l€l(L) : I€X4}, that is, (a] is
compact. Since for every €l (L) we have | = v{(a]: acl}, we deduce that (I(L),
c)isagebraic. m

Theorem 2.9.3. Let (L, A, V, 0, 1) bean algebraic latticeand C, the set
of compact elements of L. Then C_ is a sub-join-semilattice of L and L is
isomor phic (latticeal) with [ (C,).
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Proof. Clearly, 0€C,. Let now a, beC_ and suppose that avb < sup(X)
with X<SL. Then a< avb < sup(X), hence there is a finite subset X,=X such that
a < sup(X,). Analogous we deduce the existence of afinite subset X,=X such that
b < sup(Xy). Since X UX,EX is finite and avb < sup(X,UX,), we deduce that
av beC,.

We consider ¢:L—I(C.) defined for acL by ¢(@={xeC.: x < a=(q
(in C.) and we have to prove that ¢ isalatticea isomorphism.
From the definition of algebraic lattice, we deduce that a = sup ¢(d), hence

¢ isinjective. To prove the surjectivity of o, let 1€1(C.) such that a= sup(l). Then
Icp(a) and let xeop(a). We have that x < sup I, and by the compacity of X,
X < sup |, with 1,1 finite. We deduce that x€1, hence ¢(a)=I. By Corollary 2.3.11
we deduce that ¢ isamorphism of lattices, so ¢ is an isomorphism of lattices. B

Corollary 2.9.4. A lattice L is algebraic iff it is isomorphic with the
lattice of ideals of a join-semilattice with 0.

Corollary 2.95. If L is a lattice, then (I(L),©) and (F(L),<) are
algebraic lattices.

Definition 2.9.6. A complete lattice L will be called Brouwerian if
aU(_HQ) =H(an,) ,for every acL and every family (b;)ic,; of dlementsof L.

Theorem 2.9.7. For every distributive lattice L, the lattices (I(L), =
and (F(L), <) areBrouwerian algebraic lattices.

Proof. By the Principle of duality it will sufficeto prove only for (I(L), <);

%0, let I, (I)ex ideals of L.
Theinclusion | U(kTUKI") E kTL'JK(I Ul,)isclear.

Let now x€ | U(kTUKlk)zl C(kiEKI"]' Then x€l and we have a finite subset
K"K such that x.€ly (KEK") andXEkTL'ivxk. Then x= xU(kTL'i'xk)szL'JK'(xek);
snce XxAxElNl, for every keK ™ we deduce that x1 kTl'JK(I ut,),

thereforel U(kTUKIk)szL'JK(I ul,).m
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Let L be a distributive lattice with 0 and 1; for I, Jel(L) we define
| - J={xeL:[x) Nl < J}.

Lemma298.1 —» J={xeL: xAi€J, for everyicl}.

Proof. If xel — Jandi€l, since xAi € [X)NI < J, we deduce that X AT€],
so we have an inclusion.

Suppose now that xeL and xAied for every i€l. If ye[x)nl, theny < x
and yel. We deduce that y=y AX€J, hence [X)NI<J, therefore xe | — J, whichis,
the other inclusion, hence we have the equality from the enounce. |

2.10. Closure operators

Definition 2.10.1. For a set A, a function C : P(A) — P(A) is called
closure operator on A if for every X,Y < A we have

Oc,: X< C(X);

Oc,: C*(X) = C (X);

Oc3: X 2 Y impliesC (X) = C(Y).

A subset X of A iscaled closed subset if C(X) = X; we denote by L the
set of all closed subsets of A.

Theorem 2.10.2. If C isaclosure operator on a set A, then (L¢, ©) isa
complete lattice.

Proof. It isimmediate that if (A))ie isafamily of closed subsets of A, then
inf (Aier) = C(1 A)and sup (A)ie)) =C(UA ). m
il il 1

Theorem 2.10.3. Every complete lattice L isisomorphic to thelattice of
closed subsets of some set A with a closur e operator C.

Proof. For X < L if we define C : P (L) —» P (L),
CX)={aeL:ac<sup (X)}, then C is a closure operator on L and the
assignmenta— {be L :b<al =C({a}), for a € L givesthe desired isomorphism
between the latticesL and Lc. B

Definition 2.10.4. A closure operator C on the set A is said to be
algebraic closure operator if for every X < A we have
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Ocy: CX)=U{C(Y): Y =< Xand isfinite}.

Theorem 2.10.5. If C is an algebric closure operator on A, then the
lattice Lc isan algebraic lattice (see Definition 2.9.14).
The compact ements of L¢ are precisely the closed sets C (X) with

X < A afinitesubset of A.

Proof. ([11]). If we prove that C (X) is compact, with X = A afinite subset
then, by Oc, and Theorem 2.10.2 we deduce that L ¢ is agebraic.

Let X ={ay, &, ..., &} S A such C(X) < IIUI C(A) =C(UA).

il
For each g € X, by Oc,, we have afinite X; € U A such that g € C (X)).
i |
Since there are finitdly many A;, sy A
that X, I A E..E Ain,- ,theng € C(A E..E Ajnj ).
Since XI U C(A E..EA, ), then XIi C(uU A), hence

A, such

gt

1£ £k ﬁj{fk
C(X)I Cc(u A)=_U C(A), which means C(X) iscompact.
Ejgk 1£j£k '

I£i£n, 1EiEn;
Suppose now that C(Y) is not equal to C(X) for any finite subset X of A.
Since C(Y) = U {C(X) : X € Y and X finite} we deduce that C(Y') can not
be contained in any finite union of C(X), C(Y) isnot compact. m

Definition 2.10.6. If Cisa closure operator on A and Y < A a closed
subset of A, Y = C(X), then we say that X isa generating set for Y. If X isfinite
wesay that Y isfinitely generated.

Corollary 2.10.7. If C is a closure operator on A, then the finitely
generated subsets of A are precisely the compacts elementsof L.

Theorem 2.10.8. Every algebraic lattice L isisomorphic to the lattice
of closed subsets of some set A rélative to an algebraic closure operator C on
A.

Proof. Let A < L the subset of compacts elements of A. For X < A we
defineC(X) ={ae A:a<sup (X)}. Itisimmediate that C is an algebraic closure
operator on A and the assignment a — {b € A : b < a}, a €A gives the desired
isomorphism as L is compactly generated. m
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Chapter 3

TOPICSIN UNIVERSAL ALGEBRA

In this chapter we will present the fundamental concepts and results of
Universal Algebra (some of them more or less studied, depending on the way they
will be necessary for the following chapters).

The introduction of this chapter was necessary because the semilattices,
lattices, Boolean algebras, as other algebraic structures will be considered in most
part of this book as algebras.

3.1. Algebrasand mor phisms

For a non-empty set A and a natural number n we define A° = { @} and for

N>0A"= Agp g

n times

Definition 3.1.1. By n —ary algebraic operation on set A we under stand
afunctionf: A" — A (nwill be called the arity or rank of f).

An operation f : A = {J} — A will be called nullary operation (or
constant), f : A — A will be called unary, f : A>— A will be called binary, etc.

By similarity type (or type) we understand an m - tuple T = (ny,n,,...,Ny,)
of natural numbers; m will be called the order of T (in symbols we write
m = 0(t)).

By an algebra of type T = (N, Ny, ... , Nr) We understand a pair
A = (A, F) where A isa non-empty set (called the universe or underlying set of
algebra A) and F isan o (t) —tuple (fy, f,, ..., fon) Of algebraic operations on A
such that for every 1<i<o (1), f; isn;—ary algebraic operation on A.

Remark 3.1.2. (i). Usualy we use for all algebras of type t the same
notation f; for n; — ary operation, 1 <i < o(1).

(ii). In what follows, if there is no danger of confusion, by algebra we
understand only its universe (without mentioning every time the algebraic
operations) and when in general we speak relative to an algebra A algebra of type
r we understand an algebra of type (ny, Ny, ... , Now).

(iii). Giving anullary operation on A is equivalent with putting in evidence
an element of A.

Definition 3.1.3. An algebra A = (A, F) is called unary if all of its
operationsare unary and mono-unary if it hasjust one unary operation.
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A iscalled grupoid if it hasjust one binary operation, finiteif Ais a
finite set and trivial if A hasjust one element.

Examples

1. Groups. A group isan algebra (G, -, *, 1) of type (2, 1, 0), such that the
following identities are true:
Gux-(y-2)=(x-y) -z
Gox-1=1-x=x;
Gax-xt=xt.x=1
A group is called commutative (or abelian) if the following identity is true:
GyaX Y=y X
2. Semigroups and monoids. By a semigroup we understand an algebra
(G,.) inwhich G; istrue; amonoid is an algebra (M, -, 1) of type (2, 0), satisfying
G; and G,.
3. Rings. A ring isan algebra (A, +, -, -, 0) of type (2,2,1,0) satisfying the
following condition:
Ri: (A, +, -, 0) isan abelian group;
Rz (A, ) isasemigroup;
R4: the next identities are true:
X-(y+2)=x-y+x-z
x+y)-z=x-z+y-z
By aring with identity we understand an algebra (A, +, -, -, 0, 1) of
type (2, 2, 1, 0, 0) such that (A, +, -, -, 0) isaring, 1 € A isanullary operation
such that G, istrue.
4. Semilattices. From Universal agebra view point, a semilattice

(see Chapter 2) is a semigroup (S,A) which satisfies G, and the loin of
idempotence

Sii XA X=X
5. Lattices. From Universal algebra view point, a lattice (see Chapter 2) is

analgebra(L, A, V) of type (2, 2) such that the following identities are verified:
LIXVY=YVX XAY=YAX
Ly(XVY)Vz=xXV(YVDXAY)AZ=XAY A2
L XVX=XXAX=X
LaiXVXAY)=X,XAXVY)=X.
A bounded latticeisan algebra (L, A, Vv, 0, 1) of type (2, 2, 0, 0) such that

(L, A, V) isalattice, 0, 1 € L are nullary operations such that the following
identities are verified:

XA0=0,xVv1=1
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In the following chapters we will consider other examples of algebras.

Definition 3.1.4. Let A and B two algebras of the same type 1. A
function f : A — B is called a morphism of algebras of type = (or simple
morphism) if for eveey 1 < i < o(r) and al,az,...,aniT A" we have

f(fi(ay,ay,...a,)) = fi( f(an), F(az).-, F(ay))-

Remark 3.1.5. In what follows, for abbreviating the writing, when we say
that "f : A — B isamorphism" we understand that A and B are the universe of two
algebras of same type t and f is a morphism of agebras of type 1.

Examples

1LIf(G, -, ", 1)and (G, -,™, 1) are two groups, a morphism of groups
from G to G’ isafunctionf : G — G’ such that for every X,y € G, f (x - y) =
=f X -f(y),fxY)=@EFx)"andf(1) =1 (it is immediate to see that f is a
morphism of groupsiff f(x - y) = f(x) - f(y) for every x,y € G).

2. If (S, A) and (S, A) are two semilattices, then a morphism of
semilattices from Sto S’ isafunctionf : S — S’ such that for every x,y € S
f(x Ay)=f(X) A f(y) (see Chapter 2).

3. If (L, A, V) and (L', A, V) aretwo lattices, f : S — S’ isa morphism of
latticesif f (X Ay)=f (X) A f(y)andf(x vV y) =f(X) V f(y), forevery X,y € L.

In the case of bounded lattices, by a morphism of bounded lattices we
understand a morphism of latticesf such that f (0) = Oand f (1) = 1.

Remark 3.1.6. The composition of two morphisms of the same typeisaso
by the same type.

The morphisms i : A — B which are injective functions will be called
embeddings. The morphismsf : A — B with the property that there is a morphism
g:B—>Asuchthatge f=1,andf o g= 1z will be called isomorphisms; in this
case we say that A and B are isomorphic, written A ~ B (see Chapter 4, 82).

It isimmediate that if the morphism f : A — B is a bijective mapping, then
f*: B — A isaso amorphism, hence isomorphisms are just bijective morphisms.

Anisomorphismf : A — A will be called automorphism of A.

Remark 3.1.7. For two algebras A and B of the same type, we denote by
Hom(A, B) the set of all morphismsfrom A to B.
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Definition 3.1.8. Let A be an algebra of type T and B < A a non-empty
subset. We say that B is subalgebra of A if for every 1 < i < o(r) and
by,by.....b, T B™, thenf; (by,b,.....b, ) € B.

Clearly, the subalgebras of A (together with the restrictions of the

operations from A) are agebras of the same type 1. If B < A is asubagebra of A
(and if there is no danger of confusion) we simply write B <A.
If A and B are two agebras of sametypeandf: A — B is morphism, then

f(A) isasubalgebraof B; if B < A, then the inclusion mapping 1z o : B — Aisa
morphism iff B isasubagebraof A.

Definition 3.1.9. Let A bean algebraand S c A a subset. If thereisthe
smallest subalgebra of A which contains S, then it is called the subalgebra of A
generated by S and it will be denoted by [F] (the elements of S will be called
generators of A). An algebra A issaid to befinitely generated if thereisafinite
subset Sof A such that [§] = A.

Remark 3.1.10. Since the intersection of a set of subalgebras of A isagain
a subalgebra of A (except when the intersection is empty!), [§] exists whenever S

is non-empty. If S= J, then [F] existsif the intersection of all of the subalgebras
of A isnon-empty.

Lemma 3.1.11. If A and B are two algebras of sametype, S< Aisa
subset for which thereis[S], and f, g : [S] — B are two morphisms such that
fis=0gs thenf=g.

Proof. Indeed, let K = {x € [§] : f(x) = g(X)}. Then K is a subalgebra of
[S| since for every 1 < i < o() and (¥,..,%x,) K% then
FOE (e X)) = £ (F (), £(X)) = £(90%),-09(%,)) = 9(F (X000 X))
thatis, f;(x,...x,) € K.

But S< K < [S] and [S] contains no proper subalgebras that contains S,
henceK =[S]. =

Let A be an agebra and we consider the operator Sg : P(A) — P(A),
Sg(X) =[X], forevery X < A.
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Theorem 3.1.12. For every algebra A, the operator Sg defined beforeis
an algebraic closure operator on A.

Proof.([11]). It is immediate that Sg is a closure operator on A whose
closed sets are precisely the subalgebras of A.

Forany X € AwedefineE (X) =X U {f(a, ..,a): f isn—ary
operation on A and a, ..., &, € X} and recursive E" (X) for n € N by E(X) = X
and E™(X) = E (E"(X)).

Since X < EX) < E (X) C .. we deduce that
Sg(X) = X U E(X) U E* (X) U ..., so, if a € Sg (X), then a € E"(X) for some
n € N, hence for some finite subset Y < X, a € E'(Y). Then a € Sg (Y), hence
Sgisan agebraic closure operator on A. B

Corollary 3.1.13. For every algebra A, then Lg (the lattice of
subalgebras of A) is an algebraic lattice; if there is no danger of confusion we
denotethislatticeby P[A] to bedistinguished by the power set P(A) of A.

Theorem 3.1.14. (Birkhoff - Frink) If L is an algebraic lattice, then
thereisan algebra A such that L isisomor phic with P[A].

Proof. ([11]). By Theorem 2.10.8, thereisaset A and an algebraic operator
of closure C on A suchthat L = L.

For every finite subset B < A and b € C(B) we define an n-ary operation
fs,p(n=|BJ) on A, by:
i-b, if B={a,,...,a,},

fo.(ay,..,a,)= ,
CHNLY %al otherwise

We also denote by A the resulting algebra.
Then fg p(ay, ... , &) € C{ay, ..., &}), hence for X = A, Sg(X) = C(X).
Also, C(X) = U {CB) : B € X and B is finite} and for B finite,
CB) ={ fs. v(a, ... &) :B={a, ..., a}, b € C(B)} < Sg(B) < Sg(X), which
imply C (X) < Sg (X), hence C (X) = Sg (X).
ThusLc =P[A], hence Al =L. ®m
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3.2. Congruence relations. | somor phism theorems
Let A bean agebraof typet = (N, Ny, ... , No).

Definition 3.2.1. We call the congruence relation on A any equivalence
relation 8 € Echiv(A) which verifiesthe substitution property:

Foreveryie€{1,2 ..,0(0)} if (,a;) €0forj=12 ..,n,then
(fi (a, 2,8, ), fi (af, &4,...,a8 ) € 0.

We denote by Con(A) the set of al congruence relations on A (clearly
Ap, Va € Con(A), wherewe recall that Ay = {(X,X) : x € A} and V, = AXA).

Let6 € Con (A); for any a € A we denote by a/ 6 the equivalence class of
amodulo 6 and by A/ 6 the quotient set of all equivalence classes.

Then A / 6 becomes in a natural way an algebra of type t if we define the
n; —ary operation A / 6 by:

f9:(AlQ)" ® Alq, fi(a/q,.,a,/9)=(f(a,.a,))/q, (where f; is
n; — ary algebraic operation on A, 1 <i < 0o(1)).

Since 6 € Con(A), then {9 is correctly defined; the canonical mapping

A — A0, () =al 0 (acA) isclearly a surjective morphism.
Examples

1. Let (G, -) be agroup, L(G) the lattice of subgroups of G and Lo(G) the
modular sublattice of L(G) of norma subgroups of G. For H € L(G), then the
binary relation 6, on G defined by (ab) € 6y < a-b' € Hisacongruence on
G and the assignment H — 60y is a bijective and isotone function between the
lattices Lo(G) and Con(G) (see[31]).

2. Let R be a commutative ring and 1d(R) the lattice of ideals of R. For
| € Id(R), the binary relation 6, on R defined by (ab) € 6, & a-belisa
congruence relation on R and the assignment | — 6, is a bijective and isotone
function between the lattices | d(R) and Con(R) (see [31]).
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Definition 3.2.2. Let A, B be algebras of type t = (ny, Ny, ... , Nyw) and
f € Hom (A, B). Then the kernedl of f, written ker(f) is defined as a binary
relation on A by: (a, b) € Ker(f) < f(a) = f(b).

Proposition 3.2.3. For f € Hom(A, B), Ker(f) € Con(A).

Proof. Let 1<i <o(t) and (g, &) € Ker(f) for 1 <j <n; thenf(a) = f(&)).
we deduce that f(fi (a,a,..a,)) = fi(f(a) f(a)..f(a,)) =
fi(f(a), f(ag),..f@)) < f(fi(a,a,..,a,))= fF(f(af,af,...,a()) <
(fi(ag, @y, @, ), fi(af, a,....a¢ ) € Ker(f), henceKer(f) € Con(A). m

Theorem 3.2.4. For every algebra A, (Echiv(A), <) isa complete lattice
and Con(A) isa complete sublattice of Echiv(A).

Proof. Clearly (Echiv(A), <) isalattice since for every p, p’ € Echiv(A),
pAp =pNp" e Echiv(A) and p Vv p’ = the equivalence relation of A generated
by p U p’ (see Proposition 1.2.8).

We have the following description for p vV p’ : (8, b) € p Vv p’ iff thereisa
sequence of elements a;, &, ... , & € A such that a= &, b = a, and for every
1<i<n-1,(a a+) €Epor(a awa) €p'’.

More, [Echiv(A) is acorpplete!attice since for a family (Oi)ia of elements
of Echiv(A), ini :nl|qi and nuuqi =E{q;, 0q;, 0...00; ig,iy,..,i | 1}.

Since the intersection of any family of congruence relationson A isalso an
equivalence relation on A we deduce that Con(A) is a complete meet-semilattice
and meet-sublattice of Echiv(A).

Let now (8))e; be a family of congruence relations on A and f an n-ary
algebraic operation on A. If (a, by), ..., (&, by € _Hqi , then there are ig,iy,...,ix € |

such that (&, b) € q; oq; 0..0q;, , 1 <i <n, so (f(a....a), f(by,...0n)) €
q;, 04, 0...0q; , hence Hqi € Con(A), that is, Con(A) is a joint-complete
sublattice (hence complete) of Echiv(A). B

Remark 3.25. By Remak 2.1.5 it will suffice to prove that

Echiv(A) (as for Con(A)) is a meet—complete to obtain the conclusion that
these lattices are complete; we have proved and the join-completitude to
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give the characterization for Hqi with 6; € Con(A): (X, y) € -Hqi iff there

isasequence of elementsof A,x =&, ..., & =Yy such that for every 1<j<n
-1, (8, g+1) € q; withij € 1.
Theorem 3.2.6. For every algebra A there is an algebraic closure

operator on A x A such that the closed subsets of A x A are precisely the
congruence on A.

Proof. ([11]). Let usstart by organize A x A as an agebra.
Firstly, for every n—ary operation f on A we consider the n—ary operation
gon A x A defined by g (&, by), ..., (&, bn) = (f (&, ... , &), T (b, ..., by)).

Then we add to these operations the nullary operations (a,a) for each acA,
an unary operations s defined by s((a,b)) = (b,a) and a binary operation t defined by
i-(a,d) if b=c,

t((a,b),(c.d)) = H(ab) otherwise

then it is immediate that 6 is a subalgebra of A x A iff 6 € Con(A), so, if we
denote by C the operator Sg (above defined), then Con(A) = (A x A)c. B

Corollary 3.2.7. For every algebra A, Con(A) isan algebraic lattice.
Proof. Follows from Theorems 2.2.6 and 2.10.8. ®

Definition 3.2.8. For an algebra A and a, ... , a, € A we denote by

S(ay, ... , a,) the congruence relation on A generated by {(a, &) : 1<i,j <n}
(i.e, the smallest congruence on A such that &, a, ... , &, are in the same
equivalence class).

The congruence &(ay, a,) iscalled the principal congruence.

For asubset Y < A, by e(Y) we denote the congruence generated by
Y xY.

Examples
1. If Gisagroup and a b, ¢, d €G, then (a, b) € e(c, d) iff ab™isafinite
product of conjugates of cd™ and conjugates of dc™.
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2. If Risaring with unity and a, b, ¢, d € R, then (a, b) € &(c, d) iff
ab= gri(c— d)s , withr,s€R,1<i<n.
i=1

3. If L isadistributive lattice and ab,c,d € L, then (a, b) € & (c, d) iff
chdAaa=cAdAbadcvdyva=cvd Vh

Theorem 3.29. Let A be an algebra, a;, by, ... , a,, b, € A and
0 € Con(A). Then

() e (a1, by) = & (by, &);

(i) e((ag, by), ..., (@n, bn)) = &(ag, by V ... V&(a,, by);

(iii) ©(ay, ., @) = ©(ay, @) V ©(a, a) V... VE(an1, an);

(ivio=u{e(ab): (a,b) € 0} =sup{e(a, b): (a, b) € 0};

(V) 0 = U{e((az, by), ..., (@, by)) : (&, b)) € 6, n> 1}.

Proof. ([11]). (i). Since (b, a) € ©(a, b)) we deduce that
(b, &) <e(a, b) and analogous e(a, b)) < (b, &), hence
S(au, by) = &(by, a).

@ii). For 1 <i <n, (& b) € e(a, by), ... , (&, by) (since
e((a, by, ... , (an, by) is a congruence relation on A generated by the set
{(a, by), ..., (an, by)}), hence &(a, b) < ((ay, by), ..., (&, b)), SO we obtain the
inclusion &((ay, by), ..., (&, bn)) 2 &(ay, by) V ... ve(a, by).

On the other hand, for 1 <i <n, (g, b) € e(a, b)) <€ e(a, b)) vV ... v
&(a, by); so {(as, by), ... , (@, b))} € ©&(a, b) Vv .. ve(a, by, hence
e((ay, by), ... ,(an, b)) € &(ay, by) V ... Vo(a, by), S0 we have the desired equality.

(iii). For 1<i<n-1, (&, a+1) € (&, .., &), hence 6(a, a.1) < &(a,.. ,a),
SO S(ay, &) V ©(a, ) ... VE(an1, &) S S(a, -, &).

Conversely, for 1 <i, j< n, (&, &) € (&, &) © ... °6(8.1, §); O
& a) € e(@ aw) V ... ve(ay, a), hence (a, 3) € S(a, &) V (&, &)V ... V
& (8n1, &y).

In viewing (i), (&g, .- , &) S &(a, &) V 8(&, &)V...V(a1, &), O
S(ay, .., a) =S(a, &) V S(&, &) V... VO(3n1, &)

(iv). For (& b) € 0, clearly (& b) € e(@ b)) < 6, s
0 cu{e(@ab:(ab €06 <v{e@hb:(ab 06 <06 hece
b=u{e(@b):(ab) b} =v{e(ab):(ab) <o}
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(V). Smilarly asinthe caseof (iv). &

Let A be an algebra of type t, universA and n € N*.
Since many classes of algebras are defined by “identities* we will make
this concept in a precise way .

Definition 3.2.10. The n-ary polynomials of type t are functions from
A"to A, defined recursively in the following way:

(i) The projectionsp ;i n: A" > A, pin(@y, ...,a)=a (1<i<n)are
n—ary polynomialson A;

(i)1f p1,.. P, aren-arypolynomialsand f;isn;—ary algebraic
operation, then thefunction f;(p;,... p,): A" — A, defined by

fi (Pyoss Py )@ @) = £ (P(@gs @Ry Py (B @5))
isan n—ary polynomial on A;
(iii) The n-ary polynomials on A are exactly those functions which can
be obtained by a finite numbers of applications of (i) and (ii).
If p: A" — A, (1<k <n)isan n-ary polynomial and k variables of p
where replaced with some constants from A, we obtain a function from A" to
A, called algebraic function.

Examples

LIf (L, Vv, A) isalattice, then the only unary polynomial on L is1,.

Let now have an example of binary polynomials: p : A> — A, p(X, y) = X,
q: A2 A, g Y) =X AY.

2. If (R, +, -, 0, 1) isaring with identity, then every unary polynomia on
R hastheform p(x) =ng+ mx + ... + npx" wherem € Nand niszeroor 1 + ..+ 1
for afinite number of time.

3. If (G, -) is a semigroup, then every unary polynomial of G has the form

p(x) =x" (withn € N).

We will present now a characterization for the congruence of the form
e(H) withH < A.

Theorem 3.2.11. Let A be an algebra of univers A and H € A a
non-empty subset.
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Then (c, d) € e(H) iff there is n € N, a sequence of elements
C=2,27,...,Z,=d, (&, b)) € H x H and algebraic unary functions p; such that
{pi (&), pi(b)} ={z.1, z}, for 1<i<n.

Proof. ([11]). Following Theorem 3.2.9 it will suffice to prove this theorem
only in the case H = {a, b}, and for this we denote by p the binary relation on A
defined by the right conditions of the equivalence from the enounce.

Since the polynomials have the substitution property, if p € Con(A) and
(a, b) € p, then for the sequence (z)o< i < n Of elements in A chosen as in the
enounce of the theorem we have {z.,, z} € p, hence (c, d) € p.

So, to prove the equality e(a, b) = p (using the fact that ©(a, b) is the
congruence generated by (a, b)) it is suffice to prove that p € Con(A) and
(a, b) € p (then (3, b) < pand sincep < &(a, b) we obtain the desired equality).

Clearly (a, b) € p (we can choose the sequence a, b and unary function
pr1(X) =X, x € A) and p € Echiv(A).

We have to prove that p has the substitution property.

Let now f; be the n—ary operation and (a,b0),..,(a,.1,by-1) Ep(1i < 0(1)).

By the definition of p we have the sequences

unary algebraic functions which verify

the conditions from the enounce in definition of p.

We will use mathematical induction relative to i for proving that
(£, (@grmr8y 1), F (Bgsby 1)) € p.

This isclear fori = 0; supposeitistruefori <n;.

Since (&, b)) € p, thereis the sequence a, = 7, ... , z, = by of elementsin
A and unary polynomials py, ... , Pm-1 ON A such that (z, z.1) = {p; (a), p; (b)}, for
0<j<m-1

We consider now the sequence

to = fi(0p, b1, 20, 840008 4)

t =i (0,001,288, 1)
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tn = fi(0gs B4, Z0s B @ 1)
of elementsin A and

Oo = fi (b, b1, Pos Big e @y 21)

Oy = i (Bg e By, P B B 1)

Oz = Fi (Do D1y Py @igsen @ 21)
unary algebraic functions on A; by induction hypothesis we deduce immediate that
(fi(dg,ibig 8 88y 1) s Fi (0, B B B8 1) )Ep
and by the trandtivity of p that (f(a,....a,.1), fi(0y,...D,.1))E p, 0

p € Con(A) and the proof iscomplete. m

Corollary 3.212. (c, d) € o(a, b) iff there isn € N*, a sequence of
elementsin A, ¢ = z,, ... ,z, = d and a sequence of unary algebraic functions

Po: P1, --- » Pz SUCh that {p;(a), pi(b)} ={z, z+},for0<i<n-1

Examples

1 If (G, -)isagroupand a b, ¢, d € G, then (c, d) € e(a, b) iff thereis
an unary algebraic function p on G such that p(a) = ¢ and p(b) = d.
2. If Risaring, since acongruence on A is also a congruence on the group

(R, +), we deduce for &(a, b) on thering R the same characterization as in the case
of groups.

Definition 3.213. An algebra A is called congruence-modular
(distributive) if (Con(A), <) isamodular (distributive) lattice.
A iscongruence—permutableif every pair of congruence on A permutes.

Lemma 3.2.14. For an algebra A and 0, 6’Con(A), the following are
equivalent:

(i) 000 =0 00;
(i) OV O =000
(iii)0 00" 0 o0

Proof. It follows from Proposition 1.2.3. and Theorem 3.2.4. ®
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Theorem 3.2.15. (Birkoff). If A is a congruence—permutable, then A is
congruence-modular.

Proof. Let 04, 65, 63 € Con(A) with 6, < 0..
To prove the modularity loin, it is suffice to prove the inclusion

0N BV 03) €0,V (02N 03). If (& b) € 6N (6, V 63), by Lemma 2.14,
0,V 83 =0, o 03, hencethereisc € A such that (g c) € 6; and (c,b) € 6s. Then
(c, @ € 8; < 6, hence (c, @) € 6, and since (a, b) € 6, we deduce that (c, b) € 6,
hence (c, b) € 6, N 0a.

From (g, c) € 6, and (c, b) € 6, o 65, we deducethat (a, b) € (62N 63) o 64,
hence (a, b) € 6, Vv (62N 63), so we obtain the modularity equality. B

In what follows we will present some known theorems in Universal
Algebra with the name of de theorems of isomorphism (next we will still use the
convention that when we say that a mapping f : A — B is a morphism of algebras
we will understand that A and B are algebras of type Tt and f is a morphism of
algebras of type 1).

For f € Hom (A, B) we denote by Im(f) the image of A by f, that is,

Im(f) = {f(a) : a €A} <B.

Theorem 3.2.16. (The first theorem of isomorphism). Let A, B be two
algebrasand fe Hom(A, B). Then A / Ker (f) = Im(f).

Proof. Let 6 = Ker(f) € Con(A) and ¢ : A / Ker(f) — Im(f), p(a/ 0) = f(a).
We have to provethat ¢ isan isomorphism.

Indeed, for a, b € A from the equivalences: a/6=b/6 < (ab) €6 <
f(a) = f(b) we deduce that ¢ is correctly defined and is an injective function.
Since ¢ is clearly surjective, to prove that ¢ is an isomorphism we have only
to prove that ¢ isamorphism.
If fi is n—ary operation on A (1 <i < o(t), where 1 is the type of A and B)
and &,...,a, €A, then

fiq (I (a'l)V"'vj (ani )) = fiq (a'l /q""’a'ni /q) =(fi (a'l""’{'-’lni ))/q =j (fiq ({'-’Il""’ani ))

hence ¢ isamorphism. B

Corollary 3.2.17. If themorphism f : A — Bissurjective, then
Al Ker(f)=B.
Let A bean algebraand p, 6 € Con(A) with 6 < p.
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If wedenotep/0={(a/0,b/0)} € (A/6)%:(ab) € p},itisimmediate
toseethatp/ 6 € Con(A /9).

Theorem 3.2.18. (The second theorem of isomor phism)
If0,pc Con(A)and 0 < p,then(A/0)/(p/0) = Alp.

Proof. Definep:A/60 —>A/pbyoe(a/d)=alp,acA.lfabe A and
a/6=b/06,then (a, b)e 6 < p,henceal/ p= b/p,thatis, ¢ iscorrectly defined.

If fi is the n—ary operation on A and a,, ..., a, €A (1 <i < 0(1)), then
i (f(a/a....a, 19)) =j ((fi (@, a,))/q) =

= (fi(@ymay )/r = 9 /r,.,a, Ir)=f9G (@ /r),...j (@, /r)),

hence ¢ isamorphism (clearly, surjective).

Sincefora,b € A wehave(a/0,b/0) € Ker(p) < o(@a/0)=9¢ (b/6)
< alp=blpe(ab)ecp<=(ald,b/0)cpl/6, wededucethat Ker(p)=p/6
and all that results from Corollary 3.2.17. =

Let now A anagebra, B < A and6 € Con(A).
We denote by B’ the subalgebra of A generated by

{aeA:BN(a/b)# D} andby 6,5=0 N B> (if B<A, then 6,5 € Con(B)).

Theorem 3.2.19. (The third theorem of isomor phism)
If B<Aand® e Con(A),thenB /085 ~B°/ q‘Bq .

Proof. It is immediate that the desired isomorphism is the mapping
¢0:B/03s —>B"/q‘Bq o (b/0s )=b/q‘Bq foreverybeB. m

Theorem 3.2.20. (Theorem of correspondence)
Let A bean algebraand 6 € Con(A).
Then Con(A /0) = [0, V] (aslattices).

Proof. We will provethat a: [0, VA] — Con(A /0),a(p) =p/0(0 < p),
is the latticeal isomorphism desired. If p, p’€ [0, V], p # p’, then we can suppose
that therearea, b €A suchthat (a, b) € p\ p’ (difference of sets!).
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Then(a/6,b/0) € (p/6) \(p'/0), s0, a (p) #a (p), hence o is injective.

For p* € Con(A / 6) if we consder p = Ker (nmy o mp) =
{(ab) € A%: (al0,b/b) €p’} € Con(A/0),then(a/0,b/0) €p/b <
(aabyep<=(@l/o,b/b)ep @ pl/b=p" < a(p) =p’, thatis, aissurjective.

Sincethe fact that o islatticeal morphism isimmediate, we deduce that o
isalatticeal isomorphism.

Remark 3.2.21. It is easy to trandate the above theorems of isomorphism
and the correspondence theorem into the usua theorems used for example in
groups and rings theory (see [31]).

Definition 3.2.22. Let K be a class of algebras of the same type. We say
that K has the congruence extension property if for every A € K, B < A and
0 € Con (B), thereisp € Con(A) such that p N B*=9.

Remark 3.2.23.([2]). An equation class K (see the final of this chapter)
has the congruence extension property iff for every injective morphismf: A — B
and surjective morphism g : A — C there is a surjective morphismh: B — D and

injective morphismk : C — D suchthath o f =k o g, that is, the diagram
f/ ’ \h
A D
x c /k

IS commutative.

3.3. Direct product of algebras. Indecomposable algebras

Let (Aj)jer anon-empty indexed family of algebras of the same type 1.
For every 1 <i < o(t), on the set || A; we define the n—ary algebraic
J
Operanon fl by (FI (alv'--!ani ))(J)= (fl (al(J)vvanl(J)) ’ J € |1 and

(a,ma,) € (j}I AN
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Definition 3.3.1. An algebra of type t and universe _}IA]- above
J

described is denoted by O A, and is called the direct product of the family
il

(Aj);je of algebras.
The functions py : C)Aj ® A (k € 1) defined by pr((a)icl) = &, are

i
called projections (clearly, these ar e surjective mor phisms).

Theorem 3.3.2. The pair (O A, , (p));«) Verifiesthe following property
il

of universality:

For any algebra A of type = and every family (p {)je of morphisms with

pj € Hom (A, A)(i € I), there is a unique ue Hom (A'j?Ai ) such that

pjou=pj, forevery j 1.

Proof. It is easy to see that the desired morphismisu: A — OA

il
defined for a € A by u(a) = (p’i(8)je -
For the rest of details see the case of direct product of sets (85 from
Chapter 1).m

Proposition 3.3.3. If Ay, A,, Az are algebras of the sametype, then
(|) A]_ IT A2 ~ A2 IT A]_,
(ll) A1H (A2 IT A3) ~ Al II A2 IT A3.

Proof. It is immediate that the desired isomorphisms are
o ((ay, &)) = (2, &) (for (i), respective a ((au, (20, a))) = (au, &, &) (for (ii)). m

Lemma 3.34. If A, A, aretwo algebras of thesametype, A = A; IT A,,
then in Con(A) : Ker(p) N Ker(p,) = Aa, Ker(p,) and Ker(p,) permute and

Ker(py) Vv Ker(ps) = Va (where p; , p. are the projections of A on Ag,
respective A,).
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Proof. We have ((ax, @), (b1 , b)) € Ker(p) N Ker(p) <
pi((a, @) = pu((by, b2)) and pa(as, &) = poA(by, b2)) & a=b; six=b, <
Ker(py) N Ker(py) = Aa.

Since for (ay, &), (b, b)) € Ay IT A, ((an, &), (by, by))E Ker(p,) and
((ag, &), (b1, by)) € Ker(p,) we deduce that ((ay, &), (b1, by)) € Ker(po)oKer(py),
hence Ker(p,) o Ker(py) = Va, SO we aobtain the conclusion that Ker(p;) and
Ker(p) permute and Ker(py) Vv Ker(p,) = Va (seeLemma3.2.14). m

Definition 3.3.5. 8 € Con(A) is called a factor congruence if there is

0" € Con(A) such that ® N 0" = A,, 8 v 0* = V, and 0 permute with 0*. In
thiscasethepair (0, 0*) iscalled a pair of factor congruence on A.

Corollary 3.36. If A;, A, are two algebras of the same type, then
(Ker(py), Ker(p,)) isapair of factor congruence on A; IT A,.

Proof. SeeLemma3.34. m

Theorem 3.3.7. If (0, 0*) isa pair of factor congruence on an algebra
A, then A~ (A/0)TI (A/0).

Proof. We have to prove that f : A — (A / 6) II (A / 0"),
f(@ =(al o, ale*) (a€ A) isthe desired isomorphism.

If a,be A andf(a =f(b),thena/0=b/6anda/ 6" =b/6", hence
(ab) €06 N 6*=As s0a=h,thatis, fisinjective.

Also, fora, b € A, sinced v 6* = Vu, then 8 o 6* = 0* o 6 = V4, hence
there is ¢ € A such that (8 ¢ € 0 and (c, b) € 0°. Then
f(c)=(c/0,c/0")=(al0,b/06"), hencef issurjective, that is, f is bijective. Since
itisimmediate that f is morphism, we deduce that f isisomorphism. =

Definition 3.3.8. An algebra A is (directly) indecomposable if A is not
isomor phicto a direct product of two nontrivial algebras.

For example, any finite algebra with a prime number of elements must be
directly indecomposable.
By Theorem 3.3.7 we deduce



100 Dumitru Busneag

Corollary 3.3.9. An algebra A is (directly) indecomposable iff the only
factor congruenceon A is(Aa, V).

Theorem 3.3.10. Every finite algebra A is isomorphic to a direct
product of indecomposable algebr as.

Proof. We proceed by mathematical induction on the cardinality |A| of A.
If Aistrivia (that is, |A| = 1), then clearly A is indecomposable. Suppose A is a
nontrivial finite algebra. If A is not indecomposable, then A = A; IT A, with
|A4], JAs] > 1. Since |JA4), |A;] < |A|, then by the induction hypothesis, A; = B;
IT...I1 Bm, A; = C; I1...II C,, with B;, Cj indecomposable (i =1, n,j =1, m), so
A=BIl..IIB,II C, II...TIC, m

Remark 3.3.11. Following the universality property of direct product of
algebras (see Theorem 3.3.2) we obtain that for any two families (Ai)ie, (Bi)iel of

algebras of the same type and any family (f)ic; of morphisms with
fi € Hom(A;, B) (i € 1), there is a unique morphism u: O A ® O B, such that

foreveryi €I, fi op;=qi o u, where (p)ie si (Q)ie; are canonical projections.
We denote u = O f, and will be called the direct product of the family

(f)ies of morphisms.
Clearly uis defined by u((a)ic) = (fi(&))ici for every (a)ici € O A .

il
Also, if A is another algebra by the same type with the algebras (A))ie

and f; € Hom(A, A)) for every i € I, then thereisv € Hom(A, O A ) such that
i

piov=f, foreveryi e l.
The morphism v is defined by v(a) = (fi(a))ie (a € A).

Definition 3.3.12. Let A, B and (A))ic setsandf: A - B, fi: A—> A
(i €1) befunctions.

We say that

(i) fseparatestheedementsay, a, € A if f(ay) + f(ay);

(ii) (f)ie separates the elements of A if for every a;, a» € A thereis
i€l such that f; separate a; and a,.
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Theorem 3.3.13. Let A, (A)ic algebras of the same type and (f)ic, a

family of morphismswith f; € Hom(A, Aj), i € |. If we consider the mor phism

v € Hom(A, OA) above defined, then the following assertions are
i |

equivalent:
(i) visinjective morphism;
(i) 1Ker(f) =Ax

(iii) The maps (f))ic| separatethe elementsof A.

Proof. We recall that for a € A, v(a) = (fi(a))ie, hence for a, b € A,

v(@) =v(b) « fi(a) =fi(b) foreveryi € | < (a b) € I Ker(f;), sowe obtainthe

equivalence (i) < (ii).
The equivaence (i) < (iii) isimmediate. ®

3.4. Subdirect products. Subdirectly irreducible algebras. Simple
algebras

Definition 3.4.1. Let (A))ic; be an indexed non-empty family of algebras
of type t. We say that an algebra A of type t is a subdirect product of the
family (A)ie if

A< OA;

il

(i) pi(A) = A, for each i € | (where (p;)ic/ are the canonical projections

of OA).

An embedding u: A — O A is called subdirect if u(A) is a subdirect

product of the family (A)ie).

Lemma 3.4.2. Let (0))ic, be a family of elements of Con(A) such that
19 = Aa. Then the natural morphism u : A -0 A/q, defined by

u(a)(i) = a/ 0; isa subdirect embedding.
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Proof. From Theorem 3.3.13 we deduce that u isinjective since if consider
P, : A® A/q; the surjective canonical morphism, then Ker(p, ) =q;, for every i

€ |. Sinceevery p, issurjective, we deduce that u is asubdirect embedding. m

Definition 3.4.3. We say that an algebra A of type t is subdirectly

irreducible if for every family (A)ic, of algebras of type T and every subdirect
embedding u : A - A thereisi € | such that po u: A — A is an

isomor phism.

Theorem 3.4.4. An algebra A is subdirectly irreducible iff A istrivial
or there is a minimal congruence in Con(A) \ {A,} (in the latter case the
minimal element isthe principal congruence N (Con(A)\ {AA})).

Proof. ([11]). "=". Suppose by contrary that A is non trivid and
Con(A) \ {A,} hasno minima element. Then N (Con(A) \{ A} = A and if we

consider I = Con(A) \ {A.}, by Lemma 3.4.2, the natura morphism

u:A® O(A/q) isasubdirect embedding; since the natural map @y : A — A/
ql

is not injective for any 6 € |, then A is not subdirectly irreducible in contradiction

with the hypothesis!

“<”. If Alistrivial and u:A® O A is asubdirect embedding then every
il

A istrivial, hence every p; o uisisomorphism.
Suppose A is non trivia, and let 6 = N (Con(A) \ {Aa} #Aa. Let
(& b) € 6 witha=b. If uuA® O A is a subdirect embedding, then for some

il
i e | (u@)(@i) = (ub))(i), hence (pi o u)@ #= (p o u)(b). We deduce that
(&, b) € Ker(p, o u), hence 8 & Ker(p; o u) which imply Ker(p; o u) = Aj, SO
pio u:A — Ajisanisomorphism, that is, A is subdirectly irreducible.
If Con(A) \ { Aa} has a minimal element 0, then for a, b € A, a+ b and
(a, b) € 6, wehave &(a,b) < 0, hencee(a, b)=0. m

Remark 3.4.5. Using this last result we can put in evidence some classes
of subdirectly irreducible algebras (see and [30]):

(i) A finite abelian group G is subdirectly irreducible iff it is cyclic and
|G| = p" for some prime number p (that is, G it isacyclic p-group);
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(it) The group Cp¥ is subdirectly irreducible;

(iii) Every simple group is subdirectly irreducible;

(iv) A vector space over afield K is subdirectly irreducible iff it is trivial
or one-dimensional;

(v) An algebrawith 2 elementsis subdirectly irreducible.

A directly indecomposable agebra dones not need to be subdirectly
irreducible (consider, for example, athree-element chain as alattice).
The converse does indeed hold; since every congruence factor on a

subdirectly irreducible agebraisthe pair (A, V) by Theorem 3.4.4 we deduce that
every subdirectly irreducible algebrais indecomposable.

Theorem 3.4.6. (Birkhoff). Every algebra A is isomorphic to a
subdirect product of subdirectly irreducible algebras.

Proof .([11]). It will suffice to consider only the case of non trivial algebra
A. For a, b € A, with a# b, using Zorn's lemma we can find a congruence 6, , of
A which is maximal with respect to the property (a, b) & 6, . Then &(a, b) Vv 0,
isthe smallest congruencein [0, 1, Va]l \{ 041}, S0 by Theorems 3.2.20 and 3.4.4,
A /0, issubdirectly irreducible.

As N {04 :a=+ b}={As}, we can apply Lemma 3.4.2 to obtain that
algebra A is subdirectly embeddable in O (A/q,,) (clearly A / 6, witha =+ bis
alb

subdirectly irreducible). m

Corollary 3.4.7. Every finite algebra is isomorphic to a subdirect
product of afinite number of subdirectly irreducible finite algebras.

Definition 3.4.8. An algebra A iscalled simpleif Con(A) ={Aa, Va}. A

congruence @ € Con(A) ismaximal on A if theinterval [0, V5] of Con(A) has
exactly two elements.

Theorem 3.4.9. If 8 € Con(A), then A / 0 issimple iff 8 isa maximal
congruenceon A or 0 = Aj,.
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Proof. Since by Theorem 3.2.20, Con(A / 0) =~ [0, V], the theorem isan
immediate consequence of Definition 3.4.8. ®

3.5. Classoperators. Varieties

In this paragraph by operator we understand a mapping defined on a class
of algebras (of same type) with valuesin another class of algebras (of same type).

By K we denote a class of algebras of the same type.

In what follows we introduce the operators |, H, S, P, Ps by:

Definition 3.5.1.

(i) A € I(K) iff A isisomorphicto somealgebra of K;

(i) A € §(K) iff A isisomorphicto a subalgebra of somealgebra of K;

(iii) A € H(K) iff A ishomomor phic image of some algebra of K;

(iv) A € P(K) iff A isisomorphic to a direct product of a non-empty
family of algebrasin K;

(V) A € Py(K) iff A can be subdirectly embedded into a product of a
non-empty family of algebrasin K.

If Oy, O, are two operators, by 0,0, we denote the composition of O, and
O, (which is also an operator).

Wewrite O; < O, iff Oy(K) S Oy(K) for every classK of algebras.

An operator O is idempotent if O® = O.

A classK of algebrasis closed under an operator O if O(K) < K.

If we denote by O one of the operators |, S, H, P, Ps above defined, we
deduce that the restriction of O to some class of algebras (of same type) verifiesthe
conditions: K < O(K), K; € K, = O(K,) € O(K,) and O(O(K)) = K for every
classes of agebras of same type K, K1, K,, so we can consider O as a closure
operator defined on the class of al algebras of some type (see §1).

Also, if A € K we observe that every algebraisomorphic with A isasoin
K. Symbolicaly wewrite O =10; weaso have Ol = O.

Lemma 3.5.2. The operators HS, SP, HP and HPs; are closure
operatorson every classof algebras of sametype.
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Also the following inequalities hold: SH < HS, PS < SP, PH < HP,
PH < HP,, PP = P,=PP;and PS= SP = SP,.

Proof. ([58]). It is easy to see that the composition of two operators verifies
the conditionsK < O(K) and K; € K, = O(K;) € O(K»), that is, we obtain a new
operator with the same properties. We also obtain that the composition of operators
is associative and preservesthe order <.

So, the operators HS, SP, HP and HPs verify the axioms for closure
operators.

For the condition of idempotence we can use other relations (for example if
we accept that SH < HS, then (HS)? = (HS)(HS) = H(SH)H < H(HS)S=HHSS
=HSand onthe other hand HS= (HI)(1S) < (HS)(HS) = (HS)?, soiitissufficeto
prove inequalities of the form SH < HS (the others are ana ogous).

We have to prove for example that PH < HP.

For this, let K be a class of algebras of the same type and A € K. Then
f

OA » A, with A; € H(K) for every i € I. By the choice axiom we can find
il

B; € K and onto morphismsf; : B; — A;foranyi € I.
Then we have the onto morphism g OB — O A defined by

g((b)ier ) = (fi(b))iei. Since f o g2 OB, — A is onto morphism, we deduce that

A € HP(K). m

Definition 3.5.3. A non-empty class K of algebras of the same type is
called a variety if it is closed under the operators H, S and P (that is,

H(K) < K, S(K) < K and P(K) < K).

If K isaclass of agebras of the same type, by V(K) we denote the smallest
variety containing K ; we say that V(K) is the variety generated by K (if K contains
only an algebra A or a finite numbers A4, ..., A, of agebras we write V(A) or
V(Ay ..., Ay) for V(K)).

So, we obtain a new operator V.

Theorem 3.5.4. (Tarski). V = HSP.

Proof. By Lemma 3.5.2 we deduce that HHSP = SHSP = PHSP = HSP,
hence HSP(K) isavariety which contains K for every K. On the other hand if V

is a variety which contains K, then HSP(K) € HSP(V ) = V , hence HSP(K) is
the smallest variety which contains K, that is, HSP=V. &
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More agebras which will be studied in this book form varieties. Others
don’t form varieties (as an example we have the algebraic lattices which are not
closely relatedto H or S).

The following result will be very useful in the study of varieties, and it is

easy to proveit.

Proposition 3.5.5. Let K be a class of algebras of some type and A an
algebra of the sametype. Then
(i) A € SP(K) < thereisafamily of congruence (0;)ic; on A such that
Ig =D, andA/0; € SK) for everyi €I,

il
(i) A € HSP(K) < thereisan algebra, the congruence (0,)ic; and 6 on
Bsuchthat B/ 0~ A, 0 > 1q; and B/6;cS(K) for every i€l.
il

Remark 5.6. From the above, we deduce that the operators |, H, S and P
generate an ordered monoid whose structure was determined in 1972 by D. Pigozzi
[On some operations on classes of algebras, Algebra Universalis 2, 1972, 346-353]
and have the following Hasse diagram

3. 6. Freealgebras

Let K beaclass of agebras of the same type .

Definition 3.6.1. An algebra A € K issaid to befree over K if thereisa
set X < A such that:
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(i) [XI =A;
(i) If B € K and f: X — B isa function, then there is a morphism

f": A — Bsuchthat fistherestriction of f" to X (that is, f*,x =f).
In this casethe set X issaid to freely generate A and it is called a free
generating set.

Note that by Lemma 3.1.11, f’ from the above definition is uniquely
determined.

Lemma3.6.2. If Aisfreeover K, then A isfreeand over HSP(K).

Proof. It will suffice to prove that if A isfree over K, then A is free over
H(K), S(K) and P(K). We shall prove for example for H(K) (for the other it is
similar).

Let now B € H(K) andf : X — B beafunction.

Since B € H(K) thereis C € K and a surjective morphisms: C — B (so,

wehaves : B — Csuchthat so s’ = 1g).

X c ’ A
fII /,,” :

,”’ ! ’

f ! f
-7 1

L s v
B s c

Since A isfree over K, [X] = A and thereis a morphism f’ : A — C such
that 'y x =s" o f. If we denote f"” ='s o f/, then f’",x = f (since for every x € X,

f7(x) = s(f'(x)) = (S (F(x))) = (s © )(f(x)) = f(x)). m

Lemma 3.6.3. If Ajisfreein K over X; (i =1, 2) and |X4] = |X;] then
A]_ ~ Az.

Proof . Let f : X; — X, be a bhijection. There are the morphisms
i AL — Ayandf’’ : A, — A such that fig, = f and f& =ft
We deduce that f’” o f’ extends f 'o f =1, ; since 1, also extend 1,

we deducethat f €o f(=1A1.

Anaogous f (o fll=1Az ,henceA; =~ A,. |
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Following Lemma 3.6.3, an algebra A which is free over K is determined
up to an isomorphism by the cardinality of any free generating set.

Definition 3.6.4. For every cardinal a, we pick any of the isomorphic
copies of a free algebra over K with a free generators and call it the
free K-algebra on a free generators and denote it by Fg(a) or if the free
generating set X is specified, by Fx(X) (with | X | = a).

In[2, p.19] it is proved the following very important result:

Theorem 3.6.5. If K isa non-trivial variety, then F¢(a) exists for each
cardinal a > 0.

More algebras presented in this book are defined by the so called identities
or equations; is the case of semilattices, lattices, Boolean algebras and in Chapter
5 wewill present Heyting,Hilbert, Hertz, residuated | attices and Wajsberg algebras
(for suplimentary information relative to the notions of identity or equation we
recommend ,to the reader, the books [2], [11] and [58]).

In[2], [11] and [58] it is proved the followings results:

Proposition 3.6.6. If all algebras from a similar class K of algebras
satisfies an identity, then every algebras from the variety generated by K
satisfies that identity.

Corollary 3.6.7. If all subdirectly irreducible algebrasfrom avariety K
satisfy aidentity, then every algebra from K satisfiesthat identity.

Theorem 3.6.8. (Birkhoff). A classK of similar algebrasis a variety iff
there is a set Q) of identities such that K is exactly the class of algebras that
satisfies all theidentitiesin Q.

Corollary 3.6.9. Let K be a class of similar algebras and let () be a set
of identitieswhich are satisfied by every member of K. Then an algebra A isa

member of the variety generated by K iff A satisfiesevery identity in Q.

Remark 3.6.10. In some books of Universal Algebra (following Theorem
3.6.8) varieties are also called equational classes.
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CHAPTER 4: TOPICSON THE THEORY OF CATEGORIES

The notion of category and functor was introduced in an explicit way
by S. Eilenberg and S. Mac Lane in 1945 (starting from the study of some
constructions of objects in mathematics and for giving a precise sense for
the notion of duality).

Till now, the general methods of the theory of categories are found in
almost all branches of mathematics, so we can really say that the modern
mathematicsisin fact the study of some particular categories and functors.

4.1. The notion of a category. Examples. Subcategory. Dual
category. Duality principle. Product of categories

Definition 4.1.1. We say that we have a category C if we have a
class Ob(C), whose elements are called objectsin C and for each
ordered pair (M, N) of objectsfrom C isgiven aset C(M, N), empty
possible (called the set of morphisms of M to N), such that:

(i) For every ordered triple (M, N, P) of objectsfrom C isgiven a
function C(M,N)” C(N,P)® C(M, P), (f,g) ® geof called the
composition of mor phisms,

(if) The composition of mor phismsis associative (i.e., for each
M, N, P, Q objectsfromCandfT C(M,N), gi C(N,P), h1 C(P,Q),
then ho(gof)=(hog)of),

(iii) For every object M from C, thereisan element 1, T C(M, M)
(called theidentity morphism or identity of M) such that for every
objects N,PfromCandfi C(M,N), g C(P, M)wehavef o 1, =
fand1ly cg=g;

(iv) If theordered pairs (M, N) and (M’, N’) of objectsaredistinct,
then C(M,N)C C(M’,N')=@.

Remark 4.1.2. (i). We will frequently writeM T C instead of M €
Ob(C); if fT C(M, N), wewill frequently use the notationf: M ® N or

M ¥34® N .
Inthiscase, M is called the domain of f and N the codomain of f.
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A category C iscaled small if Ob(C) isaset (for complete
information about the notions of set and class we recommend to reader the
book [79]).

(if). ForM € C, 1, : M ® M isuniquein condition of (iii). Indeed, if
1'v : M ® M isanother identity morphism of M, thenwe have 1, ° 1’y =
1IM and 1|v| ° 1IM = 1|v|, hence 1IM = 1M'

Examples

1. The category Set (of sets). The objects of Set are the class of all
Sets.

For M, NT Set, Set(M, N) ={f : M ® N} and the composition of
morphismsin Set isthe usual compositions of functions.

For X € Set, the function 1x : X ® X, 1x(X) = x for every x € X
plays the role of identity morphism of X.
2. The category Pre (of preordered sets). The objects of Pre are the

preordered sets. For (A, £), (A’,£") € Pre, Pre((A, £), (A", £)) =
{f:A® A":xE£y b f(x) £ f (y)} and the composition of morphismsin
Pre (also called isotone maps) is the usual compositions of function (see
Chapter 2).

For (X, £) € Pre thefunction1x : X ® X, 1x(x) =x for every x €
X playsthe role of identity morphism of X.

3. The category Gr (of groups). The objects of Gr are the groups and

for H,K € Gr, Gr(H, K) ={f: H® K : f isamorphism of groups}, and
the composition of morphismsin Gr isthe usual composition of functions.
For GT Gr thefunctionls: G ® G, 1g(x) = x for every x € G playsthe

role of identity morphism of G (see[31]).
4. The category Rg (of unitary rings). The objects of Rg are the rings

with identity, for B € Rg, Rg(A, B) ={f : A® B : f ismorphism of unitary
rings}, the composition of morphismsin Rg isthe usua composition of
functions and for a unitary ring A thefunction 1, : A ® A, 14(x) =x for

every x € A playstherole of identity of A (see[31]).

5. The category Top (of topological spaces). The objects of Top are
the topological spaces, the morphisms are the continuous functions and the
composition of morphismsin Top isthe usua composition of functions.

For (X,t) € Top,themap 1x : X ® X, 1x(x) =x foreveryx € X
plays the role of identity morphism of X.
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6. The category Mods(A) (of left—modules over the unitary ring A).

The objects of Mody(A) arethe left A—modules over aunitary ring A,
the morphisms are the A-linear maps and the composition of morphismsin
Mods(A) isthe usual composition of functions.

For M € Modg(A), thefunction1y : M ® M, 1y(x) = x for every x
€ M playstherole of identity of M (see[31]).

Similarly we define the category M odg(A) of right modules over the

unitary ring A.

7. Let A beaunitary ring. We define a new category A by:
Ob(A) ={A} and A(A, A) = A. The composition of morphismsin A isthe
multiplication on A and the identity of the ring A playstherole of identity
of A.

8. Let C; be aclass (equational) of algebras of typet. The category

whose objects are the algebrasfrom C; and for A, B € C;, C(A, B) isthe
set of all morphisms of algebras of typet from A to B, is called the category
(equational) of algebras of typet (see Chapter 3).

Definition 4.1.3. Let C be a category. A subcategory of Cisanew
category C’ which satisfies the following conditions:

(i) Ob(C’) < Ob(C);

(ii) 1fM,N e C’, then C'(M,N) € C(M, N);

(iii) The composition of morphismsin C’ istherestriction of the
composition of morphismsin C;

(iv) 1fM eC’, then 1y (in C’) coincideswith 1y (in C).

A subcategory C’ of C with the property that for every M, NeC’,
C’'(M, N) =C(M, N) iscalled afull subcategory.

Examples

1. If we denote by Ab the category whose objects are the abelian
groups, then Ab isin canonical way a full subcategory of Gr.

2. If we denote by Ord the category whose objects are the ordered
sets, then Ord isin canonical way afull subcategory of Pre.

3. Let L bethe category of lattices (whose objects are all |attices and

for two latticesL, L', L(L, L") ={f: L ® L' : fisamorphism of lattices} -
see Chapter 2). Thenin canonical way L becomes a subcategory of Ord.
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If we denote by L (0, 1) the category of bounded lattices (see Chapter
2) andfor L, LT L(0,1),L(0,1)(L,L")={f € L(L,L":f(0)=0andf(1)
=1}, then L (0, 1) become asubcategory of L.

4. If we denote by Ld(0, 1) the category of bounded distributive
lattices (whose objects are the bounded distributive | attices and the
morphisms are defined as in the case of L (0, 1)), then Ld(0, 1) becomes a
full subcategory of L (0, 1) (see Chapter 2, 83).

5. If we denote by Fd the category of fields, then Fd becomesin a
canonical way a subcategory of Rg.

Definition 4.1.4. Let C be a category. We define a new category C°
(called the dual category of C) in the following way: Ob(C® = Ob(C)
and for M,NT C° C%M, N) =C(N, M). The composition of
mor phisms is defined asfollows: if M ¥#4® N %4® P are morphismsin

C° then g* f = fog (wedenoted by “*” theloin of composition in C°).
Clearly (C%°=C.

Assigning each category C with its dual category C° enables usto
dualize each notion or statement concerning a category C into a
corresponding notion or statement concerning the dual category C°. Thus
we get the following duality principle:

Let P beanotion or statement about categories, then thereisa
dual notion or statement P° (called the dual of P) about categories.

In general, the characterization of the dual for a category provesto be
avery complicated thing.

Let (Ci )il be afamily of indexed categories (1 A).
We define a new category C in the following way:

An object of C isafamily (M) of objects, indexed by |, where M; €

Ci, foreveryil 1. 1f M = (Mi)ier, N = (Nj)ie; are two objectsin C, then we
define  C(M,N)= OC; (M, N)).

il
If wehave P=(PR)ic; € Candf = (f))ic; € C(M, N), g=(g)iel €
C(N, P), then we define the composition gof = (g; o f; )ic!.

Definition 4.1.5. The category C defined aboveiscalled the direct

product of the family of categories (Cy)ici; wewriteC = & C; .
il
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If1={12,...,nfwewriteCc=C,”..” C,.

4.2. Special mor phisms and objectsin a category. The kernel
(equalizer) and coker nel (coequalizer) for a couple of mor phisms

Definition 4.2.1. Let C beacategory and u: M ® N amorphism
in C. The morphism u is called monomorphism (epimorphism) in C, if
for every P1 Candf, gl C(P, M) (respectivef, g1 C(N, P)), fromu

of=uog (respectivef o u=go u)impliesf=g.
We say that u isbimorphismiif it isboth monomor phism and
epimor phism.

Remark 4.2.2. From Definition 4.2.1 we deduce that the mor phism
uis epimorphism in C iff u isa monomorphism in C°.

Definition 4.2.3. We say that a morphismu: M ® N from
category C isan isomorphism if thereisv: N ® M amorphism such

that ve u=1y and uov=1y;inthiscasewesay that the objectsM
and N areisomorphic (wewrite M » N).

Remark 4.2.4.

(i). If v, v:N—M verify both conditions of Definition 4.2.3, thenv =

Indeed, we have the equalities (vou)ov’ = 1y ov’ =V’ and

(vou)ov’ =vo(uov’) =voly =V, hencev =V’
If such v exists, we say that v is the inverse of u and we writev = u™.

(ii). If C" isasubcategory of C and uis a monomorphism

(epimorphism) in C’, it doesn’t follow that u is a monomorphism
(epimorphism) in C.
Indeed, letf : X ® Y amorphismin C which is not a monomorphism

or epimorphismin C, and C’ the subcategory of C whose objects are X and

Y and whose morphisms are 1y, 1y and u. Clearly, uisabimorphismin C’,
but isnot abimorphismin C.
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(iii). It isimmediate that every isomorphism is bimorphism, but the
converseis not true.

An example is offered by category Top. Indeed, let X be a set which
contains at least two elementsand 1x : X ® X theidentity function of X in
Set. If we consider the codomain of 1x equipped with the rough topology
(@ and X are all clopen’s) and its domain with the discrete topology (for
which all subsets of X are open sets), then 1x becomes a bimorphism in Top
which is not isomorphism. Indeed, if by contrary 1x is an isomorphism,
then (1x)™* = 1x which is not a continuous map from X (equipped with the
rough topology) to X (equipped with the discrete topol ogy).

In fact, the isomorphismsin Top are just the homeomor phisms of
topological spaces.

Definition 4.2.5. A category C with the property that every
bimorphism isisomorphism is called balanced (or perfect).

Following the above we deduce that the category Top is not balanced.

Definition 4.2.6. Let u: M ® N amorphismin acategory C. A

section (or right inverse) for uisamorphismv: N® M such that uov =
In. A retraction (or left inverse) of uisamorphismw : N® M such

that wou = 1.

Proposition 4.2.7. Let M ¥3,® N ¥34® P betwo morphismsin the
category C. Then:

(i) If f hasa section (retraction), then f is epimor phism
(monomor phism);

(i) If f and g are monomor phisms (epimor phisms), then gof is
monomor phism (epimor phism);

(iii) If gof isamonomorphism (epimor phism), then f (respective
g) isa monomor phism (respective epimor phism);

(iv) If f and g areisomor phisms, then gof isalso an isomor phism
and (gof) *=ftog™

(v) If f and g have sections (retractions), then gef have section
(retraction);

(vi) If gof has a section (retraction), then g has a section (f hasa
retraction);
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(vii) A -monomor phism (epimor phism) isa isomor phism iff it hasa
section (retraction);

(viii) If gof isan isomor phism, then g has a section and f hasa
retraction;

(ix) A bimorphism which hasa section (retraction) isa
isomor phism.

Proof. (i). We suppose that f has a section; then thereish: N® M
such that f o h = 1.
Letnow r,s: N ® Psuchthat rof = sof; we deduce that (rof)oh =

(sof)oh U ro(foh) = so(foh) P roly=soly b r=s, hencefis
epimorphism. Analogous we provethat if f has aretraction, thenfisa
monomorphism.

(i1). Suppose that f and g are monomorphismsand letr,s: Q® M

such that (gef)or =(gef)es. Then go(for) = go(fos); sincegisa
monomorphism p for=fosb r=s(sincef isamonomorphism).
So, we deduce that gef is a monomorphism. Analogous we prove that if f

and g are epimorphisms, then gof is an epimorphism.
(iii) - (ix). Analogous. n

Applications

1. In the category Set the monomorphisms (epimorphisms,
isomorphisms) are exactly the injective (surjective, bijective) functions — see
Propositions 1.3.7, 1.3.8 and Corollary 1.3.9.

2. In the category Gr of groups, also, the monomorphisms
(epimorphisms, isomorphisms) are exactly the injective (surjective,
bijective) morphisms of groups (see[31]). So, Gr isabaanced category.

Let now a proof of Eilenberg for the characterization of the
epimorphismsin Gr.

Clearly , every surjective morphism of groupsis an epimorphismin
Gr.

Conversely, supposethat G, G’ are groups, f:G—G' is a morphism of
groups with the property that for every group G” and every morphism of

groups a, B: G—G", if aof=pof , then a=p (that is, f isan epimorphism in
Gr) and let’s show that f isasurjective function.Let H=f(G)<G' and

suppose by contrary that H#£G'. If [G:H]=2, then HQG, and if we consider
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G'=G'/H, a = py : G—G" the surjective canonical morphismand  :

G'— G the nullary morphism, then aof=pof but a # p - acontradiction !.
Suppose that [G:H]>2 and let T= (G'/H)q the right classes set of G’ relative
toHand G” = (G () the permutations group of G'.

We will also construct in this case two morphisms of groups a, p: G—G” ,
suchthat o #p but aof=Bof, in contradiction with f isan epimorphism.

Let a : G—G'=3 (G() the Cayley morphism, (that is ,a(X)=0,, with
0y : G—G, 0, (Y)=xy, for every x, ye@).

For the construction of B, let n: G—T the canonica surjection, (that is,
n(X)=Hx« X, for every xeG ) and s: T—»G asection of = (then mos=1;, hence
s(x)1 %, forevery X€T).

Since [T|=|G":H[>3, there exists a permutation o : T—T such that s (&)= &
and 6#17. If Xx€G, since s(X)T % = xs(X) * €H.

We define t:G—H by t(x)=xs(X) " for every x€G.Then ALG—G,
AX)=1(x)-s(s (X)) = xs(X) *s(s (X)) for every x€G' isapermutation of G’ (hence
AEG").

Indeed, if x,yeG and A(X)=\(Y), then

® o) @)= s 6).

U u

Since  xs(%)", ys(9) " eH= sls (%)) = sls (9)) = (ro9)(o(X))=
(mo9)(a(y))= o(X)=0(y)=> X=y and by (1) we deducethat x=y.

Let now yeG; thereexists 2 €T suchthat §=o(2). Since s(§)1 §=Hy
, then there exists heH such that s(§) = hy.If denote x, =s(2) and x=h"x,, then

(since =% because xx; 1 =heH) we have
ax=xs(%) *sfs (%)) =h 8%, ) *sls (%)) = h*xs{% ) *sfs (2) =
=h"*x,s(%, ) *s(§)= h *xs(%, ) *hy .Sincex, =s(2)1 2, % =2 and

s(%,)=s(2) = x,, then A(x)=h"*x, % *hy =y, hence A is surjective, that is, LEG".
We define B : G—G" =3 (G) by B(x)=Atoa(x)or for every XxeG.

Obviously B is a morphism of groupsWe have o # B because if o=f,then

a(xX)orA=roa(x),for every xeG < (a(X)oA)(y)=(roa(X))(y) for every yeG <
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XMy)=M(xy) for every yeG < xys(§)*sls (9))= stL;/Q sgg 02 for every
e o
0] -1 0
yeG < s(9)sls (9))= sSy2 sgg Sexy98 for every yeG.
€' o &¢ o
For x=y™* we obtain that

s(9) *sls (9)=s(é) *sls () =s(é) 's(e)=e,hence  s(9)=s(s ()).Since s is
injective we deduce that y = y) ,that is, o = 1; - acontradiction !. Hence a #
B.

Let’'s show that aof=pof , a contradiction , hence we will deduce that f is
surjective.

Indeed, aof=fof< (aof)x=(Bof)x, for every xeG < a(f(x))=p(f(x)), for
every XEG <y =1 Moa(f(x))ol , for every x€Ge 1 0q () =0y 0! for
every XxeGe
e [ ogr)y)=larol Jy).forany xeGsiye G <
S AFXy) =f(x) kiy), forevery xe€G siyeG <

U

= t(F(x)y)se( F(x)y)=f(x)ys(9) 'sls (9)), for any xeG and yeG «

Ty f(x)y)™" s(o( f(x)y)= f (x)ys(9) *sls (7). for any x€G and yeG' <

s(f(x)y)™ s(o( f(x)y))=s(9) *sls (§)), for every x€G and yeG' which is cleary

’
~N

because for x€G, f(x)€f(G)=H, so f(x)y=7, for every yeG.

Remark 4.2.8. There are categories where not all the monomorphisms
(epimorphisms) are injective (surjective) functions.

Indeed, let Div be the subcategory of Ab of all divisible abelian
groups (we recall that an aditive group G is called divisible, if forany yT G

and any natural number n, thereisx € G such that y = nx).
We now consider the abelian divisible groups (Q,+), (Q/Z,+) and
p:Q® Q/Z the onto canonical morphism of groups.
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We have to prove that p is a monomorphism in the category Div (but
clearly pisnot aninjective function).
WH®

Bi®

Indeed, we consider in Div the diagram G Q ¥%#4® Q/z such that

ul v and we haveto provethat pou?! pov.

So, thereisa € G such that u(a)-v(a) = r/sT Q*, withs® +1 (wecan
suppose s?! +1, sinceif by contrary s= *1, then if we consider s'* +1, there
is & €G such that Sa’=aand thus u(@)-v(a) =r/s). If bT G suchthat rb =
a, then r(u(b)-v(b)) = u(a) - v(a) =r/s, hencepou pov, thatis, pisa
monomorphism in Div.

Asacorollary we obtain that Div is not a balanced category.

We now consider the category Rg of unitary rings the inclusion
morphism i:Z ® Q.Wewill provethat i isan epimorphism in Rg (but
clearly it is not a surjective function).

Indeed, considering in Rg the diagram z #:® Q Zfﬁ‘g

S

A such that

uei = Voi < uz = v wewill provethat u=v.

If x =m/n € Q, then u(x) = u(m/n) = mu(/n) = mu(n)] * (sinceuisa
morphism of unitary rings), so v(x) = v(m/n) = m{v(n)]"*; since u(n) = v(n)
we deduce that u(x) = v(x), that is, u=v.

In[2, p.31], it is proved the following result:

Proposition 4.2.9. Let A be an equational category. Thenin A the
monomor phisms arejust theinjective mor phisms.

Definition 4.2.10. Let C be a category. An object I (F) from C is

called initial (final), if for every object X € C, C(l, X) (C(X, F)) hasonly
one element denoted by ax(wx).

An object O from C which issimultaneoudly initial and final is
called nullary object. By subobject of an object AT C we understand a
pair (B,u) withB1 Candul C(B, A) amonomorphism.

Two subobjects (B, u), (B’, u’) of an object A arecalled

isomorphic if thereis an isomorphism feC(B, B") such that u’of = u.
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Remark 4.2.11. (i). In general, in an algebraic category C the notions

of subobject and subalgebra are different (it ispossibleasA € C,B£ A
andB1 C).

In the case of equational categories the two notions are identical.

(ii). | isthe initia object (F isthe final object) in category C iff I° (F°)
isthe final (initial) object in C°.

(ii1).1f we have aninitia (final, nullary) object in the category C, this
IS unique up to an isomorphism.

Indeed, if I, I” aretwo initial objectsin the category C, then thereisa
unique morphismu: | ® 1" and aunique morphismv : I’ ® |. Thus, uov =

1 and vou =1, hencel=I". Analogous for final and nullary objects.

(iv). If I isan initial object in the category C, then every morphismu :
X ® | from C hasasection (henceis an epimorphism) and if Fisafinal
object, then every morphismv : F® X from C has aretraction (hence a
monomorphism).

(v). If in acategory C we have anullary object O, then for every pair
(X, Y) of objectsof C, C(X, Y) ! A(since C(X, Y) contains at least the
composition of the morphisms X %%® O %%:® Y denoted by Oyx and
called the nullary morphism from X to Y). Clearly, for everyu: X’ ® X

andv:Y ® Y’, Ovyxou = Oyyx’ and vo Oyx = Oyx.
Examples

1. In the category Set, the empty set A isthe only initial object and
every set which contain only one element isafina object (clearly, these are
isomorphic). We deduce that in Set we don’'t have nullary objects.

2. In the category Fd of fieldswe don’'t have initial or final objects.

Definition 4.2.12. A family (G))ic| of objectsin a category C is
called family of generators (cogenerators) of C, if for every X, Y € C

and u,veCX, Y),withut v, thereis

fT UCG,X)(fT UC(Y,G;))suchthat wuof?® vof (fou?l fov).
i i

If the family of generators (cogenerators) contains only an element G,
then G is called generator (cogenerator) of C.
Clearly, the notions of generator and cogenerator are dual.
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Examples

1. In the category Set every set which contains at |east two elements
IS acogenerator.

2. In the category Top, every discret, non-empty topological space, is
acogenerator for Top and every topological space containing at least two
elements with trivial topology is a cogenerator for Top.

Let C beacategory andf, g: X ® Y apair of morphismsin C.

Definition 4.2.13. The kerndl or equalizer of a couple of
mor phisms (f, g), isapair (K,i),withK T Candil C(K, X) such that

(i) foi = gei;
(i) If (K',i") isanother pair which verifies (i), then thereisa
unique morphismu : K’ ® K such that iou=1i".

Remark 4.2.14. If the kernel of a couple of morphisms exists, then it
IS unique up to an isomorphism.

Indeed, let (K’, i") another kernel for the couple (f, g). Then there are
athemorphismsu: K’'® Kandu' : K® K’ suchthati’ou” =i. We deduce
that iouou’ =iandi’ou’ou=i’; by the unicity from the definition of
kernel we deduce that uou’ = 1x and u’ou = 1/, that is, K=K".

In the case of existence, we denote the kernel of the couple of
morphisms (f, g) by Ker(f, g).

The dual notion for kernel is the notion of cokernel for a couple of
morphisms.
In fact, we have:
Definition 4.2.15. The cokernel or coequalizer of a couple (f, g) of
morphismsisapair (p, L)withL T Candp1 C(Y, L) such that:

(i) pof=peg;
(ii) If (p’, L") isanother pair which verifies (i), then thereisa
unique morphismu: L ® L’ such that uop =p’.
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Asin the case of kernel, the cokernel of a couple of morphisms (f,g)
(which will be denoted by Coker (f, g)), if there exists, then it is unique up
to an isomorphism.

Remark 4.2.16. If Ker (f, g) = (K, i), then i isamonomorphismin C.

Indeed, let TT Candh,t: T® K morphisms such that ioh=iot=1i".
—

K%X
g
hi|t g
|
.

Then foi’=gei’ and sincet is closing the following diagram

|
K S X

T

we deduce from Definition 4.2.13 that h = t, hencei isamonomorphism in
C.

Dually itis proved that if Coker(f, g) = (p, L), then pisan
epimorphismin C.

Definition 4.2.17. We say that a category C isa category with
kernels (cokernels) if every couple of morphismsin C hasa kernel
(cokerndl).

Examples

1. The category Set is a category with kernels and cokernels (see 84
from Chapter 1).

2. The category Top is acategory with kernels and cokernels.

Indeed, letf, g: (X, t) ® (Y, s) acouple of morphismsin Top and
(K, i) itskernel in the category Set for the couplef,g: X ® Y.
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If K is equipped with the topology t induced by the topology t of X,
then i: (K, t)® (X,t)isacontinuousfunction and ((K, t ), i) = Ker(f, g)
in Top.

If (p, L) isacokernel in Set of couple (f,g) andifonL =Y / R(f, g)
(see Remark 1.4.6 from, where R (f, g) is denoted by <p>) we consider the
quotient topology s , thenp: (Y, s )® (L, s ) iscontinuous function and
(p, (L, s )) = Coker(f, g) in Top.

3. If we denote by Set* the subcategory of Set formed by non-empty
setsandf, g: X ® Y aremorphismsin Set* suchthat {xT X : f(x) =
a(x)} = A, we deduce that in Set* doesn’t exists Ker (f, g).

4. Letf,g: G® Gebeacoupleof morphisms of groups, (K, i) =
Ker(f, g) in Set, H the normal subgroup of G¢generated by the elements of

theform  f(x)(g(x))™*, withx € G (see[31]) andp: Y ® G¢H isthe
canonical surjective morphism of groups. Then:

()KE£G,and (K, i) =Ker(f,g) inGr;

(i1) (p, GEH) = Coker (f, g) in Gr.

Conclusion: The category Gr isa category with kernels and
cokernels.

Since Gr isacategory with nullary object, if f : G® Gteisa
morphism in Gr, then Ker(f) = Ker(f, Og'g) ={x € G: f(x) =0} (Oisthe
neutral element of G@).

5 Letf, g:G® Getacoupleof morphismsinAband h: G® G¢
h(x) = f(x) g(x)™*, for every x € G (clearly, hisamorphismin Ab).

Then:

() IfK=Ker(h)andi : K® Gistheinclusion morphism, then
(K, i) =Ker(f, g) in Ab;

(i) If H=1m(h) and p : G¢® G¢H is the surjective canonical
morphism, then (p, G¢/ H) = Coker (f, g) in Ab.

Conclusion: The category Ab isa category with kernelsand
cokernels.

6. Letf, g: A ® Acacouple of morphismsin the category Rg. (of
commutative unitary rings), (K, i) = Ker(f, g) in Set (clearly K isasubring
of A andiisamorphism of unitary rings) and a the ideal of A¢generated
by the elements of the form f(x) - g(x), withx € A. If by p: A¢® Ac¢/a we
denote the canonical surjective morphism, then:

() (K, i) =Ker(f, g) inRg;

(i) (p, A¢/ a) = Coker (f, g) in Rg..
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Conclusion: The category Rg. isa category with kernelsand
cokernels.

The construction of cokernelsin Rg is somewhat more complicated;
in general, cokernels need not exist in the category Fd (see [72,p.51]).

7.Letf,g: (X,£)® (Y, £) be acouple of morphismsin Pre
(respective Ord) and (K, i) = Ker(f, g) in Set.

If the set K will be equiped with the preorder (respective order)
induced by the order of X, then thereisamorphisminPreand (K, i) =
Ker(f, g) in Pre (respective Ord).

8.Letf,g: (X,£)® (Y, £) beacoupleof morphismsinPre
(respective Ord) and (p, Z) = Coker(f, g) in Set.

Then

(i) If we consider on Z the preorder relation 9£¢;¢ < thereare
Yo,e¥Ynt, Y14 -+, Y'nin'Y such that ;JO =y, yugp: ;¢, ;,m: ;/J, forl£i £n-1

andyo£Y'1, YiEY2,...,Vn1EYn thenp:(Y, £)® (Z, £¢ isanisotone
function and (p, Z) = Coker(f, g) inPre.

(ii) If X, Y are ordered setsand z isthe ordered set associate to Z
(thatis, Z=z/~ wherez~7' < z£7 and ' £ z (see Chapter 2) and p; : Z
® z istheisotone canonical surjective function, then (pz,z) = Coker (f, g)
in Ord.

Conclusion: The categories Pre and Ord are categories with
kernelsand cokernels.

Remark 4.2.18. If C hasanullary object Oandf: X ® Y isa
morphismin C, we define the kernel of f (denoted by Ker (f)) as Ker (f,
Ovx) (of course, if it exists!), where, we recall that Oyx : X ® Y isthe
nullary morphism from X to Y.

Remark 4.2.19. More general, every equational categorieisa
category with kernels and cokernels. The details are left for the reader (see
the case of Set, Chapter 3 and [72)]).

4.3. Functors. Examples. Remarkable functors. Functorial
mor phisms. Equivalent categories
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Definition 4.3.1. If C and C¢ar e two categories, we say that from
C to C¢isdefined a covariant (contravariant) functor F (wewriteF: C
® CQif:

() For every object XeC isdefined a unique object F(X)cC¢

(i) For every pair (X, Y) of objectsin C and every feC(X, Y) is
defined a unique F(f) € C&F(X), F(Y)) (F(f) € C&F(Y), F(X))) such that

a) F(1x) = 1) for every X € C;

b) For every two morphismsf and g in C for which the
composition gof ispossible, then F(g) o F(f) (F(f) o F(g)) isdefined and
F(gof) = F(9)  F(f)  (F(gef) = F(f) o F(9)).

Remark 4.3.2.

() If F: C® C¢isacovariant (contravariant) functor, uisa
morphismin C and sisasection (retract) of uin C, then F(s) isasection
(retract) of F(u) inC¢

In particular, if uisanisomorphismin C, then F(u) is an isomorphism
in C¢ and (F(u))™ = F(u™). So, F preserves the morphisms with section
(retract) and isomorphisms. Also, F preservesidentical morphisms and
commutative diagrams.

(i) To every contravariant functor F: C°® C¢we can assign a
covariant functor F : C® C¢ where F (X) = F(X), for every X1 C°and
for every W:X® YinCo(thatis,u: Y ®X inC),F (U) = F(u):
F(X) ® F(Y). Analogous to every contravariant functor F: C® C¢ we can
assign acovariant functor F:C ® C¢

Examples

1. For every category C, 1c : C® C, defined by 1c(X) = X, for every
X € C and 1¢(u) = ufor every morphismu in C, is acovariant functor
(called the identity functor of C).

2. More general, if C¢is asubcategory of C,then 1c'c: C'® C
defined by: 1c' c(X) = (X), for every X T C¢and 1cc(u) = u for every
morphismuin C¢isa covariant functor (called inclusion functor).

3.If Cisacategory, then F: C°” C® Set defined by F(X, Y) =
C(X,Y) andif (u,ud : (X, Y)® (X¢YQisamorphisminC°" C, then
F(u,ud : C(X,Y)® C(X¢YQisthefunctionf ® udkfou, isacovariant
functor (denoted by Hom).
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4. Let C be acategory and A be afixed object in C. We define the
functor h*: C® Set by: if M € C, thenh*(M) = C(A, M) andif u: M ®
N isa morphismin C, then h*(u) : K*(M) ® h*(N), h*(u)(f) = uof, for
every f € W*(M).  Thefunctor h" is covariant.

Analogous we can define the contravariant functor hy : C ® Set by:
ha(M) = C(M, A), for every M T C andforu: M ® N amorphisminC,
ha(u) : ha(N) ® ha(M), ha(u) (f) = fou, for every fT ha(N).

The functor h* (ha) is called the functor(cofunctor) associated with
A.

Definition 4.3.3. If C, C¢ C&arethreecategoriesand F: C® C¢
G : Ct® Cearefunctors(covariantsor contravariants), then we define
GF: C® C&by (GF)(M) =G(F(M)), for every M € C and (GF)(u) =
G(F(u)) for every morphism uin C. So, we obtain a new functor GF
from C to C® called the composition of G with F. Clearly, if F and G
are covariants (contravariants), then GF is covariant, when if F is
covariant and G is contravariant (or conversley), then GF is
contravariant.

Definition 4.3.4. Let C, C¢betwo categoriesand F, G: C® C¢be
two covariants (contravariants) functors. We say that afunctorial

morphismj isgiven from Fto G (wewritej : F® Gor F @ G), if
for every M & C wehaveamorphismj (M) : F(M)® G(M) such that
for every morphism u: M ® NinC,thediagrams

i (M) i (N)
F(M) —> G(M) FIN) —> G(N)

F(U)J/ \LG (u) F(U)\L \LG (u)

——> G(N — > GM
F (N) ) (N) F (M) [ (M)
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are commutative. Wewritej =(j (M))uec and we say that the
functorial morphismj hasthe components j (M), M € C.

If for every M € C, | (M) isan isomorphismin C¢ we say that |
isfunctorial isomorphism from F to G (in this case we say that F and G
are isomorphic and wewrite F » G).

Remark 4.3.5. By 1 : F® F we denote the functorial morphism of
components 1¢(M) = 1gmy : F(M) ® F(M). Clearly, 1¢ is afunctorial
isomorphism (called the identical functorial morphism of F).

In this book we will put in evidence other examples of functorial
morphisms.

Definition 4.3.6. Let F, G, H three covariant functorsfrom the
category C to category C¢and F %#:® G ¥#%® H two functorial

morphisms. If for every M € C,wedefineq(M) =y (M) o j (M), we

obtain in thisway a functorial morphism g (denoted by y oj ) called the
composition of functorial morphisms y andj .

Analogous we can define the composition of two functorial
morphismsif F, G and H are contravariants.

Proposition 4.3.7. Let F, G two covariant (contravariant) functors
from the category C to the category C¢and F %#.® G afunctorial
morphism. Then j isfunctorial isomorphism iff thereis G¥%.® F a
functorial morphism suchthaty oj =1randj oy =1g (in thiscase
wewritey =j .

Proof. Supposethat j isafunctorial isomorphism. Then, if M € C,
] (M) : F(M)® G(M) isanisomorphism in C¢ hence we can consider the
morphismy (M) = (j (M))™:G(M) ® F(M). Thefamily {y (M)} me ¢ of
morphisms determine afunctorial morphismy : G® F.

Indeed, let u: M ® N beamorphism in category C. We have the
following commutative diagram:
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j (M)
FM) ——> GV
F (u) G (u)

F)y ————> 6N
i (N)

hencej (N)oF(u) = G(u)oj (M), sowe obtain F(u)oj (M) =j (N)* oG(u)
or F(u)oy (M) =y (N)oG(u), which imply that y isafunctoria

morphism; clearly yoj =1gandj oy = 1g.
The converse assertion isclear. n

Definition 4.3.8. Let C, C¢betwo categoriesand F: C® Cc¢bea
covariant functor. We say that :

() Fisfaithful (full) if for every X, Y& C, thefunction F(X,Y):
C(X,Y)® CKX,Y)isinjective (surjective);

(i) Fismonofunctor (or embedding) if for every X, Y € C such
that F(X) = F(Y), then X =Y,

(iii) F isepifunctor if for every Xd CéthereisX T C such that F(X)
= X(];

(iv) Fisbijective, if it isssimultaneously monofunctor and
epifunctor;

(v) F isrepresentative if for every Y& Céthereisan object X €
Csuchthat F(X)» Y ;

(vi) Fisconservative if from F(f) isan isomorphism in C¢ then we
deducethat f isan isomorphismin C;

(vii) F isan equivalence of categoriesif thereisa covariant functor
G : C¢® Csuchthat GF » 1c and FG » 1¢¢ in this case we say that the

categories C and Cc¢are equivalent and that F and G is quasi-inverse
onefor another.

(viii) F iscalled an isomorphism of categories if Fisan
equivalence which produces a bijection between the objectsof C
and C¢(i.e, F isbijective)

Remark 4.3.9.
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(). Let F: C® Cc¢beacovariant functor, X, Y € Ob(C), f €C(X,
Y)and g€ C(Y, X). Then:

a) If Fisfaithful, F(g) isasection (retract) of F(f) iff gisasection
(retract) of f;

b) If Fisfaithful and full, f has a section (retract) iff F(f) has a section
(retract).

Indeed, if gisasection of f (that is, fog = 1y), then F(f) o F(g) =
F(feg) = F(1v) = 1ry), hence F(g) is asection of F(f). Conversely, if F(g) is
asection of F(f) (that is, F(f) o F(g) = 1ry)), then F(fog) = F(1y), hence fog
= 1y (since Fisfaithful). Therestisproved analogoudly.

(ii). From the above remark, we deduce that every faithful and full
functor is conservative.

(iii). Every isomorphism of categoriesis an equivalence of categories,
but conversely it is not true.

Theorem 4.3.10. Let C, C¢betwo categoriesand F: C® C¢bea
covariant functor. Thefollowing assertions ar e equivalent:

(i) Fisan equivalence of categories,

(i) Fis faithful, full and representative.

Proof. ([62]). (i) P (ii). We suppose that F is an equivalence of

categories, hence thereis a covariant functor G : C¢® C such that GF J»1C

and FGy»lc.. Let now M, N € C; wewill prove that the function C(M, N)
® CEF(M), F(N)), f® F(f) isabijection.

So, let f, f ¢€ C(M, N) such that F(f) = F(f ¢).

From the hypothesis we have two functoria isomorphismsj : GF
®lcand y FG® lcg

The pair of morphismsf, f¢induces a pair of morphisms

F(M 3/"E/ﬁg/‘)'®|=|\| d G(F(M %%%)‘)'@GFN
M)y POV GEMY o GO,

Since F(f) = F(f9), then G(F(f)) = G(F(f9).

Consider the following commutative diagram:
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j (M)
GRHM) ———>

(GF) () (GF) (f") fl|f

(GFH(N) —> N
i (N)

Fromf oj (M) =j (N) o (GF)(f) and f ¢oj (M) =j (N)o(GF)(f9 and
from thefact that ] isafunctorial isomorphism (hence all his components
are isomorphisms), we deduce that f = f¢; hence F is faithful.

To provethat Fisfull, let f¢I CEF(M), F(N)).

Then G(f¢ : G(F(M)) ® G(F(N)) and we consider the diagram:

j (M)
(GF) (M) —> M

G(f) f

vV

GRHN) ——> N
i (N)

Wedefinef € C(M, N) by f =j (N) o G(f¢) o j (M)™ (thisis possible
because (M) is an isomorphism).

We have to provethat F(f) = f¢ From the equalitiesfoj (M) =
J (N)o(GF)(f) andfoj (M) =j (N)oG(fd), we deducethatj (N)o(GF)(f) =
i (N)oG(fQ U G(F(f)) = G(fd). Since G is an equivalence of categories we
deduce (as before) that G isafaithful functor, that is, F(f) = f¢

So, we proved that F isfaithful and full.
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To prove thisimplication completely, let X¢I C¢and denote X =
G(X9. We have F(X) = F(G(X9) = (FG)(X9 > X¢(sincey (X9 isan
isomorphism).

(if) b (i). Firstly, we have to prove that since F is faithful and full
then from F(X) » F(Y) we deduce that X » Y. Indeed, we have f : F(X) ®
F(Y)and g:F(Y)® F(X)suchthat gof =1rx)and fog = 1ry). Since
the hypothesis Fisfull, therearef : X ® Y andg: Y ® X suchthat F(f) =
f and F(g)= g.From gof = 1gx) wededucethat F(g) o F(f) = 1rx) P
F(gef) = F(1x); since F is faithful, we deduce that gof = 1x. Analogous we
deducethat fog =1y, hence X » Y.

Let’s pass to the effective proof of implication (ii) P (i).

Let YT C¢ by hypothesisthereis Xyl C suchthat Y » F(Xy). Since
the class of morphismsis a set using the axiom of choice we can select an
isomorphism y (Y) : F(Xy) ® Y.

Analogously, if Y& C¢ then thereis anisomorphismy (Y ¢ : F(Xv¢)
® Y¢

Now letg: Y ® Y ¢be amorphismin C¢and we consider the diagram
inC¢

y (Y)
FXy) ——> Y

F(Xy) T
y

We define g: F(Xy) ® F(Xyg by 9=y (Y9 ogo y (Y). Since Fis
full (by the hypothesis), thereisf : Xy® Xyg such that F(f)= g.

We have the following commutative diagram:
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y(Y)
FXy,) ———> Y

F () g

FXy) ————> Y/’
y(Y’)

Define G : C¢® C by G(Y) = Xy and G(g) = f and we have to prove
that G isacovariant functor, FG » 1cgand GF » 1c.

If g¢: Y¢® Y &isanother morphism in C¢ then as before, thereis
fe: Xy¢® Xyggsuch that G(g9 = f¢

From the diagram

Fo) 20y

F () g

y(Y’)
FXy) ————> Y

F(f) g’

y(Y”)
FXy) ————=> Y

we deduce that to g®g corresponds F(f®f), hence we deduce that
G(g®g) =fef =G(g9 o G(g) (sincefromgoy(Y) =y (Y$ o F(f) and
gtoy(YQ =y (Y& o F(fQ) there resultsthat (g®g) c y (Y) =y (Yd) o
F(f®f)). Since G(1y) = 1g(v), Wwe deduce that G is a covariant functor.
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S0, FG » Leg(since F(G(Y)) = F(Xy) and F(x,)’» Y). The fact that
y is afunctorial morphism results from the study of the aboveAdiagram.

From GF to 1. we construct j in the following way: if X | C, then
F(X) I C¢and by the hypothesisthereis Xgl C such that F(Xg) » F(X).

. . i (X) _ . .
According to a previous remark , xY] » X.ltiseasy to verify that |

isafunctorial morphism and GF » 1¢. So, the proof of theorem is complete.
n

Remark 4.3.11. In general afunctor doesn’t preserve a
monomorphism or an epimorphism.

Indeed, let C be a category with at least two distinct objects X and Y
and amorphismu: X ® Y which isnot monomorphism or epimorphismin
C. We consider the subcategory C¢of C which contains as objects only X

and Y and as morphisms 1x, 1y and u. We also consider 1¢'¢ : C¢® C the

inclusion functor. Since u isbimorphismin C¢and in C, 1¢' c(u)
= u is not monomorphism or epimorphism we obtain the desired conclusion.

Definition 4.3.12. Let C, C¢betwo categoriesand T : C® Ctbea
contravariant functor. We say that T isa duality of categories, if thereis
a contravariant functor S: C¢® C such that TS» 1cgand ST » 1c.

Remark 3.13. Following the above definition, to show that C° » C¢
(in thesense of Definition 4.3.8, vii), the return to find two contravariant
functorsT:C® Ct¢and S:C¢® C suchthat TS» 1cgand ST » 1c.

Asan application, we will characterize the dual categoriesfor Set,
Ld(0,1) and B (of Boolean agebras).

4. 3.1. The dual category of Set
This subparagraph is drawn up after the paper [41].

Definition 4.3.14. A normal lattice isa bounded and join-complete
lattice L which verifiesthe following axiom:

(N) For every x,y € L, with x <y, thereisan atom z € L such
that x<xUz€£y.
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If L, L¢aretwo normal lattices, f: L ® L¢iscalled a morphism of
normal lattices, if f T L(0,1)(L, L9 and f(sup A) = sup f(A), for every
subset A of L.

We denote by L nr the category of normal lattices.

Theorem 4.3.15. The dual category of Set isequivalent with Lnr
(i.e. Set®»Lnr).

Proof. To prove Set® » L nr, it is necessary to construct two
contravariant functorsP : Set ® Lnr anda: Lnr ® Set (these notations are
standard) such that aP » 1s¢ and Pa» 1, ;.

For every set X we consider P(X) the power set of X and for every
functionf : X ® Y, thefunctionf : P(Y) ® P(X) (see Proposition 1.3.7). It
is easy to prove that for X T Set, P(X) € Lnr andf : P(Y) ® P(X)isa
morphism of normal lattices, so we obtain by the assignments X ® P(X)
and f ® f acontravariant functor P: Set ® Lnr.

To define the contravariant functor a, let LeLnr and a(L) be the set
of all atomsof L.

We haveto provethat sup a(L) = 1. If by contrary sup a(L) < 1, then
by axiom (N), thereisx € a(L) such that sup a(L) <x Usup a(L) £ 1, hence
we deduce that x | a(L) - which isacontradiction!

Letf:L ® L¢beamorphisminLnr and we can remark that for every

y € a(Lg thereisaunique element x € a(L) such that y £ f(x).

Indeed, for existence, suppose by contrary that thereisy € a(L¢ such
that for every x € a(L), then f(x) <y. In these conditions, we deduce that y
£1=1(1) = f(supa(L)) = sup f(a(L)); sincey Uf(x) = O for every x € a(L)
p y=yUsupf(a(L))=yU1=0, hencey =0, whichisa
contradiction.

Relative to uniqueness, suppose that for every y 1 a(L 9, there are x,
x¢l a(L), x* x¢suchthaty £ f(x) andy £ f(x9). It isimmediate that
y £ f(x) Uf(x9 =f(x Ux9 =f(0) =0, soy =0, which isacontradiction!

Following the above, we can definea(f) : a(L9 ® a(L) by a(f)(y) = x,
whereyT a(L9 andx T a(L) isthe unique element with the property that y
£ f(x).
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To prove that ais a contravariant functor, we consider the morphisms

of normal lattices L ¥#:® L¢v#4® L& and we will prove that a(gef) = a(f) o
a(g) (theequality a(1.) = 1aq)) isclearly).

For this, lety T a(L®) and a(gof)(y) = x, wherex 1 L and
y £ (gH)(x) = g(f(x)). i

We denote a(g)(y) =z (hencez| L¢andy £ g(2)).

If a(f)(z) = x¢(with x¢l L and z £ f(x9), then a(f)(a(g)(y)) = a(f)(z) =
x¢and sincey £ g(2) £ g(f(x®9) = (gof)(x9 we deduce that x = x¢ so

a(gof)(y) = a(f)(a(g)(y)), hence a(gof) = a(f)oa(g).

So, theassignments L ® a(L) and f ® a(f) define a contravariant
functor a:Lnr® Set.

To prove that Set®» Lnr we have to prove the functorial
isomorphisms  aP » 1sq and Pa» 1, . The isomorphism aP » 1sg is clear
(sincethe atoms of P(X) coincides with the elementsof X andif f : X ® Y
isafunction, then a(f’)(x) = f(x) for every x 1 X, hence (aP)(f) = f).

To prove the isomorphism Pa »1, ,, we consider the functiona : L ®
Pa(L) and b : Pa(L) ® L,withL T Lnr, defined in the following way: for
yi L,a(y)={x:xT a(L), x£y} andif AT Pa(L), then b(A) = sup(A). It
IS easy to seethat a and b are morphisms of a normal lattices.

We have to prove the equalitiesacb = 1p,q) and boa = 1,.

For the first equality, let A ={x; : x; T a(L),iT 1} andfor an atom x
£b (A) =sup(A),x =0orx = x, foraniol I.

If we denotey; =x Ux;, theny; =0foreveryil lor igl I, doesn’t
exist suchthat x; = x.
If y; =0foreveryil I, wehaveO

=sup(y;} = sqp{xL‘in} =XAsup{x} = X, whichisnot true. So, there isi T1

with x = x;, hencex T A and we obtain the equality (acb)(A) = A.

ForyT L,a(y)! 0and (boa)(y) =supa(y) £y. If we suppose that
sup (a(L)) <, then thereisan atom x T a(L) such that x T a(y) and sup

a(y) Ux £y, hencex £ y —acontradiction, so (boa) (y) = y. Since

(bea)(0) = 0, we deduce that the second equality istrue.
So, the proof is complete. n

4.3.2. The dual category of Ld(0, 1)
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For LeLd(0,1), we will work in this subparagraph with the filters of
L for which we have dual result for ideals contained in 84 from Chapter 2,
and with the way we will use them without presenting for the dual proofs
for every one.

So, for LT Ld(0,1) we denote by FM (L) the set of all maximal filters
(ultrafilters) of L.

Asin the case of ideals it isimmediate to prove that if LT Ld(0, 1)
then jL:L® PFM(L)),j.(x)={FT FM(L) :x1 F} forx1 Lisa
monomorphismin Ld(0,1),that is,injective function and for every x, y1 L,
jFLISI((lE)y) =) E ju(y), iL(x Uy) =ju(x) € ju(y), j(0) = £and ji(1) =

Definition 4.3.16. ([70, p.428]).A To-quasicompact topological
spaceis called Stone spaceif it verifiesthe following conditions:

(s1) The compact open setsform a basis of opens;

(s2) Theintersection of two open compactsis also an open
compact;

(s3) If D isa set of open compactswith the property of finite
intersection and F isa closed set such that FCC * A for every
Ci Dthen FC g.cg 1 /E.

ID @

For LT Ld(0,1) we consider FM (L) equiped with the topology t .

generated by {j_(X)} xeL (called Sone-Zariski topology).
An element of t; will be an union of finite intersections of elements

from the generating family {j_(X)} xeL and, since for Xy, ..., Xn 1 L,
jL(x1) C ... CjL (Xn) =ju(x1 U.... Ux,) we deduce that an open set in the
topological space (FM (L), t,) hastheform U j_(x) withSi L.

s

Theorem 4.3.17. Thetopological spaceS. = (FM (L), t.) isa Stone
space.

Proof. ([70]). Thefact that S is Ty follows from Corollary 2.4.5, by
dualising the result to the case of filters.
To prove the compacity of FM (L) let ST L such that FM(L) =
Uj. (9. Wewill provethat (*) FM(L) = U j ().
xS X (8]
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SinceSi (], theinclusion FM(L) | U j_(x) isclear. Let now
X (S]

FI Uj_(x;thenthereissyl (S] suchthat FT j(s) U so1 F.Sincesol

A (]
(S, therearesy, ..., s,1 Ssuchthat £ s U... Us,. Since Fisfilter and s
T Fwededucethats; U...Us,T F.

Since Fisan ultrafilter, Fisprime, sothereis1 £ i £ n such that
sT FU F1 j(s)withsT S, hencewe obtain the equality (*).

Wewill provethat 11 (S).

If 1T (5], then thereisamaximal ideal | suchthat (S| 1 I. The
complementary set of | will be a prime filter with the property that for every
sl (S wehavesi | whichisin contradiction with relation (*). Hence
1 (S],s0 1=5U.Usywithsy, .., s, 1 S thusFM(L) =j.(1) =ju(s) E
.. EjL(sy), that is, FM (L) is a compact set.

Analogously we prove that j, () is acompact set for each x1 L, so
we have proved (s;). The condition (s;) follows immediately from the fact
that for every  x,yT L,j(x Uy) =j.(x) C ju(y)-

Now we will prove the condition (sz). By the above we can consider
F=FM(L)\j(y) =Cju(y)andD ={ji(x)}xeswith ST L.

Thefact that Cj.(y) CjL(x) * Aforeveryx1 S isequivalent with:
for every x T Sandfor every PT Cj.(y) wehave PT j ().

Supposing by contrary that Cj.(y) C Sel i (x)Q: /A we deduce that for
&s o

every PoT Cju(y) P Poil &1 i, 02, hence thereis Pl Cju(y) andxo1 S
&dis @
suchthat P1 j_(xo) which is contradictory, so (sg) istrue. n

Definition 4.3.18. For two Stone spaces X, Y, afunctionf: X ® Y
is called strong continuous if for every open compact DinY b (D) is
an open compact in X.

Next, by St we denote the category of Stone spaces (whose objects are
Stone spaces and morphisms are the strong continuous functions).

Letnow L, L& Ld(0,1)andfT Ld(0, 1) (L, L9.

We consider the function FM (f): FM (L9 ® FM (L) defined for
FI FM (L9 by FM (f)(F) = f(F).

Proposition 4.3.19. The function FM (f) is strong continuous.
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Proof. Clearly FM (f) is correctly defined (since F¢I FM (L4 b
fFYEYT FM(L)).

ForxT L, (FM()™ (L) ={Fd FM(LQ: (FM)H)(FYT jL(x)} =
{Fd FM(LO : FXF)T j.(x)} ={Fd FM(LY: xT fi(Fe} =
{F¢l FM(LO:f(x)T F& =j_(f(x)) hence FM(f) is a strong continuous
function (using the fact that {]j.(x)}xcL are open compacts which form a
basisfor the Stone-Zariski topology). n

Now let X be a Stone space and T(X) the set of all open compacts of
X. Itisimmediate that T(X) becomes relatively to union and intersection a

lattice bounded (that is, T(X)&Ld(0,1)).

If X, Y aretwo Stone spaces and feSt(X, Y) then we denote by
T(f) : T(Y) ® T(X) the function defined by (T(f))(D) = (D), for every
DeT(Y). Clearly T(f) € Ld(0,1)(T(Y), T(X)).

So, we obtained FM : Ld(0,1) ® Stand T : St ® Ld(0,1) given by
theassignmentsL ® FM(L), f ® FM(f), respective X ® T(X) and f
® T(f).

Itisimmediate to prove that FM and T are contravariant functors.

Theorem 4.3.20. The dual category of Ld(0, 1) isequivalent with
the category St of Stone spaces (i.e, (Ld(0,1))° » St).

Proof. We will prove the existence of functorial isomorphisms
(DT o FM » 1403,

(2Q)FM o T » 1g.

Let X T Standx1 X.Theset{V1 T(X):x1 V}isaprimefilter of
T(X). Conversely, we prove that every prime filter P = (V;)ig| of T(X) has
the same form.

If F= 1V, ,then F! Aandif wechoosex 1 F, then from the axiom
i

(s) wededucethat P={V 1 T(X):xI V}.

Now let LT Ld (0, 1); weshall provethatj (L) = T(FM(L)) which
will imply the isomorphism (TeFM)(L) »L.

For thisit is suffice to prove that every open compact of FM (L) has
the form j (x) withx T L.
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If DT T(FM(L)),thenD = U j, (x). Since D is compact, there are

il
X1, s XnSUChthat D = U j, (x) = j,_%%lxi 2 hence D =i (x) with x:_Ejlxi .
i=1 g i=

Therest is small calculus (which mostly represents calculus
technigues) so , we will left them for the reader. N

4.3.3. The dual category of B ( of Boolean algebras)

In the end of this paragraph let’s characterize the dual category of B
(the category of Boolean agebras).

For a Boolean algebra B by FM (B) we denote the set of all maximal
filters (ultrafilters) of B (see 88 from Chapter 2) and by ug : B ® P(FM (B)),
us(@ ={F1T FM(B):al F} foreveryal B (see Theorem 2.8.8).

Proposition 4.3.21. The function ug isa monomor phism in B.

Proof. See the proof of Proposition 2.8.8. n

Proposition 4.3.22. ([70]) For every compact and Haussdor f
topological space (X, s) the following assertions ar e equivalent:

(i) For every x1 X, theintersection of all clopen sets which
contain X is{x};

(ii) For every x,y1 X,x! y, thereisaclopen D such that xT D
and vyl D

(iii) X isgenerated by its clopen sets;

(iv) The convex component of every element x is{x}.

Definition 4.3.23. We call Boole space every topological space (X,
s) which verifies one of the equivalent conditions of Proposition 4.3.22.

Now let B a Boolean algebra and sg the topology of FM (B) generated
by (Ug(8))ace-

Theorem 4.3.24. For every Boolean algebra B, (FM(B), sg) isa
Boole space.

Proof. By Proposition 4.3.21 we deduce that an element of sg hasthe
form Uug(x) withSi B.

XS
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Firstly we will prove that FM (B) is separable.
Indeed, if F, Fol FM(B), and F1 ! F,thenthereisxl Fy such that x

I F,, hencex¢l F, (wherex’ isthe complement of x in B).

Then F1i ug(x), F2l ug(x9 and since ug(X)Cug(x®) = ug (x Ux®) = ug
(0) = £ we deduce that FM (B) is separable.

Sincefor every x T B, ug(x) isaclopen set (because C (ug(x)) =
us(x9 T sg) we deduce that FM (B) is generated by the family of his clopen
sets.

To prove that FM (B) isacompact set let’ s suppose that FM (B) =

Uug(x) with Si B.
XS

We shall provethat 0T [{x¢: xT S}). If we suppose the contrary,
then [{x¢:xT S})will beincluded into amaximal filter UT FM(B)
(i.e, [{x¢:xT S}) 1 U).SinceFM(B) = Uug(x) thereisxoT Ssuch that

3

UT ug(xg) U xoT U.But x’o €U —which is acontradiction!
Since01 [{x¢:x] S}), thereareXxy,..., Xxn 1 Ssuch that

0=x"1U.Ux", U 1=x,U...Ux,, hence FM(B) = ug(1) = ug(x1 U... U
Xn) = Ug(X1) U... Uug(xn), that is, FM (B) is a compact set. n

Now let B;, B, be Boolean algebras, f T B(B1, B,) and
FM(f) : FM(Bs) ® FM(By), FM(f)(U) = fX(U), for every UT FM(Bo).

Proposition 4.3.25. FM (f) is a continuous function.

Proof. For x T By we have (FM (f)) *(ug, () =
{UT FM(B2) : FM())(U) T ug (0} ={UT FM(B2) : f{(U)T ug (0} =
{UT FM(B2): xT fH(U)} ={UT FM(B2) : f(x) T U} = ug, (f (%), hence
the function FM (f) is continuous. N

Asin the cases of |attices, the assgnmentsB ® FM(B) and f ®
FM(f) define a contravariant functor FM : B ® B from the category B of a
Boolean algebras to the category B of Boole spaces (whose objects are
Boole spaces and the morphisms are the continuous mappings).
Thisfunctor is called Sone duality functor.

Theorem 4.3.26. The dual category of category B of Boolean
algebrasis equivalent with the category B of Boole spaces (i.e, B® » B).
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Proof. ([70]). Firstly we will construct another contravariant functor
T: B ® B which together with FM gives the desired equivalence.

For aBoole space X T B we denote by T(X) the Boolean algebra of
clopen sets of X and for every morphismf: X ® Y in B we denote by
T@E):T(Y)® T(X) therestriction of f : P(Y) ® P(X) to T(Y) (clearly this
function iswith valuesin T(X)). It is easy to prove that we have obtained a
contravariant functor T:B ® B.

| want to prove that the pair (FM, T) of functors defines the
equivalence of categories B and B (so we obtain B® » B).

For thisit is necessary to prove the existence of functorial
isomorphisms ToFM » 1g and FMoT » 1.

Firstly | remark that every ultrafilter of T(X) (with X Boole space) has
theform{W 1T T(X): xT W} withxT X; see[70, p. 423)]).

Now let B be a Boolean algebra. Since ug isamonomorphism, B will
be isomorphic with ug(B).

So, to provethat B isisomorphic with T(FM (B)) it will sufficeto
provethat ug(B) isequa with T(FM(B)). Since ug(x)I T(FM (B)) for
every x 1 B, wewill prove that every clopen set in FM (B) has the form
ug(x) withx T B.

If DT T(FM(B)), then D= Uug(x) and Crme) D= Uug(y).

3% SN
ThusFM(B) =D E (Ceme)D) = ( %ua(x))u ( Uug(y).
X T
S| B TI B

Since FM(B) isacompact set we can obtain afinite covering:
FM(B) = ug(X1) E ... E Us(Xn) E Ug(y1) E ... E Ug(ym) (With x;T S, y;1
T, 1EiEN 1EjEm).

If n=0then D =X =ug(1) andif m=0, D = &= ug(0).

Inthecasewhenm?® 0,n? 0,D=ug(x1U...Ux, Uy; U... Uyy).

Nowlet X1 B anda: X ® FM(T(X)),a(x)={D1 T(X):x1 D}.
Clearly a issurjective.

Also a isinjective, sinceif x ! y, thereisD 1 T(X) suchthatxT D
and yi D (X isBoole space!).

The function a is bicontinuous because if D¢isaclopen setin
FM (T(X)), e.g. D¢=ug(D) withD T T(X), thena™*(D9 =D.

Therest are small calculus details which we let them for the reader. n

4.4. Representable functors. Adjoint functors
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Let C beacategory, F: C® Set acovariant functor, X € C and (h*,
F) the class of functorial morphisms from the functor h* to the functor F.

Consider canonical functiona = a(F, X) : (W, H® F(X), a(j ) =j (X)(1x)

for every i € F).
Lemma4.4.1. (Yoneda - Grothendieck). The function a isbijective
and functorial with respect to F and X.

Proof. We will construct b : F(X) ® (h*, F), the converse of a.

Indeed, for a€ F(X) and Y € C we consider the function b*(Y) :
RY) ® F(Y), b? (Y)(f) = F(f)(a), for every f € C(X,Y).

The morphisms (b® (Y))y<c are the components of a functorial
morphism ba:h*® C.

For this, let Z € C, g € C(Y, Z) and consider the diagram

b % (v
h* (Y) _— F(Y)

h*(g) F(9)

b® @
b (2) —> F©
Iff € h(Y) = C(X, Y), then (F(g) bA(Y))(f) = (F(g)oF(f))(a) =
F(gof)(a) = b?(Z)(gof) = (b? (Z2)oh*(g))(f), hence the above diagram is
commutative, so b?is afunctorial morphism from h* to F, that is, b is
correctly defined.

To provethat b isthe converse of a, we have to prove that boa =

and acb = 1|:(x).
Indeed, letj T (W*, F). Wehave (boa)(j ) = b(a(j)) =b(j (X)(1x)) =
b? (wherea=j (X)(Ix) T F(X)). Sinceforevery YT Candfl C(X,Y),
the diagram

1(hX,F)
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hX
hX (X) L X (Y)

1 (X) i(Y)

F (X) L F(Y)
is commutative, we deduce that b*(Y)(f) = F(f)(a) = F(f)(j (X)(1x)) =
( (Y)o h(H)(1x) = (Y)(f), henceb®=] , s0 (boa)(j ) =] P boa=

1(h)( ’F) O

Conversdly, if al F(X), then (acb)(a) = a(b®) =b* (X)(1x) = F(1x)(a) =
1rx)(a) = a henceaob = 1gy).

Sinceforevery f1 C(X,Y),j 1 (h*,F)andG:C ® Set isacovariant
functor it is easy to see that the diagrams

a (F, X)
(™, F— > FX (%, F) 2EXs ki
q FO r i X
o R ALY i<, e 2EX) S 6

are commutative (g, r are defined by the composition to the left, respective
to theright, of h': hY ® h* with| , wherefor ZI C and gi h'(Z)(g)=gof, we
deduce the functoriality of a inFand X. n

Remark 4.4.2.

(i) If f : C® Setisacontravariant, then for every X 1 C, the
canonical function a(F, X) : (hx, F) ® F(X) (] ® j (X)(1x)) isbijective
and functorial in F and X (the converseb : F(X) ® (hx, F),a® b,will be
defined analogousdly).

(i) From the above lemmawe deduce that (h*, F) as (hx, F) are sets.

Definition 4.4.3. We say that the covariant functor F: C® Setis
representableif thereisa pair (X, a) (with X T Candal F(X)) such
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that the functorial morphism b?: h* ® F (the corresponding of a by
Y oneda-Grothendieck lemma) isa functorial isomor phism.
The pair (X, a) will be called the pair of representation for F.

Remark 4.4.4. In adual way, the contravariant functor F: C ® Set
will be called corepresentableif there exist X1 C, al F(X) such that the
functorial  morphismb,: hy ® F will be afunctorial isomorphism.

Since every contravariant functor F: C ® Set can be considered as a
covariant functor from C° to Set, in what follows we will consider only
covariant functors.

Let C, C¢betwo categoriesand T: C® C¢S: C¢® C two covariant
functors. We will define two new covariant functors T, S : C* C¢® Set
in the following way: if (X, X9 1 C% C¢ then T (X, X9 = C&T(X), X9 and
S(X, X9 = C(X, S(X9); (f, f ¢ : (X, X9 ® (Y, Y¢isamorphisminC®’
C¢ thenwedefine T(f,f ¢ : CET(X), X9 ® CET(Y), Y) by T (f, f9(a) =
feaoT(f) for every al Ce(T(X), X9 and S(f, f) : C(X, S(XO) ® C(Y,

S(YQ by S(f, f§(a) = S(fgoaof, foreveryal C(X, S(X9).
Lemma4.45. T,S:C° C¢® Set arecovariant functors.

Proof. We will only provefor T (for s will be analogous). We have
?(1(x,><')):lf(x,x-) 0 Ta, 1) =15 xy O Ty 1)(@)=a for every
al CET(X), X9 U 1xgo ao T(Ix)=a U 1xgo a o 1rx) =a whichis
Clear.

Now let (f, f§ : (X, X ® (Y,Ydand (9,99 :(Y,Y)® (Z, Z9 be
two morphismsin C°~ C¢(so, we have z %34® Y ¥%#4® X morphismsin C
and X ¢%¥%® YeyFe z¢morphismsin CO.

Then (g, g9o(f, ) (in C* CQ = (gof (in CY),
gbfe(in CQ) = (fog (in C), gif&in CQ) = (fog, g&f@(in C" CY so, to prove
T((9.990(f, 19)=T(g,990T(f,f90 T(fog,g® f9(a)=T(g,g9(T(f, f9(@)),
foreveryal T(X,X§=C&T(X), X9 U g&f ®aoT(fog) =
T(g, g9(f ®aoT(f)) U gbf ® aoT(fog) = gk (faoT(f))oT(g) U
gtof ® ao T(feg) = g&f ® ac T(f)oT(g) whichisclear (sinceT isa
covariant functor, hence T(fog) = T(f)eT(g)). n
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Definition 4.4.6.Let T: C® C¢and S: C'® C betwo covariant
functors. We say that T isa left adjoint of S (or that Sisa right adjoint
of T)if T»S (i.e thereisafunctorial isomorphismy :T® S).

Now lety :T® S afunctorial morphism of componentsy (X, X¢:
T (X, X0 = CET(X), X ® (X, X9 = C(X, S(X9) with (X, X9 C°* C¢and
wedenotey x =y (X, T(X)) (1) : X ® (ST)(X).

Lemma 4.4.7. Relative to the above notations and hypothesis, the
mor phisms (Y x)xec are the components of the functorial morphismy :

1c ® ST.Theassignmenty ®y isa bijection between the functorial

morphismsfrom T to S and functorial morphismsfrom 1c to ST (e.g.
from (T,9) to (1c, ST), if we consider the notations from the above

paragraph).

Proof. ([70]). To provethat y isa functorial morphism, it should be
proved that for every X, YT Candf1 C(X, Y), thediagram

Y x
X (ST)(X)
f (ST) (H)
Yy
Y ST (Y)
Iscommutative, that is, (ST)(f) cyx =yy o f. Q)

Indeed, by hypothesis the following diagram:
y (X, T (X))

T (X, T(X) C(X,ST(X)) = S (X, ST(X))

C(T(X), T(X)) =
T (1, T(P) §(1>< , T()

— y (X, T(Y)) _
C(TX), T(Y) =T (X, T(Y)) —————> C(X, ST(Y))= S (X, ST(Y))



Categories of Algebraic Logic 145

is commutative hence (S (1x, T(f))e y (X, T(X)))(1rx) =

=y (X, T(Y))o T (Ix, TMN))(Lrex) <

S (L, TENY X, T (Lrpo)) =y (X, TYNXT (Ix, TM) (L)) <
S, TENY x) =y (X TY)(T(Folrp o T(1x) U

S(T(F))o yx o1x =y (X, T(Y)(T(f)) U

(SN)() e yx =y (X, T(Y)(T(F)) @)

Also, the diagram

— y (Y, T(Y)) _
C/(T(Y), T(Y))= T (Y, T(Y)) ——=> C(Y,ST(Y)) = S (Y, ST(Y))

T (f, 1) ls (f. 1r))

_ Yy (X, T(Y) _
CT), TV =T X, T())y———> CX,ST(Y))= S (X, ST(Y))

IS commutative, hence
(S(f, Lrery) oy (Y, T(Y))(Lrvy) = (v (X, T(Y))o T (F, Lrery))( 1reyy) <
(S(F, Lrevy) (v (Y, TOYDErery)) = (v X, TONO)T(E Lreny)(Lrery)) <
(S(f, Iroy) (v v) = (y X, T(Y)(Irevy T(H) <
S(Trevye yy of =(y (X, TY)N(T(F)) = yv o f=(y (X, T(V)(T()) (3)

From (2) and (3) we deduce (1), hencey isafunctorial morphism
from 1c to ST.

Leta: (T,S) ® (1c, ST), aly )=y foreveryy I (T,9).

To provethat a is bijective, we will construct b : (1c, ST) ® (T,S)
which will betheinverse of a.

Solety € (1c, ST) of components (y ) xic Withy , : X® (ST)(X),
forevery X 1 C.

For every (X, X0 T C° " Cdwe consider the mapping
y (X, X9:T(X,X9® S(X, X9 defined by y (X, X¢(a) = s@)oy « for every
al CET(X), X9.
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Lemma 4.4.8. Thefunctions § (X, X)) o arethe

(X, X0 c”
components of a functorial morphismy :T® S.

Proof. ([70]).1t should be proved that for every morphism
(f, f0 : (X, X ® (Y, Y9 fromC°" C¢ the diagram

Y (X, X)

C'(T(X), X") C(X, S(X)
\LT(f,f’) l§(f.f’)
C/(T(Y).Y) Y (YY) COY. S(Y)

is commutative.
Indeed, if a T CET(X), X9, then
(s(f,f)oy (X, X))(a) = s(f, )y (X, X")(@)) = S(f") ey (X, X")(a)
of ==5(f") o S(a) oy xof (4)
and (y (Y, Y)eT (f, )@ =y (Y, Y)T (f, ) (@) = B
=y (Y, Y)(feaoT(f)) = S(f'eacT(f))o y y= S(f)oS(@a)o(ST)(f)oy .

(5)
Since the diagram

Y ST(Y)
f l \LST )
X Y x ST(X)

is commutative, we deduce that (ST)(f)oy , = y , of. (6)
From (6), (4) and (5) we deduce that the diagram from the start of the
proof is commutative, hencey :T ® S isafunctoria morphism.
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Wedefineb : (1c, ST) ® (T,S) with the help of the above lemma by
by )=y ,foreveryy €(lc, ST).n

Lemma4.4.9. Thefunctions a and b defined above are onethe
conver se of the other (that is, aob =1;_gryand boa =1

(f,é))'

Proof. ([70]). Lety 1 (T,S); then (b ca)(y) =b(a(y)) and to prove
that b(a(y)) =y isequivaent with (b(a(y))) (X, X9 =y (X, X9, for every
X, X91T c° c¢

We havethat (b(a(y))) (X, X¢ : C&T(X), X ® C(X, S(X9) is
defined suchthat b (a(y))) (X, X4(f) = S(f) o y (X, T(X)) (Irx))-

By the commutativity of the diagram

Y (X, T(X))

C'(T (X), T (X)) C(X, (ST)(X))
T . f) Sy .
y ’
C'(T (X), X)) 029 C(X, S (X))

we deduce that:
(S(1x, foy (X, T (Lreq) = (v (X, X)o T (1x, H))(Lrpa) <
S (Lx, Ay (X, T (L)) =y (X, XNT (Ix, F(Lre)
S(f)e y (X, TX)(Lrpg)oLx =y (X, X )(folrpxyoT(1x)) =
S(f)e y (X, TX))(Lreo) =y (X, X)(f) = b (a (y)) (X, X9(f) =y (X, X9(f),
so, we deduce that b(a(y )) =y, hence b oa =1rg-
Now let j T (1c,ST). For X T C we have ((a b)(j ))x = (a(b(j )))x=

()X, T (L) =1 (X, T(X)) (Lreo) = (L) ©f x = sty ©f x =] x,
hence (ab)(j)=j,thais aob=1; g). N

Remark 4.4.10. Dudly, if T: C® C¢and S: C¢® C aretwo
covariant functors, then to every functorial morphismj :S® T of
components i (X, X): S(X,x9® T(X,x9,with(X,X91 C° C
we obtain afamily of morphisms (7o) x¢ ce Where jxe=j (S(X9, X 9(1s(xq) »
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. (TS)(X') ® X¢and the assignment X¢® ., X¢ C¢ wedefinea
functorial morphism j~: TS® 1c¢ Theassignmentj ® [~ isabijection
from (S,T) to (TS, 1cg, its opposite assign to every functorial morphism
i€ (TS, 1¢c) of components () xs cc the functorial morphismj :S® T of
componentsj (X, X'): S(X,X9® T(X, X9, | (X, XQ(f) = jy.oT(f), for
every fT C(X, S(X9).

Definition 4.4.11. Lety :T® Sandj :S® T betwo functorial
morphismsand y :1. ® ST, j:TS® 1. thefunctorial morphisms
corresponding to the above lemmas.

If T istheleft adjoint of Sand j isthe converseisomorphism of
y, wesay that y- and |~ aretheadjoint arrows (one quasiconverse for
another).

Let S: C¢® C beacovariant functor. For every X T C we denote by
X 1(C¢YS) (respective (C¢ S) / X) the category whose objects are pairs (f,
X9 (respective (X¢ f)) withf T C(X, S(X9) (respectivef C(S(X¢), X)).

A morphisma : (f, X9 ® (g,YQ (respectivea : (X¢f)® (Y§Q))is
by definition amorphisma : X¢® Y ¢from C¢such that S(a)of = g
(respective go S(a) =f).

Proposition 4.4.12. 1f S: C¢® C isacovariant functor, then the
following assertions ar e equivalent:

(i) Thereisacovariant functor T : C® C¢left adjoint for S;

(i) For every X1 C, thefunctor h* S: C¢® Set isrepresentable;

(iii) For every X T C the category X / (C¢ S) hasan initial object.

Proof. ([70]). (i) P (ii). Since T istheleft adjoint for S, thereisa
functorial isomorphismy :T® S, so, for every X I C we have afunctorial

isomorphismin Y,yy=y(X,Y):CET(X),Y)® C(X,Y))=yy:
h™™(Y)® (h*S) (Y), that is, F = h*Sis representable with (T(X), @) as pair
of r?Presentati on (where a=y (X, T(X)) (Irx)) T C(X, (ST)(X))
= (h™S) (T(X)) = K(T(X))). X

(ii) b (iii). Suppose that for every X1 C the functor F = h*Sis
representable and let (X¢ &) apair of representation with X¢I Cc¢and
al F(X9 = (h"S) (X9 = h*(S(X9) = C(X, S(X9).
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We have the functorial isomorphismb?: h* ® h*S, that is, for every
Yd C¢ wehaveabijectionb®(YQ : C&X¢ Y® C(X, S(Y Q) (with
functorial properties).

Then (f, X9, with f =b3(X9 (Ixg T C(X, S(X9) isaninitial object in
the category X / (C¢ S).

Indeed, if (g, Y9 isanother object in X / (C¢ S), thengi C(X, S(Y9)
o, thereisauniquea T C&X¢ Y ¢ such that b? (Y ¢(a) = g. We have to
provethat a isamorphismin X /(C¢YS).

Indeed, from the commutative diagram

b & x)

c’ (X', X C(X, S (X))
h* (o) (WS)()
b2y ,
c’ (X', Y C(X, S (Y)
we deduce that:

((0"S) (a)o bTX9)(1xd = (b9 o W*%a) (19 U
U (h"S)(@) (b*(X9 (1x9) = b(Y9 (M%) (1x9) U
U (W*9)@)(f) =bXY9(a) U h*(Sa))(f) =gU S(a)ef =g, hence
a:(f, X9 ® (g, Y§isamorphisminX/(C¢S).

(iii) b (i). For every X T C, we denote by (ix, T(X)) an initial object
inthe category X / (C¢ S) (with T(X) T C¢andix 1 C(X, (ST)(X)).

If wehave X, Y1 Candul C(X,Y), andif we define T(u) : T(X)®
T(Y) asthe unique morphism with the property that the diagram

Ix

X S(T(X)

u S(T ()

Y S(T(Y))
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Iscommutative, it is easy to see that the assignments X ® T(X) andu®
T(u) defineacovariant functor T:C® C¢
To provethat T isaleft adjoint of S, we should prove that thereisa

functorial isomorphismj :S® T.
For this, if (X, X9 T C°~ Céwe define
J (X, X9:S(X, X9 =C(X,S(X9)® T(X,X9=CqT(X), X9 in thefollowing way:
For vi C(X, S(X®), j (X, X9(v) isthe unique morphism al C&T(X), X9
such that the diagram
IX

X S (T(X))

S(X’)

IS commutative.

There resultsthat j (X, X isan injective function and since for every
bT C&T(X), X9, (X, X(S(b)  ix) =b we deducethatj (X, X9 is
surjective function, that is, j (X, X¢ isabijective function.

Sinceitiseasy to seethat ] isafunctorial morphism, the proof of this
proposition is complete. N

The dual result is:

Proposition 4.4.13. Let T : C® C¢a covariant functor. The
following assertions ar e equivalent:

(i) Thereisaright adjoint functor S: C¢® C for T;

(i) For every X¢I C¢ thefunctor hygT is corepresentable;

(iii) For every X¢l Cg¢ the category (C, T)/X¢hasa final object.

Remark 4.4.14. Theleft (right) adjoint for afunctor, if thereis, is
unique up to afunctorial isomorphism.

Indeed, let S: C® C be acovariant functor and T,T¢: C ® Cc¢two
|eft adjoints for S. By Proposition 4.4.12, for every X T C, the functor h*S
is representable, hence there exist the functorial isomorphismsa : h"™®
h*Sand b :h"™) ® h*S. We deduce the existence of a functorial

isomorphism atob: ™ ® h'™ whichimpliesthe existence
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of an isomorphism y(X) : T¢X) ® T(X) in Ce¢such that ™) =
a™'o b (thisis possible because for every Y T C¢ hY isfaithful and full).
Sincea™ o b isafunctorial morphism, we deduce that the family of

morphisms (g(X))xec are the components of afunctorial isomorphisng: T¢
® T. Anaogously we prove the dual result.

Examples

1. Theinclusion functor i : Ord ® Pre (see Chapter 2) has aleft
adioint j:Pre® Ord.

Indeed, let (M, £) T Pre. On M we consider therelation R: xRy U x
£y andy £ x; itisimmediate to see that R is an equivalence relation on M
compatible with £ (i.e, x Rx¢ y R y¢and x £ y imply X¢£ y9.

Let M =M /R be the quotient set equipped with preorder quotient (i.e,
for x,y1 M, x£y U x£y)andpy: M ® M the canonical isotone
surjective function. Let N bean ordered setandg: M ® N anisotone
function. If R(g) isthe equivalence relation on M associate with g (that is,
xR(@)y U g(x) = g(y)), then R £ R(g), hence there is a unique isotone
function g:M ® N suchthat gop=g.

Itisimmediatethat if f : M ® N isan isotone function, then thereisa
unigue isotone function f:M ® N such that the diagram

Pwm

M

Pn

z <— |

N

is commutative.
From the above property of uniqueness we deduce that the

assignmentsM ® M andf® f defineacovariant functor j : Pre® Ord.
This, by Proposition 4.4.12, isthe |eft adjoint functor for i (since from
the above we deduce that for every M1 Pre, the object (pw, M ) istheinitial
in the category M / (Ord, i)).
2.The subjacent functor S: Top ® Set has aleft adjoint functor
D:Set ® Top and aright adjoint functor G : Set ® Top, defined in the
following way:
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The functor D is the functor discrete topology which assignsto every
set X the discrete topologica space (X, P(X)) and to every function the
same function (which is clearly a continuous function relative to discrete
topologies).

The functor G is the functor rough topology which assign to every set
X the rough topological space (X, { &, X}) and to every function the same
function which is clearly a continuous function rel ative to rough topologies.

4.5. Reflector s. Reflective subcategories

Definition 4.5.1. A subcategory C¢of a category C iscalled
reflectiveif thereisa covariant functor R : C® C¢ called reflector such
that for every A1 Cthereisa morphismfgr(A): A® R(A)in C¢
with the properties:

(i) 1ff1 C(A, A9, then the diagram

f
A A’

fr(A) fr(A")

R (f
R(A) © R (A")

IS commutative, thatis,fr (AQof =R (f)o fr (A);
(i) I1fBT Ct¢andfl C(A, B), then thereisa unique morphism
f¢I CER(A), B) such that the diagram

fr(A)

Iscommutative (i.e, f¢o f g (A) =f).
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Remark 4.5.2.

(). In some books the reflectors are called reflefunctors.

(ii). Let C¢i C asubcategory of the category C. Then Ctisa
reflective subcategory of C iff there exists a function which assignsto A 1
Canobject  R(A)T Ctand afunction which assignstoevery AT Ca

morphism fr(A) : A® R(A) of C such that for every BT C¢
andf1 C(A, B) thereisaunique morphismf ¢I C&R(A), B) such that f ¢o
fr(A) =f.

Indeed, the implication from left to right isimmediate.

For another implication, we extend the above assignment from Ob(C)
toOb(CQ toafunctor R: C® C¢

Forf1 C(A, Ad, wedefineR(f) T C&R(A), R(B)) to be the unique
morphism in C¢for which R(f)o fr(A) = fr(AQof. Then (i) and (ii) from
Definition 4.5.1 are satisfied and it remains to show that R is afunctor.
Indeed, if fl C(A, Ad, gi C(A¢ Ad), then R(f) o fr(A) = fr(Adof and
R@)fr(A) = fr(A®) o g, s0R(g) o R(f) o fr(A) = R(g)o fr(AQ of =
f R(A®) o gof and by uniqueness we deduce that R(g) o R(f) = R(gef).

For 1aT C(A, A), we deduce that R(1a)o fr(A) = fr(A) 0 1 =
fr(A), S0 by uniqueness 1r) = R(14).

(ii). fR:C® C¢S: Ct® Cdaretworeflectors, thenSR: C® C®
Is areflector.

Indeed, we check that the conditions of (ii) are satisfied. For AT C let
fsr(A) =fs(fr(A))o TR(A). .

If CI Ca&andfl C(A, C), then there existsauniquef¢l CER(A), C)
such that f&f g(A) = f and aunique f&1 C®&(SR)(A), C) such that
fapf s(R(A))=f¢ It easily follows that f&o f sz(A) = f. For uniqueness, let g
T C®(SR)(A),C) suchthat g o f sz(A) = f; then g of (R(A))o fr(A) =,
hence f¢=gefs(R(A)) andtheng=f@

(iv). If Ceisafull subcategory of C, thentosaythat R: C® C¢is

reflector is equivalent with to say that R is aleft adjoint for the inclusion
functor from C¢to C.

Lemma4.5.3. Every reflector R: C® CCpreserves epimorphisms,
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Proof. Supposethat f T C(A, Ad isan epimorphismin C and let
g, hl C&R(AQ, B) suchthat g o R(f) = h o R(f). Then g of g(AQ) = goR
(f)o fr(A) = hoR(f)o fr(A) = hof g (AQof; sincef isepimorphismin C we

deduce that gof r(AQ = hof gr(AQ, henceg = h, that is, R(f) isan
epimorphism. N

4.6. Productsand coproducts of afamily of objects

Let C be acategory and F = (M;)ie| be a non-empty family of objects
inC.

Definition 4.6.1. We call direct product of the family F a pair (M,
(Pi)ier) with MT C and p; T C(M, M)), for every i1 | such that for every
other pair (M’, (p’ier) with p’; T C(M’, M;), il 1, thereisaunique
fl C(M¢ M) such that p’; = piof, for everyil 1.

Remark 4.6.2. In the case of existence, the direct product of afamily
F isunique up to an isomorphism.

Indeed, suppose that we have two direct products (M, (p)ie)) and
(M’,(p')ier) for F. If we consider the diagram

M

then thereisauniquefT C(M¢ M) and aunique gi C(M, M¢ such that p’;
= piof and pi = p’iog, foreveryil I.

Then p; o (fog) = piand p'; o (gof) = p'i, forevery i1 1.
If we consider now the diagram
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from the uniquenessin the direct product definition we deduce that fog =
1v.
Analogously we deduce that gof = 1yg¢ hence M » M¢

The direct product of afamily F if exists, will be denoted by ® M; and

p,:OM; ® M; will becalled thej-th canonical projection.
il

Lemma4.6.3. Let O M, = (M, (pi)ie)) adirect product of the family
il

F. Then, for everyil | thei-th projection p; hasa section (henceis
epimorphism) U C(M;, Mj) ¢ /& for everyj1 1.

Proof. Suppose that for every j T |, C(M;, M;) * ZAEand choose
fi T C(M;, M)) such that f, =1y, . Thereisaunique morphism

fi:M; ® OM; suchthatp o f; =fj, for everyj1 I.Inparticular, fori=j
il

we have pi o fi= f; =1y , hence p; has asection, soisan

epimorphism.

Conversely, if pi hasaretraction and s isaright inverse of p;, then for
everyjl I,posT C(Mi, M), henceC(M;, M;) t /& foreveryjl I. n

Corollary 4.6.4. 1f C isacategory with anullary object O, then the
canonical projectionsof adirect product in C are epimor phismswith
sections.

Proof. In the above lemait is suffice to consider for every j1 I,

fij =Omm, and f; =1y . N
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Definition 4.6.5. We say that a category C iswith products, if each
family of objectsin C hasadirect product.

Examples

1. The category Set is a category with products (see 85 from Chapter
1).

2.Every equational category is a category with products (see Chapter
3). More general, every category of algebras of the sametypetisa
category with products (see 83 from Chapter 3).

3. Gr isacategory with products.

Indeed, if F=(G))ig isafamily of groups, then if we consider in Set
O G, = (G, (p)ier) and if we define for two elementsf, g1 G, = (f)ie;, g=
il
(@)ie;, Withf, g1 G foreveryil 1,fog=(f; o g)iey, it iseasy to seethat
relative to this multiplication G become a group and every projection piisa
morphisms of groups. Then (G, (p)iel ) = O G; inthe category Gr.

il

4. The category Fd of fields is not a category with products (so, Fd is
not an equational class).

Indeed, if K and K¢are two fields with different characteristics, then it

IS easy to seethat it doesn’'t exist K P K¢in Fd (since if between two fields

K and K’ thereisamorphism of fields, then K and K" have the same
characteristic).

The dual notions of the direct product is the notion of direct
coproducts(also called direct sum). In fact we have the following definition:

Definition 4.6.6. We call coproduct in the category C for afamily
F = (M))ie Of objectsin C, apair ((aj)ic;, M) whereM 1T C and a;l
C(M;, M), for everyil | such that for every pair ((a'i)ie;, M") with M ¢
I cand a’iT C(M;, M9,il I, thereisaunique fl C(M, M¢ such
that f oa; =a’; for everyil |I.

Remark 4.6.7. Asin the case of direct product, it isimmediate to see
that if acoproduct existsfor afamily F, then it is unique up to an
isomorphism.
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We denote the coproduct of the family F by c M; .

Foreveryj1 I, a;:M; ® cM,; will be called thej-th canonical
il

injection.

From Lemma4.6.3 and Corollary 4.6.4 we obtain dual results for the
coproduct:

Lemma4.6.8. For everyj 1 1, a; isamorphism with retract
(hence is monomor phism) iff C(M;, M)t /&, for everyil I.

Coroallary 4.6.9. If C hasa nullary object, then the canonical
injections of every coproduct in C are monomor phismswith retraction.

Definition 4.6.10. We say that a category C iswith coproductsiif
each family of objects of C has a coproduct.

Examples
1. Set isacategory with coproducts (see 85 from Chapter 1).

2. Let’sseewhat is the situation of coproducts in an equational

category K. For AcK and SCA we denote by [S] the subalgebra of A
generated by S (see Chapter 3).

Proposition 4.6.11.([2]). Let C be an equational category, (Ai)iel a
family of algebrasin K and (ai : Aij® A)ic; afamily of morphismssuch
that if (fi : A @ B)iel (BT K)isanother family of morpbismsin K,
then thereis fl1 K(A,B)suchthat foa; =f,,for everyil I.

Then (A, (aj)iel) = F.A iff _Hai(A) iIsagenerating set for A (i.e,
[Ua;(A)] =A).

Proof. ([2]). "U ". We only have to prove the uniqueness of f. This

follows from Lemma 3.1.11.
"p".LetA’=[Ua,;(A)]. Forevery il | wedefinef’i: Aj® A’ by

/i(x) = ai(x), for x T A; and since K is an equational category we deduce
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that i K(A;, Adforeveryil I.By hypothesisthereisfi K(A, AQ
suchthat f(= foa; and Lo fit=a, foreveryil 1. Since 1,0a; =a, for

everyi 1 | wededucethat 1,40 f =1,, hence 1o’ o isONto, SOAC=A. n

Remark 4.6.12. In Chapter 3 we have defined the notion of free
algebraover aclass of algebras.

Now let’s have a generalization of this notion:

Definition 4.6.13. An algebra A from an equational category K is
called freefor Kover aset Sif [S] = A and thereisafunctioni: S® A
such that for every functionf: S® B (withB1 K) thereisauniqueg
T K(A, B) such that goi =f.

Clearly, if ST A isnon-empty and if we consider i = 15 we obtain
the notion defined in Chapter 3.

The set Sis called a set of free generators. We denote A = F¢(S) (see
Chapter 3).

Corollary 4.6.14. Let K beanontrivial equational category and S
beanon-empty set. If CFc({s)=(Ala)gs) WithAT Kanda_1
s S

K(Fc({s}), A) for sT S, then A » Fx(S).

Proof. Letf: S® A, f(s) = aq(s) for every sl S,ABT Kandg:S®
B amapping. Then for every sl S t[lere iIsauniquegs| K (EK({ st), B)
suchthat  g«(s) = g(s) for every sl S. Thereisauniquehl K(A, B)
such that hoa = g, and thus hof = g. By the uniqueness of h and
Proposition 6.11, we deduce that A»Fg(S). n

In the book [69,p.107] , it is proved the following result:

Proposition 4.6.15. Let K be an equational category and (Ai)ic| a
family of algebrasin K. If every algebra A; isa subalgebra of an algebra
BiT Kandfor it jthereisa;l K(Aj B, then thereexists C A.

3. Coproductsin the categories Mon and Gr ([74]).
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Let M be a set. The existence of the free monoid (group) generated by
M is assured by Theorem 6.16 in Chapter 2 from [74]. Next we will have a
description of those.

If M"=CM" (in Set), then the elements of M™ are pairs (f, n) with n
n30

I N andf=(xg,..,x))T M.

If we denote by () the empty sequence (of length 0), then M® = {( ),
0}.

On M™ we consider an operation of composition (by juxtaposition) in
the following way: if x = ((Xy, ..., Xn), N) and x" = ((X'y, ..., X'w), N)EM*,
then XX = ((X1, «ov sy Xpy X1, or , X ), NN )EM*,

It isimmediate to see that in thisway M”* becomes amonoid (where
the neutral element is the empty sequence ey~ = ((), 0) and iy : M ® M™,
im(X) = ((x), 1) is an injective morphism of monoids. Since for every
monoid M¢ and every functionf : M ® MG f: M* ® MG ((( ),0) =eye
and f(((Xg,.. X,),m) = f(x)%..xf (x,) (for n3 1) isthe unique morphism of
monoids with the property that  oi,, = f wededucethat M™ isthefree
monoid generated by M (i.e, M* = Fyon(M)).

Let now (M;)ie; be anon-empty family of monoids, M = Cc M, (in Set)

i1
with canonical injectionsa; : M;® M (iT 1) and M* the free monoid
generated by M (before described). The elements of M* are pairs ((ay, ..,
a), ) with (ay, ..., &) T M", hencea = (x;, ij) withx; T Mj; andi; T 1.

Let qu be the congruence of MA* generated by the elements ((x;, i;) (i,
ij), A(Xj Yis ij)), (q, ij), ()), with X, Y | Mij and € the neutral element of Mj
j, i 11).
o If)by Pg, -M* — M*/ qu we denote the canonical onto morphism of

monoidsand a; =p,, oa; (i I),then(M* /qu, (a; )ie1) = CM; inMon.
il

Following the above result and since every equational category iswith
products we obtain:

Proposition 4.6.16. The category Mon isa category with products
and coproducts.
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Now we consider the problem of coproducts in the category Gr ([74,
p.130]).

Firstly, we will give a characterization for the free group generated by
aset M. We denote by M ¢an isomorphic image of M suchthat M C M¢= A
(for xT M we denote by x¢the image of x by the above fixed isomorphism).

On afreemonoid (M CM¢" (where M C M ¢ isthe coproduct of M

with M ¢in Set) we consider the congruencer y generated by the elements
((X) (x9, () and ((x9 (x), ()) withx T M. | suggest the reader to prove that
the quotient monoid (M CM ¢"/ ry isrealy the free group generated by the
set M.

If (Gi)ie isanon-empty family of groups, then we have the same

descriptionof C G, inGr asinthecase of Mon.
il

So, we have:
Proposition 4.6.17. Gr isa category with products and coproducts.

4. The category Fd of fieldsis not a category with coproducts.
Indeed, if K, K¢are two fields with different characteristics, then it
doesn’'t exist K CK' in Fd (the same argument as in the case of product).

If C isacategory with products and coproducts then for every M1 C

and |t AEwedenote M' =OM; andM ) =C M, , where M; = M, for every i
il il

-

Remark 4.6.18.
The canonical injections (projections) of a coproduct (product) are not
in the general monomorphisms (epimorphisms).

5. The category Preis a category with products and coproducts

Indeed, let ((Xi, £))ic| be afamily of elementsin Pre, (X¢(p)icl)
=0 X;and ((ai)iel, X® = C X; in Set.
il il
Forx,yT X¢x=(X)ie, y=(Yi)ic we definex £¢y U x; £ y;, for every
i1 1 andfor (x, i), (y,j) T X&wedefine(x,i)£&(y,j) 0 i=jandx £yin
Xi.
Then
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1) Relative to the order £¢the projections are isotone mappings and
(X £9, (p)icr) = O (X;.£) inPre.
il

2) Relative to the order £&the canonical injections are isotone and
((@ie, (X& £8) = C(X;,£) in Pre.
il

Analogously we prove that Ord is a category with products and
coproducts.

For existence and characterization of coproducts in categories of
|attices see Chapter 7 from [2].

6. Let (G))ic be afamily of abelian aditive groupsand G=0 G, . We
il
consider the subgroup G¢of G whose elements are the elements (x;)ie with
the components equal with 0 excepting afinite numbers of them and for

every il 1, a;:G; ® Geai(x;) = (Yi)iel, wherey; = x; andy; =0forjt i.

Thenfor every i1 |, a; isamorphism of groups and ((a;)ic;, G9 =
CG, in Ab.

Remark 4.6.19. Itispossiblethat C G, in Gr to be different from

CG, inAb.

7. In the category of cycle groups the product of the groups Z, and Z3
does not exist.

8. In the category of abelian finite groups the product and coproduct
of the family of aditive groups (Z,)nen do not exist.

9. Let (X, tj)ie; be afamily of topological spaces, (X, (p)iel) =
O X; and ((ai)ie, X9 = C X; in Set.

il il
If we equip the set X with at finest topology t such that all projections
pi are continuous functions and X ¢with the most fine topology t ¢such that
all injections a; are continuous functions, then ((X, t), (p)ie) = & (X;.t})
il

and ((@i)ie, (X¢t9) = CXith) in Top.
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Let (Xi)ie; and (X'i)ie; betwo families of objectsin acategory C
with products and (f;)ic; afamily of morphismsin C withf; T C(Xi, X¢), for
everyil .

If wedenote & X, = (X, (p)iei) and & x¢= (X', (p’)iei) following the
il il

universality property of product, thereisauniquefi C(X, X¢ such that

fiop = p'i of, forevery i 1 |, and if f; isamonomorphismin C, then f isalso
amonomorphismin C.
Wedenote f =& f, and we call f the product of the family of

morphisms (fi)ie|.

Let (Xi)ier and (X'))ie; be two families of objects in a category C with
coproducts and (f;)ic; afamily of morphismsin C withf; T C(X;, X"), for
every il I

If CX;=(@)q . X)and CX{=(@9i,.x9, following the property of

il il
universality of coproduct, thereisauniquefi C(X, X9 suchthat f o a; =

a’;jo f, foreveryil I;if foreveryil I,f;isanepimorphisminC,thenfis
also an epimorphismin C.

Wedenote f =C f; and we cal f the coproduct of the family (f;)ic of
il

morphisms.

4.7. Limitsand colimitsfor a partially ordered system

Let (I, £) bea directed set (i.e, for everyi,j1 1, thereisk1 1, such
that i, ] £ k), and C a category.

Definition 4.7.1. We call inductive system of objectsin C with
respect to directed index set | apair I = ((Aiier, ( ij)i,je1) With (Aiier @
family of objects of C and (j i;)i.je @ family of morphismsj ;T C(A;, A)),

with i £ j, such that
(i)j i =14, for every il I;

(II)|fI£j £k,thenj jkOj ij:j ik
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If thereis no danger of confusion, the above inductive system J will
be denoted by J= (Ai, j ij)-

Definition 4.7.2. Let 3 = (A, j ij) be an inductiv system of objests
in C relativetoa directed index set |.

A pair (A, (8)ie)) with AT C and (g)ie) a family of morphisms,
with a1 C(A;, A)for everyil I, iscalled inductive limit of the

inductivesystem I3 = (A, ] i), if:

(i) For everyi £ wehaveg o jj =g;

(ii) For every BT C and every family (f;)ic, of mor phismswith
fil C(Ai, B)for everyil | suchthatfjoj=fifor everyi£j,thereisa
unique morphismf1 C(A, B) such that f o g =f;, for everyil I.

We will say that a category C is a category with inductive limits if
every inductive system in C has an inductive limit.

Remark 4.7.3. Asin the case of products or coproductsit is
immediate to seethat if (A, (8)ic)) and (A’, (€'1)ie)) are two inductive limits
for inductive system I =(Ai, ] ij), then thereis aunique isomorphism f

T C(A, A9 such that fog=egforeveryil I.
If (A, (e)ie) istheinductive limit of inductive system J, we denote
A= lim A.
%ﬁ:@
Examples

1. The category Set isacategory with inductive limits.

Indeed, let 3 = (A, j j;) be an inductive system of sets and
(@)i,,A=CA inSet; then A= UA , where A = A" {i}, for every il | (see

il il
88 from Chapter 1).
Onaset A we consider the binary relationr: (x,i)r (y,j) U thereis
kT I'suchthati £k,j£kandj i(X) =] jk().
We haveto provethat r isan equivalence on A. Since the reflexivity
and the symmetry of r are clear, to prove the transitivity of r, let (x, i), (y,
i), (z, k) elementsin A suchthat (x,i) r (y,j)and(y,j)r (z k), hencethere
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existt,sl | suchthati,j£t, j,KEs, ju(X)=jj(y) andj «(y) =] ks(2).
Wefindr1 Isuchthat t£r, s£randsincej i(X)=( v ©j i)(X) =
J oG () =] o0 () =G wefdy) =1ip) =0 sl 9¥)=] sl «s(2) =
( & ©] ks)(2) =] kr(2) we deduce that (x,1)r (z,Kk), hencer is
transitive, that is, an equivalenceon A.

Let A= A/r, p:A® A=A/r beacanonical surjective function and

foreveryil |, g=poa;, wherea;: A;® A isthei-th canonical injection
of coproduct in Set.
We have to prove then a/li?T@ A =(A, (8)ier)-

Indeed, ifi,jT 1,i£j,g0j;=a U g( ij(X)=ea(x), for every x1
Ai U p(a;( ij(x))) =0U p(( ij(x),J)) = p((x, 1)) whichis clear sinceif we
choosek =j theni,j £k, j i(x) =] ij(x) andj j( ij(x)) = jiG ij(x)) =
1p G 5 09) =] ij(x), hence j i(X) =] jk( i(X))-

Now let B be another set and (fi)ic; afamily of functionswith fi : A; ®
B, foreveryil landfjoj;=fi, for everyi £ . Following the property of

universality of coproduct, there is aunique function g: A=C A ® B such
i

that goa;=f;, foreveryil I.
If (x, 1), (y,i)1 A suchthat (x,i)r (y,]), then thereisk T 1 such that

LjEkandj i(X) =] jk(y) P fi( k(X)) =kl ik(¥)) P (fic @ J i )(x) = (f

°j i)(y) P fix)=fi(y) P o((x, 1)) =g((y. })), so we deducethat f : A® B,
f((x,1)/r)=g(x, i) iscorrectly defined and it isimmediate to verify that f
isthe unique function defined on A with valuesin B with the property that f

og=f; foreveryil I, sotheproof iscomplete. n

2. We haveto prove, more general, that if € isan equational
category and I = (A;,j i), i,j 1 1,i £] isaninductive systemin £, then
in € exists lim A.

%ﬁ’;ﬁa@

Indeed, supposethat C A = (A, (ai)iel) witha; T E(A;, A) (i 1) and
il

let q= ©X the congruence on A generated by X ={ai(x), a;(j (X)) :i,j 1
l,i £jand x1 A} (see Chapter 3). Since € is an equational category, B =
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Alql €anda; =p,oa;:A ® B isafamily of morphismsin € (withi T |
and pq: A ® B the canonical surjective function).

We have to prove that (B,(a; )iel) = 3/|i?21® AL

Firstley, we remark that for everyi,j1 I, i £jandx1 A;, following
the definition of g we have that (ai(x), a;j(j (x))) | g, so we deduce that
pq(ai(x)) = pq(aj(j ij(x)), hence a; :a_joj ij -

Now let B¢l € and for everyil I, a1 €(Aj, B9 such that a’joj ;=
a’ifor i£j.Since A =CA , thereisan unique ul €(A, BY such that uo a;

il

=a’iforevery il I.

Sincefor everyi,jT lwithi £jandxT A; wehaveu(@’i(j i(x))) =
a’i(x) = u(ai(x)), then we deduce that ((a’;(j (x)), ai(x)) T Ker(u).

Sinceql Ker(u), thereisauniquevl &(B,B9 suchthat vop, =u.
Then for every il I, voa; =vo(p,0a;)=uoa; =af.

To prove the unicity of v with the property that voa, = a’; for every i
T I,leewTl &B, BY suchthat woa, =a’;, foreveryil I.

From the uniqueness of u, we deduce that u=wop, , so, for x T A,
V(x/a) = v(pg(X)) = (v opg)(X) = u(x) = (W opg)(x) = w(x/q), that is, w = v.
n

Definition 4.7.3. Let (I, £) beadirected set . By projective system of
objectsin C we understand a pair £ = ((Aiier, ( ij)ijer) With (Ajiel a
family of objectsin Cand j ;T C(A;, Aj) for i,j T 1,i£] such that:

(i) ji=1,,for everyil I;

@) Ifi£] £k, thenj k=] i o] k-

If there is no danger of confusion, we denote the above projective
system by o= (Ai,j ij)-

Definition 4.7.4. Let § = (A, ] ij) beaprojective systemin C.

A pair (A, (di)ier), with AT Cand ;T C(A, A)) iscalled projective
limit of projective system g if:
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(i) jijoqj=qiforeveryi£fj;

(i) 1f (A", (q'))ier), isanother pair with A¢l C and q¢l C(A’, A)
with the property that for every i, jT | withi £],] o g =q'i , then there
isaunique f1 C(A¢A)suchthat g of=q¢ for everyil I.

Asin the case of inductive limit of an inductive system, it is easy to
seethat the projective limit of a projective system, if exists,it is unique up
to an isomorphism.

If (A, (q)iel) isthe projective limit of the projective system g = (A,

j ij), wedenote A = ﬂ|3li;f2;./a AL

We will say that a category C is a category with projective limits if
every projective system in C has a projective limit.

Examples
1. In the category Set, let (Aj, j ij) be aprojective system of sets,
O A =(B.(p)7,) and suppose that A={al B:(j op;)(@)=pi(a) for every i £

il
i}t A

If for every i T | we denote by g; the restriction of p; to A, then it is
immediate to prove that |3|;f21/ A = (A, (@ier).

2. More generally, if A is an equational category, = ((Aici, (i ij)i¢;)
aprojective systemin A and A = {x1 A pi(X) =] ij(p(x)) fori £} *

A then  lim A = (A, (e

3. Following what we establish in the end of 86, the category Top isa
category with products and coproducts.

Now let (X, ti)ie be afamily of topological spacesand o = (X, | i) a
projective system. If we consider (X, (p)ie)) = O X; (in Top) and

il
Y ={yT X:ji(piy)) = pi(y) for everyi,j T 1 withi £]} then if we denote
for every il 1, p&= pyy then it isimmediate to see that
(Y1(p’i)i€|)=_||%i7g31/4(xi t)(@inTop).

4. The equational categories with nullary operations are categories
with projective limits.
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Remark 4.7.5. In the particular case when (I, £) isachain then
the inductive (projective) limit of an inductive (projective) where for every
i1 1,j, =14, coincideswith C A (respective © A ).

il il
So,the products and coproducts are particular cases of inductive
(projective) limits.

Definition 4.7.6. Let 3 = (A;, j i) and 3¢=(A';, ] ’ij) betwo
inductive systems over the ordered set | (directed toright).

We call inductive system of morphisms from J to J¢a family (fj)ig
of morphismswith f;l C(A;, A¢) for everyil | such that for everyi,
jT|With i£j,fj0jij:jij0fi.

Remark 4.7.7. In the hypothesis of Definition 4.7.6, following the
universality property of inductive limit, it isimmediate to see that if we

denote /I%p@ A =(A, (e)ie) and /I%p@ AC= (A, (€)ie), then there

isaunique morphismf1 C(A, A suchthatf o g =e¢ o f;, for everyil I.
The morphism f will be called theinductive limit of the inductive
system of morphisms (f;)ic; and we denote f = 3/Ii?21® f, (we have analogous

notion for projective limits). Analogously for the case of projective limits.

Theorem 4.7.8. Every reflector preserveinductive limits (hence
the coproducts).

Proof. Let C¢i C be areflexive subcategory of C and R:C® Ctbea

reflector. Consider 3 = (A, j jj) an inductive systemin C and

yl%;p@ A =(A, (aj)iel), where (1, £) isan ordered set directed to right.

To provethat (R(A), (R(ai))iel) = 3/'%,% R(A) weremark that
R( i) = Ry ) =1resy andfori £, R(aj) R( i) =R(qj ° | ij) = R(ai), hence
(R(A), R( i)) isan inductive systemin C¢
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Now let (f;: R(A;) ® B);e| be afamily of morphismsin C¢such that
fioR(j i) = fi, for every i £ j. We should prove the existence of a unique
vl CER(A), B) suchthat v o R(a;) = fi, for every i1 I.

R(A) R() R (A)

R (o)

RG &) v

%
R(A) B

Thus, for everyl £j, fj o fR(Aj)Oj ij= fj o R(j ij)O fR(Ai) =fio
fr(A). X
Since A = 3/'%,% A we deduce the existence of auniqueul C(A, B)

suchthat u o a; =fj o fr (A)), foreveryj T 1.
Then thereisauniquevi C&R(A), B) suchthat v o f g(A) = u.
We havevoR(a;j) o fr(Ai) =V o fr(A)oa; = uca; = fjo fg(A;), hence

v o R(aj) =f;, forevery i1 I.
For the uniqueness of v, suppose that we have again vél C&R(A), B)

such that véo R(a;) = f;, for every i1 1.

fr(A)

R (A)

Then V& R(ai)o fr (A) = fi o T r (A), SO V& fr(A)oa;= fiof r(A;) and

by the uniqueness of u we deduce that v¢o f g(A) = u. By the uniqueness
from Definition 4.5.1 we deducethat v=v¢ n
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4.8. Fibred coproducts (poshout) and fibred product (pullback) of
two obj ects

In the category C we consider the diagram

Definition 4.8.1. We call fibred coproduct of M with N over P a
triple  (im,in, L), whereL T C,iul C(M, L), inT C(N, L) such that:

(i) imof=inog;

(i) If (i’m, i'n, L) isanother triple, with L¢I C,i'w1 C(M, L9,
i'n, T C(N, LO which verifies (i), then thereisauniqueul C(L, L9
suchthat uoiy=i'vanduoiy=iy.

Remark 4.8.2. For P1 C we define anew category P/ C (respective
C/P) inthefollowing way:

Ob(P/C)={(P,f,X): XT Candfl C(P, X)} (respective
Ob(C/P)={(X,f,P): X1 Candfl C(X, P)}).

For two objects (P, f, X), (P, g, Y) in P/ C, we define a morphism
a:(P,f,X)® (P,g,Y)asthemorphismal C(X, Y) with the property

that a o f = g. The composition of morphism will be canonical and it
IS easy to see that in this way we obtain a category P/ C (dual for C / P).

We remark that the fibred coproduct (iv, in, L) of M with N over P
above defined isreally the coproduct of (P, f, M) and (P, g, N) in the
category P/ C. So, we deduce that if fibred coproduct of M with N over P
exists, then it is unique up to an isomorphism.

We denote (im, in, L) =MCN..

P

The dual notion of fibred coproduct isthe notion of fibred product.
More precisely consider the following diagramin C:
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Definition 4.8.?. We cAaII fibred prodgct of M with N over P atriple
(K, pm, pn), With K T C, pul C(K, M), pnl C(K, N) such that:

(i) fopu=geopn;

(i) If (K’, p'm, p'n) isanother triple, with K@ C, p’'m T C(K¢ M),
p’nT C(KG N) suchthat f o p’y =go p’n, then thereisaunique
ul C(K’, K) such that py ou=p’m and py © u = p’y.

Dually we deduce that (K, pu, pn), the fibred product of M with N
over P, isreally the product of objects (M, f, P) and (N, g, P) in the category
C /P and so, if the fibred product of M with N over P exists, thenitis
uniquely determined up to an isomorphism.

We denote (K, pu, pn) = MO N.

P

Examples

1. The category Set isa category with fibred coproducts and
products.

Indeed, we consider the diagram:

X T=YCZ
x Z /az

where ay, az are the canonical injections of the coproduct.

If we consider hy =ay o f and hzy =azeq, let (S, p) = Coker (hy, hz)
(see Theorem 1.4.5).
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Following the universality property of cokernel of apair of

morphisms, we deduce that if we consideriz =p o azandiy =p o ay, then
(iy, iz, S) =YCZ.
X

For the existence of fibred product in Set we consider the diagram

K={(y,2)T Y Z:f(y)=g@},py:K® Yandp;:K® Zthe
restrictions of cartesian product Y © Z to K. It isimmediate to see that (K,
Py, pz) = Y(:? Z.

2. The category Top is a category with fibred coproducts and
products

From the above remark Set is a category with fibred coproducts and
products. Preserve the notations from Example 1 and consider inSet T =
YC z with the topology of coproduct (that is, the less fine topology on T

X

for which ay and az are continuous mappings) and S=Y® z with quotient
X

topology (since Sis T factorized by the equivalence relation r generated
by r ={(hy(x), hz(x)) : xI X}); then the functions
iy and iz are continuous and we continue from here asin the case of Set.

For the existence of fibred product in Top we do asin the case of Set,
equipping K ={(y,2)T Y~ Z: f(y) = g(2)} with the restriction of product
topology fromY ~ Z to K (where py and p; are continuous functions).

3. Thecategory Ab isa category with fibred coproducts and
products.

Let G, GG G&l Ab,fT Ab(G, G&), g1 Ab(G¢ G,
K={(x, x9 :f (x) =g (X")} and pg, pe. therestrictionsto K of the
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projections pg, Pe¢of G P G¢on G, respective G¢ Then (K, pg, Pge) =
GO GCinAb.

Ge¢

For the case of the fibred coproduct let G, G¢ G&l Ab, fT Ab(Gd
G9, gl Ab(GE Gf and (as.a e, GC Gy acoproduct of G and G¢in

Ab.
If we denote H = {ag (f(X)) - acg(g(x)) : x T G@&, then H £GC Gtand
(GCGUH, poag, poagy) =GCGtinAb, where p:GCG(® GCGU/H isthe
G¢

canonical surjective function.

4. The category Gr isa category with fibred coproducts and
products.

Thefibred product in Gr isasin the case of Ab.
Now let G, GG G&1 Gr,f1 Gr(G& G), gl Gr (G G9,
(ag,a66GCGY acoproduct of G and G¢in Gr, H = {ac (f(x)) X(acg¢(a(x)))

1-x1 G@ and N(H) the normal subgroup of GC G¢ generated by H.
If wedenote K =(GCG9)/N(H) and p:GC G(® K isthe canonical
onto morphism of groups, then (K, poag, poag) =GCGtinGr.
Ge¢

Remark 4.8.4. In genera, in a category C, the notions of inductive
(projective) limits of an inductive (projective) system, coproduct (product),
fibred coproduct (product) and kernel (cokernel) of a pair of morphisms
appear in the theory of categoriesin a unitar context as inductive and
projective limits of somefunctorsF:1 ® C wherel isasmall category.

This particular ,case of inductive limits or projective ones of some
particular functors, are suffices for what we need now (in thiscase | have
abandoned this point of view).

| recommend the reader to study the book [70].

4.9. I njective (projective) objects. I njective (projective) envelopes

Definition 4.9.1. Let C bea category. An object AT Ciscalled
injective in C if for every diagramin C
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AI AII

T

A

with u a monomor phism, there is a morphism f : A” ® A such that the
diagram

AI AII

_/
I

\

\

AY

\

\
- \

\

iscommutative (i.e, fou=f).

We say that a category C iswith enough injectives (or a category
with injective embedding) if for any object AT C thereisan injective
object B and a monomorphismu: A ® B (that is, A issubobject of an
injective object).

Examples

1. Every fina object isinjective.
2. In Set every non-empty set isinjective.
3. InTop, every rough topological spaceisinjective.

Proposition 4.9.2. Let (A)ic| beafamily of injective objectsin C
for which their product (A, (pi)ie) = O A exists.

il
Then A isalso an injective object.

Proof. Consider in C the following diagram:

u
AI AII

T

with u amonomorphism and for every i 1 | the diagram:

A



174 Dumitru Busneag

/
N Q

\

\

\

\

\

\
<
=

Foreveryil |thereisfil C(Ad Aj) suchthatfiou=pof.

By the universality property of product we deduce the existence of a
unique morphismg1 C(Ad A) such that p; o g =f;, for every il I.

If v=g o u, wehavepiov=pe(geou) = (p og)ou =fiou=p; of, for
every i1 I,so, by the uniqueness property of product we obtain that v =
f, hence A isinjectiveobjectinC. n

Remark 4.9.3. (i). In some categories, as for example the categories
with nullary objects, the converse of Proposition 4.9.2 istrue.

(ii). Every monomorphism with the domain injective object has a
retraction.

(iii). Lt R: C® C’ beareflector which preservesthe

monomorphisms. If B isaninjective objectin C’, then B isaso an
injective object in C.

Indeed, if we supposethatf: A ® C isamonomorphisminC and
gl C(A, B), thenthereishl C’(R(A), B) suchthat h o fz(A) = g. Since
R(f) isamonomorphismin C’ and B isinjectivein C’, thereisk T C’(R(C),
B) suchthat  k o R(f) = h. If we consider the morphismk o fg(C) : C®
B then kof g(C)of = koR(f)of r(A) = hof r(A)=g.

Definition 4.9.4. A monomorphismiT C(X, Y) iscalled essential if
for every morphismf1 C(Y, Z) with the property that f o i isa
monomor phism, then f isan monomor phism.

A pair (i, Q) iscalled injective envelope for an object X if Qis
injectiveand i1 C(X, Q) isan essential monomorphism.

Remark 4.95. If u and v are composable monomorphismsin C,

then if uandv are essentials, then uov isalso essential.
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Definition 4.9.6. We say that a category C hasthe property € if

for every two composable monomor phismsu and vin C, if uovis
essential, then u and v are essentials.

Lemma 4.9.7. In acategory C with the property &, if theinjective
envelope of an object exists, then it isunique up to an isomor phism.

Proof. Let AT C and (i, Q), (i¢ Q9 two injective envelopes for
A.So, i1 C(A,Q), i¢l C(A, Q) are essential monomorphisms and
Q, Q¢ are injective objects.

Since Q¢is injective, thereis fl C(Q, Q9 suchthat foi=i¢
and since i is essential, we deduce that f isa monomorphism.

Since Q is injective, f hasaretraction, so, thereis f ¢ C (Q¢ Q)
suchthat f¢o f = 1q.

Since 1gisessentiadl monomorphismand C hasthe property €&,
then f ¢is monomorphism, and from f ®&f = 15 we deduce that (f
®f)of ¢=f @ f®(fof § = f ®logh fof ¢= 1gg¢, hencef is
isomorphism,so Q» Q¢ n

Definition 4.9.8. We say that a category C hasthe amalgamation
property provided that if (f)ic; isafamily of monomorphismswith f;
T C(A,Bj) forevery il I, thenthereexists BT C, afamily of
monomorphisms g1 C (B;, B) and amonomorphism gi C (A, B)
such that the diagram

N

A B

is commutative (i.e. go fi=g, for every i1 1).

Theorem 4.9.9. (PierceR. S.) Every equational category A with
enough injectives hasthe amalgamation property.
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Proof. ([58]). Let (fi: A ® Bj)ier anon-empty family of
monomorphismsand for every i1 | leta,:B ® B, beamonomorphism
with B, injectiveobjectin A.

Since in every equational category there exist products, let B=9 B, €
i

A (which by Proposition 4.9.2 isinjectiveobject) and p;:B® B, thei-th
projection (iT I).

Sincewe cansuppose |13 2, for i,j1 1, %], bytheinjectivity
of B, thereis a; € A(Bi, B;) suchthat a; ofi=a; o fj. By the
universality property of product for every i1 | wefind g1 A (Bi, B)
suchthat forevery jT 1, j1i wehave pogi=a; and pog=aj:

_ B
P
A B, B

So, for it j, piogiofi:ai Ofi:aji of,-:piogjofj hence giOfi
=g ofi=g.

Sincefor every i1 |, a; isamonomorphism and a;=pi o g we
deducethat g isamonomorphism, hence g o fi iS amonomorphism.

So, we have obtained a monomorphism gi A (A, B) and afamily
of monomorphisms g1 A (Bi, B) suchthat g o fi=g, forevery il I,
hence A has the amalgamation property. N

Remark 4.9.10.The above result of Pierceistrue in every category
C with products(with the canonical projections epimorphisms)and enough
injectives.

In what followswe shall present some results from the paper [42].
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Theorem 4.9.11. Let C, C¢ two categories, S:C® CGT : C®
C two covariant functorssuch that S istheright adjoint of T.

If

a) S isfaithful and full , T is faithful ;

b) T preserves monomorphisms;

c) In C every object hasan injective envelope,
then the following assertions are equivalent :

(i) A isaninjectiveaobject in C¢;

(i) A istheretract of all hisextensions;

(iii) A doesn’t have proper essential extensions;

(iv) Adjoint morphism ya:A® (ST)(A) isan isomorphism
and T(A)isinjectiveobject in C.

Proof. (i) b (ii). Let i: A® B a monomorphismin C¢If A is
injectivethenthereis f:B® A suchthat foi=1a.

(i) b (iii). If f: A® Ac¢isanessential monomorphism, then there
isamonomorphism g: A¢® A suchthat go f=1a.

Then go(feg) = (gof)eg=1acg=g=gola ;since g is a
monomorphism, then fog=1a¢ hence A » A¢

(iii) b (iv). For T(A)T C,thereisan essential monomorphism
g: T(A)® Q, with Q injective. Since T issupposed faithful, ya: A
® S(T (A)) is amonomorphismin C¢ Weshal provethat S(q)
o y a Isan essential monomorphism.

For this, let f1 C¢(S(Q), X) suchthat foS(q)oya isa
monomorphism. Since S isfaithful and full, the another adjoint morphism
f : TS® 1c isafunctoria isomorphism.

Consider now in C the following commutative diagram:

TA) — > TE(TA)———=T(S(Q)————=>T(X)
T(v(A)) T(S(8)) T()

fren fo

T ——> g
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We have T(f)oTS(q)oT(y a)=T(f)of g0 qof rayoT(y a).
Since fra)oT(y a) = Lra), then T(foS(@)oy a) =T(f)oTS(q)oT(y A) =

=T(f)of 'q oq.
Since the functor T preserves monomorphisms, we deduce that

T(f)of 'o oq isamonomorphismin C. Since ¢ essential, then

T(f)of 'qis amonomorphism. We deduce that T(f) is amonomorphism
(sincef 'q isanisomorphism).

In C¢ we have the following commutative diagram :
f

S(Q) X
Yso Yx
ST(f)
ST(S(Q)) ST(X)

Since S istheright adjoint of T , then S also preserves

monomorphisms, hence ST(f) is amonomorphism. But S(f g)oy sq) =
1sg and S(fq) = X(1g) = 1@, hence y s =15
From the above diagram, thereresultsthat y , of = ST (f), hence f is

amonomorphismin C¢ and S(Q) isan essential extension of A.
Since by hypothesis A doesn’t have proper essential extensions,

then S(q) o ya isanisomorphism andsince ya and S(q) are
monomorphisms, there results that they are isomorphisms, hence T(A) is
aninjectiveobject (since g » TS(q)).

(iv) b (i). Considerin C¢ thediagram

X/ ! X

T

wherei isamonomorphism. Since T preserves monomorphisms and
T(A) is injective, thereisamonomorphismu: T(X)® T(A) such that
uoT(i) =f.

We have the following commutative diagram in C¢ :

A
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A

W

ST(A)

oy R

ST(X) _ 5 sT(x)

, (i)
AR

where t=y 'a 0 S(u) o yx. Wehave toi=y a0 SU)oyxoi=y a0
S(u) o oST(i) 0y x =y *a o ST(f)oyx =f(since ya o f=ST (f) o yxg.
Thereresult that A isinjectivein C¢ n

Xl

Corollary 4.9.12. Let M1 C¢. If Q istheinjective envelope of
T(M)in C,then S(Q) istheinjectiveenvelopeof M in C¢

The dual notion for injective object isthe notion of projective object

Definition 4.9.13. An object P in acategory Ciscalled

projective, if for any diagram in C
\
u

M N

with u an epimorphism, thereisamorphismg:P® M such that the
following diagram is commutative:

P

P

9/" \
L

M —1— > N
(i.e, uog = f).

Examples

1. In Set every objectis projective.
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2. InTop every discrete spaceis projective.

Proposition 4.9.14. If (Aj)ie; afamily of projectiveobjectsin a
category C and A isitscoproduct ,then A isalsoa projective object
in C.

Proof. Itisthedua of Proposition 4.9.2. n

Remark 4.9.15. (i) Every epimorphism with codomain a projective
object has a section;

(i) In some categories (for example in categories which have a
nullary object) the converse of Proposition 4.9.14 istrue.

Definition 4.9.16. An epimorphism p1 C (X, Y) iscalled
superfluous if every f1 C(Z, X) with theproperty that pof isan
epimor phism , then f isan epimor phism.

A pair (P,p)iscalled projectiveenvelope of X if P isa
projectiveobjectand p: P® X is asuperflous epimorphism.

Theorem 4.9.17. Let C beacategory, S: C® Sets acovariant
functor and T : Sets® C a left adjoint of S. If

a) S is faithful ;

b) Spreserves epimorphisms ,
then the following assertionsare equivalent :

(i) X isaprojectiveobjectin C;

(i) Thereisaset M and morphisms X ¥#:® T(M)%24® X such

that gof = 1x.

Proof. (i) P (ii). Since S is faithful, the adjoint morphism f :
TS(X) ® X is epimorphism. Since X is projective, we havein C the
following diagram:

Wechoose M = §(X).
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(i) P (i). Firstly, weshal provethat every element in C of the form
T(M) is projective. For this, we consider in C the diagram

A i B

7

with p an epimorphism. Since S preserves epimorphisms and every
object in Set is projective, thereisamapping d: ST(M) ® S(A) such that
the following diagram is commutative in Set :

T(M)

S(A) *®) S@)

ST(M)

In C we have the following commutative diagram:

p
A > B
o /
fa T f Tf B
T(yw) | /i\fTM N
TS(A) \ “ W TS(B)
T TS(f
‘d TST(M) 0

where g=fao T (d) o T (ywm) isthecanonica morphism of adjunction.

But pog=pofa oT (d)oT (ym) = fg oTS(p)oT (d)oT (ym) =
:fB oTS (f)OT (y M) =fo fT(M) oT (y M) =f OlT(M) = f, hence T(M) is
projective.

To prove that X is projective, we consider the following diagram in
C:
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with p¢ an epimorphism. Since T(M) is projective, we havein C the
following commutative diagram:

Thereis s: T(M)® D¢ suchthat p®s=heg, hence p®sef =
hogof = =holyx = h, thatis, X is projective. n

Corollary 4.9.18. Let C bea category with coproducts and

GeC aprojectivegenerator . Then for XeC thefollowing assertions
are equivalent:

(i) X is projective in C;

(ii) Thereisaset M and morphisms X ¥#:® G™ %4® X such

that gof = 1x.

Proof. We consider thefunctor T:Set ® C defined by T(M) =
G™ forevery M1 Setandfor M,NT Set andf: M ® N afunction T
) : M ® GM™ isthe unique morphismin C such that the diagram

is commutative (Where G; = G, for every i 1 M, (a;)ie| are the canonical

morphisms of coproduct and b; :G, ® CG; , bj = asg, foreveryil M).
it N

Then it isimmediate to prove that T becomes a covariant functor.



Categories of Algebraic Logic 183

We haveto prove that T isleft adjoint for the functor h°: C ® Set.
For this, for X T Cand M T Set, we have to prove the existence of an
isomorphism (functorial in X and M): C(T(M), X) » Set (M, h® (X)).

Indeed, if f T C((T(M), X), we consider s : M ® h®(X) defined by
s(m)=foany, foreverymi M.

If b: M ® h®(X)isafunction, by the universality property of
coproduct, there is aunique morphismin C t, : G™ ® X such that the
following diagram is commutative:

c™ tB X

T

It isimmediate to see that the assignmentsf ® s andb ® t, are one
the converse of the other, hence in this way we obtain the desired
isomorphism. Since the projectivity of G isassured by b) from Theorem
4.9.17, the proof of thistheorem is complete. N

4.10. I njective Boolean algebras. | njective (bounded) distributive
lattices

We start this paragraph with the characterization of the injective
objectsin the category B of Boolean algebras (see Chapter 2).

Following the categorial equivalence between Boolean agebras and
Boolean rings, we will work (relative to context) with Boolean algebras
(using the operations U, Uand ¢ or with the corresponding Boolean rings
(using the operations + and % - see 87 from Chapter 2.

We don’t have special problems sinceif B;, B, are two Boolean
algebras, B,,B, the corresponding Boolean rings, f 1 B(B4, B,) and

f : B, ® B, the corresponding morphism of Boolean rings, then f isa
morphismin B iff f isamorphism of Boolean rings.

Definition 4.10.1. We say that a Boolean ring is completeif the
corresponding Boolean algebra is complete.

Lemma4.10.2. Let A beaBoolean ring, A¢l A asubring,al A\
Ac¢and Ada) the subring of A generated by ACE {a}.
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If Cisacomplete Boolean ring then for every morphism of
Boolean ringsf : A¢® C thereisa morphism of Boolean ringsf ¢: A§a)
® Csuchthatf ¢a="f.

Proof. Clearly, A€a) = {x +ay: x,y1 A¢. Since C is supposed
complete there exist my = XTL'Jmf(x) and M, = XTUmf(x) in C. We remark that

xEa aEx
ma £ M4, SO we can choose mg£ m £ M.

Now let zT Aga) and suppose that for z we have two representations
Z=X1+ay; = Xo + aya With Xq, X2, Y1, Y21 A¢

Then x; + X2 = a(y1 + y2), hence x; + X2 £ a, so we deduce that
X+ Xot Y1ty + 1) =aXy+X2) +ay1+Y2) +a=alyr+Yy2) +ay + Vo)
+a=athatis a£ x; + X2 +y; + y» + 1. Following these last two relations
wededucethat f(xy) + f(x2) £ m £ f(xy) + f(x2) + f(yy) +f(y2) + 1, so
m = m[f(xa) +f(xz) +f(ys) +f(y2) + 1] = m[f(xa) + f(x2)] + mf(ys) +f(y2)] +
m= f(x1) + f(x2) + mf(yy) + mf(yz) + mhencef(xy) + f(x2) + mf(y;) + m
fiy) =0 U f(xq) + mf(y.) = f(x2) + mf(y,). Thus we can define for z = x
+ay 1 Ada), f€z) = f(x) + mf(y) and it isimmediate to prove that this
Isthe desired morphism. N

Theorem 4.10.3. (Sikorski). Complete Boolean algebrasare
injective objectsin the category B.

Proof. Let C be a complete Boolean algebraand B,, B, Boolean
algebras such that B, is subalgebra of Bs.
To provethat Cisinjective object in B we consider in B the diagram

Bl C Bz

C

LetM ={(B¢fQ: B;i B¢i B, BtisaBoolean subalgebraof B,
and f ¢: BC® Cisamorphismin B such that f‘gl:f}.Since(Bl, )T M,

then M 1 Aanditisimmediate to prove that relative to the ordering
(B¢f) £ (B f@) U B¢l Batand ig. =, (M, £) isinductive, hence by

Zorn’slemmathereisamaximal element (Bo, fo) T M. If we prove that By
= By, the proof isended.
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Indeed, if by contrary Bo ! B,, thenthereisal B, \ Bo. By Lemma
4.10.2 (following the equivalence between Boolean algebras and Boolean
rings) we deduce that thereisf¢: Bo(a) ® C morphismin B such that fig, =

fo, hence (Bo(@), 9 T M which is contradictory with the maximality of
(Bo, fo) (here by By(a) we have denoted the Boolean algebra generated by

BoE {a). n

Remark 4.10.4. (i). In the above we have identified the subobjects of
a Boolean algebra with his subalgebras (thisis possible since the category B
isequational).

(i1). In particular we deduce that every finite Boolean algebrais
injective (as 2 ={0, 1} for example).

Corollary 4.10.5. 2={0, 1} isinjective cogenerator in B.

Proof. From Theorem 4.10.3 we deduce that 2 = {0, 1} isan injective
objectin B.

Now let two distinct morphismsf, g: B1® B, inB. Thusthereisal
B:1 suchthatf(a)* g(a).

By Corollary 2.8.2 thereisamaximal filter F,in B, such that f(a) 1
Faand g(@) | Fa If weconsider hy: B, ® 2 the morphism in B induced by
Fa(that is, hy(x) = 1 if x€ Foand O if x&F, - see Proposition 2.6.20) it is

immediate to say that h, o f* hy o g, that is, 2 is cogenerator in B. n

Lemma4.10.6. Let A and B betwo ordered sets,f: A® Ba
mor phism in Ord such that thereisg: B ® A amorphismin Ord such

that gof = 15. If B iscomplete, then A isalso complete.

Proof. It isimmediate to prove that for Si A, then sup(S) =
g(sup(f(S))) and inf(S) = g(inf(f(S))). N

Theorem 4.10.7. (Halmos). Every injective Boolean algebrais
complete.

Proof. Let B be a Boolean algebra. By the universality property of
product thereisamorphisminB, ag: B® 252 such that the following
diagram
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B 2 B(B,2)

is commutative, where (pr)ieg(s,2) are the canonical projections. To prove
ag isamonomorphisminB letb, g: A ® B beamorphismin B such that
ag ° b= ag°og

Thereresult that f o b =fo g for every f1 B(B, 2) and since we have
proved that 2 isinjective cogenerator in B (Corollary 4.10.5), we deduce
that b = g thatis, ag isamonomorphismin B.

Clearly A = 252 js 3 complete Boolean algebra. By hypothesis, B is
an injective Boolean algebra. Sinceag : B® A isamonomorphismin B,
thereisamorphismg: A ® B in B such that the diagram

IS commutative, hence g o ag = 1. By Lemma4.10.6 we deducethat B is
complete. N

Corollary 4.10.8. In the category B of Boolean algebrasthe
injective objects are exactly the complete Boolean algebras.

Corollary 4.10.9. The category B of Boolean algebrasis a category
with enough injectives.

Proof. Since 2 is an injective Boolean algebra, by Proposition 4.9.2,
we deduce that A = 222 js an injective Boolean algebra for every Boolean
algebra B. Sinceag : B® A isamonomorphism in B we obtain the
desired conclusion. n
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Let’s pass to the characterization of injective objects in the category
Ld(0, 1) (for this we need some notions introduced in §3).

Lemma4.10.10. Let X be a Stone space. Then there exist aunique
Boole space X and a strong continuousfunctioni : X ® X with the
following universality property: for every Boole spaceY and every
strong continuousfunction f : X ® Y thereisa unique continuous
function g: X ® Y such that the following diagram is commutative:

(i.e, goi =T).

Proof. The subjacent set for X will be X and a basis of open sets will
bee D=D(X)E{V:CVT1 D(X)}, where D(X) isthe set of opensin X.

Clearly X isa Hansdorff space and his clopen sets determine a
basis.

We have to prove that X is compact and for this we consider afamily
of closed setsfrom basiswith the empty intersection :

Biv, 4 &1 ow, 2= Ewith Vi, Wl DX)foriT IandjT JIf we consider
el g &y g

thecloseset F= 1 cw, (from X)thenFC(1v;)=/&
i il

If {Vi}ie) doesn’t have the property of finite intersection, then the
proof is clear. If (Vi)ie, has the finite intersection property, then thereisi
| suchthat FC V;=A SinceV;isacompact set and (CW; G V))jc; are
closed in V;, we deduce that there exist Wi, ..., W,, such that CW C ...

C CW,C V;=/E thusX isacompact set, hence X isaBoole space.
Thuswe choosei = 1x and g = f and the proof is complete. n
Consider now S: B® Ld(0,1) the subjacent functor which assigns

to every Boolean algebra his subjacent bounded distributive lattice.

Proposition 4.10.11. The functor S hasa left adjoint functor
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T:Ld(0,1)® B.

Proof. Since the dual category of B is equivalent with the category of
Boole spaces B (see Theorem 4.3.26), by Lemma 4.10.10 we deduce that
for every LT Ld(0, 1) thereisaunique Boolean algebra L and a
unique morphism of latticesi : L ® L such that for every Boolean algebra
A and every morphism of latticesf : L ® A thereisa unique morphism of

Boolean algebrasg: L ® A suchthat g o i =f (see Corollary 2.8.10).
The functor T will be assignedto every L T Ld(0, 1), LT B and the

definition of T on morphismsisimmediate, following Lemma4.10.10.
By Proposition 4.4.9 we deduce that T isaleft adjointof S. n

Theorem 4.10.12. (Banaschewski,Bruns). In the category Ld(0,1)
theinjective objects are exactly the complete Boolean algebras.

Proof. 1. Follows from Corollary 4.10.8 since the functorsSand T
verify the conditions a), b) and c) from Theorem 4.9.11.

Proof. 2. Suppose that L isinjectivein Ld(0, 1). In 84 from Chapter 2
we have defined ¢ : L ® Spec(L) by ¢ (x) ={PT Spec(L) :x1 P} and
we have proved that ¢, isamonomorphismin Ld(0, 1).

Then we can consider ¢.: L ® P(Spec(L)) and since L isinjective

thereis s: P(Spec(L)) ® L amorphisminLd(0, 1) suchthat so ¢ =1,.

By Lemma 4.10.6 we deduce that L is complete.

Since sis surjective and P(Spec(L)) is a Boolean agebra, we deduce
that L = s(P(Spec(L))) hence L is acomplete Boolean algebra.

Now let B be a complete Boolean algebra.

In [30], to 87 from Chapter 3 it is proved that B is areflexive
subcategory of Ld(0,1) and the reflector Ry, : Ld(0,1) ® B preserves
monomorphisms.

By Remark 4.9.3 (iii), we deduce that the injective objectsin B are
also injectiveand in Ld(0, 1).

By Corollary 4.10.8, B isinjectivein B (since is complete) hence B
will also beinjectiveinLd (0,1).

Corollary4.10.13. In the category Ld theinjective objectsare
exactly complete Boolean algebras.

Proof. If LT Ld isinjective, asin the second proof of Theorem
4.10.12, we deduce that L isacomplete Boolean algebra. For the converse
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we use that Ld(0,1) isareflexive subcategory of Ld and the
reflector U : Ld ® Ld(0,1) preserves monomorphisms (see[30],
Proposition 7.2, Chapter 3), so, since a complete Boolean algebrais
injective object in Ld(0,1) (by Theorem 4.10.12) it will be injective aso in
Ld. n

Chapter 5

ALGEBRASOF LOGIC

The origin of many algebrasisin Mathematical Logic.
The first paragraph of this chapter contains some notions about Heyting
algebras, which have their origins in mathematical logic ,too.

It was A. Heyting who in [48] formalized the propositional and predicate
calculusfor the intuitionist view of mathematics.

In 1923, David Hilbert was the first who remarked the possibility of
studying a very interesting part of the classical propositional calculus taking
as axioms only the ones verified by logical implication (thisfield is known
as positive implicative propositional calculus) and it is interesting because
his theorems are those theorems of intuitionist propositional calculus which
contains only logical implication and which is called intuitionist implicative
calculus. The study of this fragment was started by D. Hilbert and P.
Bernaysin [49].

We can study this fragment with the help of specific algebraic technique
because we have an algebraic structure: the notion of implicative model
introduced by Henkin in 1950.

The dual algebras of implicative models were called by A. Monteiro
Hilbert algebras. In some papers Hilbert algebras are called positive
implicative algebras ([73],[ 79]).

In this chapter are also studied Hertz algebras (which in some papers are
called implicative semilattices see-[57-60]) and residuated lattices.

Theorigin of residuated latticesisin Mathematical Logic without
contraction .

The last paragraph of this chapter is dedicated to Wajsberg algebras and to
their connections with residual lattices .

For more information about Wajsherg algebras, | recommend the reader
the paper [39].



190 Dumitru Busneag

About the connection of these algebras with fuzzy logic algebras (MV-
algebras) | recommend the reader the book [81].

Though the origin of all these algebrasisin Mathematical Logic, in this
chapter we are interested only by the study of these algebras from the
Universal algebra (see Chapter 3) and Theory of categories (see Chapter 4)
view points.

In this chapter we have included classical results and all my original results
relative to these algebras (more of these results are included in my Ph.Thesis
: Contributionsto the study of Hilbert algebras - see [18]).

The guide-linein the study of localization of Hilbert and Hertz algebrasis
the case of rings (see[71]).

a. Heyting algebras
5.1. Definitions. Examples. Rules of calculus

Definition 5.1.1. Let L bealatticeand a, b1 L. The pseudocomplement
of arelativeto b isthe element of L denoted by a— b suchthata— b =
sup({x1 L :aUx£b}).

Therefore, aUx£bU x£a—b.

Definition 5.1.2. A Heyting algebraisalatticeL with L suchthata — b
thereexistsfor any a, b1 L.

Examples

1. 1f (B, U, U, ¢,0, 1) isaBoolean algebra, then (B, U, U, —, 0) isa
Heyting algebra, wherefor a, b1 B,a— b= atUb.

2. If L isachain with 0 and 1, then L becomes a Heyting algebra, where for
a bl L,a—sb=1lifa<bandbifa>b.

3. If (X, t) isatopological space, then (t, —, A) becomes a Heyting
agebra, wherefor Dy, D1 t, D1 — D, =int[(X \ Dy) E D).

In [75, p.58], Heyting algebras are called pseudo-boolean algebras.

Heyting algebras in which we ignore v (which is not necessary for the
definition of implication —) are called, by Nemitz,implicative semilattices
in  [63]-65]; in[45] (Chapter 4, p.61), these are called meet-semilattices
relatively pseudocomplemented (in the above mentioned papers, the
element x — y isdenoted by x * y).
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Therefore, in the case of Heyting algebras or implicative semilattices, for

two elementsx, y, X >y =sup{z:X A z<Vy}.
In what follows, by H we denote a Heyting algebra (unless otherwise
specified).

Proposition 5.1.3. If for every Si H thereissup(S), then for every al
H thereissup({aUs:si S})andsup({aUs:si S})=aUsup(S).

Proof. Let b =sup (S). ThenaUs£ aUbfor every si S:if we have X
I HsuchthataUsE x foreverysi S thensfa— x, hencebfa—x b
aUb £ x, that is, we obtain the equality from the enounce. n

Corollary 5.1.4.HT Ld(0, 1).

Proof. By Proposition 5.1.3 we deducethat HT Ld(0). Clearly, 1=a— a
forsomeal H. n

For xT H wedenote x* =x — 0.

Remark 5.1.5. Since x* is the pseudocomplement of x, we deduce that
Heyting algebras are pseudocomplemented |attices.

In 88 from Chapter 2 we have defined for a distributive lattice L and I,

Jel(L), | - J={xeL: [x) nl € J} ={xeL: xAie], for every i€l} (see Lemma
2.8.2).

Theorem 5.1.6. For every distributive lattice L with O, (I(L), —, 0={0})
isaHeyting algebra.

Proof. We will prove that for I, Jel (L), then | — Jel(L). If X, yeL,x <y
and yel — J, then for every i€l, yAi€d. Since xAi < yAi we deduce that xAi€],
hence xel — J. If x, yel — J and i€l, since xAi, yAi€d and (XVYy)Ai =
XAV (yAai)ed wededucethat xvyel — J, hencel — Jel(L).

Now we will provethat if Kel(L),then INKEJ< K<l —J.

Indeed, if xeK then, since for every i €l we have xAieKNlI<Jwe deduce
that xAi€J, hence x€l — J,s0 K< | — J.
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Now let xelNK. Then x€l and xeK< | — J, hence x€l — J, so
XAX =X € J, therefore INK<SJ. &

Corollary 5.1.7. Let L beadistributive lattice. Then, for every I €l(L),
I* =1 - {0} = {xeL: xAi =0, for every i€l}.

Proposition 5.1.8. Let H be a Heyting algebra and x, yeH.
Then (X] — (y] = (x—Vy].

Proof. If ze(x] — (y], then for every ie(x] (that is, i < x) we have
ZAIE(Y], hencezAi <y < z<i —Vy.

In particular, for i = x we deduce that z < x — y < ze(x—Y], hence
(X] = (Y]=(x—>Y]. If ze(x—>Y], thenz<x—y < zAX <y, s0 ifie(x],i <xand
ZAI < zZAX <y, hence zAie(y] < ze(X] — (y]. Therefore we aso have the
inclusion (x—y] < (X] — (y], that is, (x— y]=(X] — (y].®

Theorem 5.1.9. For every elements x,y,z1 H wehave
hi:xU(Xx— y)£Yy;
hy:xUy£z U yEx— z
haxfy U x— y=1;
hya YEX —y;
hs: XEy P z—>x£z—-yandy —->z£x—z
he: x = (y —»2) = (x Uy) = Z; )
hz xU(y—>2)=xU[(xUy) — (xU2);
hg: xU(x —y) =x Uy;
he: (xUy) »z=(x—2)U(y® 2);
hi: x = (yU2) = (x = y) U(x — 2);
hi: (X > y)* =x** Uy*;
hip: XAX* =0;
his X<y = y* <x*;
hig: (XVY)* = X* Ay*.

Proof. h; and h; follows from Definition 5.1.1.

hs. Wehave x—»y=1U 1£x—y U xU1£y U x£y.

hs. Wehave xUy£y b yEx—Vy.

hs. WehavezU(z — x) £x £y, hencez— x £ z— y .Since X
Uly—2)£yU(y— 2) £z wededucethat y —»z£x — z
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he. Wehave (x Uy) U[x — (y > 2)] =y U{xU[x > (y—> 2]} EyU (y
—2Z)£z,hence x - (y—>2) £ (xUy) >z

Conversaly, (x Uy) U[(xUy) -zl £z b xU[(xUy) »z]£y—z b
xUy) > zE£Xx— (y— 2).

hs. From xU(x —» y)£x and (x Uy) UxU(y - 2) £xUzbp X
Uy —2) £ (x Uy) — (x Uz), hencex Uy — 2) Ex U[(x Uy) — (x U2)].
Conversaly, x U[(x Uy) —» (x Uz)] Exandy Ux U[(x Uy) - (x U2)] £ X
Uz£z,hence xU[(x Uy) —» (xU2)] £y — z, therefore x U[(x Uy) —
xU2)] £x Uy — 2).

hg. Clearly, x U(x » y) Ex,yandx Uy £x, X — .

he. Fromx,yEx Uy b (xUy) —»z£x — z,y — z. Conversely, (x
Uy)U x—-2)U(y—2E[xUXx—2]U[yU(y—2)]£zUz=2
therefore (x > 2)U(y > 2) £ (xUy) — z

hio. FromyUz£y,z b x—> (YU2)EXx—>y,x—z b x— (yUz) £ (x
—y)UKX—2).SncexUx—-y)Ux—2ExUyUKx—2)£yUzb
X—>yY)UX—>2Ex—(yU2).

hp. Fromy£Ex—-y b (x> y)*£y*andx*=x—>0£Xx—>ybP

X -y £EX* P (X - y)* £x** Uy*,

Conversely, x** Uy* U(x — y) £x** Uy* U[(x Uy*) — (y Uy*)] = x**
Uy* U[(x Uy*)—0] =x** Uy* U[(x Uy*) — (0Uy*)] =

x** Uy* U(x — 0) =x** Uy* Ux* =0, hencex** Uy* £ (X — y)*.

h1,. Follows from hy or hg;

h1s. Follows from hs;

h14. Follows from hg. N

Corollary 5.1.10. If for Xy, ..., Xa 1 H, we define[x1] = x; and [Xy, ...,
Xn+1] = [X1, ooy Xn] — Xn+1, then for every xI H and 1 £i £ n we have
his: X U[Xq, ..., Xn] =X U[X1, ..., Xi-z, X UXi, Xis1, oy Xn]-

We denote by H the class of Heyting algebras.
Corollary 5.1.11. TheclassH of Heyting algebrasis equational.

Proof. Itisimmediatethat (L, U, U, —, 0) T Hiff (L, U, U,0)T L(0) and
verifies the identities

H:xUX—y)=xUy;

H,xU(y —2)=xU[(xUy) — (xU2)];

HyzU((xUy)® x)=2z. n
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For Hy, H,T H, afunctionf : Hy ® H, iscalled amorphism of Heyting
algebrasif fisamorphismin Ld(0) and f(x — y) = f(x) — f(y) for every
X,y1 Hi

Theorem 5.1.12. Let HT Ld(0, 1). Thefollowing assertions are
equivalent:

() H isa Heytingalgebra;

(i) Every interval [a,b] inH is pseudocomplemented.

Proof. ()b (ii). Let a, bT H with a£ b; weshall provethat [a, b]T H,
solet ¢, d1 [a b].

We remark that a£ (c — d) Ub £ b, hence (c —d) UbT [a, b].
Also,cU((c—>d)Ub)=cU(c—»d)Ub=cUdUb£d,soif xT [a b]
and cUx £ d, then x £ c— d. Sincex £ bwe deducethat x £ (c — d) U
b.

From the above we deducethat cUd=(c— d) Ub. ‘
(ii)p (i). Let abl H; wewill provethat a— b= a ™ (where by a'®®
we denote the pseudocomplement of ain the filter [aUb), that is, aisthe
great element x T [aUb) with the property aUx = alb).

So,aUa™ =aUb£ b. Supposethat aUx £ b.
SinceaUb£xU(aUb)£1andaU[xU(aUb)] =(aUx)U(aUb)= a
Ub, wededucethat x U(aUb) £ a®® hencex £a ™. n

Corollary 5.1.13. If H isaHeyting algebra, then every closed interval
in HisaHeyting algebra.

Corollary 5.1.14. If H isaHeytingalgebra and (x -»y)U(y - x)=1
iIsan identity in H, then thisisan identity in every interval in H.

Proof. By Theorem 5.1.12, if ¢,dT H,c£danda, bl [c, d], then
@a—b)UMb—a) =[(a—b)Ud U[(b—a Ud= (a—b)Ub—a)U
d= =1Ud=d. n

Theorem 5.1.15. Let H beaHeytingalgebraand ¢u: H — I (H),
on (X) = (X] for every x1 H. Then ¢y isan embedding of H inthe
complete Heyting algebral(H).
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Proof. By Corollary 2.3.11 we deduce that ¢y isamorphism of |attices
with O. It isimmediate that ¢y iSinjective.

By Proposition 5.1.8 we deduce that ¢ isamorphism of Heyting
algebras.n

For FT F (H), we consider the binary relation on H:
qe={(x,y)i H*:x Ui=y Ui for someil F} (see Proposition 2.5.3).

We denote by Con(H) the congruence lattice of H (see Chapter 2).

Theorem 5.1.16. If F T F(H), then gel Con(H) and the assignment
F® g isanisomorphism of ordered set between F(H) and Con(H).

Proof. SinceH 1 Ld(0, 1), thengy T Con(H) (in Ld). So, we only have to
prove that qy is compatible with — . Let (x, x®, (y, yd T qr.
Thentherearei,j1 Fsuchthatx Ui =x¢Uiandy Uj = y¢Uj.
Wededucethati Uj U(x —»y) =i UjU[(x Ui Uj) — (yUi Uj)] = [
UjU [(xUi) — (y Ul =i Uj U[(xeUi) — (yeU]j)] =i Uj U (x¢— y9.
Since iUjl Fwededucethat (x -y, x¢—yQd 1 qf

Clearly, if F,GT F(H)and FI G b qrl ga.

Supposethat el ggandletx1 F.

Then (x, 1) T gr (becausex Ux = 1Ux), hence (x, 1) T q ¢, therefore there
isil Gsuchthat x Ui =i, hence i £x. Thenx1 G, henceFi G.

To prove the surjectivity of the function F® q¢ letql Con(H)inH and
denote Fq ={xT H:(x,1)T g}. ThenFqT F(H) and wewill prove that
q(Fg) =a.1f (x,y) T q(Fg), thenx Ui =y Ui for somei I Fg, hence i, 1)
T g ad@iUx x),({iUy,y)1 g.Sincex Ui =y Ui wededucethat (x, y) T
g, hence q(F)I q.

Conversely, let (x, )l g. Then(x -y, 1) =(x »y,y —Yy) 1 q, hence x
—y1 Fq. Analogously y — x1 Fgq;since x U[(x = y) U(y —» x)] =x U
y= yU[(x—y) U(y—x)] (and (x — y)Uly — x)I Fg) we deduce that
x, y)i q(Fq), hence we have the equality q(Fq) =Qg. n

Proposition 5.1.17. If H isa Heyting algebraand FSH isa non-empty
set then thefollowing are equivalent:

(i) FEF(H);
(if) 1eF and if x,yeH such that x, x—»y€F, then yeF.
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Proof. (i)=(ii). Clearly 1€F and if X, yeH such that x, x—y&F then by
Theorem 5.1.9, hg, XA (X—Y) = XAYyEF. Since XAy <y we deduce that ycF.

(i)=(). If x, yeH, x <y and xeF, since c = 1€F we deduce that ycF.
Suppose that X, x—y €F. Since y < x—y (by Theorem 5.1.9, h,) we deduce that
X—YEF, SO XAy = XA(X—Y)EF. B

Remark 5.1.18. Following Proposition 5.1.17, the filters in a Heyting
algebra arealso called deductive systems.

For aHeyting algebra H we denote D(H) = {x&H: x* = 0} (these el ements
will be called dense) .

Proposition 5.1.19. D(H)eF(H).

Proof. By Proposition 5.1.9 it it will suffice to prove that D(H) is a
deductive system. Since 1* =1 — 0 = 0 we deduce that 1€ D(H). Now let now x,
yeH such that x, x—y € D(H), that is, x* = (x—Yy)* = 0. By Theorem 5.1.12, h;3,
we deduce that (x—Yy)* =x** A y* & 0=1Ay* & y* =0, hence yeD(H). m

Corollary 5.1.20. A Heyting algebra H is a Boolean algebra iff
D(H)={1}.

Proof. “ =" Clearly (because if we have xeH such that x* =x'v0=0 =X’
=0=>x=1).
“<”. Let xeH. We have xAx* =0and (XVx* )* =x* Ax** =0, hence
xVx* €D(H). By hypothesisxVvx* = 1, hence x* is the complement of x ,
soH isa Boolean algebra. m

b.Hilbert and Hertz algebras
5.2. Definitions. Notations. Examples.Rules of calculus

Following Diego (see [37, p. 4]), by Hilbert algebra we mean the following
concept:

Definition 5.2.1. We call Hilbert algebra an algebra (A,—, 1), of type
(2,0) satisfying the following conditions:
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a:x—y—-x) =1,
aX—>yY—2)->((xX—>y) > Kx—2)=1
ag lfx—>y=y—->x=1thenx=y.

In the same paper it is proved that Definition 5.2.1 is equivalent with

Definition 5.2.2. A Hilbert algebraisan algebra (A,—), whereA isa
nonempty set and — a binary operation on A such that thefollowing
identitiesare verified :

a (X—>X) > X=X;

B X—>XZY oY,

ag: X (Y > 2)=(x—>Yy) > (X—2);

az (X—=Y) 2> (Y= x) = X) = = X) > (X—Yy)—>Y).

We deduce that the class of Hilbert algebrasis equational. In [73]and [75],
Hilbert algebras are called positive implicative algebras.

Examples

1. If (A, <) isaposet with 1, then (A,—, 1) isaHilbert algebra, where for x,

yeA,
1, if x<y
X—Yy=
y, iILX£y.

2. If X isanonempty set and t atopology on X, then (t,—, X) becomes a
Hilbert algebraif for Dy, D, € 1, we define

Dy — Do=int[(X\D1) U D).

3.1f (A,Vv,A,0) isaHeyting algebrathen for every x, y € A thereisan

element denoted by x —y € A suchthatif z€ A, thenx A z<yiiff z<x
—Y; 50, (A,—, 1) become a Hilbert algebra (where 1 = a— a, for an

elementac A).
4.1f (A,V,A,',0,1) isaBoolean algebra, then (A,—,1) isaHilbert algebra,
whereforx,ye A, x ->y=x"Vvy.
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5. There are Hilbert algebras which are not Heyting or Boolean algebras.
Such an example is offered by the following diagram (see [37, p.9]):

1

The table of composition of this diagram is given by Skolem and it is
mentioned in [37], at page 10.
If (A,—) isaHilbert algebrain the sense of Definition 5.1.2, then we denote

1=a— afor someelement a € A (thisis possible by the axiom as).

On A we definearelation of order: x <y iff x - y =1 (see[37, p.5]). This
order will be called the natural ordering on A. Relative to the natural
ordering on A, 1 isthe greatest element. If relative to natural ordering A has

the smallest element O, we say that A is bounded; in this case, for x € A we
denotex* =x — 0. If A isaBoolean algebra, then x* =x’.

Definition 5.2.3. If A isa Hilbert algebra, we call deductive system in A
every non-empty subset D of A which verifiesthe following axioms:

ag. 1€ D;
ag: Ifx,y€ Aandx,x —»y € D, theny € D.

Itisimmediate that { 1} and A aretrivial examples of deductive systems of
A; every deductive system different from A will be called proper.
We denote by Ds(A) the set of al deductive systems of A. If A isbounded,

then D € Ds(A) is proper iff 0 & D.

In the case of Heyting or Boolean algebras, the deductive systems arein
facts the filters of respective algebras.

For two elements x, y of abounded Hilbert algebra A we denote:

XUy=(X—y)—Yy,
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XY y=x*—Yy,

XAy=(X—-y) = ((y = X) —X).
Asitfollowsx LIy, X ¥y, X Ay are by natural order on A, majorants for x
andy.
It is shown that in general, this majorants are different for apair (X, y) of
elementsin A; it is also shown what they becames in an Heyting or Boole
algebra and in what case one of them is the supremum of x and y.

Definition 5.2.4. If A isa Hilbert algebra, we call Hilbert subalgebra of A
every nonempty subset S < A which verifiesthe axiom
a0 If X,y € S thenx -y € S.

If A isbounded, we add, to ag,the condition that O € S.

In the case of unbounded Hilbert algebras, their deductive systems are also
Hilbert subalgebras. We denote by Alg(A) the set of all subalgebras of A
(see Chapter 3).

Definition 5.2.5. If A; and A, aretwo Hilbert algebras, a function
f: A1 — Ay, will be called morphism of Hilbert algebrasif for every x, y

€ A; wehave
ay: f(x —y) =f(x) — f(y).

If A; and A, are bounded Hilbert algebras, f will be called morphism of
bounded Hilbert algebrasif verifies a;; and the condition f(0) = 0.

We note that the morphisms of Hilbert algebras map 1 into 1 (thisfollows
immediate from &3 if we consider x =y = 1).

In what follows by H; (respective, H; ) we denote the category of Hilbert
algebras (respective, bounded Hilbert algebras).

Since the class of Hilbert algebrasis equational, in H; the monomorphisms
are exactly injective morphisms; the same thing is also valid for H, (see
Proposition 4.2.9).

Definition 5.2.6. If A isa Hilbert algebraand S < A isa non-empty
subset, we denote by <S> the lowest deductive system of A (relativeto
inclusion) which contains S; we call <S> deductive system generated by
S.
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In[80] Tarski provesthat (S)= U (F).
FI S,
F finite

If F={ay, &, ..., &} < A isafiniteset, wedenoteby <a,a,..., a:>=<F>; if

F={a} < A, then we denote <a> = <F> which will be called the principal
deductive system generated by a.
In[75,p. 27] itisproved that

<a, &, .. ={XEA - (@—..— (@h—Xx)..)=1}.

In particular, we deducethat <a>={x € A : a<x} =[a).
It isimmediate that relative to inclusion Ds(A) becomes a bounded | attice,

wherefor Dy, D, € DS(A), DiAD;=D1NDy,DyVDy=<DiUDy> 0=
{1} and1=A.

Definition 5.2.7. An element x of a Hilbert algebra A iscalled regular if
x** =x and denseif x* = 0.

We denote by D(A), respective R(A), the set of all dens, respective regular
elements of A.

If A isaHilbert algebraand DeDs(A), then therelation (x, y)€ 0(D) iff x

— Y,y — X € Disacongruence on A (see[18], [37]); for an element x €
A we denote by x/D the equivalence class of arelative to 6(D) and by A/D

the quotient Hilbert algebra, wherefor x, ye A, (x/D) — (y/D) = (X — y)/D
and1= /D =D.

Definition 5.2.8. If (A, <) isa poset with 1, we say that p€A isthe

penultimate element of A, if p # 1 and for every x € A, x# 1, wehavex <
p.

Remark 5.2.9. If A and A’ are Hilbert algebrasandf: A — A’ isa
morphism of Hilbert algebras, we denote by Ker (f) = {x € A: f(x) = 1}. Itis
immediate that Ker(f) € DS(A) and f isinjectiveiff Ker(f) = {1}, (see
[18],[37]).

Now let some rules of calculusin aHilbert agebra.

Theorem 5.2.10. If A isaHilbert algebraand x,y,z € A, then :
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C:l-x=x,x—>1=1,

C XSy > X, XS(X—>Y)—>Y;

GG X—(y—>2)=y—(X—2);
CuX—>ys(y—2) —(X—2);

Cs: If x<y,thenz—>x<z—-yandy »z<x— z
C: (X—=Yy)—Yy)—oy=x—y.

Proof. Excepting cs, al is proved in [37, p.5].
To prove cs, we deduce from ¢, and ¢s that (X — y) > y) > y<x —yand
by cathat X —y<((x—y) —y) -V, hence(x > y) > y) > y=x—y

Corollary 5.2.11. If A isa bounded Hilbert algebraand x,y € A, then
cr. 0 =1,1* =0

Cg: X > Yy* =y —X*,;

Co: X > X* =X*, X* 5> X=X** XIX** XIX* > Y;

Cio: X = Y SY* — X*;

cip: If x <y, then y* < x*;

Cyp. X*¥*¥* = x*,

Proof. c; follows from ¢, for x = 0. ¢cg follows from ¢z for z=0. The first
relation of ¢o follows from & for y = x and z = 0, the third relation follows

from c,fory =0 and for thelast relation we use c;. W

Remark 5.2.12. If (X, 1) isatopologica space and D € 1, then
D* =int(X - D), D** =int(D ), where D isthe aderence of D.
For n elements xy, Xa, ..., X, Of & Hilbert algebra A we define:

Xn, ifn=1
(X1, X2, ooy Xne1 3 Xn ) =
X215 (X2, <oy Xpe1 5 Xn ), IfN>2

Theorem 5.2.13. Let A beaHilbert algebra and X, y, X, X2, ..., Xn €A
(n=2).

Then:

ci3. If o isa permutation of elements of the set {1, 2, ..., n}, we have
(Xo(1) » Xo(2) 5 -1 Xo(n) 3 X) = (X1y cory Xnj X);

C1a: X — (X1, X2, «ovy Xn-1; Xn)=(X, X1, ey Xn-1; Xn)=...=(X1, X24.00 , Xn-1, X; Xn);
Ci5: (X1, X2, vy Xny X = Y) = (X1, X2, ey Xn; X) = (X1, X2, «oe s Xnj Y).
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Proof. c13 and ¢4 follow using mathematical induction relativeto n and ¢35
follow from as. ®

Remark 5.2.14. If A isaHilbert agebrawithout 0, then by adding a new
element O ¢ A and definein A’ = A U{0} theimplication asin table

— X

0
X

1

[HEN
RPORPORR[FLRO
'_\

(wherex € A), then (A’, —, 0, 1) becomes a bounded Hilbert algebra.
We verify the axioms a, — &.
a:(0—-0—->0=1->0=0;

8. 0—>0=1=x—>xforevery x € A;

g Ifx=0andy,ze A, thenx - (y—>2=0—-(y—2 =1 and (x
->yY)>X—>2=(0—->y)—>(0—>2=1—>1=1, soxisverified.

If y=0,thenx »>(y—>2=x—>(0—2z) =x—>1=1and (x
->yY)>X—>2)=x—>0—>XX—>2=0—>X—2) =1 henceasis
verified.

Ifz=0,thenx > (y —>2)=x—>(y—>0=x—>0=0and (x
->YyY)>X—>2)=X—>Yy)>X—>0=xX—>Yy)—>0=0,s0aisaso0
verified.

Ifx=y=0andze€ A,thenx - (y—>2=0— (0— z)=1and (x
—->yY)>X—>2=(0—->0)—(0—>2=1—1=1, hence ag isverified.
Ify=z=0,thenx - (y >z =x—>(0—-0=x—1=1and (x

->yY)>X—>2)=(x—>0—>(Xx—>0=0—-0=1, henceas isalso
verified.

Ifx=z=0,thenx - (y—>2=0—->(y—>0=0—-0=1and (x
—-y)—>X—>2=(0—->y)—>(0—-0)=1—1=1, hence & is verified.
Since we have verified al possibilities, we deduce that & is verified.
a:lfx=0,then(x—>y) > (y—>x)—>x)=0—-y) > (y—>0—-0=1
—»(0-0=1-1=1land(y—>x) > (xX—>y)—> y)=
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y—0—->((0->y)>y)=0-(1—>y)=0—>y=1, henceaisalso

verified.

If y =0, analogously we deduce that a&; is verified.
Ifx=y=0,then(X—>Yy)—> ((y—>X%X) > x)=(0—-0) — ((0— 0)

—0)=(y—=x)— (x—y) —Y) hencea istrue.

Remark 5.2.15. In general, in abounded Hilbert algebra, for two elements
X, Y, theelementsx LIy, x ¥ yand X Ay are different two by two.

Indeed, if A={0,a, b, c,d ef, g, hi,j k mn,1} isthe Skolem's
example, then the table of composition is the following:

0O abc def

efg
111 1

1h1

>
-

e}
[EEN
Q@
-S> XERPPRPR PP

I—‘DBX'_'_':TO_"(D OO0 T O ll

b
b
1
h
1
h
k
d
n
d
i
h
f
d
b
f
b

O0O00O00O0OO0O0OO0OO0O0OOO0
DOOPQD®OTOSQIQR K
D@0 O0QQOSO0SQRrRQPF Lo
oOTooTSS QS oORr IR T
DPOPQOQ DQ JIQFPQ I
TS PSS XSRIX 5
OSSR SRIRIRI RIS
NNXAXRPRXRPXRPRRRIXPRR RBR~X
I3 IP3IFP3IFP3IFPPRP3IRPRE P33
SPSSRRPRIISSSRERRRE B
RPRRPRRPRRRPRRPRPRRRRRRE R

- X TIoO X R

'_3 3'_'|—\3 3'_'33|—‘3 |l B ]

Qoo raerQaeEr

For the elements a, b we have:
allb=(a—b)—>b=h—b=i

ayb=@—>0—->b=0—-b=1
aAb=(@—-b—->(b—a—-a=h—>(g—a=h—j=n,

sotheelementsalLl b,a ¥ band aA bingeneral are different two by two.

If A isaHeyting, it doesn't result that for x,y € A, XLy, X Y. yOrxXAyis
the supremum of x and y; indeed, if A isthechain {0, x, y, 1}, this become
in canonical way Hilbert (Heyting) algebras.
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Inthisalgebrawe have: x Ay=x - y) > ((y > X) > X)=1— (X > X) =
l1->1=1buxvy=y,adsoxyy=x—0—-o>y=0->y=1#x,y.

If A isaBoolean algebra, thenfor x,y € Awehavex Lily=x v y= X
Vy.
Indeed, x Uy = (X = y) > y=(x—y) Vy=xX Vvy) vy = (x

AY)YVY=XVY)AYVY)=XVY, xX¥Yy=x'-y=x"Vy=xVy,
XAYy= X=yY)=>((y—=X)=x)=X'Vy)VEVY)=XAY)V(XV
y)= X VY.

Theorem 5.2.16. If A isa bounded Hilbert algebraand x, y, z €A, then
Cio: XSXUY,YySXUY, XUX=XXUO0=x**x11=1 xux*=1 X
<yiffxuy=y,x—-y)AXxuy)=y;

C17. XSX MY Y, ySXVYY, XY X=X** XY 0=x**x¥1=1,

XY x*=1

Proof. ci6. From ¢, we deduce that x LI y isamajorant for x and y. We have
XUX=(X—>X)>X=1-oXx=X,XLU0=(X—>0)—>0=x**xuU1l=
X—>1)—->1l=1-1=1xUX*=X>oX) o> xX*=x*>x*=11f x<y,
then xUy=xX—-oy)—>y=1l->y=y.
IfxUy=y,sincex <x U ywededucethat x <y.

Wehavethatx <y —» xandx<((y » x) » xandlett € A suchthat t
<y—-xandt<((y — x) — X.

Then ((y > X) > X) > x<t— X, hencey —» x <t — X; sncet<y — X,
by transitivity we deduce that t <t — X, hence t < x, from where the last

equality results.
Ci7. From0<y wededucethatx - 0<x — y, hencex* <x —-yand x<

x* -y, thereforex <x v y. Also, x ¥ X =x* — X; now let’s prove that x*
— X =x**. For this, if in a; we consider y = 0, we obtain (x — 0)—((0 —
X) — X) = (0 — x) — ((x — 0)— 0), hence x* — x =x**. We also have x

YyO0=x* -0=x**xv1l=x* >1=landx ¥ X* =x* >x*=1. 1

Theorem 5.2.17. If A isa bounded Hilbert algebraand x,y, z €A, then
Cigs XAY=YAX,XSXAY,YyS<XAY;
Clo: XAX=X, XAO0= x** xAl=1;
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Coo: XA(X—>Yy)=1 XAX* =1,

Cr:z— (XAY)=(z—>XxX)A(z—Y);

C2l (X = Y) AZ=X = (Y A ), (X = Y)* =X -y,
Cs: (X—>Yy)A(y—x)=1.

Proof. cis. Follows from &; and c,.

Cio. WehaveX AX=(X—>X) > (X —>X) > X)=1—> (1—>X) = 1
- X=XXA0=X—>0)—> (0> x) > X)=x* > (1> X)=X* ->Xx=
x** andxAl=x—>1)—->(1—->%X)>x)=1->X—>x)=1—->1=1
Co. WehavexA(x > y) = (X > (X > y) = (XK= y) = X) = x)= =
(X —=y) = (X = y) = X) > x) =1 (by cp).

For y =0, weobtain that x A x* = 1.

C. Usingaswehavez -»(x Ay)=z— (X —>y) =>((y > X) > X)) = (z
S X=Y)=> =2 (=X ->x)=(Z->X)>2Z-y)->{(z—y) —
(z—oX)—>@Z—-X)=@Z—->X)A(z—Y).

c22.\)/;/ehave(><—>y)Az =(x—=yY)—= 2= (2> x—Yy)— (x
Butz—>(X—-y)—>X—>Yy) =(X=>(@Z—-Y)—>X—Y)= X

—(Z—y) >y hence(x »y)Az=(X>y)—>2) > (X - (z—y) —
M=x=>((x=>y)—>2—>(z=y)—Y)=((x>y) > x—>2)—>
X=(@Z—=Y) =) =x—=>(y—>2) = ((z—Yy) > y)=x—(yA2),tha
IS, the desired relation.

For z=0we obtainthat (x —» y) A0O=x — (y A 0). By ¢c;o we have (x
—Y)AO=(X—>y)** andy A0 =y**, S0 (X - y)** =x — y**.

By cgwehavex — y** =y* — x* and x** — y** = y* — x*** = y*
— X*, hence (X — y)** = x** — y**,

Czs. Wehave (X > y) A (y = X) = (X = y) = (Y = X)) = ((y > X) = (X
—Y) > X—=y).Bux—-y) o> —-x)=y—>(X—>y)—X) =

(Y= X—=y)—(—X)=1->(y—>X)=y—X hence(x > y) A(y —

)= =X 2> ((X=y)>K-=y))=(Y—-x)—1=1n

In the following paragraphs we will put in evidence some rules of calculus
relativeto ¥ and A.

We recall that for two deductive systems D1, D,€ Ds(A), in the lattice
(Ds(A), <) we have D1V D, = <D;U Do>.

Theorem 5.2.18. If A isa Hilbert algebraand D4, Do€ Ds(A), then

D; vV Da={x € A: therearexy, Xy, ..., X, € Dy such that (xy, ..., Xn; X) €
D,}.
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Proof. Let D = {x € A: thereare Xy, X2, ..., Xn € D1 such that (X1,
ey Xy X) € Do}

Firstly we will provethat D € Ds(A). Clearly 1€D and let X, x — y € D;
then there are x1, X2, ..., Xn, Y1, Y2, ---, Ym € D1 such that (X1, X2, ..., Xn; X),
(Y1, Y2, oy Ym; X = Y) € Do.

By c15 we deduce that (y1, Y2, ...y Ym; X)— (Y1, Y2, ---» Ym; YY) € Do, therefore
Xn = (Y1, Y21 oo Yy X) = (Y1, Y2, -y Y Y)) € D2

By c14 and ¢;5 we can write the last relation as

(Y1, Y2, - Ym s Xn—= X) —=(Y1, Y2, -y Ym; Xn — Y) € Do.
By inductively reasoning relative to n we deduce that (Y1,

Y2,y wey Yims X1y X2, weey Xy X) = (Y1, V2, ey Yimy X1, X2, ooy Xy YY) € Do

Since (Y1, Y2, -y Ymy X1, X2, wry Xny X) = (Y1, Y2, s Ymi (X1, X2, o0y Xny X)) € D2
we deduce that (Y1, Y2, ..., Ym, X1, X2, ..., Xn; Y)E€ D2, hencey € D.

We will provethat D; vV D, < D. If x € D4, then, sincex — x =1, we
deducethat x € D, hence D, < D. Sincefor x € D,, 1 - x=x € Dywe
deduce that D, < D, henceD; v D, < D.

ToproveD < D; vV Dy, let x € D; then there are Xy, Xa, ..., Xn € D1 such
that (X1, X2, ..., Xn; X) € D2 € D3 V Da.

Since (X1, X2, «.ry Xn; X) = (X2, ooy Xn; X) € D2 € Dy vV Do and x € Dy we
deduce that (x2, ..., Xn; X)€ D1 V Do; reasoning inductively relative to n, we
deducethat x € D1 Vv Dy, henceD < D; vV D,. B

Corollary 5.2.19. If A isaHilbert algebra, D € Ds(A),
a, X1, X2, ..., Xn € A, then

Cu:[@) VD={xe A:a—x € D};

Cos: <X1, X2, .., Xp> = {X € A (X1, X2, ..., Xn; X) = 1}.

Proof. cy4. Let x € [@) V D; by Theorem 5.2.18 there are x3, Xa,..., Xn € D
such that (X1, X2, ..., Xn; X) € [a), hence
a< (X1, X2, «ey Xmy X) < (X1, X2, ey Xny @—X) =1,
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Since Xy, Xz, ..., Xp € D and X3 —(X2, X3, ..., Xn; @a— X) =1 € D, we deduce
that (X2, X3, ..., Xn; @— X) € D; successively we deduce that a— x € D,
hence [a) VvV D c {x € A:a— x € D}. Since the other inclusion is clear
(since a € [d)) we obtain the equality from the enounce.

Cos. We write <Xi, X2, ..., Xp> = <X1, X2, ..., Xn-1> V [Xn) and use Cy;. W

In what follows we will establish the condition that a Hilbert algebraisa
Boolean algebrarelative to natural ordering.

Theorem 5.2.20. For a bounded Hilbert algebra A, the following
assertions are equivalent:
(i) A isa Boolean algebrarelative to natural ordering;

(i) For every x € A, xX** = x.

Proof. (i)=(ii). If A isaBoolean algebrarelative to natural ordering, then
for every x € A we have x** =x'" = x.
(i)=(i).Firstly we shall provethat for every x, yeA therearex A yeA and

X AY=(X—y*)*.
Indeed, from O < y* we deduce successively X — 0 = x* <x — y*,
(X — y*)* <x** =x and by y* <x — y* we deduce that (x — y*)* < y** =

y.Now lett € Asuchthatt<x, t<y. Theny* <t* hencex —» y* <x —
tr < t — t* =t*, thereforet = t** < (x — y*)*.

We have to prove now that for every X,y € Atherearex Vy € Aand X
VY=X* >y=XxXVy.

Indeed, by c17 X, y<x ¥ y.Now lett € A suchthat x <tandy <t. From X
<twededucethat t* <x*, hencex* - y<tr - y<tr »>t=t** =t.

Therefore we have proved that (A, Vv, A, 0, 1) isabounded lattice.
We have to prove now that A isaHeyting algebra.

Indeed, if X,y,z€ A, thenx A z<y & (X — z¥)*<y, hence we deduce
that y*<X - Z* 2 X<y* > zZ*<zZ** > y** =7z 5y = z<Xx—Y.Since
the proof of converse implication is analogous, we deduce that xAz <Yy iff z

<x —Yy, hence(A, v, A, —, 0) isaHeyting algebra.
Following Corollary 5.1.20, to prove that A isaBoolean algebrait will
suffice to prove that D(A) ={1}.
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Indeed, if x € D(A), thenx* =0, hencex =x**=0*=1. 1

Corollary 5.2.21. A bounded Hilbert algebra A isa Boolean algebra

(relativeto natural ordering) iff for every x,y € A wehave(x —»y) —
X = X.

Proof. “=" If A isaBoolean algebra, then for every x, yeA,wehave (X

SY)o>X=X>oY) VX=X VY)'VX=X"AY)VX =(XAY)VX
= X.

“<"If (x > y) - x=xforevery x,y € A, thenfory =0 we obtain that
for every x € A, x* — X =X, hence x** = x. By Theorem 5.2.20, A isa
Boolean algebra. m

Corollay 5.2.22. For a bounded Hilbert algebra A, the following
assertions are equivalent:
(i) A isBoolean algebra (relativeto natural ordering);

(i) For everyx,y € A, X LUy=yLIX;
(iii) For every X,y € A, XY y=y vV X;
(iv) For every x,y € A, XUy =X VY,
(v) For everyx,y € A, XX y=xX VY.

Proof. Theimplications (i)=(ii), (iii), (iv), (v) areimmediate, sincein a
Boolean algebra A for any elementsx,y € Awehavex Ly =X Y y=xV
y.

(ii) = (i). If inthe equality (x — y) > y=(y — X) — X weputy =0, we
obtain that (x — 0) — 0= (0 — x) — X, hence x** = x and apply Theorem
5.2.20.

(iif)=(i). If in the equality x* — y = y* — x we put y = 0 we obtain that
x* — 0=0* — X, hence x** = x and if we apply Theorem 5.2.20.

(iv)=(i). Also if in the equality (x — y) — y =xVy if we put y = 0, then we
obtain that x** = x and apply Theorem 5.2.20.

(V)=(i). If inthe equality x* — y=x Vv y weputy = 0, then we obtain that
x** =x and we apply Theorem 5.2.20. ®
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Corollary 5.2.23. If A isa bounded Hilbert algebra, then the following
assertions are equivalent:
(i) A isBoolean algebra (relative to natural ordering);

(il) For every X,y € A, XAy=Xx VY,
(iii) For every x,y,z€ A, if x<y,thenxAz<y Az

Proof. Theimplications (i)= (ii), (iii) are true because A is a Boolean
algebra, henceif x,y € A, thenx Ay=x Vv y.

(i)=(i). For y =0, we obtain that for everyx € A, x A0O=xV0 < X**
=x and applying Theorem 5.1.20.

(iii)=(i). Since 0 < x, then x A 0 <X A X, hence x**< x, therefore x** = x
and applying Theorem 5.2.20. m

The following result shows that and for Hilbert algebras we have a theorem
of Glivenko type (see and Proposition 2.6.17):

Theorem 5.2.24. If A isa bounded Hilbert algebra, then R(A) becomes a
Boolean algebra, wherefor x,y € R (A),

XAYy=(X—y*)* €R(A)

XVy=X*Ay*)* € R(A)

x"=x* € R (A).

Thefunction ¢a : A — R(A), ¢a (X) =x** for everyx € Aisa
surjective mor phism of bounded Hilbert algebras.

Proof. Firstly we remark that if X, y € R(A), then x** =x and y** =,
hencex — y € R(A), because by ¢, we have (x — y)** = x — t. The proof
continues as in the case of Theorem 5.2.20, becauseinfact x vV y = (x*—
Y = (X ) =X Sy = XYy

The fact that g is asurjective morphism of bounded Hilbert algebras
followsfrom c;z and c. B

Lemma5.2.25. If A isabounded Hilbert algebra, then D(A) € Ds(A).

Proof. Since 1* =1 — 0 =0wededucethat 1 € D(A).
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Now let’s suppose that x, x — y € D(A); then x* = (X — y)* =0 and we
will provethat y* = 0.
By (x — y) —» 0=0wededucethat x — ((x - y) —» 0) =x — 0= 0, hence

X—>y)>(xXx—>0=0< x—(y—0)=0= x — y* =0. On the other
hand, by x — 0=0wededucethaty —»(x — 0) =y — 0< X — y* = y*.
Sincex — y* =0, we deduce that y* =0, hencey € D(A). m

Lemmab5.2.26. If A isa bounded Hilbert algebra, then:

() For every x € A, x** > x &€ D(A) ; x € D(A) iff x=y** — yfor
somey € A;

(i) For every x € A thereexists x** A (X** — x) and x** A(X** — X) =
:X,

(ili) For every x € A, (X** — X) —> X = X**,

Proof. (i). Let d = x** — x; from ¢, and ¢;7 we deduce that x <d and
x*<d, henced*< x* <d, therefored* <d & d* »d=1ed"* =1 d* =
0< deD(A).

If x € D(A), thenfor y = x, weobtainthat y** - y=0* > x=1—-X=X.

(ii). Clearly x <x** and x < x** — x; now lett € A such that t <x** and
t<x** — x. Wededucethat x** <t — x, hencet<x** <t — X, sot<x,

thatis, X =x** A (X** — X).

(iii). If in a; we consider y = x** we obtain (X — x**) — ((X** —X)—X) =
(X** — X) = ((X = Xx**) — x**).

Sincex — x**=1we obtain that (x**— X) —» X = (X**— X) — x** =

=(X** > X) > (X)) =xF > (X > X)F=x* > 0=x**. W
Corollary 5.2.27. If A isa bounded Hilbert algebra, then for every xeA
wehave x=y A z, withy =x** € R(A) and z=x** — x € D(A).

Remark 5.2.28. In [66, p. 133], Nemitz proves an analogous result for
implicative semilattices.

Theorem 5.2.29. Let A beabounded Hilbert algebra and x,y € A.
Then x** =y** iff thereared;, d,€D(A) suchthatd; > x=d; - y.
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Proof. "=". Suppose that d; — x =d; — y, with di, d, € D(A).

From c;; wededucethat (dy — X)** = (dy — y)** ©di**— x** = d** —
y**. Sinced;** = dy** = 1, we deduce that x** = y**,

<" I x*r = y** then by Lemma5.2.26, (iii) we deduce that
(X** > X) > X =xX** =y** = (y** — y) — y hence we can consider

d=x** >xeDA)andd, =y** >y D(A). &

Remark 5.2.30. If A isan implicative semilattice, in [63] Nemitz prove
that x** = y** iff thereisd € D(A)suchthatd A x=d A Y.

In what follows we will extend the notions of dense and regular elementsin
the case of unbounded Hilbert algebras.

Definition 5.2.31. If AisaHilbert algebraand X,y € A, wesay thaty is
fixedby xif x > y=y.If SS A, wesay that Sisfixed by x iff every

element of Sisfixed by x. If T < A, wesay that Sisfixed by T if every
element of Sisfixed by T.

Wedenotefor Sc A, Fix(S) ={x € A: Sisfixed by x} = {x
€ A:x—s=s foreveryse S} and
Fixat(S) ={x € A: xisfixedby S}={x € A:s— x=x foreverysec S}.

Lemmab.2.32. If A isaHilbert algebra, then for every Sc A,
Fix(S) € Ds(A) and Fixat(S) € Alg(A).

Proof. Firstly we will prove that Fix(S) € Ds(A).

Sincefor every s€ S, 1 — s=swededucethat 1 € Fix(S).

Supposethat X, X — y € Fix(S), thatis,x — s = (x —» y) — s=sfor every
sesS

We deduce that for every s€S, (x — y) — (X — S) = s, hence successively
weaobtanXx — (y —»9) =5,y — (X — 5) =S,y — s=s, therefore yeFix(S).
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To prove Fixat(S) € Alg(A), let x, y € Fixat(S); thens— x =x and S
— y=yforeverysc S Thenforevery s€ Swehaves— (x - y) =
(s—>X)—>(s—y)=x—-oY, hencex -y e Fixat(S). =

Lemma5.2.33. Let A beaHilbert algebra and xeA.
Then Fixat({x}) =x — A,wherex - A={x—y:y € A}.

Proof. By definition, Fixat({x}) ={z€ A:x—>z=2}.If y
=Xx—>z€Xx—>A(henceze A),then x s y=x—>X—>2)=Xx—>2z=Y,
hence y € Fixat({x}), so, we obtain theinclusion x — A < Fixat({x}). If

y € Fixat({x}),theny=x -y € x — A, hence Fixat({x}) = x — A, that
is, Fixat({x})=x—A. m

Lemma5.2.34. If AisaHilbert algebraand x,y € A, then x—>A=y—A
iff x=y.

Proof. It is suffice to prove theimplication: if x — A €y — A, then X
<y.
Fromx — A < y — A we deduce that for every z € A thereist € A such

that x — z=y —t. In particular, for z = y wefind t€A suchthat x —» y =
y—t

Sincey <x — ywededucethaty<y -t < y —t=1, hence
X—>y=1lx<y. 1

The dual notion of implicative semilattice is the notion of difference
semilattice. If (A,V, 0) isajoin—semilattice with O, we say that A isa
difference semilattice if for any elementsx, y € A thereisan element of A
denoted by x - y suchthat x -y =sup{z € A: x<y V z}.

Itisimmediate that if A isadifference semilattice and x,y,z € A, then we
have the following rules of calculus:
Cos. X - Y <X,

Cori X-(YV 2)=(X-y)-2=(X-2) -y,
Cog: (X-2)-(Y-2)<(X-2)-Z
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Coot (X VY)-2=(X-2) V (Y-2)
Czo: X =X—=0;
Cap: X<Yyiff x-y=0;

Cs2: If thereexistsy A z, thenx-(y A z)=(X-Y) V (X-2);
Cz3: If thereexistsy A z, thenx=(X A y) V (X - 2).

Lemma5.2.35. If AisaHilbert algebraand x,y € A, then in thejoin-
semilattice (Ds(A), V) (where 0 = {1}) there exists[x) —[y) and [x) —[y)
= [y—x.

Proof. Firstly we will provethat [X) < [y) V [y — X).

By cawehavely) VIy—X)={ze Aiy—>zec[y—>X)} =

{ze A:y—>x<y—1Zz},s0ifze [x)then x<z hencey - x<y — z,s0
ze[y) vV [y — X); wededucethat [x) = [y) V [y — X).

Now let D € Ds(A) such that [x) < [y) vV D and we will prove that
[y — x) €D; sincex € [x) we deducethat x € [y) v D, hencey — x € D,
thatis, [y — x) €D. ®

Theorem 5.2.36. If A isaHilbert algebraand x € A, then
<X — A>=A —[Xx).

Proof. Firstly we will provethat A € <x — A >V [x), thatis, <

X—A>V[x) =A.

By Theorem 5.1.18 it must be proved that for every a € A there exist

a, &, ..., & € <X — A> such that (a, &, ..., a,; @) € [X).

Clearly ay =x — a€ <x — A>; sincex < (x —» a) —» a= & — a, we deduce
that (ay; @) =& — a € [Xx), hence<x — A> V [x) = A.

Now let D € DS(A) such that [x)VvD = A; then for every ac A, a
€[x) v D,hencex -a€ D.Thenx > A< D,hence<x - A>cD. m

After this training we can extend the notions of regular and dense element to
the case of unbounded Hilbert algebras.
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Definition 5.2.37. If A isan unbounded Hilbert algebra, we say that an

element x€A isregular if for everyy € A we have (X — y) — x =x. We
denote by R(A) the set of all regular elements of A.

Theorem 5.2.38. If A isa bounded Hilbert algebra, then R(A) = R(A).

Proof. If x€ R(A) then for every y € A wehave (X — y) — X = X; in
particular for x =0weobtain (X - 0) > x=X & x** =x < x € R(A),
hence R(A) < R(A).

Now let x ER(A) andye A .
Since 0<y we deducethat x* <x —y, hence(x - y) > X<x* > x=
X** =x; sincex < (X — y) — X wededuce that (x — y) — X = X, hence x

€ R(A), sOR(A) S R(A), that is, R(A)=R(A). =

Definition 5.2.39. If A isan unbounded Hilbert algebra, we define
D(A) =Fix(R(A)) ; an element x € A will becalled denseif x €

D(A) (that is, x € A isdenseiff for every r € R(A) wehavex —r =r).

Theorem 5.2.40. If A isabounded Hilbert algebra, then D(A)=D (A).

Proof. Since(0—-y) - 0=1—-0=0, forevery y & A, we deduce that
0€ R(A).

Let now x € D(A); since0 € R(A), in particular we obtain X — 0=

0, hence x* =0, thatis, x € D(A).

Let now x € D(A), (hencex* =0) and r € R(A) = R(A), (hencer** =r).
Then X 5> r=x—->r**=x—-> (- 0)=r-xXx—-0=rr—-0= r* =r,
hencex € D(A), thatis, D(A)=D(A). m

5.3. The lattice of deductive systems of a Hilbert algebra
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According to the notations from Chapters 1 and 3, for aHilbert algebra A
we denote by Echiv(A) (respective, Con(A)) the set of all equivalence
relations (respective, congruence relations) on A.

For D € Ds(A) we consider the equivalence relation 6(D) on A definedin 8
1.(x,y)e06(D) iff x>y, y—xe&D.

Lemma5.3.1. (D) € Con (A).

Proof. Let x, X', y, y" € A suchthat (x,y), (X', y’) € 6(D), thatis,x -y, y
—X, X' >y, y ->x" €D.

Wededucethat x — (X" — y’), x — (y" — x’) € D, hence (x — x’) — (x
—VY), xX—>y)—>X—>Xx)eD,thais, (x— X', x—y)e6(D).
Anaogously we deducethat (x — y’, y —y’) € 6(D) (sinceby ¢4, x >y
<S(y—-y)—-Kx—y)ady - x<(x—y)—(y—Y)).Bythe
trangitivity of (D) we deducethat (x — x’,y — y’) € 6(D), hence6(D) €
Con(A). =

Lemma5.3.2.1f 6 € Con (A),thenD(0) ={x € A: (x,1) € 0} € DS(A).

Proof. Clearly 1€ D(0); let X, x — y € D(8) and we shall provethat y €
D(0). From (x, 1)€ 6 we deducethat (x >y, 1 —y) € 0, hence(x — v,
y)€0. Then (y,1)€6 (by the transitivity of 6), hencey € D(0), that is, D(0)
€ Ds(A). m

Lemmab.3.3. 1f D € Dg(A) and 6 € Con(A), then 6(D(0)) =6 and
D(6(D)) =D.

Proof. We shall firstly prove by double inclusion that 6(D(6)) =6 .

If (X,y) € 0, toprove (x,y) € 8(D(6)) it must be proved that X — vy, y — X
eDO®)<= (x—vV,1),(y— X 1) € 0, whichisimmediate because from (X,
y) € 6 wededucethat (x —y,y — V), (y— X,y —Yy) €0, thatis, (X —v,
1), (y — x,1) € 6. Hence 6 < 6(D(0)). For the other inclusion, let
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(x,y) € 6(D(0)) ©(x—vVy,1),(y—x 1) € 0. Sinced isacongruence on A
we deduce that:

(D) (X = y) =y, y), ((y = X) =X, X) € 6.
From (1) we deduce that:

(ENW®M®W®W®WU®@®wM,
T1(x® y)® (y® x)® x),(x® y)® x)1 q.

But (y — x) = (x = y) = y) = (x = y) = ((y = X) = X) = xAy, hence
from (2) we deduce that:

B y—-x) =y, x—y)—x) €b.

On the other hand, from (x — vy, 1), (y — X, 1) € 6 we deduce that
(X—>Yy)—>x,X),((y—X)—>VY,Y) €6, so, if weuse (3), we deduce that
(X, y) € 6, hence we have the equality 6(D(0)) = 6.

To prove the equality D(6(D)) = D, we use the equivalence x € D(6(D)) iff
(x,1) €6(D). m

Theorem 5.3.4. If AisaHilbert algebra, then thereisa bijectiveisotone
function between Con(A) and Ds(A).

Proof. We definef : Con(A) — Ds(A) by f (0) = D(0) for every #cCon

(A) and g: DS(A) — Con(A) by g (D) =6(D) for every D € Ds(A); itis
immediate to see that f isisotone. Following Lemma5.3.3 we deduce that
fog=1pgmand go f =1, hence f isbhijectivefunctionand g isits

converse m

If A isaHilbert algebra, then (Ds(A),V,A) becomes a bounded lattice

where for D1, D, € DS(A), D1AD2,=D1 N D,,D;V D;=<D; U D;>,0=
{1} and 1= A.

In fact thisis a complete lattice, where for afamily { Di} i< of deductive
systemsof A,then yD,=1D, and (D, =<UDi>.

For D1, D, € DS(A) wedefine D — D, = {x € A:[x) N D; € D3}.

Lemmab5.3.5. If A isa Hilbert algebraand D, D1, D, € Ds(A), then
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() Di— D, € Ds(A);
(i) DiND < D, iff D< D;— Dy

Proof. (i). Since[1) ={1},[1) N D1 ={1} < Dy, hencel € D; — D..

Now let X, X >y € D; — Dy; to provethaty € D; — D5 let t
€ [y) NDiete Dlandyft
Sincex < (x — t) —» t wededuce that (x — t) — t € [x); since t

<(x—t) >t then(x —»t) —t € [x) N Dy S Dy hence

(1) (x —>t)—>te D,
Anaogously we deduce

2 (x—>y)—t)—>te D,
Sincey <t, from ¢cs we deduce successively: X > y<x - t,(x > t) > t<
X—Yy) =t (x—>y) =1 > t<(x—t) -t By thelast inequality and cs,
we deduce that:

B ((x—>y)—t)>t<x—t.

From (2) and (3) we deduce that x — t € D5, hence by (1) follows that t
€ D, (since D, is adeductive system).

Therefore[y) N D1 < Dy, s0, y € D1 — Do.

(i) “=>"I1fDy—>Dc Dy letac Dandt € [a) NDy; thena<tandt € D;
impliest € D, hencet € D; N D < Da.

Thus[a) N D; € Dy, henceD N D; < D..

"<". Supposethat D < D; N Dy and consider x € D; N D; thenx € D <
D; — Dy, hence[x) N Dy € D,. Since x € [x) N D;, we deduce that x € D,
[ |

Remark 5.3.6. From Lemma 5.3.5 we deduce that (Ds(A),V, A, {1}, A)is
aHeyting algebra, wherefor D € DS(A),D* =D - 0=D — {1} = {x €
A:[xX)ND={1}},s0,forac A, [a* ={x € A:[x)N[a) ={1}}.

If A isaHeyting algebra, thenD* ={x € A: xVv y=1, foreveryy € D}
and[a)* ={x € A:x Vv a=1}.
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To provethe last assertion we remark that if x € D* andy € D, then since
xVy € [X) and xVy € D, wededucethat xvy € [x) N D ={1}, hence
Xvy=1.

If xvy=1foreveryy e D, then[x) N D={1}, sinceif y € [x) N D then

fromx <y, wededucethaty = xVvy =1, hence[x) N D ={1}, thatis, x €
D.

We want to seein what conditions Ds(A) is a Boolean agebra; in this way
wewill prove:

Theorem 5.3.7. If A isabounded Hilbert algebra, then the following
assertions are equivalent:

(i) (Ds(A),Vv, A,* {1}, A) isaBoolean algebra ;
(i) Aisafinite Boolean algebra (relative to natural ordering).

Proof. (i)=(ii). Let x € A; since DS(A) is supposed Boolean algebra, then
DIVIX)* =A. By Cas, [X)V[X)* ={y € Aix -y € [X)} ={y € Al [x >
y) N [x) ={1}}, so, for every y € A we have

(D x—y)n[x)={1}.
Sincex - y<((x —y) —Xx) —»x andx < ((x — y) — x) — X, we deduce
that (X > y) > X) > x € [x > y) N [xX) ={1}, hence

@ (x—=y)—>x)—>x=1

Since x < (X — y) — X, from (2) we deduce that (x — y) — X = X, s0, by
Corollary 5.2.21 we deduce that A isaBoolean algebra.

We shall provethat every filter of A isprincipal, hence A will befinite
(see[43]).

Let now D € Ds(A); since we have supposed that DS(A) is a Boolean
algebra, we havethat DV D* = A , hence 0 € DVD*.

By Theorem 5.2.18 there exist X1, X2, ..., Xn€D such that (X1, Xz, ..., Xn; 0)E
D*,s0, by the above remark we deduce that for every y € D, (X1, X2, ..., Xn;
O)vy=1

Sincein aHeyting algebraA for x, Xo, ..., X, € A we have :

Caa: (X1, X2y veey Xn-1) Xn) = (X2 A X2 A o A Xp1) — Xn,
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then therelation (X1, X2, ..., Xn; 0)V y = 1 it is successively equivalent with
(Xg A e AXp)—0)VyYy=1
X1 A o AXp)*VYy=1
(X1 A A X)) AY* =0
X1 A e AXn <Y,
hence D =[a), where a=Xx; A ... A X, € D.

(if)=(i). Suppose that A isafinite Boolean algebra; then every filter of A

is principal.

By Remark 5.3.6, DS(A) is a Heyting algebra, hence to prove that Ds(A) isa
Boolean algebrait will sufficeto provethat if D =[a) € Ds(A), withaec A
and D* ={1}, then D = A (see Corollary 5.1.20).

Also,D* ={x € A:x vVy=1foreveryy > a}. Sincefor every y > a,

a*Vvy > a*va=1,sowededucethat a* vy =1, hencea* € [@)* =1. We
obtain a =1, hencea=0, thereforeD = [0) = A, thatisDs(A) isa

Boolean algebra. m

In what follows we want to see in what conditions a lattice L can be the
lattice of deductive systems for a Hilbert algebra.
For thiswe will prove:

Theorem 5.3.8. A lattice L isthelattice of deductive systems of a Hilbert
algebraiiff it iscomplete and algebraic (with a base of compactsB < L

which verify the condition : if x,y € B, then x vy, x-y € B).
In thiscase L will beisomorphic with Ds(A), where A isthedual of B
(which isan implicative semilattice, hence a Hilbert algebra).

Proof. "=". Suppose that L = Ds(A), with A aHilbert algebra. Then L is

complete and consider B = {<F>: F < A isfinite} < L.

We know that if A isan algebraof sometype, then the lattice Con(A) is
algebraic, where the principal congruence are compact el ements(see Chapter
3or [45]). Since L isthe lattice of congruence of A (by Theorem 5.3.4),
then L isalgebraic, and the principal deductive systems of A are compact

elementsinL. Sinceif F < A isafiniteset, then <F> =V {[x): x € F}, we
deduce that the elements of B are compacts.
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Sincefor D € L = DS(A) wehave D =sup {<F>: F < D, Fisfinite}, we
deduce that B is a compact base for L.

Let now X =<F>, Y =<F>, with F, F, € A finite;then X v Y =
=<F U F> € B.
We shall provethat X - Y € B; werecall that following Lemma 5.2.35,for

every a, b € A, thenthereexists [a) —[b) inL = Ds(A), and [a) —[b) = [b
— a) ; aso, we use the rules of calculus Cys — Ca3.

Let X = <Xy, X2, .oy Xn>, Y = <Y1, Yo, ..., Y=, With X,y € A1 =1,2, ..., n,
j=1,2,..,m mandn naturals numbers.
We have:

X-Y=X-(y)V Iy2 V.. VIym) = (.. (X =[yd) =[y2) - ... = [ym)) and
X=[y) =([x) V [x2) V... VX)) =[y1) = ([x2) =[yD) V ... V ([xn) = [y1))
= [Y1i— X1 V[Yy1— X2 V... V[y1— Xp)= <Y1 — X1,Y1 > X2, ..., V1
— Xp> € B, 50, recursively we deduce that X - Y = <F>, where F=<Yy;

—Xxi:1=12 .,nand j=12, .., m>henceX-Y € B.

In [63], we have an analogous result for implicative semilattices, where the
principal filters are considered basis. In our case we cannot consider as
basisfor L the principal deductive systemsof A, sinceinthiscase, if X =

[@), Y =[b), then XVY =<a, b>, which isnot principal.

"<". Thedua of B, B® = (B, =) will be aimplicative semilattice
(hence a Hilbert algebra). A deductive system of B® will be afilter of B?,
hence an ideal of B; so Ds(B®) isinfact | (B) (the set of ideals of B).

So, | must provethat 1(B) and L areisomorphic as lattices.

For | € 1(B), if we denote f(l) = sup(l), we obtain afunctionf: 1 (B) — L,
which we will prove that is an isomorphism of lattices; clearly f is
morphism of lattices.

Since B isa compact base, f will be surjective isotone function (for x € L, if
wetakel = (x] € 1 (B), thenf (1) = x).

To provetheinjectivity of f , let 11, I, € 1(B) such that f (11) < f (I,) and we
shall provethat I; < I,. Lety € I;; theny < sup(l1) < sup(ly). Sincey is
compact, thereis|’ < I, such that y < sup(l”), hencey € I, (sincesup(l’) €
[,). Wededucethat |1 < Iy, that is, f isinjective B
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Remark 5.3.9. In[45, p. 94]), Grétzer provesthat alattice L isalgebraic
iff itisisomorphic with thelattice of ideals of a meet-semilattice with O.

Definition 5.3.10. For a Hilbert algebra A, we say that DEDs(A) is
irreducible(completely irreducibile) if, as an element of the complete
lattice DS(A), isa meet- irreducibile (completely meet-irreducibile)
element .

Clearly, every completely irreducible deductive systemisirreducible; if A
isaHeyting algebra, D € Ds (A) isirreducibileiff itisprimefilter .
In[73,p.34], it is proved that in the case of implication algebras (that is,
Hilbert algebras with the property that for every two elements x, y, then  (x

—Yy) — X = X), adeductive system (called in [75] implicative filter) is
irreducibleiff itisprimeiff it is maximal.

In [37, pp. 21-22] itis proved the following results:

Theorem 5.3.11. D € Ds(A) is irreducibile iff for any x,y & D there
isz& D suchthat x <z and y<z.

Theorem 5.3.12. D € Ds(A) iscompletely irreducibileiff thereisa & D
such that D isamaximal relativeto a (that is, D is maximal in Ds(A)

with theproperty a ¢ D) .

Theorem 5.3.13. D € Ds(A) ismaximal relativeto a iff a¢ D and
(x € D implies x — a € D).

Inwhat followswe will present other criteriafor meet-irreductibility
(completeirreductibility) relativeto adeductive system.

Theorem 5.3.14. For D € Ds(A) thefollowing are equivalent :
(i) D is meet-irreducible;

(i) For every H e Ds(A),H—->D=D orH<D;
(i) If x,ye A and [X)N[y) = D,then xeD orye D;
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(iv) Fora,p€ A/D,a #1,p + 1,thereisye€ A/D suchthat y #1
and a,p <vy.

Proof. (i)=(ii). Suppose that D is meet-irreducible and let H € Ds(A); since

Ds(A) isaHeyting algebra, by ci6, wehaveD =(H—-> D) N (H— D) —
D).Since D ismeet-irreducible, we have D =D — H or D= (H — D) — D;

in the second case, since HS(H — D) — D wededucethat H < D.
(i)=(i). Let D1, D, € DS(A) such that D = D; N Dy; then D1 < D, — D,
so,if D, < D,thenD,=D andif D, —» D =D, thenD; =D.

()=(iii). Let x,y € A suchthat [x) N [y) € D and supposethat x ¢ D, y
¢ D; by Theorem5.3.11 thereisz & D suchthat x <z and y < z. Then
z€ [x) N [y) €D, hence z € D, acontradiction!

(iii)=(ii). Let H € Ds(A) such that H ¢ D and we shall provethat H — D
=D.Let x€eH—D;then [X)y "nH< D andif y e H\D, then[y) < H,

hence [x) N[y) € [x) " H < D. Sincey¢D, we deducethat x € D, hence
H—-D=D.

()=>(v).Leta,p €A/D,a# 1B+ 1;thena=x/D,B=y/D with x,y
¢ D. By Theorem 5.3.11 thereisD suchthat x <z andy < z. If wetake
vy=z/DeEA/D,y+1and o, <vy,since x—z=y—z=1€D.

(iv) = (i). Letx,y ¢ D; if wetake a=x/D,p=y/D,a,p €A /D,

a#1, =1, hencethereisy=z/D,y # 1, (hence z & D) suchthat a, <
Y.

Thusx — z,y — z € D.

Wecomputez' = (X —2) > 2)A((y—>2) — 2) (clearly X > 2) > z, (y

— z) — z & D sinceif we suppose by contrary, we deducethatz € D - a

contradiction!).

Wehave (x—>2)—->2)—->((y—-2—-2)=(—->2)—->(Xx—2—2—
7)=y—-2)->Kx—->2zand (y->2) -2 > (Xx—>2—>2)=(Xx—>2—
(y—2 02 =(x—>2)>2A((y—>2)—>2)=((y—>2 > (X—>2)—
(x—>2)—> (y—-2)->((x—>2—-2)=(y—>2>K—->2)—>(x—
2)—>((y—->2—2)=((y>2 > x—>2)—>((y—>2— (x> 2 —2)

Y—-2)->((x->2)>((x—>2—2)=(—->2)—>(x—2—2.
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Wewill provethat z'& D; if suppose z'€D, thensince y — z € D, then
follows that ((x —z) — z) € D; sincex —z € Dweobtainthat z € D, a
contradiction, hence z’ & D.

Clearly,x < (Xx—>2)—>z<Z and y<(y—2) —z <27, henceby
Theorem 5.3.11, D ismeet-irreducible. ®

Corollary 5.3.15. If D € Ds(A) isirreducible, then in Heyting algebra
Ds(A), D isdense or regular.

Proof. If H=D* € Ds(A), by Theorem 5.3.14, (ii) we have D* < D or
D* — D =D; inthefirst casewe obtain that D*— D =1 or D** =1,
hence D* =0, so D isdense element in DS(A); in the second case we

deduce that D* - D=D< D** =D, hence D isaregular element
inDs(A). m

Theorem 5.3.16. For D € Ds(A) the following are equivalent :
(i) D iscompletely meet-irreducible;
(i) If 1[x)i D,thenl ND#Q;
XA
(iii) A/D havea penultimate element.

Proof. (i)=(ii) clearly.
(i)=(i). Let D= 1D, withD; € Ds(A) for every i€l, and suppose that
il

forevery i € | thereexistsx; € D;\D. Since[x;) < D; for every i € I, we
deducethat 1[x)< 1D; =D, so, by hypothesisthereisi€l such that
il il

x,eD, acontradiction ! .

(i) = (iii). By Theorem 5.3.12, D is maximal relative to an element a & D.
Weshall provethat a =a/D isapenultimate element of A/ D. Let f=x

/D € A/Dwithp =+ 1 (hencex ¢ D).
By Theorem5.3.13,x — a&€ D, hencef =x/D <a/D =q.
(iii) = (i). Suppose that A / D has a penultimate element a. = a/ D.
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Wededucethata¢ D andfor 3 =x/D # 1 (hencex ¢ D),x /D < a/D.
There results that for every x ¢ D, x — A € D, hence D is maximal relative
to a, hence by Theorem 5.3.13, D iscompletely meet-irreducible . m

In[37, p. 22], it is proved:

Theorem 5.3.17. If DeDs(A) and a¢D, thereisa complete meet-
irreducible deductive sysstem M suchthat D < M and a & M.

If a, beM, a*b, then thereisa completely meet-irreducible deductive
system M suchthata ¢ M and b € M.

In what follows, for aHilbert algebra A, we denote by Ir(A) (Irc(A)) the
set of all meet-irreducible (completely meet-irreducible) deductive systems
of A.

Theorem 5.3.18. If A isa Hilbert algebraand DeDs(A), then
D={M € lrc(A): D c M}.

Proof. Let D’ ={M € Irc(A): D < M}; clearly D < D’.
To prove another inclusion we shall prove the inclusion of the
complementaries.

If a& D, then by Theorem 5.3.17, thereisM & Irc(A) such that DM and
a& M. Thereresultsthat a¢{M € Irc (A): D € M} =D’, soa & D’, hence
D'c D, thatis,D=D". =

Theorem 5.3.19. If A isa bounded Hilbert algebra, then the following
are equivalent:

(i) Every D € Ds(A) hasa uniquerepresentation as an inter section of
elementsfrom Irc(A);
(i1) A isafinite Boolean algebra (relative to natural ordering).

Proof. (i)=(ii). To prove Ds(A) is aBoolean algebra, let D € Ds(A) and
consider D' = {M € Irc(A): D £ M} € Ds(A).



Categories of Algebraic Logic 225

We have to prove that D’ is the complement of D in Heyting algebra
Ds(A).
Clearly DND’={1}; if DvD’+ A, then by Theorem 5.3.17, there is

D"’ Irc(A) suchthat DvD’cD’’, D'+ A, hence D has two distinct
representations as intersection of elements from Irc(A):

D'=n{M € Irc(A): D £ M} and
D'=D" n (Nn{M € Irc(A): D £ M}), acontradiction, hence

DvD’ =A, thatis, DS(A) isaBoolean algebra.
By Theorem 5.3.7, A isafinite Boolean algebra.

(i)=(i). Thisimplication is straightforward (see [35], Chapter 4, page 77).
[

Remark 5.3.20. For the case of lattices with 0 and 1 we have an analogous
result of Hashimoto(see [47]).

Definition 5.3.21. Wesay that M € Ds(A), M = A, ismaximal if itisa
maximal element in the lattice (Ds(A), <).

Let us denote by Max(A) the set of maximal deductive systemsof A.

Definition 5.3.22. We say that a Hilbert algebra is semismpleif the
intersection of all maximal deductive systemsof A is{1}.

Theorem 5.3.23. If A isa bounded Hilbert algebra and thereisa
deductive system D # A, then thereisa maximal deductive system M of
A suchthat D < M.

Proof. It is an immediate consequence of Theorem 5.3.17, since for the case
of a= 0, adeductive system is maximal iff it ismaximal relativeto 0. m

Theorem 5.3.24. For M € Ds(A), with A an bounded Hilbert algebra,
the following are equivalent:
(i) M ismaximal;

(i) If x ¢ M, then x* € M.



226 Dumitru Busneag

Proof. (i)=(ii). Suppose M maximal and consider x & M; then

[X)VM =A.By Cy, [X) VM ={y € A: x —> Yy € M}; inparticular 0 €
[X)VM, hencex — 0=x* € M.

(i1)=(i). Suppose by contrary that M is not maximal, that is, thereis N
€ Ds(A) suchthat M C N C A; thenthereisx € N suchthat x & M.
Sincex & M, then x* € M, hencex* € N; sincex € N we deducethat 0
€ N < N =A, acontradiction since N is proper. B

Theorem 5.3.25. For M € Ds(A), with A an bounded Hilbert algebra,
thefollowing are equivalent:
(i) M ismaximal,

(i) For any x,y € A,if x¥xye M,thenxe M ory e M.

Proof. (i)=(ii). Let X,y € A such that x ¥ y € M and suppose that X¢&
M,y & M. By Theorem 5.3.24, we deduce that x* € M, y* € M. From
XY y=x* ->ye Mandx* € M, wededucethaty € M. Buty* € M,
hence 0€ M, thatis, M = A, whichisacontradiction!.

(i)=>(@).Ifx € A,sincex ¥ x* =x* - x*=1€ M, thenif x € M, we
deducethat x* € M hence, by Theorem 5.3.24, M ismaximal. &

Theorem 5.3.26. If A isa bounded Hilbert algebraand M € Ds(A),
M =+ A, then thefollowing ar e equivalent:

() M € Max(A);

(i) For any x,y € A,if XAy € M,thenxe M ory € M.

Proof.(i)=(ii). Suppose by contrary that there are x, y € A such that X
Ay€E M, x& M,y & M; by Theorem5.3.24, x* € M, y* € M.

Fromx* <x — vy, y* <y — xwededucethatx —»y,y —x € M.

On the other hand, from x* <x — y we deduce that (x
=Y > ((Y=X) = X) <X = (Y= X) > X)= (Y= X) > (X > Xx)=
(Y = X) = X** =x* > (y = X)*.
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Thenx Ay < x* — (y — X)*, hencex* — (y — x)* € M; sincex* € M
we deduce that (y — X)* € M, which is contradictory sincey — x € M.
(i) = (). Ifxe A bycyp, X ¥ x*=1€ M, s0,if x& M, then x* € M,
that is, M ismaximal (by Theorem 5.3.24). &

Clearly, if A isaHilbert algebra, then Max(A) < Irc(A).

We want to see in what conditions Max(A) = Irc(A), with A abounded
Hilbert algebra.

The answer is given by:

Theorem 5.3.27. If A isa bounded Hilbert algebra, then the following
are equivalent:

(i) Max(A) =Irc(A);

(i1) A isBoolean algebra (relative to natural ordering).

Proof. (i)=(ii).If by contrary A is not a Boolean algebra, then by Theorem
5.3.24, thereisa€ A suchthat a** + a < a** « a

By Theorem 5.3.17, there is a deductive system D € Irc(A) such that
a*eDanda¢ D.

But Max(A) = Irc(A), henceD € Max(A).

Sincea ¢ D, we deduce that a* € D; from a* €D and a** € D we deduce
that that O D, hence D = A , which isa contradiction!.

(i)=>(i). See[45], Chapter 4. m

Theorem 5.3.28. If A isa bounded Hilbert algebra, then D(A) is
irreducibleiff it ismaximal.

Proof. ”=". Wewill provethat for any ac A, then[a) N [a*) = D(A).
Indeed, let z € [a) N [a*), that is,a<z and a* <z

Wededucethat z* <a* <z, hence z*@ - z=1;thenz** = 1< z* =0,
hencez € D(A). Thus[a) N [a*) < D(A).

Since D is supposed irreducible and [a) N [a*) < D, by Theorem 5.3.14 we

deducethat a€ D(A) or & € D(A), hence D(A) ismaximal (by Theorem
5.3.24).
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"<". Thisimplication is straightforward.

In what follows we will continue with the study of Max(A), with A a
bounded Hilbert algebra; the main result will be that Max(A) can be
organized as a Boole space. As an immediate consegquence we can define a
contravariant functor from the category of bounded Hilbert algebrasto the
category of Boole spaces.

We recall that a Boolean space (see Definition 4.3.23) is a compact
Haussdorf topological space generated by his clopen sets.

Forac A, wedenoteca(d) ={M € Max(A) : a€ M}.
Let ta be the topology of Max(A) generated by the family

{oa(@)} aca Of subsets of Max(A); an element of T, isaunion of finite
intersections of sets of the form ca (@), with acA.

Lemma5.3.29. For any x,y € A we have:

() o6a(0) =9, oa(l) =Max(A), ea(x**) = 6a(X);

(i) oa(x —y) = 6a(X) — 6a(Y), 0a(X*) = Max(A) \ 6a(X);
(iii) 6a(X) N 6A(Y) = 6a((X = Y*)*) ;

(iv) 6a(X) U 6a(y) = oa(Xx* —Y).

Proof. (i). Since all deductive systems of Max(A) are proper ( henceit

doesn’t contain 0) there results that 64(0) = &; since all deductive systems
from Max(A) contain 1 there results that oa(1) = Max(A).

If M € oa(X), thenx € M, hencex* & M; then x** € M, hence oa(X)

C oa (x**). Analogously we prove another inclusion, hence oa(X) =
G/_\(X**).

(ii). Werecall that oa(X) — oa(y) = int(Max(A) \ ca(X)) U ca(y)).
Firstly we will prove that

(1) (Max(A) \ oa(X)) U oa(y) < calx —Y).
Indeed, let M € (Max(A) \ 6a(X)) U oa(y), thatis,x ¢ Mory € M;if vy
€ M, thenx -y € M, henceM € ca(X — V).

If x € M, then[X)VM = A, hencex —y € M (by Cz4), SOME ca (X — Y).
If we consider the interior in both members of (1) we deduce that

(2) oa(x) = oaly) € calx = ).
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Now we will prove that:

(3) oalx = y) € (Max(A) \ oa(X)) U oa(y).
Indeed, if M € ca(X — y), thenx — y € M; if XxeM, theny € A, hence
Meoaoa(y) and in this case (3) is verified.

If x & M, then M&oa(x), hence Me((Max(A) \ oa(x)) and (3) isalso
verified. If we consider the interior in both members of (3) we deduce that
oa(X — Y) S oa(X) — oa(y) which together with (2) imply the equality
oa(X = Y) = 6a(X) — oaly).

In particular, if y =0, we obtain that ca(x — 0) = ca(X) — oa(0) hence
oa(X*) = Max(A)\oa(x) (we can also obtain this equality and from the

equivalence M&oa(x*) iff x &€ M).
(iii). Wewill prove the equality from the enounce by double inclusion.

Since y* < X — y* we deduce that (x — y*)* < y**, hence ca((x —
y*)*) € oaly*™) = =oa(y).

Sincex — y* =y — x* (by cg) we change x with y and we obtain

oa((x = y*)*) S oa(x), hence oa((x — y*)*) < oa(X) N ca(Y)-

Now let M € ca(X) N oa(y), that is, X,y € M; we will prove that M
€oa(Xx = y*)) & X—y ) €M.

SinceM ismaximal, if (X — y*)*¢ M, thenx — y*€ M; sincex € M we
deducethat y* € M, which isacontradiction (since y € M).

So, we also obtain the inclusion ca(X) N ca(y) € ca((x — y*)*), hence
6a(X) N oa(y) = oa((x = y*)*).

(iv). Sincex < x* - yandy < x* —»y wededucethat ca(X) U oa(y) <
oa(X* — ).

Sincex* »>y=x Yy, if M€ ca(X ¥ y), then X ¥ y € M; by Theorem
5.3.25, xeM or yeM, hence M Eaoa(X)Uca(y), that is, we obtain the desired
equality. m

Corollary 5.3.30. An element of ta hastheform -HS A% ) with x;

elementsfromA (i €1).

Proof. Thisfollows from Lemma5.3.29, (iii) and since an element of 14 is
aunion of finite intersections of elements of theform ca(a), withac A. =
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Sincefor every x € A we haveca(x) = oa(x**) and x**€ R(A), itisa
natural ideato see if Max(A) coincides with Max (R(A)) (in the sense that
between the two sets we have a bijection). Thisthing provesto be true, as
we will prove in what follows.

Lemmab.3.31. If D€ Ds(A),thenD N R (A) ={x** : x € D} and
D N R(A) isadeductive system in R(A) (that is, afilter in R(A), since by
Theorem 1.24, R(A) isa Boolean algebra).

Proof. If x € D N R(A), then x** =x € D, hence we have an inclusion; if
x € D, sincex < x** we deduce that x** € D, hencex** € D N R(A)

(since x**€R(A)), so we have another inclusion, that is, the equality from
the enounce.

Clearly 1€ D n R(A); if X,y € R(A) suchthat X, x -y € D N R(A), then
y € D, hencey € D N R(A), so D N R(A) isadeductive systemin
R(A).=

Lemma5.3.32. If Fisafilter in R(A), then
F={xeA:x** € F} € Ds(A).

Proof. Since1** =1 € F, wededucethat 1 € F ; now letx,y € A such
that x,x >y € F ,thatis, X**, (X — y)** € F. By C, (X — y)** = x**
— y**; since x** € Ftheny** € F, hencey € F ,thatis, Fisa
deductive systemof A. m

Lemma5.3.33. If M € Ds(A), then M € Max(A) iff M N R(A) is
maximal in R(A).

Proof. Suppose that M ismaximal in A and we have to prove that M
N R(A) ismaximal in R(A). Now let x € R(A) such that x & M; then x* €
M andsincex* € R(A) (by c12) we deducethat x* € M N R(A), that is,
M N R(A) is maxima in R(A) (by Theorem 5.3.24).



Categories of Algebraic Logic 231

Suppose now that M N R(A) is maximal in R(A) and we will prove that M
iIsmaximal in A. Now let x &€ M; if x* (whichisinR(A))isnotinM, then
x* & M N R(A); since we have supposed that M N R(A) is maximal in
R(A) thenx € M N R(A), acontradiction, hence x* € M, that is, M is
maximal inA. |

Lemma5.3.34. If F € Ds(R (A)), then F isa deductive system (that is, a
filter ) maximal in R(A) iff F isa maximal deductive systemin A.

Proof. Firstly suppose that F is a maximal deductive systemsin R(A) and
we shall provethat F ismaximal deductive systemin A; let now x € A
suchthat x ¢ F.Then x** ¢ F, hence x* € F, so x* € F (since (x*)**
=x* € F).

Suppose now F isa maxima deductive systemin A and we shall prove
that Fis maximal in R(A); letnow x € R(A) suchthat x ¢ F. Since x €
R(A), then x =y*, with y € A. If supposethat x* =y** ¢ F,theny ¢ F ;
since F ismaximal, we deducethat y* =x € F , hencex** =x € F, a
contradiction, sincex ¢ F. Hencex* € F, that is, Fismaxima inR(A). =

Lemma5.3.35. If D € Ds(A) and F € DS(R (A)), then DC R(A) =D
and FN R (A)=F.

Proof. We have D C R(A)={x € A : x** € DNR(A)}; sincex € R(A) we
deduce that x** = x € D, hence we have theinclusion D C R(A) < D. If
x € D, snce x < x** we deducethat x** € D, hence x** € DNR(A),
thatis, D € DC R(A), so weobtain the equality D C R(A) =D.

For the second equality we remark that F N R(A) =

{XxeER(A) : x** € F}, henceif x € F N R(A), thenx** =x € F,s0 F N
R(A) € F.

Now let x € F. Since F < R(A), x** =x € F, hencex € F N R(A), sowe
have another inclusion F = F NR(A), thatis,F N R(A)=F. m
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Theorem 5.3.36. Thereisa bijection between Max(A) and Max(R(A)).

Proof. We definef : Max(A) — Max(R(A)) by f(M) =M N R(A) for every

M € Max(A) and g : Max(R(A)) — Max(A) by g(F) = F for every F €
Max(R(A)). By Lemma 5.3.34, the functions f and g are correctly defined.
By Lemma5.3.35, we have f 09 =1, and go f =1, , hencewe

deduce that f is a bijection and g isthe converse of f. m
Thorem 5.3.37. Topological space (Max(A), Ta) isa Boolean space.

Proof. Since R(A) is a Boolean algebra (by Theorem 5.2.24), then
Max(R(A)) is aBoolean space and all follows from Theorem 5.3.36. m

Lemma5.3.38. If A, A" aretwo bounded Hilbert algebrasand f: A — A’
isamor phism of bounded Hilbert algebras, then for every M
Max(A’) we havethat f 1(M) € Max(A).

Proof. Since f(1) = 1 € M we deduce that 1 € f }(M).

Suppose now that x, x — y € f (M), that is, f(x), f(x
—y) =f(x) — f(y) € M; thenf(y) € M, hence y € f }(M), that is,

f 1(M) € DS(A).

Wewill provethat f (M) € Max(A); if x & f }(M), then f(x) & M, hence
(F(x))* = f(x*) € M, so x* € f1(M). Clearly, f }(M) is proper because if we
suppose that f*(M) = A, then we obtain that 0 € f (M), hencef(0)=0 & M
and M = A’, whichisacontradiction!. ®

Corollary 5.3.39. Theassignments A — Max(A) and f — Max(f) (where
Max(f) isdefined by L emma 5.3.38) defines a contravariant functor
from the category of bounded Hilbert algebrasto the category of
Boolean spaces.

Proof. If we prove that for every f : A — A’, Max(f):Max(A’)—»Max(A),

Max(f)(M) = f1(M) for every M € Max(A’) is a continuous function, then
we apply Theorem 5.3.37 and Lemma 5.3.38.
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Since M ax(f) commutes with U and N , to prove that the function M ax(f)

Is continuous it will suffice to prove that for every x € A’, Max(f)(ca(x)) is
openin Max(A).

We have Max(f) (ca(X)) ={MeMax(A’) : Max(f)(M) € oca(X)} = {M
€ Max(A’) : F1(M) € 6a(X)} ={M € Max(A") : x € f}(M)} =
{M € Max(A") : f(x) € M} = oa(f (X)) E14. B

For M € Max(A) we consider the function fy, : A — {0, 1} defined by

{0, for xI M,
fu(X) =] -
TJ, for xI M.

Lemma 5.3.40. Thefunction fy : A — {0, 1} isa morphism of bounded
Hilbert algebras.

Proof. We must prove that for any x,yeA, then fyu(x —y) = fu(x) — fu(y)
and f(0) = 0.

Ifx >y & M,theny & M (becauseif by contrary ye M, then X
—y € M). Wewill provethat x € M. If x ¢ M, thenx* € M (sinceM is

maximal); since x* < x — Yy, sowededuceaganx —y € M, whichisa
contradiction!. So, inthiscase, fu(x — y) =0, fu(x) =1, fu(y) = 0 and we
have the equality fu(x — y) = fu(X) — fu(y), because 1=0— 0.
Supposethat x — y € M; if x € M, theny € M and we have again the
equality fu(x — y) = fu(X) — fu(y) because1 =1 — 1.

If x & M, then either y is or not in M we have the equality

fu(X —y) =fu(x) — fu(y), because1=0—-1=0— 0.

Since 0 € M, we deduce that fy(0) = 0.

Sincefu(x) = 1iff x € M, we deduce that Ker (fy) =M. =

Theorem 5.3.41. If A isa bounded Hilbert algebra, then thereisa
bijection between Max(A) and H;(A{0,1}) ={f: A—{0,1} : f isa
mor phism of Hilbert algebras}.
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Proof. We define F: Max(A) — H; (A{0,1}) by F(M) =fy forevery M
€ Max(A) and G : H;i(A,{0,1}) — Max(A) by G(f) = Ker(f) for every

f € Hi(A, {0,1}) (clearly Ker (f) € Max(A), sinceif x & Ker(f), then f(x) =
0,s0 x*eKer(f) since f(x*) = (f(x))* =0* = 1).

If M € Max(A), then (GoF)(M) = G(F(M)) = Ker(fm) =M, that is,

GoF =1yun -

If f € Hi (A,{0,1}), then (FoG)(f) = F (G (f)) = fkerp)-

We will prove that fre) = f; if x € Ker(f), then f(x) = 1, so fke(X) = 1,
and if x & Ker(f), then f(x) = 0 and fxer()(X) = O.

Wededucethat F oG =1, a0y, thatis, Fand G are bijections. m

In[37, p. 24], it is considered afixed family X of deductive systemswhich
containsIrc(A) and to every elementac A itisassigned ¢(a) ={D € X :
a € D}; if we consider na the topology of X generated by the sets of the
form {p(a)} aca, then it is proved the following theorem of representation:

Theorem 5.3.42. Thefunction ¢a : A — ma, defined by @a(a) = ¢(a), for

every a € A, isa monomor phism of Hilbert algebras and the space (X,
TlTA) is To.
If X =1Irc(A), in general, this spaceisnot quasi-compact.

In[37, p. 27], it is proved that if we denote DS?(A) = Ds(Ds(A)), then we
have:

Theorem 5.3.43. Thereisamonomor phism of Hilbert algebras
wa A — DS(A).

The two representation theorems are till valid in the case when A is
bounded (that is, we have a bounded monomorphism of Hilbert algebras).
Let’s see in what conditions we obtain a representation theorem by the same
type as Theorem 5.3.42, for abounded Hilbert algebra A, when instead of X
we consider Max(A).

For thiswe will prove:

Theorem 5.3.44. If A isabounded Hilbert algebra, then 65 : A — taiS
a mor phism of bounded Hilbert algebras.
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6, isa monomor phism of bounded Hilbert algebrasiff A issemismple
(see Definition 5.3.22).

Proof. From Lemma 5.3.29 we deduce that o is a morphism of bounded
Hilbert algebras.

Seeing in what case o isamorphism of bounded Hilbert algebras we come
to seein what conditionsKer (ca) = {1}.

We havea € Ker(oa) iff oa(@) = 1iff oa(a) = Max(A) iff a€ M, for every

M € Max(A) iffa€ 1M henceKer(ca)= IM,S0calisa
M1 Max(A) M1 Max(A)

monomorphism of bounded Hilbert algebrasiff A issemismple. =

Lemmab5.3.45. If A isabounded Hilbert algebra, thenD(A)= I M .

M1 Max(A)

Proof. If x € D(A) and M € Max(A), thenx* =0 & M, hencex € M, that
is, X € 1M ,sowehavetheinclusonD(A) S M.

M1 Max(A) M1 Max(A)
If x & D(A), then x* # 0, hence thereisamaximal deductive system M

such x* € M; thenx ¢ 1 M , hence we deduce other inclusion, that is,
M1 Max(A)

we havetheequaityD(A) = IM.®

M1 Max(A)

Theorem 5.3.46. A bounded Hilbert algebrais semisimpleiff it is
Boolean algebra.

Proof."<". By Lemma5.3.45wehave I M =D(A), henceif Aisa

M1 Max(A)
Boolean algebra, then D(A) = {1}, that is, A issemisimple.
" =" Supposethat 1M ={1}; by Lemma5.2.26, if x € A, then

M1 Max(A)

x** >x € D(A)= 1M ={1}, hencex** — x =1, sox** =x and by
M1 Max(A)

applying Theorem 5.2.20 we obtain that A isaBoolean algebra. m



236 Dumitru Busneag

5.4. Hertz algebras. Definitions. Examples. Rules of calculus. The
category of Hertz algebras

Definition 5.4.1. We call Hertzalgebra a Hilbert algebra A with the

property that for any elementsx,y € A thereexistsx A y € A (relative
to natural ordering).

Heyting algebras and Boolean algebras are examples of Hertz algebras
(later we will put in evidence a Hertz algebrawhich is not a Heyting
algebra).

It isimmediate that Definition 5.4.1 is equivalent with:

Definition 5.4.2. A Hertzalgebraisan algebra (A,A,—) of type (2,2)
such that thefollowingsidentities are verifyed:

A X > X=Zy —>Y;

az: (X—>Y) AY =Y,

s X—>yYAZD=X—>Y)A (X—2);

A XA (X—>Y)=XAY.

Corollary 5.4.3. TheclassH;, of Hertz algebrasis equational.

Lemmab5.4.4.1f AisaHertzalgebraand x,y, z€ A, thenx A z<y iff
Z<X—>Y.

Proof. "=". Supposethat X A z<y;thenx — (X A Z) <X — Y, hence (X
—>X)AX—>2) <x—Yy (by a),0X—>zZ<Xx—Yy.Sincez < x — z,
we deducethat z< x — .

"<". Conversaly,ifz<x - y;thenx AZz< XA (X—Y) =X A Y (by as),
hencex Az<y. m

Remark 5.4.5. Following this lemma we can conclude that Hertz algebras
are implicative semilattices (see [63]-{66]).

Lemmab5.4.6.1f AisaHertzalgebraand x,y, z € A, then
Cas: X—>(Y—>2)=(XAY)—>Z

Cs: X2 Y)A(Y—>2)=x—>7Z

Cs. If X <y,then XA (y—>2)=XA z
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CiXA(Y—=2)=XA(XAY)— (X—2);
Cag: (X > Y)* =X** A y*.

Proof. We usethat if (A,V,A,—,0) isaHeyting algebra, then (A, A, —) is
aHertz algebra; so the equalities ¢34 — C3g are true in a Hertz algebra because

these are true in aHeyting algebra (see §1). m

Lemmab5.4.7. If Aisabounded Hilbert algebraand x,y, z € A, then
Cao: XA(YAZ)=YA(XAZ2);
Cao: XY (YY2)=(XYy)¥z=yV (XY 2).
Proof. By Theorem 5.3.43, we can suppose that A is a Heyting algebra (or
Hertz algebra). In consequence we can use the rules of calculus ¢34 — Css.
czo.Wehave XA (YyAz)=xA((z—Yy)— (y— 2) —2)=(by
C2) = (Z—Y) > XA((y—2)—2) = (2Z—-Y) > (y—2)—(xAZ)=
Z=Y)>((y—>2 = ((z->x) > (x—>2) — 2))= (by c) =
(zo>YAlY—>2)A (Zz—>X) A(X—2)—>zandyA(XAz)=
YAz =X ~((x=>2)—>2)=(by ) =(2—%) = VA (x—2)—2)
= (@Z-oX->((x—>2)—>yYA2)= @Z-X) > (X—2)—((z—Y)

— (y—=2—>2)=(bycs)=((z>X)AX=>2)A(y—2) A
(z—y) >z, hencexA(yAz)=yA (XA 2).

Cs- Wehavex ¥ (y ¥ 2) =x* — (y* — 2) = (by Czg) =(X* A Y*) — Z,
and(xYy)yz=(x* >y)* >z=(by Czg)= (X*** Ay*) >z =
(X* A y*) — z, hencewededucethatx ¥ (y ¥ z) =(x Y y) ¥ z; since
XY (y¥yz)=yV (xV¥z) weobtan therequired equalities. m

In the case of bounded Hertz algebras, the notions of dense and regular

element will be defined as in the case of bounded Hilbert algebras;
consequently, Theorem 5.1.24 is true for the case A is Hertz algebra.

We remark that if X, y € R(A), hence x** =x and y** =y, then the meet
between x and y in R(A) (that is, (X — y*)*) doesn’t coincide with the meet

between x and y in A (that is, with XAY).
We want to establish in what conditions these two infimums coincide.

Suppose XAY = (X — y*)*, for any X, y € A; in particular we have

XAX = (X = X*)* < x=x**, that is, A isaBoolean algebra (by Theorem
5.2.20).
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Definition 5.4.8. If A1, A aretwo Hertz algebras, we call morphism of

Hertzalgebras afunctionf: A; — Assuch that for every x,y € A; we
have

age: f(x —y) =1(x) — f(y);
ar7: TX A y) =1(X) A f(y).
If A; and A; are bounded, we add the condition f(0) = 0.

We denote by H, (H,) the category of Hertz algebras (bounded Hertz

algebras). Since these categories are equational, the monomorphisms are
exactly the injective morphisms (by Proposition 4.2.9).

Lemmab5.4.9. If Aisabounded Hertz algebraand x,y € A, then
Ca: (X AY)** =x** A y** (the meet between x** and y** isin R(A)).

Proof. If in c3, we consider z = 0, we obtain that (X A y)* =X — y*, s0

(XAY)** = (X = y*)*.
On the other hand, in R(A) we have X** Ay** = (x** — y***)* =
= (x** - y*)* = (by cg) = (y — X*)* = (X — y*)*, so we obtain the desired

equality. m
Corollary 5.4.10. If A isabounded Hertz algebra, then the function

oa:A — R(A), defined by @a(x) = x** for every x € A, isan surjective
mor phism of bounded Hertz algebras.

Theorem 5.4.11. The category H, isareflexive subcategory of H;, .

Proof. ([18],[73]).We haveto define areflector R: H, ® H, .
For A€ H, we denote by F(A) the family of finite and non-empty subsets
of A,and | ={1}.
If X,)Y € F(A), X ={X1, X2, ..., Xn}, Y ={Vy1, V2, ..., Ym} We define X
Y= f]l {(X1, X2 o X Y} @nd X AY =X NY.

=

On F(A) we define abinary relation pa; (X, Y) € paiff X > Y = Y
—>X=1.
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Clearly, pa isan equivalence on F(A); we will prove the compatibility of
pa With the operations — and A defined above on F(A).
Let Z={z, 7, ..., o} € F(A).

Toprovethat (Z — X,Z —Y) € pa, wedenotet; = (zy, ..., Zp; X)) and @
=(z1, .. ZpY),1=1,2,..,n,j=12, .., m.
ThenZ —» X ={t, tp, ..., t)} and Z — Y ={qy, O, .., Om}, SO (Z

LX) (Z—=Y)= Gl {(ts, to, ..., tn; g} and

(Z—>Y) -(Z—->X)= iL:Jl {(0, 92, ..., Om; 1)} -

But forj € {1,2,...m} we have (i1, to, ..., th; Q) = ((z4,
oo Zpy X1)y wees (21, ooy Zpy Xn); (20, 20 Zpy Y)) = (DY C13—C15) =

(z1, 22, oy Zpy (X1, o Xn ) = (22, ..., Zp; 1) =1, hence (Z — X) — (Z - Y)
=1.

Anaogously we deducethat (Z—Y)— (Z— X)=1,
X—>2->N-2=(>2)>X—>2)=Il,hence(Z—> X, Z->Y)
pa and (X — Z,Y —Z) € pa.

To prove the compatibility of pa with A weremark that (X,Y) €pa iff
<X> = <Y> (by Cs).

SOXAZYANZ)Epp e <XUZ>=<YUZ> < IX>V<Z>=
<Y> Vv <Z>, which istrue since we have supposed that <X> = <Y >,

For X € F(A) we denote by X / pa the equivalence class of X relativeto pa
andHa = F (A)/pA

For X/pa, Y/pa € Ha we define X/pa — Y/pa = (X — Y)/ pa and X
Ipa AY [ pa=(X U Y) pa.

Since pa iscompatible with — and A, the operations on Ha are correctly
defined.

Also, X /pa <Y lpa iff X/paAY pa= X/ppiff X
UY)/pa=X/lpa iff X—> (X —>Y)=1Iiff <¥Y>c <X>.

In[73] itisproved that (Ha, —, A) become abounded Hertz algebra where
0={0} / paand 1 ={1} / pa (see aso 82 from Chapter 3).

Wewill provethat ®a: A — Ha, ®a (8 ={a} /pa, for every ac A, is
amonomorphism of bounded Hilbert algebras; indeed, if a, b € A, then
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Da(@a— b) ={a— b}/pa ,Da(@) — Pa(b) ={a}/pa— {b}/pa=({a} —
{b})/pa ={a— b}/pa =D (a— b) and ®(0) ={0}/pa=0.

If ®a(@) = Da(b), then[a) =[b), hencea=bh.

If we put R(A) = Ha we obtain the definition of the reflector R on objects.
To define R on morphisms we will prove that the pair (Ha,®Da) verifiesthe

property:

For every bounded Hertz algebra H and every mor phism of bounded
Hilbert algebras f: A — H, thereisa unique morphism of bounded Hertz
algebras f : Ha — H such that the diagram

Dp Ha

A

H
iscommutative (i.e, f o @p= ).

Indeed, for X = {xy, ..., x} € F(A) we define f(X/r A)=£Jlf(xi).
Toprove f iscorrectly defined, let Y ={vy1, Y2, ..., Ym} € F(A) such that
Xlpa=Ylpa © X =Y =Y — X ={1}, hence

X Xgr Yy) =1 J=12,.,m,
T(yl 1111 ym;Xi)=l |:1,2 ..... n.

Sincef isamorphism of bounded lattices, by ¢34 and (1) we deduce

() UL OF(X)Ef(y)), j=12...m,

(2 | SN _

tfly) U Uf(y,) £ £(Xx), i=12...n,

hencefjlf(xi): _rLDJlf(yj) < f (X /pa)= T (Y/pa), thatis, f iscorrect
i= =

defined.
Wewill provethat f isamorphism of bounded Hertz algebras.
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Wehave f (X/pa =Y /pa)=F((X=Y)Ipa)=

F(XTpw) = T (Y /pa)=(UT(x)) = (U T(y)) by )=

U ((U100) = 19))= U (F ), £ 0, s 000 £ () =
= f (Xlpa _ Ylpa); dso, f(0)= f ({0} / pa) =f(0) =0 and
f (XIpa A Yipa) = T ((XAYY pa) = F((X U YW pa) = (U F(x))A

(U1y))= T < pa) A T (Y 1 pa).
Ifac A, then(fo®p)@) = f (@a(@)=f {a/pa)=f(a),thatis, fo
Dp =f.
To prove the uniqueness of f , let e Ha — H be another morphism of
bounded Hertz algebras such that fo ®dp =f and X ={xq, X2, ...,
Xn} €F(A).
Since X ={x1} U {X2} U ... U {xn} wehave X
Fpa=({x}U{xtU ... U{Xn}) [ pa = ({Xs}/pa) A ({X2}/pa) A ... A
({xn}pa); but f o dp =1, soweobtainthat f (X /pa) = f ({X}/pa) A ...
A xHpa) = T ({xaH pa) A T (X} pa) = F (1) A (X2) Ao £ (o)
= f (X /pa), hence F=T .

It is immediate that if A and B are two bounded Hilbert algebras and

® : A — B is amorphism of bounded Hilbert algebras, then there is a unique
morphism of bounded Hertz algebras F : Ha — Hg such that the diagram

F

|

HA HB
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iscommutative (i.e, F; 0F =F oF ,).

Clearly, if X ={xy, ..., Xn}, then F ( X/ pa) ={® (X1), ..., ® (Xn)} / ps. If
we put R(®) = F we obtain the definition of R: H, ® H, by morphisms.
Now, the proof that H, is areflexive subcategory of H; isaroutine. B

Remark 5.4.12. For aHilbert algebra A, (Ha, —, A) isan example of
Hertz algebrawhich isnot a Heyting algebra; indeed, it is suffice to take X,

Y € F(A) suchthat X NY = @ ¢ F(A) and thusin Ha it doesn’t exist X /
pa VvV Y/ PA since X/pA\/Y/pA = (X\/Y) /pA: (XﬂY)/pA = Q/PA & Ha.

Theorem 5.4.13. Thereflector R: H, ® H, (defined in Theorem 5.4.11)
preserves monomor phisms.

Proof. Let A, B be two bounded Hilbert algebras, ®:A — B a
monomorphism of bounded Hilbert algebras; we will prove that the
morphism R(®) =F : Ha — Hg (defined in Theorem 5.3.11) such that the
diagram

E
A B

Fa

=
HA HB

Is commutative, is also a monomorphism of bounded Hertz algebras, that is,
Ker(F)={1}.

Indeed, if X ={X1, X2, ..., Xn} € F(A) and F (X /pa) =1, then {
D (X1), ..., DXn)} [ pe={1} I pg & P (X1) =...=D (Xp) =1, hencex; =1,
1=1,2 ..,nthatis, X/pa=I1/ppa=1 H

Theorem 5.4.14. Let H be a bounded Hertz algebra, B a Boolean
algebra and f : H — B bea morphism of bounded Hertz algebras.
Then:

(i) Thereisa unique morphism of Boolean algebras f : R(H) — B

such that the diagram
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Y R(H)

is commutative (i.e, f o Y, =f);

(ii) If H" isanother bounded Hertz algebraand F: H - H’ a

mor phism (monomor phism) of bounded Hertz algebras, then thereisa
unique mor phism (monomor phism) of Boolean algebras F: R(H) —
R(H") such that the diagram

F
H H

|

R R(H')

is commutative(i.e, Y ,0F =F0YH ).

Proof. (i). If x € R(H) then x** = x; since f is amorphism of bounded
Hertz algebras, we deduce that f(x**) = (f(x))** =f(x) (sincef(x) € B and
B isaBoolean algebra). We can consider f = firer -

If X,y € R(H),thenx — y, x A y € R(H) since by cssg we have

X =y = (x> y)* ) =0 Ay ) =(x* Ay*) > 0=(by Ca)=
X** > (y* -5 0)=x** s> y**=x—y and (X A y)** =x** Ay** = X A
y  (by ca). So, if weconsider f = f,, andx, y€ R(H), then f (x —y)
= fx—>y) =) =>fy)= f ) —=f() FxAy)=fxay)=
fx) Afly)= f(X)A f(y)and f (0)=f(0)=0.
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Asin the case of Theorem 5.2.24, for x,y € R(H), x vV y € R(H) and
XVy=(XX*Ay)* hence f (x VYy) = f(x Vy)= f((x* Ay)*)=(F(x* A
Y = ((F0)* A (FW*)* =fx) v iy) = F () v ().

Since f (1) = f(1) = 1, from the above we deduce that f isamorphism of
Boolean agebras.

(i1). From (i) we deduce the existence of F for f= Y, 0F .

We have to prove that if F isamonomorphism of bounded Hertz algebras,
then F is amonomorphism of Boolean algebras.

Indeed, let x € R(H) such that ?(x) =1; since x = x** = yy(X), there result
that (F oY, )(x)=1, hence (Y 4,0 F)(x) =1< (F (X))** = 1.

But (F (x))** = F (x**) = F (x), soweobtainthat F (x) =1, hence  x
=1 (since F issupposed a monomorphism of bounded Hertz algebras). m

Remark 5.4.15. Since by Theorem 4.2.24, in R(H) (with H a bounded

Hilbert algebra), A, v and ’ could be done only with the help of implication
—, we deduce that atheorem as Theorem 5.3.15 is true in the case of
bounded Hilbert algebras, too.

Indeed, if X,y € R(H), then f (x Ay)= f (X — y*)*) = f (X — y*)*) =
(FO) — (Fy)*)* = () v (") = fx) Afly) = FO)A T (),
and f (xVy) = f(x*—y) = f(x* >y) = () — f(y) =f(x) v f(y) =
fFe) Vv f@y), f)=fx)=1x*)=(@x) . m

5.5. Injective objectsin the categories of bounded Hilbert and Hertz
algebras

Theorem 5.5.1. In the category H, any injective object isa complete
Boolean algebra.

Proof. Let A be aninjective object in H, . By Theorem 5.3.43, thereisa

complete Heyting algebra H = Ds*(A) and a monomorphism of bounded
Hilbert algebraswya : A — H.
Since A isinjective, if we consider in H, the diagram
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Va

1A -7

there results the existence of a morphism of bounded Hilbert algebras
Y, :H— A suchthat Y, 0 ya =1a.
Since H iscomplete, and ya, Y, arein particular isotone functions, by

Lemma4.10.6, A iscomplete (by Lemma5.4.4 we deducethat A is
complete Heyting algebra); by Corollary 5.1.20, to prove A is a Boolean
algebrait is suffice to prove that D(A) = {1} (where D(A) isthe deductive
system of the dense elements of A).

Clearly D(A) isaHilbert subalgebra of A. Then by Remark 5.2.14,

A’=D(A) U {0} become abounded Hilbert algebra.

Let B = A’U{a} with a¢A; B becomes a bounded Hilbert algebraif we
definea > a=1,0—-a=1,0a—>0=0,a—a=1andoa — a=1, for every
ac D(A) (see[44]). So A’ becomes a Hilbert subalgebra both for A and B.
By the injectivity of A there isamorphism of bounded Hilbert algebrasf : B
— A such that flae=ine (i Istheinclusion of A’ in A). Since o* =0 we

have (f(a))* =0, hencef(a) € D(A), sothereisx € D(A) such that x =
f(a).

Then x — f (a) = 1; since x — f(a) =f(X) — f(a) = f(X — o) =f(a), we
deduce that f(a) = 1.

Sincea — a=1, for every a€ D(A), we obtain that f(a) —» a=1, so

l-a=1<a=1, henceD(A)={1}. =

Theorem 5.5.2. Inthecategory H; the complete Boolean algebrasare
Inj ective obj ects.

Proof. Let A be acomplete Boolean algebra. In H; we consider the
diagram
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with A1, A, bounded Hilbert algebras, i : A1 — A, amonomorphism of
bounded Hilbert algebrasand f: A; — A a morphism of bounded

Hilbert algebras.
So, we have to prove the existence of a morphism of bounded Hilbert
algebrasg: A, > Asuchthatgo i =f.

By Theorem 5.4.14 (which is true and for the case of bounded Hilbert
algebras), we have the commutative diagram:

A, ' A2
Y Y
R(A1) L R(A,)
We obtain the following diagram
i
R(A2)

R(A1)

‘I
Y H
/ ! Ya,
N
! .
A, !
1
1
f !
v
A

with f_oYAl = f (theexistenceof f isassured by Theorem 5.4.11).

—_

We consider now the diagram
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R (A, R(A2)

A

in the category B of Boolean algebras with i monomorphism in B (by
Theorem 5.4.11). Then by atheorem of Sikorski (see Theorem 4.10.3), in
the category B the injective objects are exactly complete Boolean algebras,
hence thereis amorphism of Boolean algebrash : R(A;) — A such that
the diagram

R(A) R(A2)

is commutative (i.e, hoi = f).
The desired morphism will beg=h oY, : A, — A, (which isamorphism

of bounded Hilbert algebras). Indeed, gei=(hoY,)oi=ho (i 0Y,)=
(hoi)oy,=foy, =f.m

Corollary 5.5.3. In the category H, injective objects ar e exactly
complete Boolean algebras.

Proof. By Theorem 5.4.13, thereflector R: H, ® H, preserves
monomorphisms.

Now let B be an injective bounded Hertz algebra; by Remark 4.9.3, B is
injective as bounded Hilbert algebra, hence B has to be complete Boolean
algebra (by Theorem 5.5.1).

The fact, that a complete Boolean algebras isinjective Hertz algebrasis
proved asin the case of bounded Hilbert algebras (see Theorem 5.5.2) by

using Theorem5.4.14. m
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The problems of injective envelopes in the category H; follows from the
following theorem:

Theorem 5.5.4. Let A beaHilbert algebra and B be a Boolean algebra.
If thereisa monomor phism of bounded Hilbert algebrasi : A — B,
then A becomesa Boolean algebra.

Proof. Letx € A; sincei(x**) = (i(x))** =i(x) and i issupposed to be a
monomorphism, we deduce that x** = x, hence A is a Boolean a gebra (by

Theorem 5.3.20). =

5.6. Localization in the categories of bounded Hilbert and Hertz
algebras

In this paragraph we consider only bounded Hilbert and Hertz algebras.
Werecall that if A isaHilbert algebra, thenfor x,y € A, x XY y=x* — .

Definition 5.6.1. If A isa Hilbert algebra, a non-empty subset SCA is
called v - closed system of A if it containswith elementsx, y and the
element x v y too(Xx,y € A).

For example, the deductive systems of A are v - closed systems of A.

For aHilbert algebra A and a v - closed system S of A we defineon A the
binary relation 6s by:

(X,y) € 0s iff thereist € Ssuchthatty x=tvy.

Lemmab.6.2. 6s isa congruenceon A.

Proof. Firstly we have to prove that 6s is an equivalence on A; clearly 0s is
reflexive and symmetric.

Now let (X, ), (Y, 2) € 0s; thentherearet,t” € Ssuchthatt v x=tvy
andt’ vy=t'vz Bycowehavet' v tyx)=t' ¥y (tyvy) e ty t'v
y)=tyvt'yzest'vt)yx=>1 vit)V z s, if wedenotet’”’ =t v t
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€ Sweobtainthat t'" v x =t"" v z, hence (X, z) € 0g, that is, Osis
transitive. Hence 6s is an equivalence on A.

To prove the compatibility of 6swith —, let (X, y) € 6s, hencethereis t
€ Ssuchthatty x=tvy.

Ifze Ajthenz— (ty x)=z—-(tvy) <ty (z—>Xx)=tY (z-Yy)(by
Cs), hence(z— X, z—y) € 0s.

Also,t Y (x > 2)=tY¥ (y—2) (by a), hence(x > z,y—2z) €6s. R

We denote A[S] = A/6sand by ps: A — A[S] the canonical surjective
function (which is amorphism of bounded Hilbert algebras).

If there is no danger of confusion, for x€A, we denote X= ps(X).

In A[S] theroleof Oisplayedby 0 ={x € A : (x,0) € 0s} = {x
€ A :thereist € Ssuch that t* <x*} and therole of 1 by

1={x € A:(x,1) € 0s} = {x € A : thereist € Ssuch that t* <x}.

Remark 5.6.3. If s€ S, sinces* — s=s** =s* — 0 (by cy) we deduce
that (s,0) € 0s < ps(s) =0, henceps (S) ={0}.

Lemmab.6.4. 1f A’ isaHilbert algebraand v : A — A’ isa morphism
of Hilbert algebrassuch that y(S) = {0}, then thereisa unique

morphism of Hilbert algebras¢ : A[S] — A’ such that the diagram

Ps
A Al

is commutative (i.e, pops = ).

Proof. For x&€ A[S], withx € A, we define ¢( X) = y(X).
If x=V,thenthereist € Ssuchthatt* - x=t* —»vy; sinceyisan
morphism of Hilbert algebras we successively deduce y(t* — x) =y (t* —
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y) (W) = w(x) = (w(0)* = w(y), 0 = y(x) =0 - y(y), 1 - y(x) =
1 — wy(y), w(X) = wy(y), hence ¢ is correctly defined. Clearly ¢ isa
morphism of Hilbert algebras.

Since ps is surjective we deduce the uniqueness of ¢. B

Definition 5.6.5. Following the above lemma, A[S] is called Hilbert
algebra of fractions of A relativetothe v - closed system S.

In what follows by A we denote a bounded Hilbert algebra.

Definition 5.6.6. A nonempty subset S < A iscalled v - subset of A if for
anyac AandxeS =>ay xesS.

We denote by S(A) the set of all v - subsets of A; clearly DS(A) = S(A)
andif D1, D, € S(A) = D; N D, € S(A).

Lemma5.6.7. 1f D € S(A), then
()1 D;
(i) xe D= x** € D.

Proof. (i). If x€ D,sincele A=1vxeDs 0—->x=1eD.
(i).fxe S;thenx vy x=x**€D. m

Definition 5.6.8. By partial multiplier on A we under stand a function

f:D —> A withD € S(A) such that for any x,y € D and a € A we have
aig: f(ay x) =a v f(x);

aqg: f(x**) =1(x);

a: X ¥ f(y) =y ¥ f(x).

By dom(f) € S(A) we denote the domain of f. If dom(f) = A, we say that f
istotal.

To simplify the language, we will use multiplier instead of partial
multiplier, using total to indicate that the domain of a certain multiplier isA.

Examples

1. Thefunction1: A — A, 1(x) = 1 for every x € A isatotal multiplier.
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Indeed, if x,a€ A,thenay 1(X)= & - 1=1=1(aV X),
1x**)=1=1(x)andforx,y € A,x ¥ L(y)=x* > 1=1andy ¥ 1(x) =
y*—1=1hencex ¥ 1(y) =y ¥ 1(X).

2. Thefunction0: A — A, O(x) = x** for every x € A isaso atotal
multiplier.

Indeed, if x,a€ A,then0O(ay¥ x) = (@Y X)** = (& — x)** = ar**
— X** (by ) = @ — x** = a Vv 0(x), O(x**) = x**** = x** = ((x).
Forx,y € A, X ¥ O(y) =X ¥ y** =x* — y** =y* — x** (by cg) = y*

— 0(x) =y ¥ 0(x).

3.Forae Aand D € S(A), thefunctionf,: D — A, f(x) =x ¥ afor any
x € Disamultiplier on A (caled principal).

Indeed, forb € A, x,y € Dwehavefyb ¥ x) =(b ¥ x)» a=bv(xva) (by
Ca0) = b ¥ fy(X), fa(x**) =(X**) ¥ a= xX*** - a=x* - a="fy(x) and

XY fy)=xv¥ (yya=yy¥ (xYya=yVY fi(x).

Remark 5.6.9. If dom(f,) = A we denotef, by f,.

Lemmab5.6.10. If f: D — A isamultiplier on A (D € S(A)), then
(i) f(1) =1

(i) For every x € D, x** < f(x).

Proof. (i). If in &g we put a= 1, then we obtain that for every x € D,
flyx)=1v fx) < f(1)=1

(i1). If in &g we put a= x we obtain that for every x € D, f(x ¥ x) = X
v f(x) & f(x**) =x* - f(X) < f(X) =x* — f(X) (by a9)) = x <f(X) =
X* — X <x* — f(x) = x** <f(x). m

For D € S(A) we denote M(D, A) ={f : D — A : fisamultiplier on A} and
M(A)= UM(D,A).
DI S(A)
If D, D2 € S(A) andfi € M (Dy, A), i =1, 2, we define:
f1 > f2: D1 N Dy — A by (f1 — f2) (X) = fi(X) — fo(x), for every X

€ D1 — Do.
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Lemma5.6.11. f; — f, € M (D1 N Dy, A).

Proof. Ifac Aand X,y € D; N Dy, then (fy — ;) (a v x) = =
filay x) > f(ay x)=(ay fi(x)) = (@Y fax)) =a v (fi(x) — fo(x)) =
ay (f1— f2)(x), (f1 — f2)(x**) = f2(x**) — f2(x**) = f1(x) — f2(x) = (f1 —
f2)(x) and x ¥ (f1 — f2)(y) = x ¥ (fa(y) — f2(y)) = (x X fa(y)) — (x ¥ fa(y))
= (y ¥ fi(x)) = (y ¥ f2(X)) =y ¥ (fo(X) = f2(X)) =y ¥ (f1 —
f2)(x). =

Lemmab5.6.12. (M(A), —, 0, 1) isabounded Hilbert algebra.

Proof. From Lemma 5.6.11 we deduce immediately that M(A) is a Hilbert

algebra. If D € S(A), f € M(D, A) andx € D, then0(x) < x** <f(x) <1

=1(x). =

Lemma5.6.13. Thefunction va : A — M(A),va(a) = f, for everyac A

isamorphismin H,.

Proof. If a, b, x € A, then (f,® f,)(x)=f,(X)® f,(x)= (X v

a— (XY b=xY(@->h)=fg,(x), henceva(ad) — va(b) =va(a— b).
Also, va(0) =0 (since fy(x)= X ¥ 0=x* — 0=x** = 0(x) for every

XeA).n

Definition 5.6.14. A nonempty subset D < A iscalled regular if for any

X,y € A suchthatt v x=tv yforanyte D,thenx=y.

Example

Clearly, A isaregular subset of A sinceif x,ye€ Aand tv x=tvy for

anyt € A, thenin particular fort =0weobtainthat OvY x=0vYy< 1

—>X=1->Yy & X=V.
More generally, every subset of A which contains 0 isaregular subset of A.

Wedenote by R(A) ={D < A : D isaregular subset of A}.
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Lemma5.6.15. If Dy, D, € S(A) N R(A), then D; N D, €S(A) NR(A).

Proof. Letx,y € A suchthatt v x =t v yforeveryt e D; N D..
Sinceforevery t;,t, € Awehave(t; Y tp)) Yy O=(t, v t;) v 0 =

ty v (t ¥ 0), thenif weconsidert=(t; ¥ ty) ¥ 0=(to ¥ t;) ¥ Owe have
that te Dy N Dy(sincet; ¥ t; € Dy, soby Lemmab.7,t=(tp Y t)) v O
= (ty ¥ t)** € Dy).

Sincet ¥ x =t ¥ yweobtainthat ((t, ¥ tp) ¥ 0) ¥ x = ((ty
Yi)rvOryvyestuivy(by)yx)=t1 ¥ (¥ 0) vy).
Sincet; € Dy isarbitrary and D; € S(A) N R(A), we obtain that (t2

YOYX =hyY0)ryyeot,YOryx)=byOvy) et YX=thVvy
(since0y x=1—-xand0 vy =1-—-y=y). Sincet, € Dyisarbitrary and
D, € S(A) N R(A), weobtain that x =y, hence D; N D, € S(A) N R(A).

[ |

Remark 5.6.16. From Lemma 5.6.15 we deduce that

M(A) ={feM(A) : dom(f) € S(A) N R(A)} isaHilbert subalgebra of
M(A).

Definition 5.6.17. Given two multipliersf; and f, on A, we say that f;

extendsf, if dom(f,) < dom(fy) and f1(x) = fa(x) for every x € dom(fy); in

thiscasewewritef, < f;.
A multiplier f iscalled maximal if f can not be extended to a strictly
larger domain which contain dom(f).

Lemmab5.6.18. (i) If f, f, € M(A) and f <fy, f <f;, then f,and f, agree
on the dom(f;) N dom(fy);

(i1) Every multiplier f € M(A) can be extended to a maximal
multiplier. More precisely, every principal multiplier f, with dom(f,) €
S(A) N R(A) can be uniquely extended to a total multiplier f, and each

non-principal multiplier can be extended to a maximal non-principal
one.
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Proof. (i). If by contrary thereist € dom(f;) N dom(f,) such that

f1(t) = fo(t), since dom(f) € R(A), thereist’ € dom(f) such that

'y fit) = 'Y fot) & fo(t' Y 1) =Lt Y ) o f((t ¥ )**) = f((t v
t)**), which is contradictory sinceto = (t" ¥ t)** = ((t')* —» t)** = (t')* —

t* = t* — (t')** =t ¥ (t')** € dom(f).
(i). Wefirst prove that f, can not be extended to a non-principal multiplier.

Let D = dom(fy) € S(A) N R(A), fa: D — A and suppose by contrary that
thereisD’ € S(A),D < D’ (henceD’ € R(A)) and anon-principal
multiplier f & M(D’, A") which extends ..

Sincef isnon-principal thereisxy € D, Xo € D, such that f(Xg) # Xo ¥ a
SinceD € R(A), thenthereist € D suchthatt ¥ f(Xo) #t ¥ (Xo ¥ &) <
ftY Xo) = (t ¥ Xo) Y a< f((t ¥ Xg)**) = (t ¥ Xo) ¥ a=((t ¥ Xo)** v a
Denoting to = (t ¥ Xg)** = (t* — Xg)** = t¥** — Xg** =t* — Xp** =

Xo* — t** =X ¥ t** € D (sincet** € D).

We obtain that f(tp) # to ¥ a, which isacontradictory sincef, < f.

Hence f, isuniquely extended by f, .

Now, let f € M,(A) non-principal and M; = {(D,g) : DES(A), g
€ M(D,A), dom(f) < D and Oldom(r) = f} (clearly, if (D,g) € M, then

D € S(A) N R(A)).

The set M¢ isordered by (D1, 91) < (D2, 92) < D1 < D2and g, = G-
Let (Di, gi)icl beachainin M.

ThenD’ = UD, € S(A) N R(A) and dom(f) < D".

i
So, g’ : D’ — A defined by g'(x) = gi(x) if x € D; is correctly defined
(sincefor x € D; N D; we havethat gi(x) = gj(x)).
Clearly g" € M(D’, A) and g'| dom) = f (since for x € dom(f) < D”, then x
€ D’ and sothereisi € | such that x € D;, hence g'(x) = gi(x) = f(x)).

So, (D', g') isan upper bound for the family (Di, g)iei, hence by Zorn's
lemma M; contains at least one maximal multiplier h which extends f.
Sincef isnon-principal and h extends f, we deduce that h is non-principal.
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On Hilbert agebra M,(A) we consider the relation p defined by:
(f1, f2) € pa < f1andf, agree on dom(f,) N dom(fy).

Lemma5.6.19. pa € Con(M, (A)) (in H,).

Proof. The reflexivity and the symmetry of pa are immediate; to prove the
transitivity of pa, let (f1, f2), (f2, f3) € pa.

If by contrary thereis xo € dom(f1) N dom(fs) such that f1(Xo) # f3(Xo),
sincedom(f,) € R(A) thereist € dom(f,) suchthat t v fi(Xg) # t ¥ f3(Xo)
< it ¥ Xg) = f3(t ¥ Xo) < fa((t ¥ Xo)**) # f3((t ¥ Xo)**), whichisa
contradictory since (t ¥ Xo)** € dom(f;) N dom(f;) N dom(f3) (seethe

proof of Lemma5.5.15). Hence pa€ Echiv(M,(A)).
Since the compatibility of pa with — isimmediate, we deduce that

pa € Con(M((A)). =
For f € M(A) wedenote[f] =f/paand A" = M(A) / pa.

Lemma 5.6.20. Thefunction v, : A — A’’ defined by v,(a)=[f,], for
every a € A isamonomorphismin H, and v, (A) € R(A"").

Proof. Thefactthat v,1 H, (A A9 followsfrom Lemma5.5.13.

To provetheinjectivity of v,,leta b€ A suchthat v,(a) = v,(b). Then
[f.1=[f,]< (f,, f,) Epa<e f,(X)= f,(X),forevery X EA < X
Ya=xY b forevaey xe A < a=h.

Toprove v, (A) € R(A"), if by contrary there exist f;, f, € M, (A) such
that [f1] # [f;] (that is, thereisxo € dom (f;) N dom(f,) such that f; (Xo) #
fa(x0)) and [f]x [fa =[f,J¥ [f] & [f,x f1]=[f, ¥ f;], forevery a
e A.

In particular for a= xo, we obtain that x € dom(f;)Ndom (f,),

(o ¥ f)(X) = (f,, L P)X)=(F = f)X) = (= ))<=

(f,, () = 0(x)) — f1(x) = ( f, (X) = O(x)) — F2(X) < ((X* — Xo) — X**)

- f1(X) = ((X* — X0) = X**) > f(X) & (X* — Xo*) — f1(X) = (x* —
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Xo*) — f2(X); in particular for X =Xoweobtainthat 1 — fi(Xg) =1 —
fa(Xo) & f1(Xo0) = f2 (Xo0), which is contradictory. m

Remark 5.6.21. (i). Since for every a€ A, f, isthe unique maximal
multiplier on [f,] (by Lemma5.6.18), we can identify [ f.] with f_;
(ii). So, since v, isamonomorphismin H; , the elements of A can be
identified with the elements of theset { f, : a€ A}.

Lemma5.6.22. In view of the identifications made above, if [f] € A"’
(withf € M, (A) and D =dom(f) € S(A) N R(A)),thenD < {ac€ A:
f, v [f] € A}.

Proof. Let a€ D. If by contrary f, v [f] & A (that s, [ f,
v f]é& v,(A), then f, ¥ f isanon-principal multiplier on A.

By Lemma5.6.18, f, v f can be extended to a non-principal maximal
multiplier f:D ® A with D € S(A).

Thus,D € D andforevery xe D, f (xX)=(f, X f)X)=(fa = f)(x) =
((fa—= 0)=N(X) = (f.(x) = 0(x)) = F (x) = ((x* = & — (x** - 0)) —f
(x) = =(x* — &) —f (x).

Thus, foreveryx € D, x* —» f (X) =x* - ((xX* - a*) > f(X) f(x*
—X) =X ->a)> X -f(X) © f (X)) =x* - (a — f(x)

f (x)=a — (x* = f(x)) =a* — f(x) =a v f(x).

Since a € D, then by ax we deduce that for every x € D, f (X)
=zaY f(x)=x v f(a), that is, ﬂD is principal which is contradictory with the

assumption that f isnon-principal. m

Definition 5.6.23. A Hilbert algebra A’ iscalled Hilbert algebra of
fractionsof A if

ax1: A isaHilbert subalgebraof A’;

ax: For every a’,b’,c’e A’,a’ # b’, thereisa € A such that
ava+ayb'andav c €A.

Asanotational convenience, wewrite A < A’ toindicatethat A’ isa
Hilbert algebra of fractionsfor A (clearly, A < A).
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Definition 5.6.24. M isthe maximal Hilbert algebra of quotients of A if

A <M and for every A" with A < A’ thereisa monomor phism of
Hilbert algebrasi: A’ —> M in H; .

Lemmab5.6.25. Let A < A’. Thenfor everya’, b’ € A’, a’ # b’ and any
finite sequences cf,...c{ € A’,thereisa€ Asuchthatay a’#av b’

and avc;eAfori=12 ..n.

Proof. For n=1thelemmaistruesince A < A’.

Assume lemma hold true for n-1 (that is, thereisb € A such that b
va+bybadbyc; e Afori=1,2,..,n1).

SinceA < A’wefindce Asuchthatcy (bva)+cy (bx b)and c
v c'hn€ A.Thentheelementa=b ¥ c € A hastherequired properties. B

Lemmab.6.26. Let A <A’ and a’ € A’. Then
D.={ac€A:av a’ec A} € S(A) NR(A).

Proof. If ac Aandx € D, then x v & € Aandsince(ay x) v a = a
v (x v &) e Aitfollowsthatav x € D, hence D,, € S(A).

Toprove D€ R(A), let x,y € Asuchthatay x =a v yfor every a
e Da¢|

If by contrary x # y, since A < A’, thereisay € A suchthat gy ¥ a’ €A
(henceg € D,) anda ¥ X # & ¥ Yy, whichis contradictory. m

Theorem 5.6.27. A" = M(A) / pa isthemaximal Hilbert algebra of
quotients of A.

Proof. Thefact that A is Hilbert subalgebraof A’ follows from Lemma
5.6.19.

Toprovethat A < A", let[f], [d], [N] € A"’ (withf, g, h € M, (A)) such

that [g] =+ [h] (that is, thereis xo € dom(g) N dom(h) such that g(xo) #
h(xo)).
Put D = dom(f) € S(A) N R(A) andDyg={ ac A: f, ¥ [f] € A}.
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Then by Lemmab.6.22, D < D[f].

If we suppose that for everyae D, f, v [g] = f, ¥ [h],then[f, ¥ g] =
[ f, v h], hencefor every x € dom(g) N dom(h) we have (f, ¥ g) (x) =
(f, Y h)(x) < (x* —a) - g(x) = (x* — a*) — h(x).

We deduce that for every x& dom(g)Ndom(h), x* — ((x* — a*) — g(x)) =
X — (¢ = @) = h() = (xF — &) = (x* = gk) = (x* — ) -

(¢ = h()) = x* = (& = gx) =x* = (@ - h(x)) > & — (x* -

g())= & — (¢ —h(x) > & —gh) =a —h(x) < avgh)=ay
h(x).

SinceD € R(A), we deduce that g(x) = h(x) for every X
€ dom(g) N dom(h) < [g] =[h] which is contradictory.

Hence, if [g] # [h], thenthereisa€ D suchthat f, v [g] = f, ¥ [h];
but for thisac D, we clearly have, f, ¥ [f] € A (sinceD < Dyg), hence A
<A".

To prove the maximality of A’’,let A’ suchthat A < A’. Thenwe have i
AT AT @) =[f], foreverya € A’ (with dom ( f,,) = D).
Clearly, f, € M((A) andiisamorphismin H;.

To provetheinjectivity of i, let &, b’ € A’ suchthat [ f ] =[f,] <

fae (X) =f (X) for every x € D, C D,.. If @ # b’, sinceA < A’, thereis
ac€ A suchthat av a,av b’ Aandav a +ay b’,whichis
contradictory (sinceay a,a¥Y b’"€ A = a€ D,,CD,). B

Definition 5.6.28. A non-empty subset F of S(A) iscalled a Gabriel filter
on A if

axz: D1 €F, D,e S(A) and D; € Dy, then D, € F (hence A€ F);
a4 D1, D e F, thenD; N Dy €F.

We denoteby G(A) the set of all Gabriel filterson A .

Examples

1. If D € S(A), then F(D) = {D’ € S(A): D < D'} € G(A).
2. R(A) N S(A) € T(A).
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Indeed, a3 it isclearly verified. To verify ap, let Dy, D2 € R(A) N S(A)
and X,y € A suchthat tv x=tvy forevery t € D; N D,. Then for any
tbibe Awehave(ty Y tp)) v O=(t Y t;)) ¥ 0=t ¥ (t ¥ 0) s0,if tj €

D, i=1 2 adifwetake t=(t, ¥ t,) ¥ 0, t€ D; N D, (since t; ¥
toe Dy, => (ty v to)** € D, by Lemmab.6.7).

Sincety x =tyvy=>(t1yt) vy vyx=(t1xytr))v0)vys ty
Yty 0¥y x)=t1 ¥ ((tz ¥ 0) v ).

Sincet; € Dy isarbitrary and D; € S(A) N R(A) we obtain that (t2

YO VYXx=(ty0ryvy © bbyO0O¥yx)=bY(OXYy) < tpY x=

to v y(sinceQ Y x=1— x =X).

Sincet, € D, isarbitrary and D, € R(A) we deducethat x =y, hence

D; N D, € R(A), that isR(A) N S(A) € G(A).

3. Werecall that S< Aiscalled v - closed system if X, yeS=x ¥ yeS.

If wedenote Fs={D N S #J}, then Fs € G(A).

Indeed, the axiom a3 is verified sinceif D, D, € S(A), D1 < D,and  D;
NS+, thenD; N S< D,N S henceD, N S+D.

To prove the axiom a4, let D1, D, € Fs, that is, thereiss € DiN S, i =1, 2.
If wedenotes=g5, ¥ ;ands' =s Y O,thense Sands' =s** =svseS;
sinces’'e D; N Dy, thens'e(D1 N D,)N S, thatis, D1 N D, € Fs.

For F € G(A) we consider the binary relation on A defined by :
(X,y) € 0 < thereis D€ F suchthat tv x=tvy forevery te D

Lemma5.6.29. 6 € Con (A).

Proof. The reflexivity and symmetry of 6 are immediate. To prove the
transitivity of O, let (X, y), (Y, z2) € 6. Then thereare D1, D, € F such that
tyvx=tyyforeveryte D; andt’ ¥ x=t" vy foreveryt’ € D..

If weconsider D=D; N D, € F, thenforeveryt € D,t ¥ x=t ¥ z, hence
(X,2) € 0.

To prove the compatibility of 6 with —, let x,y, z € A such that (x,
y) € 0, hencethereisD € F suchthatt v x =t v y for every teD.
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Sncety(x—-2=tyx)—-(tvzy=(tvy)—>({tvyvz=tv(y—2
andtyY (z—>x) = (tyvz)>(tyx)=(tyvz->tyry=tvyv(z-oy
wededucethat (X > 2,y —2), (Z—X,Zz—>Yy)E0:. R

For x € A we denote by x/0¢ the equivalence classof x modulo 6 and

by nr: A — A /6 canonical surjective function defined for ac A by ne
(@ = al6e (clearly e isan epimorphismin H;).

Definition 5.6.30. Let FEG(A). An F—multiplier isa function

f:D— A/6 whereD € Fandfor any x,y €D and a< A the
following axioms ar e fulfilled:

ax: f(ay x)=(al/0r) ¥ f(x);
ags: F(x**) =f(X);
a7 (X1 0g) X f(y) = (y/0r) ¥ f(x).

Examples

1. If F={A} then 6 istheidentity, then an F—multiplier isin fact atotal
multiplier on A (in the sense of Definition 5.6.8).
2. Thefunctions 0,1: A — A/ 6 defined by O(x) = (x / 6 )** and

1(x) = /6 forevery x € A are F—multipliers.

3. Forac A, fa: A—> A0, TaX)=(X/0e) ¥ (al 6g), forevery x € A
isaF —multiplier.

We denoteby M(D, A/ 6F) theset of al F—multipliers having as domain

DeF. If D4, D, € F, D; < D, then we have acanonical function
j S;: M(D2, A/ 6g) — M(D4, A / 6¢) defined by j I?;(f)z f‘Dl, for

fEeM (Do, AlB).
Let us consider the directed system of sets ({M(D, A / 0 )}oer, (j 5) o, o,)

and denote by Artheinductivelimit A= lim M (D, A /0g) (inthe

9Yho
category Set of sets; see Chapter 4).
For any F —multiplier f : D — A / 0 wewill denoteby (D, f) the
equivalenceclassof finAg.
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Remark 5.6.31. If fi: D — A/ 0, i =1, 2 are two multipliers, then

(D,, f,)=(D,, f,) (inAp) < thereisD € F, D < D; N D, such that
fyp=Tap-

For fi: D — A/0g i =1, 2, F—multiplierslet us consider the function f;
—f,: D1 N Dy, — A/ 6e defined by (f — f2)(X) =f1 (X) — f2 (X), for any
x € D1N D, and (D, f,)® (D,, f,)=(D,C D,, f, ® f,)

Thislast definition is correct .

Indeed, let f’; : D’y — A /0 withD’; € F suchthat (D,, f,)=(D& f¢§, i=
1, 2. Thenthereare D’’1, D’’»> € Fsuch that D’'; € D;ND’y, D’’5 S
Dszlz and fl‘DN’: flfDP, fZ‘Dgt = fzﬁDp.

If weset D'’ D;ND,ND’'1ND’,, then D'’ € F and clearly (f1— f2) e = (f
T —f '2)‘D¢, hence (D, CD,,f, ® f;)= (DEC D§, f@® ff).

Lemmab6.32. fi—-f,e M (Dl ND,, Al OF)

Proof. Asinthecaseof Lemmab5.6.11. &

Corollary 5.6.33. (A, —, 0, 1) € H,, where 0=(A0) and 1=(Al).

Proof. Asinthecaseof Lemmab5.6.12. &

Definition 5.6.34. The bounded Hilbert algebra Ar will be called the
localization Hilbert algebra of A with respect to the Gabrid filter F.

Lemma 5.6.35. Thefunction ve : A — Ar defined by ve(a) = (A f,),
for a€ A isamorphismin H, and ve(A) € R(AF).

Proof. If a, b € A, thenve(a) — ve(b) =(A f,) = (A f))==(Af,® f,) =
(A fep) =Ve(@a— b) (by Lemmab5.6.13). Since fo(x) = (x/
0p)* — (0/0g) = (x/05)** = 0(x), for any x € A, we deducethat  vg(0)
= (A f,)=(A0)=0.

To provethat Ve(A) € R(AF), let (D,, f,) € ArwithD; € F,i=1,2 such

that (A f,) ¥ (D, f,)= (A f,) ¥ (D,,f,), forany a€A.
Then: ((A f,)— 0)— (D, f))=((A f,)—>0)—(D,.f,) &
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(A T)—(A0)— (D f)=((AT,)—(A0)—(D, T,) <

(Af,®0) — (D, f)=(Af,®0)— (D, f,) <

(D,,(f,® 0)® f,) =(D,,(f,® 0)® f,), forany acA.

So, thereisD < D; N Dy, D € F such that

(f.®@0® f), =(f.® 0 ® f,),

(f,®0® f)X)=((f,® 0)® f,)(x),forevery x e Dandac A < ((x
[ 0p)* — (al 0p)* ) — f1(X) = (X / 0p)* — (a/ 6F)*) — f,(X) for every xeD
andac A.

If wetakea=x € D, thenweobtain 1 — fi(x) =1 — f(X) <
f1(x) = fx(x), hence (D,, f,) =(D,, f,), thatis, Ve(A) € R(AF). &

In what follows we describe the localization of Hilbert algebra Ar in some
specia instances.

Applications

1.1f D € S(A) and F isthe Gabriel filter F(D) ={S € S(A): D < D},
then A € M(D, A/ 0F) and ve(a) = (D, fao) foreveryac A.

For x,y € Awehave: (X,y) € Op & foranyte D,t v x=tvy <
fo = fyo < VE(X) = Ve(y) and then there exists a monomorphism

¢ : A /0r— Af in H, such that the diagram

is commutative (e.g. ¢ o T = VEg).
2. If F=R(A) N S(A) isthe Gabriel filter of the setsfrom S(A) which are
regular subsets of A, then 6= Aa (hence A/ 0=A), so,anF—
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multiplier on A inthe sense of Definition 5.6.30 coincide with the notion
of multiplier in the sense of Definition 5.6.8.

Inthiscase Ag = /m@ M(D,A ,whereM(D,A)={f.:D—>A:fis
multiplier on A}, ve isamonomorphism (coincideswith v, from Lemma
5.6.20)in H, and Ar=A’".So,inthecase F=R(A) N S(A), Aris
exactly the maximal Hilbert algebra of quotients of A (see Theorem 5.6.27).
(iii). Let SS AaY - closed subset of A.

Consider the congruencefson A: (X, y) € 0s < thereiss& Ssuchthat s
Y X=SYYy.

By Lemma5.6.2 we deduce that 6s € Con(A) and A / 6s=A[S] (see
Definition 5.6.5).

Theorem 5.6.36. Let SS A a ¥ - closed system of A and
Fs={D€S(A):DNS=*W} e G(A). Then A, =~ A[F] (in H,).

Proof. For x,y € A wehave: (X, y) € g, < thereis D € Fs suchthat s

vy x=svy,foreveryse D.

SinceD NS+ O, thereiss, € DNS; in particular we obtain that

S Y X=% Yy, hence(x,y) € 0s(see Lemma5.6.2).

We consider Dp=[s)) ={a€ A: 5 < a € Ds(A).

Sincesy € DN S wededucethat Dg € Fs.

Froms Y X=%Yy=Si—oX=5)—oy=>sH<x—yand s*o
<y—-X.IfseDpthengg<s=>s<sfg=>s*<x—-yands <y—x
=8 oX=8" >y 2>SYX=SYY = (X,Y) € g, g, =05 ,0
Alqe =A[S.

Therefore, an Fs—multiplier can be considered in this case afunction f
:D — A[S] (D € Fs) having the properties: f(a ¥ x) = a v f(x), f(x**) =
f(x) and x ¥ f(y)=y¥ f(x),foranyx,y € Dand a€cA (we denoted X
=x/0g).

If (D, f1).(D,, f) € A = %[m® M (D, A'S]) and (D, f;) =(D,, f,) , then

"

thereisD € Fs suchthat D < D, N D, and qu =f

2D
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Since D,D4, Dy € FsthenD NS, D1 N S, D, N S +&J and choose

sebDNSsebns i=12
We will prove that f1(s1) = fo(S2).

Indeed, sincefor any X,y € A we have x* — y** = y* — x** we deduce
thats, Y (¥ s) =Y (1Y §) =820 =5108 =5 (5 ¥
$) €S. Hence, fort=sy (¥ (LY s))=sY (LY (31 ¥ ) we
obtant=sY¥ (LY (Y )= Y (SY (LY )= Y (§*—s*))=
SY(S1oS*) = (¥ (svs))eDNS.

Since fio = a0 and t € D wehave fi(t) =fy(t). Sincef;andf,are  Fs—

multipliers, weobtain fi (s¥ (51 ¥ (S ¥ s)))=fa(SY (¥ (5 ¥ 9)))

S (9@ ((5)® () ® fi(s)))=(9*® ((5)*® ((5)* ® f,(s,)) -

But s,5,5 € S hence §=§=§,= 0,500" —(0" — (0* — 1 (s1))) = O
S0 >0 5f() @1o1-oA-of(s)=1->1>1—
fa(s2))) < fu(sy) = fos2).

Anaogously we provethat fi1(s1) =fx(s), forany s, 5, € DN S.
In accordance with these considerations we can consider the function o

F A z/!gi%M(D,A{S]) —A[S], o((D, f) ) =f(s), wherese DN S.

Clearly, a isamorphismin H, (sinceif (D,, f;) € A, withD; € Fs, [
=1,2, then a((Dy, f;)® (Dy, f;)) =a ((D, € D,, f; ® f5)) = (fr — f2)(9) =
fi(s) — f2(s) = a((Dy, f,)) — a((D,, f,)), where s€ (D1 N D) N S and
a(0) =a((A0))=0(s) = (§** =0"" =0).

We will prove that o is bijective.

To provetheinjectivity of o, let (D, f;),(D,, f,) € A suchthat

a((Dy, f1)) = a((D,, f,)).

Thenfors, € D1 N Sand s, € D, N D we have fi(s;) = fa(s). We consider
theelement s=5 vV (Y ) =¥ (1Y) (DiNDy)NS
Wehavefy(s) = § ¥ (5, Y fy(s1)) =0 X (0 X fy(sy)) = 1— (1—-fy(s)) =
fi(s1) and analogously fx(s) = §, ¥ (§, ¥ fx(sp)) = fa(sp), hence fa(s) = fa(s).
Now let Ds={s'’e D;ND,:s' =5 v s}.
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Sinces** =sy¥y se D;N Dy and(s¥*) ¥ s=g*** > 5=g5" —» 5= s** we
deducethat Ds +# O.

If ac A and s €D thenay s'=av (sf¥yg=(avs)ys hence a
v &' € Dg thatis, Ds € S(A). Sincea** € DsN S, we deduce that Ds € Fes.
If s’ Dg, thenfy(s") =fi(S'Y s) = SV fi(9), fo(S)=Ff2(S'Y S) = SV fy(9),
hence f1(s") = fo(s')= fio, = fa0, = (D, f))) =(D,, f,), thatis, a is
injective.

To prove the surjectivity of a, let a€ A[S] (a€ A).

Forse S, weconsider D =[9).

Then D € Fsand we definef,: D — A[S], fa(x)=(x ¥ a)/0s forany x
eD.

Clearly faisa Fs—multiplier and we shall provethat a((D, f,)) = &.

Indeed, sinces” — (s* — a) =s — a, then (s* — a, &) € 0s, hence

U
s®a=a & fs)=a< ao((D,f,))=4. H
We consider now the case of Hertz algebras.

Lemma5.6.37. If (H, —, A) isa Hertzalgebra, then D € Ds(H) iff
D isafilter of the meet—semilattice (H,A).

Proof. Suppose that D € Ds(H) and let x,y € D; wewill prove that X
Ay e D.

Byaswehavel X > (XAY)=X—>X)AX—>Y)=1AX—>Y)= X
—y € D; sincex € Dwededucethat x Ay € D.

If xeD,yeHandx <y, thenx -y=1¢& D, hencey € D.
Conversely, suppose that D is afilter of H and wewill provethat D isa

deductive system of H; clearly 1 € D since x < 1for every x € D.
Supposethat x,x —y € D;thenby a5, X Ay= xA (Xx—Yy) € Dand
sincexAy <y wededucethaty € D. m

The notion of v - closed system for Hertz algebras will be defineed asin the
case of Hilbert algebras (see Definition 5.6.1).
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We will define the notion of Hertz algebra of fractionsrelativetoan v -
closed system asfor Hilbert algebras.

So, let (H, —, A) bea Hertz algebraand ScH an v - closed systemin H.
By Lemma5.6.2, the relation 6s defined on H by (x, y)€ 0siff thereist €
S suchthatt v x =t v vy, iscompatible with —. We will prove that 6sis
compatibile with A, too.

Let X,y,z € A suchthat (x,Yy) € 0s; thenthereist € Ssuchthatt v x =
ty yetrr -x=tr-y.

By ais we deducet* — (XA 2) = (t* > X)A(t* > 2)= (t* > yY)A(t* > 2) =

t* > (y A 2),hence(X Az, y A 2) € 0s.

We denote H[S] = H / 6sand by ns : H — H[S] the canonical epimorphism
of Hertz algebras which map an element in its equivalence class.

Asin the case of Hilbert algebras, ns(S) = {0}.

We will prove that Lemma5.6.4 is valid and in the case of Hertz algebras,

so, let H” another Hertz algebraand v : H — H” amorphism of Hertz
algebras such that y(S) ={0}.

H H[S]
\ e .- 0
L
HI
To prove the existence of unique morphism of Hertz algebras 0]

: H[S] — H’ for which the above diagram is commutative, it will sufficeto
prove that ¢ (defined asin the case of Lemma5.5.4) is morphism of Hertz

algebras, that is, for x,y € H,wehavej (xU¥)=j (X) Uj (9) .

Indeed, j (xU9)=j (xUy)=y (xAY) =y (A v () =] R U] (9).

Wecall H [S] Hertzalgebra of fractions of H relative to v -closed system
S.

If H, H" are two Hertz algebras with H Hertz subalgebra of H’ (hence H
contains two elements x’,y’of H” and the elements x” — y’ and x’ Ay’ ,t00),
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we say that H” isa Hertzalgebra of fractionsof H if for any x’\y’, z'e H’

with x"#y' thereisac Hsuchthat av x"+av y anday z'
H.

The notions of v - closed subset of H and multiplier on H are defined asin
the case of Hilbert algebras (see Definitions 5.6.6 and 5.6.8).

We will provethat if fi : D; — H, D; € Ds(H), i = 1,2 aremultiplierson H,
then fy A fo: D1ND, — H, defined for x € D1ND, by (faAf)(X) = f1 (X)Af2
(x) isalsoa multiplier on H.

Indeed, if a€ Hand x € D; N D, we have (f1 A fo)(ay x) = fi(@a ¥ x) A
fa(@ay x) = (ax fi(x)) A (@ X f(x)) = (@ — f1(x)) A (@ — f2(x)) = (by
ay) = @ — (fi(x) A fa(x)) =ay (fiAf)(x) and from x** < f1(x) and
x** < fy(x) wededucethat x** < fi(x) A fo(x) = (fr A f2)(X).

Therefore H'’=M(H)/py isaHertz algebra (it isimmediate the
compatibility of py with A); to provethat H'’ isthe maximal Hertz
algebraof quotients of H it is suffice to provethat v, : H— H’" definedin
Lemma5.6.20 isamorphism of Hertz algebras.

If a be H, thenfor every x € H, wehavex* — (a A b)=

(x* > a) A (X* — b), hence farp (X) =fa(X) A f(X) & v, (@A b) =

v, (@ A v, (b), so v, is morphism of Hertz algebras.

The notions of Gabriel filter F on aHertz algebraH and F - multiplier are
defineasfor Hilbert agebras; also the relation 6 on H.

If HisaHertz algebra, San v -closed system of H, then the compatibility

of O with A on H isasin the case of compatibility of 6s with A (by using
a14).

By preserving the notations from Hilbert algebras, there results that H (see
Definition 5.6.34) becomes in a canonical way bounded Hertz algebra,
wherefor (D, f) € H: (=1, 2): (D, f,)® (D,,f,)=(D,¢D,,f,® f,),
(Dy, f1) l:J(D21 f,)=(D, € Dy, f; u f)).

We call He the Hertzalgebra of localization of H with respect to the
Gabridl filter F.

Theorem 5.6.38. Let A, A’ be Hilbert algebras; then A < A’ iff
Ha£H .
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Proof. Werecall that ¢a: A — Ha definedby ¢ () = 4,for a€ A isa
monomorphism of bounded Hilbert algebras (we denoted a={a}/ pa; see
the notations from the proof of Theorem 5.4.11).

Firstly, supposethat A < A’ ; wewill provethat H, £H . Clearly Hp is
aHetz subalgebraof H ,, sinceif a = X,p =Y € Ha, where

X ={X1, X2, o0, Xo}, Y ={V1, Y2, ..., Ym} € F(A), thena — p= X¢and o A
B=YtwhereY' =X UY CAandX'={x,X'2,.. X'm} CA with

X5 = (X1, X2, Xm) V) €A, ] =1, 2,...,m, hencea — B, a A B € Ha.

Leto’ = X¢ B’ = Y¢ v = Z¢ € Ha,, where X’ ={a'y, ..., &}, Y’
={b’y, ..., b'n}, Z' ={c'y, ..., C'p} arefinitesubsetsof A’ suchthat o’ +
p.

Froma’ # B’ we deduce that thereare ip € {1, 2, ..., n}, Jo
€{1,2, ...,m} suchthat (a'y, ..., @m; b )#1 or (b'y, .., bn;al )#1
Suppose that (&'y, ..., @'m; b¢ ) # L withio € {1, 2, ..., n} (another case will
be analogoudly).

By Lemma5.6.25thereisa€ A suchthat av (a'y, .., am; b )#ay¥ 1=
1 andav c’, €A, forevery ke {12, .., p}.

Then, if denotea = a€ Hp, ¢, =av ¢, ,k=1,2,..,p ad X"
={c""y, ..., "y} = A, weimmediately deduce thata Vv y" = X ¢ Ha.

If weprovethat o ¥ o’ # a ¥ B, then the proof of thisimplicationis
complete.

Wedenote a’/i=av &, b"’j=av b i=1,2..,mj=12 ..,n

If by contrary o ¥ o’ =a ¥ B, then(a'’y, ..., a@'m; b"}) = (
by, ...,b";d)=1forevery i€{1,2,....mand j €{1, 2, ..., n}.
But, using the rules of calculus from Theorem 5.2.13, from

@'y, ...,a’'m;b"”%) =1, foreveryj € {1, 2, ..., n}, we deduce that

av (@’y,..,a'm;b"j)=1forevery j € {1, 2, .., n},whichisa
contradiction!.

Now suppose that H , £ H ,, and we will provethat A < A’.
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To provethat A isaHilbert subalgebraof A’, leta, b € A. Since
4, b € Ha and Ha isaHertz subalgebra (hence in particular Hilbert

subalgebra) of Ha' wehavethat & — b = a® b€ Ha, hencea— b € A,
Now let &, b’, ¢’ € A’, witha +# b’; if we consider the elements

a(, b¢, & €Ha wehavethat a(# b¢ (see the proof of Theorem 5.3.11);
since we supposed that Ha< Ha’ thereis X = {Xa,..., X} afinite subset of A
suchthat X ¥ a# X ¥ btand X ¥ & € Ha.

Sincein Ha, X*=X ® 0= (xl,...L,an;O) we obtain that (denoting a=
(X1, s Xn; 0) EA) & — 40 £ & — btand & — &€ Ha, hencea— a +
a— b anda—c’ € A.

We will provethat a€ R(A), that is, a** = & indeed, since for every X,

y € A by ¢ wehave (X — y)** = x** > y** = (bycg) = y* — xX*¥**
= y* > xX* = X > y** then a** = (X, X2, ..., Xp-1; (Xn— 0)**) =
(X1, X2y coey X1y X0***) = (X1, X2, cory Xn1; Xn*) = (X1, X2, .oy Xy 0) = &

So, therelationsa— & + a— b’anda— ¢’ € A becomesa**— a + a**
—b'anda** >c' € Aor(a)* - a # (a)* > b and (a)* > c’' € A;
if wedenoteb=a* € Awehaveby & #bYy¥ b’andb v ¢’ € A, henceA
<A'.m

Corollary 5.6.39. If A is a bounded Hilbert algebra, then H,, is a
Hertz subalgebra of (Ha)"’ (where by A’”" we denoted the maximal Hilbert
algebra of quotientsof A).

Proof. Preserving the notations from Definition 5.6.23, by Theorem 5.6.27,
A < A”. By Theorem 5.6.38, H, £ H 5, and by the maximality of (Ha)"" we

deducethat H ,, isa Hertz subalgebraof (H,)"””. m

Let’s study now the case of Boole algebras.

If (B, v, A,’,0, 1) isaBoolean algebra, then asin the case of Hilbert or
Hertz algebrasit isimmediate that the deductive systems of B arein fact the
filters of B.

Sinceforx,y € B,x* - y=(x*)" vy=x""Vvy=xVy amultplieron B
will beafunctionf : D — B (with D filter in B) such that for every ac B
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and x € Dwehavef(aV x) =aV f(x) (if wetake a= x we deduce that

f(x) =x Vv f(x), hence x** =x < f(x) and the axiom & follows from ap,.
If Dy, D, arefiltersof B and f; : D; — B are multiplierson B, then f1

V fy: D1 N Dy — B defined by (f1 V) (X) = fa(X) VIx(X) for every x € D1 N
D,, isamultiplier on B sincefor every ac A and x € D1 N D, we have:
(frvf)avx)=fi(avx)v(avx)=(@vVvfix) Vv (avVv fax)) =

aVv (fi(x) v fo(x)) = aVv (f1 vV f2)(X).

Also, if f: D — Bisamultiplier on B, thenf’: D — B defined by

f'(x) = f(x) — O(x) = f(x) — x isalso amultiplier on B (asin the case of
Hilbert algebras).

If B, B” are two Boolean algebras, we say that B’ isa Boolean algebra of
fractions of B if B isaBoolean subalgebraof B’ andif &, b’, ¢’ € B’
thenthereisac€ B suchthatav a +av b’andavVv ¢’ € B.

A filter D of B will becalled regular if for any a, b € B such that t

v a=tV bforeveryt € D, then a=h.
It isimmediate that, asin the case of Hilbert and Hertz algebras, that

(B, Vv, A,’,0,1) is Boolean maximal algebra of fractions of B.

In fact, B’” isthe Dedekind — Mac Neille completion of B ( see [77], [78]).
The notion of Boolean algebra of localization with respect to a Gabriel
filter on B will be introduced now in canonical way asin the case of Hilbert
and Hertz algebras.

Theorem 5.6.40. If A, A" are Hilbert algebras such that A < A’, then
R(A) < R(A’") (as Boolean algebras).

Proof. Clearly, R(A) is a Boolean subalgebra of R(A’); let now a,
b’,c’ € R(A’") suchthata’ + b’. Since A < A’, thenthereisa & A such
that a8 > a #a* —»b'anda* —» ¢’ € A.

Sincea* = a*** wededucethat a*** — a + a*** — b’ and

a***— ce A, henceif wedenoteb =a* € R(A),thenb* - & # b* —» b’
and b* - c'€ A.

But by ¢z, (b*—c’)** = b***—c’** = b*—c’, hence b*—c’ € R(A).
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Finally weobtainthatb v & = b v b"andb v ¢’ € R(A) (see
Theorem 5.2.24), hence R(A) < R(A’). m

Lemma5.6.41. If A isa Hilbert algebraand D € R(A), then we have
D NR(A) € R(R (A)).

Proof. Leta, b € R(A) suchthatt ¥ a=t v bforeveryt € D=DNR(A);
sinceford € D, d** € D N R(A) =D, we deduce that (d**)* — a =
(d**)* > b < dvy a=dY b, hence a=b, sincewe supposedthat D is
regular in A. |

Werecall that if A isa Hilbert (Hertz or Boole) algebra, then by A’ we
denoted the maximal Hilbert (Hertz or Boole) algebra of quotients.

Theorem 5.6.42. If A isa Hilbert algebra, then R(A’") isa Boolean
subalgebra of (R(A))".

Proof. If (D, f) € R(A”),thenD € R(A) andf: D — A isamultiplier on
A such that f** = f; hence for every x € D we have (f(x) — x**) — x** =
=f(x) = (x* = (f(x))*) = (x*)* = f(x) = x* — (f(x))** =f(x), we
deduce (by c,) that (f(x))** < f(x), hence (f(x))** =f(x), so f(D) < R(A).
By Lemma5.6.41, D =DNR(A) isregular in R(A), hence f = f\a :D® R(A)
isamultiplier on R(A), so ﬁ € (R(A))" (sincefisa multiplier on A).
Clearly the assignment (D, f) — ﬁ definesa morphism of Hilbert
algebras and Boolean agebras (since in a Boolean algebra the operations v,
A, " can be defined with the aid of —); we will prove that this assignment
Isinjective.

If (Dy, f1), (D2, f2) € R(A’’) such that (D,, f,) = (D,, f,) then f,=f, on
D,CD, =(D1N Dy NR(A), hencef; =f, on (D N Dy) N R(A), so

(Dy, £,)=(D,, ;). W
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5.7. Valuationson Hilbert algebras

In this paragraph by A we denote a Hilbert algebra and by R the set of
real nmbers.

Definition 5.7.1. A function v: A — R iscalled a pseudo-valuation on
A if:
g V(1) =0;

A V(X — y) 2 Vv(y) - v(X), for any x,y € A.
The pseudo- valuation v issaid to be a valuation if

A XEA andv(x)=0=x=1

Remark 5.7.2. If we interpret A as an implicational calculus, x — y asthe

proposition “x = y” and 1 as truth, a pseudo-valuation on A can be interpreted as
falsity — valuation.

Examples

1L.v:A—-R,v(x)=0forany x €A isapseudo-vauation on A (called
trivial).

2.1f DeDsA) and 0<r e R, then vp : A - R,

10, for xI D
Vo (X) = | .

tr, for xI D
isa pseudo-valuationon A and avaluationiff D ={1} and r>0.

3. If M isafiniteset withn eementsand A = (P(M), U, N, Cy, &, M) is
the Boolean algebra of power set of M, thenv : P(M) —» R, v(X) =n-|X |isa
valuation on A (where by | X | we denote the cardinal of X, that is, the numbers of
elements of X).

Remark 573. If v : A — R is a pseudo-vauation on A and

X Xg,.., Xn€A such that (Xq, ..., X, ; X) = 1 (that is, X € <Xy, ..., Xp > — see
Corollary 5.2.19), then

n
Cro: V(X)E A V(X) .
i=1
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Lemmab.7.4. ([26], [28]) If v: A — R isa pseudo-valuation on A, then

(i) Dy={x€ A:v(x) =0} € Ds(A).

Conversdy, if D € Ds(A), then thereisa pseudo-valuation vp : A — R
(seeExample 2) suchthat D, =D;

(i) The pseudo-valuation v on A, is a decreasing positive function
satisfying

Cs3. V(X —Y) +Vv(y — 2) > v(x —2) for any X,y,z € A.

We recall that by a pseudo-metric space we mean an ordered pair (M, d)

where M isanon-empty setandd: M x M — R is a positive function such that
the following properties are satisfied: d(x, X) = 0, d(x, y) = d(y, x) and

d(x, 2=<d(x, y) + d(y, 2) for every x,y,z €M. If in the pseudo-metric space (M,d)
theimplication d(x, y) = 0 = x =y hold, then (M, d) iscaled metric space.

Lemmab.7.5. ([26], [28]) Let v: A — R bea pseudo-valuation on A. If

wedefined, : AxA - R, dy(X,y) =v(X = y) +v(y — X), for every X,y € A,
then (A, d,) isa pseudo-metric space satisfying
Cy. Max{ dy(X — 2,y — 2),du(z —> X, z— y) } £ du(X, y),

for any x,y,z € A.

So, the operation — it is a uniformly continuous function in both
variables. (A, d,) isametric spaceiff visavauation on A.

Definition 5.7.6. A pseudo-valuation v : A — R is called bounded if
thereisareal positive number M, such that 0 < v(x) < M, for every x € A.

Remark 5.7.7. All pseudo-valuations from examples 1-3 are bounded; if A
is abounded Hilbert algebra, then every pseudo-valuation on A is bounded (we can
consider M, = v(0)).

Theorem 5.7.8. ([26], [28]) (i) If D € DS(A),ac A\Dandv:D — R is
a bounded pseudo-valuation on A, then there is a bounded pseudo-valuation

onA v’ :D(a) —» Rsuchthat v'p=v,whereD(a) =<D U {a}>={x € A:a—
x € A} (see Corallary 5.2.19);

(ii) If B is another Hilbert algebra such that A < B (as subalgebra)
and v: A — R isa pseudo-valuation (valuation) on A, then thereisa
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pseudo-valuation (valuation) v’ : A — R such that v'|4 = v, where by <A> we
denoted the deductive system of B generated by A (see Definition 5.2.6).

Proof. We recal only the definition of an extension of v to v’ in both
cases:

(i) For x € D(a) we definev’ : D(@) — R by
jv(x), for xI D

vEXx . where M, has the property that 0 < v(x) < M

<()_|va’ fOHID( v property ) v
for any x € D).

(i) For x & <A> we define vV : <A> — R by

vEx) = inf{_;‘;_r{ V(X ) X e X T A (X X3 X) =13 . B

Theorem 5.79.If D€ Ds(A) and v: A — R isa pseudo-valuation
(valuation) on A, then thefollowing are equivalent:

(i) Thereisa pseudo-valuation (valuation) v/ : A/ D — R such that
the diagram

is commutative (i.e, v’ o pp = Vv, where pp (X) =x/D, for every x € A);
(i) v(a) =0for every a€ D.

Proof. (i) = (ii). If thereis a pseudo-valuation v’ : A/ D — R such that
v o pp =V, thenforeveryaec D,v(@ =(v' o pp) (& =V’ (po (&) = v'(1) =0.

(ii) =(i). For x € A wedefinev’': A/D — R by v/(x/D) = v(x).

If x, yeAadx/D=y/D,thenx -y, y— x & D. We obtain
0=v(Xx —y)>v(y) —v(x) and 0 = v(y — Xx) > v(X) — Vv(y), so v(x) = v(y), hence
v’ iswell defined.
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We have V/(1)) =Vv/(L /D) =v(l)) =0ad vi(x/ D -y /D)=
=V(X—>y)/D)=v(x —>y)>Vv(y)-v(x) =Vv'(y/ D) - v'(x/ D), that is, v’ isa
pseudo-valuationon A / D. Clearly v/ o pp = v.

If v isavaluationon A and x € A suchthat v'(x/D) =0, thenv(x) =0,
hencex=1,andx/D=1/D =1, thatis, v’ isavauationonA/D. m

Definition 5.7.10. In [29], for a Hilbert algebra A, by A° it is denoted
the Heyting algebra Ds(A) withtheorder D; < D, & D, € Ds.

In (A% <),0=A, 1={1} and for D, D, € A%, D, N D,=<D; U D> =
D, v D, D;UD,= D;nD,and D1—>D2=u{DeA°: D,cD;VvD}

Also, ja: A — A° ja(a) = <a> for every a € A is a monomor phism of
Hilbert algebras.

Definition 5.7.11. We say that a Hilbert algebra A hasthe property F
if for every D € Altherearex, ..., X, € A suchthat D € <Xy, ..., X;> .

As examples of Hilbert algebras with property F we remark the bounded
Hilbert algebras (sincein this case A = <0>) and finite Hilbert algebras.

Theorem 5.7.12. Let A be a Hilbert algebra with the property & and
v: A — R a pseudo-valuation on A. Then thereis v’ : A — R a pseudo-
valuation on A° such that v’o j, = v.

Proof. For D € A° we define
VQD)=inf{§v(xi):x1,...,an ADI <X, X, >}.
i=1
Clearly v<(1)=inf{£v(xi):xl,...,an A{BT <x.,...,X, >} = v(1) = 0.
i=1

To prove that v’ verify ay let Dy, D, € A X4, ..., Xn, Zu, ....ZnE A such that
D S <Xyg, ..., Xp>and D;— D, € <7y, ..., Zy>.
Then D, € D1V (D1—D2)S<Xy,... Xn>V<Zy,...,Z0> = <X1yeuey Xy i Zm™>,

hencev&D,) £ 5 v(x)+ gv(zj) , SO
i=1 j=t
VAD,) £INf{A V(X ) : Xgyeos X, T A D, | <Xy X, 5} +
i=1

+ inf{gv(zj):zl,...,zmi AD,® D, <z,.,z,> =V (D) +V' (D;— Dy),
j=t
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that is, v/ (D1— Dj) = V' (D,) - V(D).
If a€ A and Xy, ..., X, € A such that <a> € < Xy, ..., X, >, then

(X1, .., %o @) = 1 hence V(@) £4 V(x), (by Remark 5.7.3 and Cy), 0
i=1
v(a)£inf{gv(xi):xl,...,an A<a>l <x,.,x, >} =V/(<a).
i=1

Since <a> < <a> it follows that v/(<a>) < v(a), hence v'(<a>) = v(a),
thatis,v o ja=v. R

We consider now the problem of extensions of pseudo-valuations in the
case of Hertz algebras.
For aHilbert algebra A, in 84 (see Theorem 4.4.11), we have proved the
existence of aHertz algebraHa and amorphism of Hilbert algebras @ : A
— Ha with thefollowing properties:

(i) Haisgenerated (as Hertz dgebra) by ®a(A);
(if) For every Hertz algebraH and every morphism of Hilbert algebras
f : A — H, thereis a unique morphism of Hertz algebras f : Ha — H such

that the diagram

iscommutative (i.e, f o dp=f).

Proposition 5.7.13. For a Hilbert algebra A, the following are
equivalent:

(i) AisHertz algebra;

(ii) For every xi, X, € A thereis a € <xj, Xo> such that (Xi, Xz ; X) =
a— X for everyx € A;

(iii) Every finitely generated deductive system of A isprincipal;

(iv) For every xi, X, € A, @a(X)) A Da(X2) € Da(A).

Proof .(i)=(iii). If Xg, ..., X, € A anda=Xx; A ...A X, then from ay
and a; we deducethat a € <Xy, ..., Xp> and <a>=<Xy, ..., Xp>.
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(iii)=(@). If xq, X, € A, then <x;, x,> = <a>, for some a € A. Then
X1, X2 € <X1, X> = <&>, hence a < X3, X and x; — (X, —»a) = 1(by Theorem
5.2.18).

If we have @ € A such that @ < x;, @ <X, thenl=a — 1=
d—-X—=>X—ad]=@ —->x)—[@—>x)—@—a]= 1
—>[1l—> (@ —a]=a — ahencea <a thatis,a=xX; A X, SO A isaHertz
algebra. Hence (i) < (iii).

(i)=(ii). If Alisa Hertz algebraand x;, x, € A, if wetakea=x; A Xz €
<X, Xo>, then by c3; we have ( Xy, X, ; X) =a— X, forevery x € A.

(ii)=(iv). Let X1, X, € A and a € <X, Xo> such that (X, X2 ; X) = a— X,
for every x € A.

Since (X1, X2 ; X1) = (Xg, X2 ; X2) = lwededucethat a— x;=a— X, =1,
hence {a} — {xy, Xo} =1, wherel = {1} (seethe proof of Theorem 5.4.13).

Since (X1, Xo ; @ =a— a =1, we deduce that {x;, Xo } — {& =1, hence
{Xe, X2} I pa={a} [ paand Da(X1) A DPa(X2) ={X1} / pa A {X2} / pa ={X1, X2} / pa
={a / pa=Da (a) € Da (A).

(iv)=(i). Let x3,x, € Aandac A suchthat ®@a (Xi))A Da (X2) = Da ().
Then {Xq, Xo} / pa={a} / pa, hencex; > (X @ =landa—-x;= a—>x,=1
(that is,a € <x1,X,> and a < X;,Xy). Toprovethata=x; A X, leta’ € A such
that @ < X;, Xo. Asin the case of implication (iii)= (i), we deduce that a’'< a,
hence a=x; A X, that is, A isa Hertz algebra. m

Proposition 5.7.14. Let X ={ Xy, ..., Xn }, Y ={ VY1, ..., ¥m } € F(A) and
Z=X->Y={Y'y,....¥m} (Wherey’; = (X;, ..., Xn; ¥;), 1 <j <m). Then

)X/ pa <Y /pa = <Y>C <X>;

(iT) (@a(Y1)s - Palym) ; X/ pa) =1 & <X> < <Y>;

(iiiy <z>=n {D € Dg(A) : <Y> < <X>V D};

(V) Ha = <®@A(A)>.

Proof .(i). Wehave X I pa <Y /pa © X/lpa—Y/Ipa=1lsZ/pa=
l/paeyi=lLl<sjsmeye<X>1l<jsm(by cx) &<Y>c <X>.

(ii). We have (Da(y), .-, @alYm); X/ pa) =1 & Da (Y1) A ... A Da (Ym)
< X/pa (bycCa) ©{ Vs, . ¥m}/Ipa< X/lpae Y/pa< X/pae
<X>c<Y>.
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(iii). If ye <Y >, then (y1, ...,V¥m;Y) =1 and by a4, we deduce that (
Vi oo ¥V Xt oo X0 3 Y) = ((Xay woos Xn s YD)y woes X2y ooy X0 Vi) (X1,
e Xn 5 Y) = Xy e Xa oy Yo Ym s Y) = (X ooy Xn b (Vi Ym s Y)) =
(X1, ooy Xn 3 D) =1, hence (X, ..., Xn; Y) € <Z>. S0y € <X> Vv <Z> (by Theorem
5.2.18), thatis, <Y> < <X> Vv <Z>,

If we have D € DS(A) suchthat <Y> < <X> vV D, thenforl <j <m,
y; € <X>V D, hencey’; = (X4, ..., Xn; ¥j) € D, 80, <Z> =<y’y, ..., Y'»> € D,
hence<Zz>=nN{D € Ds(A) : <Y>c <X>V D}.

(iv). If X ={ Xq, ..., Xo} € F(A), then (Pa(X1), ..., PalXn) ; X / pa) =
(@a(X)) A oA DalX)) = X Tpa={ Xy, ..., Xn} [ pa = X/ pa=X1pa—
X I pa=1, hence Hy = <®,(A)> (see Theorem 5.2.18). m

Theorem 5.7.15. Let A be a Hilbert alggbraand v: A - R a
pseudo-valuation on A. Then there is a pseudo-valuation v’ : Hx — R such
that v/ o @, =v.

Proof. For X € F(A) we define

VEX /1 ) = {a (y) (F a(YD)s oo F A(Ym)i X /1 0) =1

Y={ Yy ym}l F(A) j=1

= {av(y)Y/rAEX/rA)}

Y=Y ym}l FA) j21

= inf v(y. )< X > <Y >} (by Proposition 5.7.14
Y={yy e ym}IF(A){]a_ (y;) } (by P ).

If we have X’ € F(A) suchthat X / pa =X’/ pa, then <X>=<X’'> (by
Proposition 5.7.14), henceV’ iscorrectly defined.

Clearly v'(1) =Vv'({1} / pa) =Vv(1) =0, since<l> c <1>={1}.

If a€ A, since<a> < <a>, wededucethat v'({a} / pa) =Vv(a).

Let Y={vyi ..., ¥m} € F(A) such that <a> < <Y>.

Then, in particular, ac<Y> By Remark 5.7.3 we obtain that

V@EAaV(y;), hence V@£, i ym}|F<A){ﬁ1"(y ):<a>l <Y>}=v'({a /pa),

sov'({a} / pa) =Vv(a), thatis, v/ o Dp = V.
To prove that v’ verifies ay let X, X' € FA)and Y ={ y1, ..., ¥m }»
Y' ={ Y ...¥p} € FA) such that (Oa (Y1), ..., Pa (Ym) ; X [/ pa) =
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(DPa (Y1), oo, Pa (V') ; X pa— X' [pa)=1(then <X> < <Y>and <X — X">
c <Y’>).

By cs we deduce that (®a(y's), ..., ®aly’p) ; X / pa ) <
(PaY's), -y @alY'p) s X' [ pa), hence (Da(yd), .-, Palym) ; (Pa(Y's), -y Pa (V')
» XL pa)) < (Palys), o PalYm) 5 (PalY's)s .. PaY'p) s X7 [ pa)) = 1=

(@aY'), s PaY'p) 3 (PaY1), v PalYm); X 1 pa) ) < (Palys), ---» PalYm) ;
(@aY'), s @aY'p) 5 X' 1 pa)) = (PalYs), -5 PalYm)s PalY's), ---s PaY'p) 5
X’/pA)=1:>v((XG¥rA)£gv(yj)+k§v(y£2).

j=1 =1

So, vQXWrA)EY# inf {gv(yj):<x>|' <Y >} +

Yo Yl F(A) j21

; $ .
+ inf v <X® XC¢| <Y®l= vV X +
Yo yf,.... y§iT F(A){Iil (vf) } ( pa )

V(X[ pa— X" I pp), hence v/ (X / pa — X’ [ ppa) = V(X" pa) - V'( X pp), that is,
v’ isa pseudo-valuationon H,. |

For an V- closed system S of A we have defined Hilbert algebra of
fractions of A relativeto S, A[S] = A / 05 (see Definition 5.6.5). We recall that by
ps : A — A[S] we have denoted the canonical morphism of Hilbert algebras

defined by ps(@) =a/ 6, for every ae A.

Theorem 5.7.16. For a ¥ - closed system S < A and a pseudo-
valuation v:A — R, thefollowing are equivalent:
() Thereis avaluation v’ : A[S] — R such that the diagram
Ps INES

iscommutative (i.e, v’ o ps=V);
(i) v(s*) =0 for every s€ S.
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Proof. (i)=(ii). Let v’ : A[S] — R beavauation suchthat v’ o ps=v and
se S Sincess —» s =1=¢g — 1 we deduce that (s*, 1) € 65 hence

Ps(S*) = ps(1); then v(s*) = (V' o ps)(s*) = V'(ps(s*)) = V'(ps(1)) = (V' © pg)(D) =
v(1) =0.

(ii) = (i). For x € A we definev’(x / 6s) = v(X).

Ifx,y e Aandx/0s=y/bs thenthereiss € Ssuchthat x v s=y v s
hences* —» x= s —y.

Sinces* > (X—>y)=(F >X) > (F >y)=(" >Xx) > (5 —>Xx) =1,
weobtain that s* < x — y and andogously s* <y — X. Thenv(x — y) < v(s*) =
0 andv(y — X) < v(s*) =0, hence v(x — y) =v(y — x) =0.

Sincev isavaluation we deducethat x -y =y — x =1, hence x =y and
V(X) = v(y), soV’ iscorrectly defined; clearly v’ o ps =v.

Wehave v/(1/0s)=v(1) =0 and v/(X/ 05—y /0s) =V (x—Yy)/0s) =
V(X = y) = v(y) —v(X) =V'(y/0s) - v'(x/ 0s), that is, V" is a pseudo-valuation on
A. To prove v’ is avauation, let x € A such that v/(x / 6s) = 0. Then v(x) =0
hence x =1, thatis, x/0s=1.m

c. Residuated lattices
5. 8. Definitions. Examples. Rules of calculus

Definition 5.8.1. An algebra (A, Vv, A, ©, —, 0, 1) of type (2, 2, 2, 2, 0,
0) will be called residuated lattice if :

Lri: (A, V, A,0,1) isabounded lattice;
Lr,: (A, ©, 1) isacommutative monoid;
Lry Foreveryx,yeL, X< y—>z<X0y< Z

The axiom Lrs is called axiom of residuation (or Galois correspondence)
andforevery x,y e A, X >y=sup{z€ A:x 0 z<y}.

Remark 5.8.2. The axiom of residuation is a particular case of loin of
residuation ([8]). More precisdly, let (P, <) and (Q, <) two posatsandf : P— Qa
function. We say that f is residuated if there is a function g : Q — P such that for
every p € Pand q € Q, f(p) < q < p < 9(q). We say that (f, g) is a pair of
residuation.
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If we consider A aresiduated lattice, P = Q = A, and for every a€A, f,

0. A - A fa(X) =x 6 aand g, (X) =a— x, XEA, then (f, g,) form a pair of
residuation.

Examples

1. Let p be afixed natura number and A = [0, 1] the real unit interval. If
for x, y € A, we define x © y = 1 — min{1, {’/(1— X)P+@- y)P} and

X—>y=sup{ze€]01:x o z<y}, then (A, max, min, ®, —, 0, 1) isa
residuated lattice.

2. If we preserve the notation from Example 1, and we definefor X,y € A,
X Oy= {’/max{o,xp +yP-1} and x — y = min {1, Y1- x? +y® }, then
(A, max, min, ®, —, 0, 1) becomes a residuated lattice called generalized
Lukasiewicz structure (for p = 1 we obtain the notion of Zukasiewicz structure).

3. IfonA=[0 1 for x,y € A, we definex ®© y = min {x, y} and

X —y=1if x<yandy otherwise, then (A, max, min, ®, —, 0, 1) is aresiduated
lattice (called Godel structure).

4. If consider on A = [0, 1], ® to be the usua multiplication of real

11, if x£y,
numbersand for x,y € A, X® y= .l y . , then (A, max, min, ©, —, 0, 1)

I;! if X>y

|

is another example of residuated lattice (called Gaines structure).

5 1f (A, V, A,—, Q) is aHeyting algebra, then (A, v, A, ©, —, 0, 1)
becomes aresiduated lattice, where ® coincides with A .

6. If (A, v, A, —,0, 1) isaBoolean agebra, then if we define for x,y €

A xoy=xAyadx—-y=x"Vy (A V, A, O, —,0,1) becomes aresiduated
lattice.
Examples 2 and 3 have some connections with the notion of t — norm.

We cal continuoust — norm a continuous function © : [0, 1] < [0, 1] —

[0, 1] such that ([0, 1], ®, 1) isan ordered commutative monoid.
So, there are three fundamental t-norms:

fukasiewicz t-norm: x Oy =max {x +y—1, 0};
Gdéde t-norm: X ©gy = min{X, y};
Product (or Gaines) t-norm: X ©py =X - V.
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Since relative to natural ordering [0,1] becomes a complete lattice, every
continuous t-norm induce a natura residuum (or implication) by

x—y=max{ze[0,1]:x0z<y}.
So, the implications generated by the three norms mentioned before are
X—py=mn({y-x+11);
X—gy=1if x<y and y otherwise;
Xx—py=1if x<y and y/x otherwise.

The origin of residuated lattices is in Mathematical Logic without
contraction .They have been investigated by Krull ([56]), Dilworth ([38]), Ward
and Dilworth ([83]), Ward ([82]), Balbes and Dwinger ([2]) and Pavelka ([68]).

These lattices have been known under many names : BCK-lattices in
[50], full BCK-algebras in [56],FLq-algebras in [67] and integral, residuated,
commutative I-monoidsin [6].

In [53] it is proved that the class of residuated lattices is equational .

Definition 5.8.3. A residuated lattice (A, V, A, ©, —, 0, 1) is called
BL-algebraif the following two identitieshold in A :

(BL1) XO(x—y) =XAY;

(BL2) (x—=y)V(y—x)=1.

Remark 5.8.4. 1tukasiewicz structure, Godel structure and Product
structure are BL-algebras. Not every residuated lattice, however, is a BL-algebra
(see [81,p.16]).

Consider for example aresiduated | attice defined on the unit interval 1=[0,1],

for al x,y, z € 1, such that xoy = 0 if x+y < % and XAy elsewhere, x —» y = 1if
1 1 1
xfyandmax{E-x,y} esawhere. Let O<y <x,Xx+y< E.Theny< > -x and

0#Yy=XAY, butxo(x —vy)= x@(%—x) =0. Therefore (BL 1) does not hold.

2. ([52]).We give an example of a (finite) residuated lattice which is not a
BL-algebra, too.

Lee A={0 a4 b c 1} withO<ab<c<1 but aand b are
incomparable. A becomes aresiduated | attice relative to the following operations :

—|0 a b ¢ 1
0|1 1 1 1 1
alb 1 b 1 1
bla a 1 1 1
c |0 a b 1 1
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1]/0 a b ¢ 1
®0abc1
0|0 O O O O
al0 a 0 a a
b |0 0O b b b
c |0 a b ¢ ¢
1]/0 a b ¢ 1

The condition xVvy = [(x— y) — Y]A[(y— X) — X], for all x, yEA is not

verified, sincec=avb # [(a— b) — bJA[(b —» & — a = (b— b)A(a— @) =1,
hence A isnot a BL-algebra.

3. ([55]). We consider the residuated lattice A with the universe {0, f, €, d,

¢, b, a, 1}. Lattice ordering is such that 0<d<c<b<a<l, O<d<e<f<a<l and
dements{b, c} and {e, f} are pairwise incomparable.

Multiplication is given in the table below, and lattice ordering is shown
besideiit.

O+ D0 a0 TD R|E
OO0 oTL R P
o000 0 9| ®
occoocoooooT|o
coo0oco0o0o0o0|o0
ocoocoocoococooa|la
caoocococoam| ®
ocacaococoaa— —
O0O0OO0O0O0OO0OO0O| O

Clearly, A contains{f, e, d, c, b, & as sublattice, which showsthat A is not
distributive, and not even modular (see Theorems 2.3.4 and 2.3.8).

Itiseasytoseethata - 0=d,b >0=¢ec—>0=f,d—>0=a
e—0=bandf—>0=c.

In what follows by A we denote aresiduated lattice .

Theorem 5.8.5. Let X, X1, X2, Y, Y1, Y2, Z €EA.
Then

r-ci: x=1-x;

r-c; 1=x—x;

r-Cs: XOy<XY,;

r-Css XOQY<XAY,
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I-Cs. ySX—>y,

r-Ce: XQYs<Xx—-y;

r-c;; X<y x—-y=1,

r-Cg: X—>y=y—->X=1& XYy,
r-cg; x—1=1;

r-Cio. 0 > x=1;

-Cqp: X @(X —’Y)Sy@XS(Xﬁy)—N,
r-Cpi X—>ys<(X0 2 —(yo 2z,

r-ciz: If X<y, thenx © z<y 0 z
r-Cu: X—>y<(z—-x)—(z—vy),;
r-Cis: X >y <y —2) — (X — 2);

-Cig: XSY>Z—>XSZ->Y,
r-Ci7: XSyﬁy—>ZSX—>Z;

rCg X—>yY—>2=XxX0y)— z
rCio: X— (Y —>2)=y—(X—2);
r-Coo: X1 = Y1 < (Y2 — X2) =[(Yi = Y2) = (X1 — X2)].

Proof.r-c;. Sncex ® 1=x<x=>x<1-—Xx.
If we have z € A such thaa 1 © z < x, then z < x and s0
x=sup{zeA:10z<x}=1-x.

r-c, Fromlox=x<x=> 1<x—x;sncex —-x<l=x—ox=1
r-cs. Follows fromr-c, and L.
r-c,. Follows from r-cg and Lr.
r-cs. Follows fromr-c, and L.
r-cs. Follows from r-c, and r-cs.

r-c, Wehavex<y ©xo0l<y < l<x—-ysx—-y=1L
r-cg, (r-Co), (r-C1o). It follows fromr-c;.
r-cy. It followsimmediately from Lra.

r-Cp. By Lr; we have x - y < X © 2 - (y © 2 <
X—>y)ox0z<yo0oze (X—Y) 0x<z—(yo© 2).Butbyr-cywe have
X—>y)ox<yandy<z—(yo®2z),hence(x —>y)®ox<z— (y © 2).

r-ci3. It follows from r-cy,.

r-ciu. By (Lr3) we have x - y < (z - X) » (z -y ) &
X—>y)o@z—-X)<zoye X—oYy)0(z—oXxX)02zZ Y.

Indeed, by r-Ciy and r-Ciz we have that
X—>yY)0(z—>Xx)0z<(X—>Yy)OXIYy.

r-cis. Asin the case of r-Cy,.

r-cis. It follows from r-cy,.
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r-Cy7. It follows from r-cys.
r-cis. Wehave x - (y > 2) © (x©y)<(y » 2 ©y<z hence
X—(y—2)<(X©Oy)— z On theother hand, from((x ©y) > 2) @ (X O y) <

z, wededucethat (X ©y) - 2) © x<z— Yy, thaefore(x Oy) > z<X— (z—
y), so we obtain the requested equality.
I-Cio. It follows from r-cys.

r-co. We have to prove that (X;—Y1)O(Y2—X2)O(Y1—Y2) OX1<Xy; this
inequality is a consequence by applying several timesr-c1;. B

In a residuated lattice A, for x € A and a natural number n we define
x*=x—0,(x*)* =x**x’=1andforn>1,x"=x 0 ... ® x (nterms).
Theorem 5.8.6. If x,y € A, then :

r-Coi. X ® xX* =0;

-Cool X < X**;

r-C: 1* =0,0* =1,
r-Cos: X =y <y* — Xx*,
I-Cos. X*¥** = x*,

Proof. r-c,;. Wehave, x* <x —-0< x © x* <0, hencex © x* = 0.

r-Co. Wehavex — x** =x —» (x* > 0)=x* > (X > 0)=x* - x* = 1.
r-cys. Clearly.

r-Cys. It follows fromr-c,5 for z=0.

r-Cys. From r-c,, we deduce that x* < x*** and from x < x** we deduce

that x** - 0< X — 0 © x*** <x*, therefore x*** = x*. m

By bi-residuum on a residuated lattice A we understand the derived
operation < definedfor x,y e Abyx oy=X—-oYy) A (y — X).

Theorem 5.8.7. If X,V, X1, Y1, X2, Y2 € A, then
M-Cos. X > 1=X;

r-Cor: X y=1sx=y;
-Cog: X2 Y =Y X

r-Cog: (X y) @ (Y 2)<X—Z

r-Cao: (X1 > Y1) A (X2 > Y2) < (X2 A X2) <> (Y1 A Y2);
r-Cail (Xo > Y1) A (X2 © ¥2) < (X1 V X2) & (Y1 V Y2);
r-Ca (X1 > Y1) © (X2 > Y2) < (X1 © X2) <> (Y1 O Y2);
r-Cgsl (X1 > Y1) © (X2 © ¥2) < (X1 > %) > (Y1 > Y2).
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Proof .r-cy - r-co9, are immediate consequences of Theorem 5.8.5 .
r-cso.If we denote a = x; «> y; and b = x, < y,, using the above rules of

calculuswe deducethat (a A b) © (X1 A X2) <[(X1 — Y1) A (X2 = ¥Y2)] © (X1 A X2)
<[(X1— Y1) © X1 ]A [(X2 = Y2) © X2 <Y1AY,, hencean b < (X1 A X2) — (Y1 A Y2).
Anaogously we deduce arb < (y1AY2) — (X1AX2), hence anb < (X1 AXy)

< (Y1AY2);

r-cs. With the notations from r-cs, we have

@Arb o vXx)=[(@arb)oxi] V[@Ab) ox)]<
S[a—y) O X1 ]V [(X2 = Y2) © X2 ]S Y1 V Yy,

hencea A b< (X1 V X2) — (Y1 V Vo).

From here the proof is similar with the proof of r-cz.
r-cp.We havethat (a © b) © (X100 X) < [(X1—Y1)OX1]© [(Xa—Y2)© Xo<

Y10 Y, hence (a © b) < (X1 © X5) — (Y1 © Ya).

From here the proof is similar with the proof of r-cx.
r-Cs3. Wehave (20 b) © (X1 = X2) < (Y1 — X1) © (X2 = Y2) © (X1 — Xp) <
(Y1 — X2) © (X2 — V¥2) <Y1 — Y, and from here the proof is similar with the proof

of r-cz. |

Theorem 5.8.8. If A isa complete residuated lattice, x € A and (yi)ie

afamily of elementsof A, then :

r-Cas
I-Cas:
r-Cs:
I -Car:
I-Cag:
I -Cao:
r-Cao:

I-Ca1:

xo (Uy)= Ukxoy),
xo (Uy)< Uxoy)
x—(Uy)= Uy,
(Uy)—x= Ulyi—x);
Uy, ® x) <(Uy) —>x
:;Ul(x@ y)) <x— (Uy);
(Uy)*= H yi*;

(ﬁUI yi)* > H yi*.

Proof. r-cs,. Clearly H (XOYy)<XO (H Yi)-
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Conversely, since for every i € I, x © vy < IUI x o vy =

yi s x = [U(x o y)], then Uy, < x — [U(x o y)], therefore

X0 (Uy,)< IUI (x ®@ ), so we obtain the requested equality.
il |

r-css. Clearly.

-Cgg.

Lety = .H y.. Since for every i € I, y <y;, we deduce that

X—>Yy<X—YVy,hencex -y< .H (x— yi).

On the other hand, the inequality IUI (X = i) <x — y isequivalent with

xo[UKx—y)]sy.

Thisistrue because by r-css we have

xo[Ux—-y)ls Uxox—y)]s Uy=y.

r-Cs7. Lety = iTL'Jlyi;sincefore'veryi eELY<y=>y—-Xx<y—-x= y

—xs U(yi—X).

Conversely, H Yi—oX)<y—>xeyo [H i — x)] =x.

By rcs we have y © [U(yi —» X] < Uly © (v —» ¥] <

SH [yi © (yi = X)] < H X = X, SO we obtain the requested equality.

The others subpoints of the theorem are immediate. |

Proposition 5.8.9. If x, X", y,y",z€ A, then:

-Cso .

-Cy3:
I-Caa.

-Cys.
I-Cyg6-
[-Cy7:

X0 (y—2) £ y—(X02) < (XOy) — (XO2);

XVy =1limplies X0 y = XAy,
x—= (y=2) 2 (x=y) = (x=32);

XV (yoz)=(xVy)o(xVz), hencex™vy"> (xvy)™, for any m, n>1;
(x=y) 0 (X' = y) < (xV X) = (yVY),
(x=y) © (X' = y) < (XA X) = (YA Y).

Proof. r-c4. The first inequality follows from xoye(y—z) < xoz and the
second from r-cy;.

r-Cs3. Suppose x vy = 1.Clearly xoy<x and xQy<y.

Let now teA such that t<x and t<y. By r-c;, we deduce that
t—>(Xoy)=xo(t—y) = x0l=x and t—->Xoy)=yo(t—x) = yol = vy, S0
t—(XOy)=xVy=1, hencet—(Xoy) = 1<t< X0y, that is, XOy= XAY.
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r-Cay. BY r-cig we have Xx— (y— 2) = (XOy) —z and (X—Yy) — (X—2) =
=[x® (x—Yy)]—z. But XOy<x0(x—y), SO we obtain (XOy)—z=[X0 (X—Y)]—z
< X—= (Yy—2)2(x—y) — (x—2).

r-Css. By r-cy we deduce (xVy)@(xVz) = XV (XQy)V(X02)V(y0z) <
< XV (XOY)V(X02Z)V(YyOz) =XV (yO2z).

r-Css. From the inequalities xo(x— y)o(x' - y’) <
<XO X—>y) < XAY < yVYy and Xo(X— y)oX— Yy) < X0 X—-y)<
< X'AY'< yvy  we deduce tha (x— y)o( X’'— y) < x— (yvy) and
(x— Y)o(X'—>y) = X'— (yVy), 0 (x—= Y)o( X' = y) = (x> (YVY)A
AX' = (YVY)) =(xXV X) = (YVY).

r-c47. Asinthecase of r-Cs. B

If B={ay, &, ..., &} isafinite subset of A we denote
[IB=a0&0...04a,

Proposition 5.8.10. ([5],[7]). Let A1, A,, ..., A, finite subsets of A .
r-ceg : If auv av ...va, =1 for all acA;,ie{l2,...,n}, then
(JJAD V ...V (JJAn) =1.
Proof. For n=2 it is proved in [5] and for n=2, A; asingleton and A, a
doubleton in [7]. The proof for an arbitrary n is a ssimple mathematical induction
argument.

Corollary 5.8.11. Let aj, @, ...,a, € A .

r-Cao : If @V aV ...vVa,=1thena®VvaVv ..va, =1 for every
natural number k .

Proposition 5.8.12. Let X, Y1, Y2, Z1, 2 € A.
If Xx<y; > ysand X< z; <> 25, then X% < (Y1— z1) < (Y2— 2o).

Proof. Fromx <y; &y, =2 X<y, —> y; = X O Y, < y; and anaogously
we deduce that x © z; < z,.

ThenXx © X< (y1—2) = (2= 2) © XOXO (Y1—>2) = (Y2— 2p) &
XOXO (Y1 7) OYr<72.
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Indeed, X © X O (Y1 > 2) OV, <X 0O (y1—>2) 0y, <Xx0 2z < zad
analogously X © X < (y2 — z) — (Y1 — z1), therefore we obtain the requested
inequality. m

Proposition 5.8.13. Supposethat A iscompleteand x, X, yi € A (i € I).
If for everyi € I, X< x <V, thenx < (H Xi) <> (H yi).

Proof. Since x < x; — y; for every i € |, we deduce that x © x; <y; and
thenx © (|U| Xi) < |U| xox) < (|U| yi), hence x < (|U| Xi) — (|U| Yi)-
Analogoudly, x < (H yi) — (H xi), therefore we obtain the requested

inequality. m

Taking as a guide line the case of BL-algebras ([81]) , aresiduated lattice
A will be called G-algebra if x*= x for every x€ A.

Remark 5.8.14. InaG-algebraA , X0y = XAy for any x,y€A.

Proposition 5.8.15. In a residuated lattice A the following assertions
areequivalent :
(i) Aisa G-algebra

(i) X© (x—Yy) = xQy =xAYy for any x,y € A.

Proof. (i)=(ii). Let x, yeA. By r-c;; we have XO(X—Y)
< (XOX) —(X0Oy)e XO(X—Y) < X—(XOY) & X—Yy < X—(X—(X0y)) =
= x> (X0Y) = X—(X0Y) = XO(X—Y) < XOy.

IA

Since y<x—y, then XOy<xo(Xx—Y), SO XO(X—Y) = XOy.

Clearly xoy < X, y. To prove XOy=xAY, let teA such that t<x and t<y.
Thent® < x@y, that is, XOy=xAYy.

(i)=(i).In particular for x=y we obtain XOx = XAX =X < x’=Xx. ®

Proposition 5.8.16.For a residuated lattice (A, Vv, A, ©, —, 0, 1) the
following assertions are equivalent :

(i) (A, —,1)isaHilbert algebra;

(if) A isa G-algebra.
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Proof. (i)=(ii). Supposethat (A, 1) isaHilbert algebra, then for every X, y,
ze Awehave x— (y—2) = (x—y) — (x—2).

But by r-Cis, X— (y—2) = (xOy) —z and (x—-y) — (x—2) = (XO(x—Y))
—Z , hence XOy = XO(X—Y), SO we obtain (xOy) —z = (XO(X—Y)) — 2, SO XOY
= (x@(x—Y)); for x =y we obtain x* = x , that is, A isa G-algebra

(it)=(i).Follows from Proposition 5.8.13. ®

5. 9. Boolean center of aresiduated lattice

If (L,A,Vv,0,1), is a bounded lattice, we recall (see Chapter 2) that an
dement a € L is caled complemented if there is an element b € L such that
anb=0and avb=1; if such element existsit is called a complement of a. We

will denote b = & and the sat of all complemented elements in A by
B(A).Complements are, generally, not unique, unless the lattice is distributive (see
Lemma2.6.2).

In residuated lattices, altough the underlying lattices need not be
distributive (see Remark 5.7.4.(3)), the complements are unique.

Lemma 5.9.1.([55]) Suppose that a € A hasa complement b&e A.Then
thefollowing hold :

(i) If cisanother complement of ain A ,thenc=b;

(ii) @ =bandb” =a;

(iii) a® = a.

Lemma5.9.2. If e B(A) ,then€ =e* and e** =e.

Proof. If eeB(A), and wedenotea= €', thenev a=1and eA a=0. Since
eca< e a=0,thenec®a=0, hencea<e—0=¢*.

On the other hand, = 1 = 10 e*= (eva)oe* = (e® € )V(ao €) =
=0V (a® €*) = a® €*, hence ¢ <a, that is, e*=a.

The equality e** = efollowsfrom Lemma5.9.1,(ii). m

Remark 5.9.3.([59)). If e, f € B(A), then enf, evf € B(A).
Morover, (evf) " =e' Af" and (enf) " =€ VI,
So,e—f=€Vvf € B(A) and

r-csp : €OX = eAx, for every xe A.
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Corollary 5.9.4. ([55]).The set B(A) is the universe of a Boolean
subalgebra of A.

Proposition 5.9.5. For ecA thefollowing are equivalent :
(i) e=B(A);
(i) ever =1.

Proof. (i)=(ii). If eeB(A), by Lemmab5.9.2, eve =eve* = L.
(if)=(i). Suppose that eve*=1. We have 0 = 1* = (eve*)* = e* ne** >
>eA €, henceeA =0, thatisecB(A) m

Proposition 5.9.6. For e A we consider thefollowing assertions:

(1) esB(A);
(2) €=eande=¢**;
(3) €=eande* »e=g

(4) (e—>x)—e=efor every x € A;

(5) ene* =0.
Then :

(i) (D=(2), (3), (4) and (5);
(i) (# D), Q) # (1), (4 » (1), () » (2).

Proof. (i). (1)=(2).Follows from Lemma 5.9.1,(iii) and Lemma 5.9.2.
(1)=(3). If eeB(A), theneve*=1. Since 1=eve* <[(e—€*) »e*|A[(e*—
€) —€] we deduce that (e— €*) —e*=(e*—e)—e=1, hence e~ €< ¢ and
ef—>e<ethaise-ef=¢e andes—»e==e
(D=>(4). If xeA, then from 0<x we deduce e* <e— X hence (e— X) —
e< & — e=¢, by (1)=(3). Sincee<(e— x) — x weobtain (e—>x)—e=e.

(D=(5). Follows from Lemma5.9.2.
(ii). Consider the residuated lattice A = {0, a, b, ¢, 1} from Remark 5.7.4
(2).; itiseasy to verify that B(A) ={0,1}.

(2)# (1). We have a’=a,a*=b, b*=ahence a**=b*=a, but a¢B(A).

(3)#(1). We have a?=a and a* —a = b—a=a, but agB(A).

@D#(1). It is easy to verify that (a—x) —a = a for every x€A, but
ag¢B(A).
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(5)#(1).We have an a = anb = 0, but ava* = avb = c+#1, hence
aZB(A). m

Remark 5.9.7. ([81]). If A is a BL-algebra, then all assertions (1)-(5)
from the above proposition are equivalent.

Proposition 5.9.8. If ¢, f € B(A) and X,y €A, then :
r-Cs; . XO (X—€) = eA X ,e0 (e—X) =eA X;

r-c; . ev (xoy) =(evx) o (evy);

r-css . en (Xoy) =(eA x) © (eny);

r-Cs;, . €0 (X—y) =eo [(eox) — (edy)];

r-css . X0 (e—f) = x0 [(x0e) — (xof)]
r-Css : € (X—Y) = (e—X) — (e—y).

Proof. r-cs;. Since e<x—e, then xoe< xO( x—€), hence xAe<
X®(x—e€). From xo(x—€)<x, e we deduce the other inequality x®(x—€) <xAe€,
s0 XO( x—€) = xAe. Analogously for the second equality.

r-cc,,. We have (evx)o(evy) = [(evx)ogV[(evx)oy] =
[(evx)oe] v[(eoy)V(xay)] = [(evX) A€l V[(edy)V (xOY)] =

=eVv(eoy)V (Xoy) = eV (Xoy).

r-cs3s. As above, (eAX)O(eAy) = (eox)o(ecy) = (e0e)O(XQy) =
=e®(XOY) = eA(XOY).

Therest of rulesr-cs,.55 are left for the reader.m

5.10. Deductive systemsof aresiduated lattice

In this section we put in evidence the congruences of a residuated lattice
and characterize the subdirectly irreducible residuated lattices.

Definition 5.10.1. Let A be a residuated lattice. A non-empty subset
F< A will be called implicative filter if

Lry: For every x,y € Awithx<y,xeF=>yeF,;

Lrs:Ifx,yeF=>x0yekF.

We remark that an implicative filter of A is a filter for the underlying
lattice L(A) = (A, Vv, A), but the converseis not true (see [81]).
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Remark 5.10.2. ([81]). If A is a residuated lattice, then a non-empty
subset F < A isan implicativefilter iff

Lre: 1€ F;

Lrzx,x—>yeF=>yeF.

Following Remark 5.10.2 an implicative filter will be called deductive
system (ds on short ). So ,to avoid confusion we reserve, howewer,the name filter to
lattice filtersin this book.

For a residuated lattice A we denote by Ds(A) the set of all deductive

systems (implicative filters) of A.

Clearly, {1}, A € Ds(A) and any intersection of deductive systemsis also
adeductive system.

In what follows we will take into consideration the connections between
the congruence of aresiduated lattice A and the deductive systems of A.

For De Ds(A) we denote by 6p the binary relation on A:
X,y) € bp = x—Yy,y—xeD.
For acongruence p on A (that is, p € Con(A) - see Chapter 3) we denote

D, ={x € A:(x,1) € p}.
Asinthecase of latticeswe have the following result:

Theorem 5.103Let A be a residuated latticeDeDsA) and
peCon (A). Then:
(i) 8p € Con (A) and D, €Ds(A);

(il) Theassgnments D ~ 0p and p ~ D, give a latticeal isomor phism
between Ds(A) and Con(A).

For D& Ds(A) and acA let a/D the equivalence class of a modulo 0p.If
we denote by A/D the quotient set A/ 0p , then A/D becomes a residuated lattice
with the natural operations induced from those of A (see Chapter 3).Clearly, in
A/D,0=0/Dand1=1/D.

The following result isimmediate:

Proposition 5.10.4. Let D€ Ds(A),and a,b€A then :
() aD=1DiffaeD,hencea/D # 1iff a¢ D;
(i) a/D=0/D iff a* €D;

(iii) If Disproper and &/D =0, then a¢ D;

(iv) a/D< b/D iff a—beD.
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It follows immediately from the above , that a residuated lattice A (see and
Chapter 3) is subdirectly irreducible iff it has the second smallest ds,i.e the smallest
ds among all ds except {1}.The next theorem characterises internally subdirectly
irreducible and simple residuated lattices.

Theorem 5.10.5. ([55]) A residuated lattice A is
(i) subdirectly irreducible (si on short) iff there existsan elementa< 1

such that for any x<1 there existsa natural number n > 1suchthat x"< a;
(if) simpleiff a can betaken tobeO.

Proposition 5.10.6. ([55]) In any s residuated lattice, if xvy = 1, then
x=1or y=1holds.

Therefore, every s residuated lattice has at most one co-atom (see Chapter 2).
The next result characterises these si residuated | attices which have co-atoms.

Theorem 5.10.7.([55]) A residuated lattice A has the unique co-atom iff

there exists an element a<1 and a natural number n such that x" <a holds for
any x<1.

Directly indecomposable residuated lattices also have quite a handly
description.It was obtained for a subvariety of residuated lattices, called product
algebras.

For arbitrary residuated | attices we have :

Theorem 5.10.8. ([55]) A nontrivial residuated lattice A is directly
indecomposableiff B(A) = {0, 1}.

5.11. Thelattice of deductive systems of aresiduated lattice

In this section we present new results relative to lattice of deductive
systems of a residuated lattice We aso characterize the residuated lattices for
which the lattice of deductive systems is a Boolean algebra.

For a non-empty subset X of aresiduated lattice A we denote by <X> the

deductive system of A generated by X (that is, < X >=N {De& Ds(A) : X < D}).
For D€ Ds(A) andac€ A wedenoteby D(@ =<D U {a>.
Proposition 5.11.1. If X < A isa non-empty subset,then <X>={x €

AIX=X O ...0 Xp, With Xy, ..., X, € X}

Proof. If we denote by X the set from the right part of the equality from
the enounce, it is immediate that this is an implicative filter which contains the set
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X, hence<X> < X .Now let DEDS(A) such that X = D and x € X . Then there

are X, ..

L Xp € Xsuchthat X>X; © ...0 X,. SinceXy, ..., Xn ED = X, © ...0 Xu

€ D= xeD,hence X < D; wededucethat X < N D= <X>, thatis, <X>=X.

Corollary 5.11.2. Let acA,D,D;,D,€ DS(A).
Then:

(i) <a>=<{a}>={x€ L :a“<x,for every natural number k};

(i) D@ = {x € A : x = dod", with deD and n > 1}=
{xeA :a"—xeD, for some n>1};

(iii) <DyU D> ={xeA : x>d;0d, for somed; €D; and d,eD,};

(iv) (Ds(A),©) is a complete lattice, where, for a family (D)), of
deductive systems, H D, = 1D; and H D, =<UD; >.

Proposition 5.11.3. If a, b€A, then

(i) <a>=[a) iff a®=a;

(i) a<b implies<a> < <b>;

(iii) <a> N <b> =<avb>;

(iv) <a>Vv<b>=<aAb> = <acb>;

(V)<a>={1}iffa=1.

Proof. (i), (ii). Straightforward.

(iii). Sinceavb < a, b, by (ii) <avb>< <a>, <b>, hence <avb>c <a>N

<b>. Let now x € <a> N <b>; then x > d", x > b" for some natural numbersm, n
> 1, hencex > d" v b" > (aVv b)™, by r-c S0 X € <avb>. Hence <avb> =
=<a> N <b>.

(iv). Since a®b< aAb < a, b, by (ii), we deduce that <a>, <b> < <aAb>

C <a®b>, hence<a> Vv <b> < <aAb> € <a®©b>.

For the converse inclusions, let x € <a®b>. Then for some natural number

n>1 x> (aob)"=a ob" € <a> v <b> (since d' € <a>and b" € <b>), (by
Proposition 5.11.1), hencex € <a> Vv <b>, that is<a®b> c <a> Vv <b>, so <a> Vv
<b>=<anb>=<acb>.

(v). Obvioudy. m
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Corollary 5.11.4. If we denote by Ds,(A) the family of all principal ds
of A, then Ds,(A) isabounded sublattice of Ds(A).

Proof. Apply Proposition 5.11.3, (iii), (iv) and the fact that {1} = <1> &
Ds,(A) and A =<0> € Ds,(A) . =

Propostion 5.11.5. The lattice (Ds(A), <€) is a complete Brouwerian
lattice (hence distributive), the compact elements being exactly the principal
dsof A.

Proof. Clearly, if (Dj)ie; isafamily of dsfrom A, then the infimum of this

family is IUI D, = 1 D, and the supremum is IUI D, =<UD, >={x€A:x= % 0
i i . i

.0 X ,whereiy, ...,im € 1, xijT D, , 1 <] < m}, that is DS(A) is complete.

We will prove that the compacts elements of Ds(A) are exactly the
principal filters of A. Let D be a compact element of Ds(A). Since D =aIL'JD <a>,

theeeaem = 1, and &, ..., a, € A,suchthaa D= <> V ...V <a,>=<a O
...© an>, by Proposition 5.11.3, (iv). Hence D isaprincipal dsof A.

Conversely, let a € A and (D;)ie; be afamily of ds of A such that <a> <

_HDi.ThenaE -HDi =< UD, >, so we deduce that are m > 1, iy, ..., im € |,
i [ il

x 1D (I<sjs=msuchthaaz x ©..0 X .
It follows that a € <D, U ..U D; > so<a> € <D, U ..U D; > =

D.

V..V D, .
For any ds D we have D =aTUD <a>, sothelattice Ds(A) isdgebraic.

In order to prove that Ds(A) is Brouwerian we must show that for every ds

D and every family (DYial of ds,
DU(UD)=U(DUD,)0 DC(UD)=<E(DCD,)>.

Clearly, Dg(nq Di)E<i|T‘E|(DC; D,)>.

Let now x € DQ(iH D;). Then x € D and there exist iy, ..., im € |,
x 1D (I<j=msuchthatx > x © ...0 X .Thenx=xV (%, © ...0 X )
> (XV % )O ...0 (X VX _), by Ir-Cg. Since x Vv xijT DC Dij forevery 1 <j <
m, we deduce that x € E(DC D,), hence DQ(ﬁL’{ D) <iIT;|(DC D,) >, that is
DQ(iHDi)=<iITE|(DQ D)>. m
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For D4, D, € DS(A) wedefine D; — D, = {x € A:[X) N Dy € Dy}.

Lemmab.11.6. If A isa Hilbert algebraand D, D, D, € Ds(A), then
(i) D;—»D,eDs(A);
(i) DyND <D, iff D< D;— D..

Proof. (i).Since <1> = {1} and <1> N D; < D,, we deducethat 1 € D; —
D..

Letx,y € Asuchthatx <yandx € D; — D,, that is<x> N D; € D..
Then <y> < <x>,s0 <y> N D; € <x> N D; € D,, hence<y> N D; € D,, thatisy
€ D; — D..

To provethat Lrsisverified, let X, y € A such that X,y € D; — D, hence
<x>N D; € Dyand<y>nN D; € D,. Wededuce (<x> N Dy ) V (<y> N D)< Dy,
hence by Proposition 5.11.5, (<x> Vv <y>) N D; € D,.

By Proposition 5.11.3 we deduce that <x ® y> N D; € D,, hencex 0 y €
D; — Dy, thatisD; — D, € Ds(A).

(it). Suppose D N D; < Dy and let x € D. Then <x> < D, hence <x> N D,
cDbnNnD;ED,s0x €D;— Dy thatisD € D; — D..

Suppose DED; — D, and let xeDND,. Thenx € D, hencex € D; — D,
that is<x> N D; € D,. Sincex € <x> N D; € D, we obtain x € Dy, that isD N
D;cD, m

For Dy, D, € DS(A) wedenote D; % D, = {x € A: xVvy € D, for dl
y € D:}.

Proposition 5.11.7. For all D,, D, € Ds(A), D; * D, =D; — D..

Proof. Letx € D; %D, andz € <x> N Dy, that is,z € D; and z > X"
for somenatural n > 1. Thenx vV z € D,. Sincez=x"V z > (x V 2)", by r-cs, we
deducethat z € D,, hencex € D; — D,, s0 D % D, € D; — Do.

For converseinclusion, let x € D; — D,. Thus<x> N D; € D,,s0if y €
D;, thenx Vy € <x>nN Dy, hencex Vy € D..

We deduce that x € D; *D,, so D; — D, € D; kD, we deduce that
D;*Dy,=D;—D,. ®
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Remark 5.11.8. From Lemma 5.10.6 we deduce that (Ds(A),V, A, {1},
A) isaHeyting algebra, wherefor D € DS(A), D* =D - 0=D - {1} = {x €A
:xvy=1forevery y € D}, so,forac A, <a>* ={x € A:x v a=1}.

Proposition 5.11.9. If X,y € A , then <x>* N<y>* = <XOY>*,

Proof. If a € <x@y>*, then a v ( xOy) = 1. Since XOy < X, Yy then
av x=landaV y=1, henceac <x>*N<y>*, that is<xQy>* S <x>*N<y>*,
Let now a € <x>*N<y>* thatisav x=1andavVv y=1
By r-cy we deducethat av (x ©y) = (aVv x) © (aVv y) =1, hence
aVv (xoy) =1 that isa € <xoy>*. It follows that <x>* N<y>* < <XOYy>*,
hence <x>* N<y>* = <xQy>*. [ |

Theorem 5.11.10. Thefollowing assertions ar e equivalent:

(i) (Ds(A),v, A,*, {1}, A) isaBoolean algebra ;

(ii) Every dsof A isprincipal and for every acA there exists n>1
suchthat av(@’) *=1.

Proof. (i) =(ii). Let D € Ds(A); since Ds(A) is a Boolean algebra, then
DV D*=A.S0,for0 € A, thereexistae Dand b € D* suchthata® b=0.

Sinceb € D*, by Remark 5.11.8, it follows that avb = 1.

By r-c,s we deducethat a A b=a® b =0, that isb is the complement of a
inL(A). Hencea, b € B(A) = B(L(A)).

If x € D,sinceb € D*, wehavebvx =1 Snhcea=a A (bvx)=(aA b)
V (anx) = anx we deduce that a < x, that is, D = <a>. Hence every ds of A is
principal.

Let now x € A; since DS(A) is a Boolean agebra, then <x> v <x>* = A
e <x>* (X)=A e {acA:a>cox,withce<x>*andn> 1} =A.

So, since 0 € A, thereexist c € <x>* and n > 1 such that ¢ ® x" = 0.
Sincec € <x>*, thenxVvc=1. By r-¢;s, fromc ® x" = 0wededucec < (x")*. So
1=xvc=<xV (X")* hencex v (x")* =1.
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(i) =(i). By Remark 5.11.8, Ds(A) is a Heyting algebra. To prove that
Ds(A) is a Boolean algebra, we must show that for D € Ds(A), D* ={1} only for
D=A.By hypothesis, every ds of A isprincipal, so we have acA such that D = <a>.

Also, by hypothesis, for a€ A, thereisn > 1suchthata v (@')* = 1.

By Remark 5.11.8, (" )* € <a>* ={1}, hence (@' )* = 1, that isa" = 0. We
deducethat 0 € D, henceD =A. =

5.12. The Spectrum of aresiduated lattice

This section contains new characterization for meet-irreducible and
completely meet-irreducible ds of aresiduated lattice A (see Definition 2.3.12).

Lemma5.12.1. Let D € Ds(A) and a, b€ A such that avbe A.
Then D(a)nD(b) = D.

Proof. Clearly, DcD(@NnD(b). To prove converse inclusion, let
x€ D(@)ND(b). Then thereare dy, d,€D and m, n > 1 such that x > d;®a" and x
> d,0b". Thenx > (d;0d") v ( d,0b") >(d; v d;) © (dy VE") © (d; va") ©
(av b)™, hencex € D, that is, D(@Q)ND(b) < D, so we obtain the desired equality.
[ |

Corollary 5.12.2. For D€ Ds(A) thefollowing are equivalent :
(i) If D =Dyn Dy, with Dy, D, € Ds(A),thenD=D; or D=D,;
(ii) For a, beA, if avbe D, then acD or beD.

Proof. (i) =(ii). If a, b € A such that a v b € D, then by Proposition
5.12.1, D(a)nD(b) = D, hence D = D(a) or D = D(b), henceac D or b € D.

(i) =(i). Let Dy, D, € Ds(A) suchthat D =D, N D.,. If by contrary, D #
D;and D # D, thenthereareac D\D;andb € D\ D.. If denotec=a Vv b, then
ceD;NnD,=D,henceae Dorb & D, acontradiction. =

Definition 5.12.3. We say that P€ Ds(A) is prime if P+A and P verifies
one of the equivalent assertionsfrom Corollary 5.12.2.
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Remark 5.12.4. Following Corollary 5.12.2, P€ Ds(A), P+A, is prime iff
Pisaproper meet-irreducible element in the lattice (DS(A), <).

We denote by Spec(A) the set of al prime ds of A.Spec(A) will be caled
the spectrumof A .

Theorem 5.12.5. (Prime ds theorem). If D€Ds(A) and | isan ideal of the
lattice L (A) such that DNl = @ , then there existsa prime ds P of A such DSP
and PNl =@.

Proof. Let Fp = {D" € Ds(A) : D D™ and D'N | = @}. A routine
application of Zorn's lemma shows that Fp has a maximal element P. Suppose by

contrary that P is not a prime ds, that is, there are a, b€A such that avbeP but
a¢ P and b&P. By the maximality of P we deduce that P(a), P(b)¢ Fp, hence
P(@nNI=@ and P(b)Nl+J .

Then there are p1€ P(@Nl and p.€ P(b)Nl.

By Corollary 5.11.2, p;>fea™ and p,>gob", with f, geP and m, n natural
numbers.Then pvp, > (fed")v(geb')>(fvg)e(gvaloe(fvbHe('vah) >
(fvg)eo(gvadHoe(fvb)oe(avb)™.

Sincefvg, gva", fvb", avbeP we deduce that p,Vp, €P; but p;vp, €1,
hence PNl # @, acontradiction. Hence Pisaprimeds. m

Corollary 5.12.6. (i) If A isa non-trivial, then every proper ds of A
can beextended toa primeds,

(ii) If DeDs(A) isproper and acA\D then there exists Pe€Spec(A) such
that DSP and a¢P;

(iii) If acA ,a#0,then thereexists Pe Spec(A) such that acP;
(iv) Every proper ds D of A isthe intersection of all prime ds which
contain D;

(v) NSpec(A) ={1}.

Proof. (i).It is an immediate consequence of Theorem 5.12.5.

(if).Consider | = (a] .The condition acA\D is equivalent with DNl =@,
so we can apply Theorem 5.12.5.
(iii).Consider D =<a>, |1 ={0} and apply Theorem 5.12.5.

(iv). Let D’ = {P € Spec(A): D < P}; clearly D < D",
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To prove another inclusion we shall prove the incluson of the
complementaries.If a ¢ D, then by (iii) thereis P& Spec(A) suchthat DcPand a
¢ P. There results that a¢{P € Spec(A): D < P} =D’,soa ¢ D’, hence D'<c D,
thatis,D =D’.

(v). Straightforward. m

Examples

1. Consider the example from Remark 5.8.4 (1) of residuated lattice A =

[0, 1] whichisnot aBL-algebra. If x € [0, 1] , x > % thenx + x > % hence x ©

X=XAX=X,0<x>=[x)=[x,1].Ifabe A=[0,1] andaV b e<x>=][x, 1],
thenaVv b=max{a b} > x, hencea>= xorb = x. So, a € <x>or b € <x>, that

IS, <x> € Spec(A).
2. Consider the residuated lattice A = {0, a, b, ¢, 1} from Remark 5.8.4
(2. Itisimmediate that DS(A) ={{1}, {1, c}, {1, a c}, {1, b, c}, A} and Spec(A)

={{1} {1, a ¢} {1, b, c}}, since {1,c}={1, a ¢} N {1, b, c}, then {1, ¢} &

Spec(A). Since ® = A, theds of A coincide with the filters of the associated lattice
L(A).

Proposition 5.12.7. For a proper dsP of A we consider the following
assertions:

(1) PeSpec(A);
(2) If a,beA, and avb =1, then acP or beP;

(3) For all a,beA, a— bePor b— acP;
(4) A/Pisachain;

Then :
) @O =>@but(2 » (1),
@i (3) = (1) but (1) » (3);
@ii) (4) = () but (1) » (4).

Proof . (i). (1) =(2) isclear by Corollary 5.12.2 (since 1€D).

(2) # (1).Consider the residuated lattice A = {0, a, b, ¢, 1} from Remark
5.8.4 (example 2).Then D = {1, ¢} ¢ Spec(A).Clearly , if X, yeA and xvy =1,
thenx=1ory=1, hencexeD oryeD, but D & Spec(A).

(ii).Toprove (3) = (1) let a,b €A suchthat avbeP.



302 Dumitru Busneag

From r-cy; we deduce that avb < [(a — b) — b]A[(b— @) — 4], hence
(a—b) —» b, (b— a — acP.If a— beP, then beP; if b— acP, then acP, that
is, PESpec(A).

(1) # (3). Consider aso the residuated lattice A = {0, a b, ¢, 1} from
Remark 5.8.4 (Example 2). Then P={1} € Spec(A) .We have a—b = b+1 and b—a
= a#1, hence a—b and b—agP.

(iii).To prove (4) = (1), let a, beA. Since A/P is supposed chain,a/P<b/P
or b/P<alP < (by Proposition 5.10.4.) a—b&P or b—a &P and we apply (ii).

(1) # (4).Consider A as above ; then P={1} € Spec(A) and A/P = A is
not chain. |

Remark 5.12.8. If A is a BL-agebra, then all assertions (1)-(4) from
Proposition 5.12.7 are equivalent (see [81]).

Asin the case of Hilbert algebra (see Theorem 5.3.11) we have :

Theorem 5.12.9. For P Ds(A), P+A, the following assertions are
equivalent :

(i) P& Spec(A)
(ii) For any x,y & P thereis z¢ P suchthat x <z and y<z

Theorem 5.12.10. For P € Ds(A), P=A, thefollowing are equivalent :

(i) P&Spec(A);

(ii) Foreveey He Ds(A),H —->P=PorH cP;

(i) If x,y€ A and <x>N<y>< P,then xecP oryeP;

(iv) Fora,pc A/P,a#l, p#1 thereis y &€ A/ P suchthat y#1
and a,p<y.

Proof. (i)=(ii). Suppose that Pisaprimeand let H € Ds(A); since DSA)
isaHeyting algebra, by Theorem 5.1.9. we deducethat P=(H — P) n ((H — P)
— P).Since Pis meet-irreducible, then by Corollary 5.12.2 ,P=P —-HorP=(H
— P) — P; in the second case, since HES(H — P) — P wededucethat H < P.

(ii)=(i). Let D;, D, € DY(A) such that P=D; N Dy; then D; < D, — P,
so, if D, € P, then D, =Pandif D, — P =P, then D; = P.Hence (i) < (ii).



Categories of Algebraic Logic 303

()=(iii). Let x,y € A suchthat <x> N <y> < P and suppose that x &
P, y & P, by Theorem 5.12.9 thereisz ¢ Psuchthat x <z and y < z Then
Z € <x>N<y>c D, hence z<€ D, acontradiction !

(ii)=(ii). Let H € Ds(A) such that H ¢ D and we shall provethat H — P
=P.Let x€H— P;then <x>NHcPandif y € H\P, then <y> < H, hence
<x> N <y> < <x> N H < D. Since y&P, we deduce that x € P, henceH — P =
P.

()=>(v).Leta, B €A/P,a#1,B#1thena=x/P, =y /P with x,y
¢ P. By Theorem 5.12.9 there is z¢P such that x <z and y < z. If we take
y=z/PeA/P,y#1land o,f<y,Snce x -z=y—z=1€P.

(iv) = (i). Letx,y € P, if wetake a=x/P,B=y /P, a, B €A/P,
0#£l, p#1, hencethereisy=z/P,y#1, (hence z& P) suchthat o, <y.

Thus x — z, y — z € PIf consider t = (y—2) — ((x—2) —2), then by
r-cy,we deduce that x,y <t. Since z ¢ P, then t ¢ P,hence P€Spec(A) (by
Theorem 5.12.9). m

Corollary 5.12.11. If D € Spec(A), then in Heyting algebra Ds(A), D is
dense or regular element.

Proof. If H=D* & Ds(A), by Theorem 5.12.10, (ii) we have D* < D or
D* — D = D; in the first case we obtain that D*— D =1 or D** =1, hence
D* = 0, so D is a dense element in DS(A); in the second case we deduce that
D* - D=D<« D** =D, henceD isaregular element in DS(A).

Theorem 5.12.12. If every D € Ds(A) has a unique representation as
an intersection of elementsfrom Spec(A), then Ds(A) isa Boolean algebra.

Proof. To prove Ds(A) is a Boolean algebra, let D € Ds(A) and consider
D’ ={M € Spec(A): D £ M} € Ds(A).

We have to prove that D’ is the complement of D in Heyting algebra
Ds(A).

Clearly DND’={1}; if DvD’# A, then by Corollary 5.12.6 there is

D’'€ Spec(A) such that DvVD’ < D’ , hence D has two distinct representation as
intersection of elements from Spec(A):
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D'=N{M € Spec(A): D £ M} and
D’ = D” n (N {M € Spec(A): D ¢ M}), a contradiction, hence
DvD’ = A, thatis, D(A) isaBoolean algebra. m

Remark 5.12.13. For the case of lattices with 0 and 1 we have an
analogous result of Hashimoto (see [47]).

As an immediate consequence of Zorn’s lemmawe obtain :

Proposition 5.12.14. If DeDs(A) and a¢ D, there is a deductive system
M, maximal with the property that D € M, and a ¢ My(we say that M, is
maximal relativeto a ).

Theorem 5.12.15. Let D € DS(A),D # A and acA\D. Then thefollowing
areequivalent :
(i) D ismaximal relativeto a;

(i) a¢ D and (x ¢ D implies x" — a € D for some n>1).

Proof. (i)=(ii). Clearly a¢D. Let x€A\D. If a¢D(x), since DCD(x) then
by the maximality of D we deduce that D(x)= A, hence ac D(x), a contradiction !.
We deduce that acD(x), hence a>dox", with deD and n>1.

Thend < x"— a, hencex" — a€ D.

(ii)=(i). Suppose by contrary that there is D™ € Ds(A), D'# A such that
a¢ D™ and DC D" . Then thereis Xo& D~ such that xo¢D, hence by hypothesis
thereisn>1suchthat x,"—>a€ DC D".

Thus from X' — a € D" and X" € D” we deduce that ac D', a
contradiction! =

Theorem 5.12.16. For D € Ds(A), D#A the following assertions are
equivalent :

(i) Discompletely meet-irreducibile;

(i) Thereisa¢ D suchthat D ismaximal relativetoa .

Proof. (i)=(ii). See [43, p.248] (since by Proposition 5.11.6, DS(A) is an
algebraic lattice).
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(il)=(i). Let DEDs(A) maximal relative to aand suppose D = 1 D; with

i |
D; € Ds(A) for every i€l. Since a¢D thereisj€l such that a¢D;. So, a¢D; and

Dc Dj.
By the maximality of D we deduce that D = D, that is, D is completely

meet-irreducible m

Theorem 5.12.17. For D € Ds(A) thefollowing are equivalent :
(i) D ismeet-completely irreducible;
(i) If 1[x)[ D,thenlND# @ ;

XA
(iif) In theset A/D \{1} thereexists an element p with the property that
for every o € A/D\{1} thereisn>1suchthat a"<p.

Proof. (i)=(ii). Straightforward.
(ii)=(i). Let D= 1D, withD; € Ds(A) for every i€l, and suppose that
il

forevery i €1 thereexist x; € D;\ D. Since <x;> < D, for every i € |, we deduce
that 1(<x > < 1D, =D, so, by hypothesis there is i€l such that x,€D,

il il
acontradiction ! .

(i) = (iii). By Theorem 5.12.16, D is maximal relative to an element a &
D; henceif denote p=a/D € A/D, p£l (since a¢D) and for every a=b/D €
A / D with a # 1 (hence b ¢ D) by Theorem 5.12.15 there is n > 1 such that
b" —aeD, thatis, a"<p.

(iii) = (). Lt p=a/D € A/D \{1} (that is,a¢ D) anda = b/De A/D \{1}
(thatis, b & D).

By hypothesisthereisn> 1 suchthat a" < p < b"—aeD.

Then by Theorems 5.12.15 and 5.12.16 we deduce that D is completely
meet-irreducible.m

d. Wajsbherg algebras

5.13. Definition. Examples. Properties.Rules of calculus
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Definition 5.13.1.([81]). An algebra (L, —, * ,1) of type (2, 1, 0) will be

called Wajsberg algebra if for every x, y, z € L the following axioms are
verified:

Wi l—ox=X;

Wai (X—>Y) = [(y—>2) > X—2z)] =1

W3l (X—Y) 2 y=(y—X) —X;

Wa (X = y*) > (y—x) =1

A first example of Wajsherg algebra is offered by a Boolean algebra

(L, v, A, 01),wherefor x,yelL,x—>y=x"Vy.
For more information about Wajsberg algebras,| recommend to the reader
the paper [39].

If L isaWajsberg algebra, on L we definetherelation x <yex —»y=1,
it isimmediate that we obtain an order on L (caled natural ordering). Relative to
natural ordering,1 isthe greatest element of L.

Theorem 5.13.2. Let L beaWajshergalgebraand x,y,z €L. Then
w-ci: If x <y, theny »z<x—z

W-Coi X <Y — X;

w-Cs: If X<y —2ztheny <x— z

W-Cii X > Y < (Z—>X) > (z—Y);

W-Cs: X = (Y > 2) =y — (X — 2);

w-Cg: If X<y, then z—>x<z—-Yy;

W-C7. 1* < X;
W-Cg. X* =X — 1*.

Proof. w-c;. From w, we deducethat X — y < (y — z) — (X — 2); since X
—y=1then(y >2 > (X—2) =1 hencey »z<x—z

W-C,. From y < 1 and w-c; we deduce that 1 — x <y — X, hence
XSy — X

w-Cs. If X<y — 2z then (y — 2) -z <x — z By ws; we deduce that

(zoy)>y<x—zSney <(z—-oy)oy=>ys<x—z

w-C4. By w, we havethat z - x < (X —» y) — (z — ), S0 by w-c; we
deducethat X >y <(z—Xx) = (z—Y).

w-Cs. Wehavey<(z—y)»y=(y—2 —z

By w-c, we deduce that (y —» z) - z< (X — (y — 2)) — (X — 2), hence
y<(X—(y—2)— (Xx— 2),therefore x > (y > 2) <y — (X — 2).

Anaogously another inequaity, from where it follows the required
equality.

w-Cs. It follows immediately from w-c,.
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w-C;. Wehavex* - 1* <1 —-x =x=> 1* <Xx.
w-Cg. We have x* < (1*)* — x* <x — 1* (by w-4).

Ontheother hand, x** > 1* <1 —->X=Xx => X — 1* <(X* —» 1*) - 1* =
=(I* > x*) > x* =21* 5> x* <(X— 1*) - x* (by w-Cy).

Since 1* <x* (by w-cg) = 1=(X — 1*) —» x*, hencex — 1* <x* , s0
X—1*=x*. 1

We deduce that 1* is the lowest element of Wajsherg algebra L relative to
natural ordering, that is, 1* = 0.

Asinthe case of residuated lattices, for x € L we denote x** = (x*)*.

Thefollowing result is straightforward:

Proposition 5.13.3. If L isaWajsbergalgebraand x,y € L, then
W-Cq. X** = X;

W-Cig: X*¥ = Y* =y - X, X¥ > y=y* > X;

W-Cpp: XSy & y* <x*.

Proposition 5.13.4. Let L be a Wajsherg algebra. Relative to the
natural ordering, L become lattice, wherefor X,y e L, x Vy=X—-oYy) - Yy
and X AYy=(X*Vy*)*.

Proof. From w-c, we deduce that X,y < (X — y) — y. If z € L issuch that
X,y <zthen x — z =1 and by w; we deduce that (x — z) —» z = z. Also,
Z—>X<y—>X hence(y > x) > x <(z—>x)>x= X—>2 —>z=2zo0r

(X —>y) > y<z theeforex Vy=(x —>y) - V.
To prove that x A y = (X* Vv y*)*, we observe that from x*, y* <
XEVYE S (VYR SXE = Xy Sy,
Now let z€ L suchthat z<Xx,y. Then x*,y* <z* = x* vV y* <z* =
Z=7* <(X* V y*)*, hencex Ay =(X* V y*)*. m

Corollary 5.135. If L isaWajspbergalgebraand x,y € L, then
W-Cioi (X A Y)* =X* V y*
W-Ci3: (X V y) * =x* A y*.
In what follows we want to mark some connections between Wajsberg
algebrasand residuated lattices.
If L isa Wajsherg agebra, for X,y € L wedefinex © y = (X — y*)*.
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Theorem 5.13.6. If (L, —, *, 1) is a Wajsherg algebra, then
(L,Vv,A,0,—,0,1) isaresiduated lattice.

Proof. To prove that the triple (L, ®, 1) is a commutative monoid, let
X,Y,Z€ L. Wehave x © y = (X = y*)* = (X** — y*)* = (y —» x***)* =
(y — x*)* =y © X, hence the operation ® is commutative.

For the associativity of ® we have: X © (y ® 2) = X © (z O V)
XO@Z-y ) =Xx—>@Z->y)*"= X>Z-y)" = [z—> X—->y)*
[ZoXoYy)**=zOoX—>Y*)*=z0XOYy)=(X0Yy) O Z

Also,Xx @ 1= (X — 1*)* = (X —» 0)* =x** =X.

Wehavetoprovex 0 y<z < X<y — z

Indeed, X O y<zeo X >y ) <z ZF <Xy & X<ZF 5> y* =

y—>zoxXx<y—zn

Corollary 5.13.7. If L isaWajsberg algebraand x,y, z € L, then
W-Cii (X VY) = Z=(X—>2) A (y—2);

W-Cis5: X— (YAZ=X—>Y)A(X—>2);

W-Cie: (X = Y) V (y = X)=1;

W-Ci7: XA Y)—>Z2=X—>Yy) > (X—2).

Proof. w-cy4, W-C15. Follows from Theorem 2.13.6.

W-Cie. Wehave (y = x) = (X = y)=[X VYy)=>Xx] = [XVYy) —Y]=
[X* = (X Vy)] = [y = X Vy)] =y ={x—>XVy]-XVyrl=
y* = [XFVEVY)TEXEVEVY)TToy= [XAYVX]oYy=X—oy,
hence X - yY) VvV - X)[XxX—->oYy) - —X] - — X
y—-x)— —-x=1

w-Ci7. Wehave (X A y) = 2= (X* V y*)* — (Z*)* =2 —>(X* V y*)
=z 5[y > x) > x]=z2* > [Xoy) > X ][=X—>y) - (ZF - x¥)

=X—>y)>X—2.1
Theorem 5.138.Let (L, V, A, ®,—, 0, 1) bearesiduated lattice. Then
(L, —, *, 1) isaWajsberg algebra iff (x - y) -y =(y —» X) — X, for every

X,¥ € L,where x* =x— 0.

Proof. “=". Straightforward.
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“<”, From (X — 0) - 0= (0 — x) —» x we deduce that x** =1 — X =X,

hence x** = x, for x € L. So, if we take into consideration the calculus rules r-c; —
r-c, from Theorem 5.8.5, we deduce that w, is true.
Forw-cs:x* > y*=x—>0 >(y—-0=y—->[Xx—>0 —0 =

y — x** =y — x and the proof is complete. m

Remark 13.9. For an example of residuated lattice which is not an
Wagjsherg algebra see [81, p.39].

%k k
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