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Introduction

Residuation is a fundamental concept of ordered structures .In this survey we
consider the consequences of adding a residuated monoid operation to lattice. The
residuated lattices have been studied in several brances of mathematics, including
the areas of lattice -ordered groups, ideal lattices of rings, linear logic and multi-
valued logic.

The origin of residuated lattices is in Mathematical Logic without contraction.
They have been investigated by Krull ([93]), Dilworth ([52]), Ward and Dilworth
([136]), Ward ([135]), Balbes and Dwinger ([2]) and Pavelka ([111]).

In [80], Idziak prove that the class of residuated lattices is equational. These lat-
tices have been known under many names: BCK- latices in [79], full BCK- algebras
in [93], FLey- algebras in [107], and integral, residuated, commutative l-monoids in
[13].

Apart from their logical interest, residuated lattices have interesting algebraic
properties (see [12], [52], [92], [108], [135], [136]).

A residuated lattice is an algebra (A, A\, V,®, —, 0, 1)of type (2,2,2,2,0,0) equipped
with an order < satisfying the following;:

(A,A,V,0,1) is a bounded lattice;

(A,®,1) is a commutative ordered monoid;

® and — form an adjoint pair, i.e. c<a — biff a® ¢ < b for all a,b,c € A.

Importante examples of residuated lattices structures are BL-algebras (corre-
sponding to Hajek’s basic fuzzy logics, see [75]) and M V-algebras (corresponding to
Lukasiewicz many-valued logic, see [45]). All these examples (with the exception of
residuated lattices are hoops, i.e. they satisfy the equation a® (a — b) = b® (b — a).

BL—algebras are exactly the residuated lattices satisfying aAb = a®(a — b) and
(a = b))V (b — a) =1, for all a,b € A and MV — algebras, are exactly those
residuated lattices where a V b and (a — b) — b coincide (which is a relativized
version of the law of double negation ™ = a). Also, if in a BL— algebra, a** = a
for all @ € A, and for a,b € A we denote a &b = (a* © b*)*, (where a* = a — 0), we
obtain an MV — algebra (A, ®,*,0). So, MV — algebras will turn to be particular
case of BL— algebras.

In this book we begin a sistematic algebraic investigation of some algebras
of fuzyy logics (residuated lattices and particulares cases: MV and BL-algebras,
pseudo MV and BL-algebras).

MYV —algebras were originally introduced by Chang in [42] in order to give an
algebraic proof of the completeness theorem for the infinite - valued Lukasiewicz
calculus [127], but their theory was also developed from an algebraic point of view.
Just take a quick view over this domain.

The most popular example of MV-algebra is the interval [0, 1] of the abelian
l-group (R, max, min,+, —,0) equiped with the continuous t-conorm @ defined by
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iv INTRODUCTION

@y = min(l,z + y) (as a model of disjunction), with the continuous t-norm ®
defined by x ® y = max(0,z +y — 1) (as a model of conjunction), with the negation
~ defined by 7 = 1 — z and with the real numbers 0 and 1 as first and last element
of the lattice ([0, 1], max, min). The connection with fuzzy was made and today we
use to speak about the algebra of fuzzy logic.

In 1958, Chang defined the MV-algebras and in 1959 he proved the completeness
theorem which stated the real unit interval [0, 1] as a standard model of this logic.
The structures directly obtained from Lukasiewicz logic, in the sense that the basic
operations coincide with the basic logical connectives (implication and negation),
were defined by Font, Rodriguez and Torrens in [62] under the name of Wajsberg
algebras. One great event in the theory of MV-algebras was Mundici’s theorem from
1986: the category of MV -algebras is equivalent to the category of abelian lattice-
ordered groups with strong unit [105]. Through its consequences, this theorem can
be identified at the origins of a considerable number of results on M V-algebras.

In the last 15 years the number of papers devoted to Chang’s MV -algebras has
been increasing so rapidly that, since the year 2000 the AMS Classification Index
contains the special item 06D35 for MV -algebras. To quote just a handful of books,
the monograph [44] is entierly devoted to MV -algebras, Hajek’s monograph [75]
and Gottwald’s book [72] devote ample space to these algebras.

As shown in the book [59] and in the pioneering textbook [119], MV — algebras
also provide an important specimen of ,,quantum structures”. The second volume of
the Handbook of Measure Theory [110] includes several chapters on MV — algebraic
measure theory. As the algebras of Lukasiewicz infinite - valued logic, MV — algebras
are also considered in various surveys, e.g. [109] and [102].

Equivalents of MV -algebras are found in the literature under various names,
including bounded commutative BCK-algebras, [134], [88], [128], Bosbach’s bricks
[16], Buff’s s-algebras [17], Komori’s CN-algebras [90], Wajsberg algebras [62].

Also, in the last years, one can distinguish fruitful research directions, coexisting
and communicating with deeper and deeper researches on MV -algebras.

One direction is concerned with structures obtained by adding operations to
the MV -algebra structure, or even combining M V'-algebras with other structures in
order to obtain more expressive models and powerful logical systems.

Another direction is centered on the non-commutative extensions of MV — al-
gebras,starting from arbitrary I-groups instead of abelian I-groups. In 1999, pseudo
MYV —algebras (psMV -algebras, shortly) where introduced to extend the concept
of MV - algebra to the non-commutative case, see [66], [68]; they can be taken
as algebraic semantics for a non-commutative generalization of a multiple valued
reasoning.

Immediately, A. Dvurecenskij proved that the category of pseudo M V-algebras
is equivalent to the category of [-groups with strong unit, this result extending the
fundamental theorem of Mundici.

The third direction we want to emphasize began with Hajek’s book, where BL-
logic and BL-algebras were defined [74], [75].

A natural question was then to obtain a general fuzzy logical system arising from
the structure of [0, 1] introduced by a continuous t-norm and its associated residum.
In 1998, Hajek [75] introduced a very general many-valued logic, called Basic Logic
(or BL), with the idea to formalize the many-valued semantics introduced by a
continuous t-norm on the real unit interval [0,1]. This Basic Logic turns to be a
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fragment common to three important many-valued logics: Ng— valued Lukasiewicz
logic, Godel logic and Product logic.

The Lindenbaum-Tarski algebras for Basic Logic are called BL—algebras. Apart
from their logical interest, BL— algebras have important algebraic properties and
they have been intensively studied from an algebraic point of view. BL— algebras
form an equational class of residuated lattices.

Juste notice that Lukasiewicz logics is an axiomatic extension of BL-logic and,
consequently, MV-algebras are a particular class of BL-algebras; MV -algebras are
categorically equivalent to BL-algebras with the property «** = .

The next step in the research was then immediately made by establishing the
connection between BL— algebras and pseudo MV - algebras. In 2000, G. Georgescu
and A. lorgulescu defined the non-commutative extension of BL- algebras, called
pseudo BL-algebras (introduced in [53], [54]); the class of pseudo BL- algebras
contains the pseudo M V- algebras.

A remarkable construction in ring theory is the localization ring Ar associated
with a Gabriel topology F on a ring A; for certain issues connected to the therm
localization we have in view Chapter IV : Localization in N. Popescu’ s book [112].

For some informal explanations of the notion of localization see [106], [113],
[114].

In Lambek’ s book [96] it is introduced the notion of complete ring of quotients
of a commutative ring, as a particular case of localization ring (relative to the dense
ideals).

Starting from the example of the ring, J. Schmid introduces in [121], [122] the
notion of maximal lattice of quotients for a distributive lattice. The central role in
this construction is played by the concept of multipliers, defined by W. H. Cornish
in [47].

Using the model of localization ring, in [64] is defined for a bounded distributive
lattice L the localization lattice Ly of L with respect to a topology F on L and is
proved that the maximal lattice of quotients for a distributive lattice is a lattice of
localization (relative to the topology of regular ideals).

The same theory is also valid for the lattice of fractions of a distributive lattice
with 0 and 1 relative to an A-closed system.

The book is organized in two parts.

In the first part we review the basic definitions and results of this algebras with
more details and examples; we make connections between theses algebras; we study
the homomorphisms, the filters (ideals, prime and maximal).

The main aim of the last part is to develop a theory of localization for BL-
algebras and M V-algebras, to extend this theory to the non-commutative case
(pseudo MV-algebras) and to translate the theory of localization in categories of
abelian and nonabelian I-groups with strong unit (a subject which has never been
approached in the mathematical literature).

For the basic notions relative to these categories of algebras we followed the
monographies: [45], [75], [129] as well as the paper : [68].

I shall now give a chronological survey of this book.

Chapter 1 is dedicated to basic notions of residuated lattices, which turn out
to be fundamental in manny applications.

We recall the basic definition of residuated lattices with more details and ex-
amples and we put in evidence many rules of calculus. For a residuated lattice A
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we denote by Ds(A) the lattice of all deductive systems (implicative filters) of A;
we put in evidence characterisations for the maximal and prime elements on Ds(A)
and some properties of the lattice (Ds(A), C). Also, we characterize the residuated
lattices for which the lattice of deductive systems is a Boolean lattice.

Archimedean and hyperarchimedean residuated lattices are introduced and car-
acterized; we prove some theorems of Nachbin type for residuated lattices.

For more details we recommemd [113] and [129].

Chapter 2 contains all the necessary algebraic results we need to be able to
prove in details a the category of MV — algebras; also we study Wajsberg algebas
and show their mutual equivalence. MV — algebras are particular residuated lattices,
however, from application point of view they posses the best properties as we will see.
The result we study are due to J.M.Font, A.J. Rodriguez, A. Torrens, R. Cignolli, D.
Mundici, I.M.L. D’Ottaviano For further reading on MV — algebras we recommend
[45].

We recall some basic definitions and results.

For an MV-algebra, we denote by Id(A) the set of ideals of A and we present
some known basic definitions and results relative to the lattice of ideals of A. For
I, Iy € Id(A) we define Iy A Is = Iy NIy, I V Is= the ideal generated by I; U Iy and
for I € Id(A), I* ={a € A:aNz =0, for every x € I}. Theorem 2.17 characterizes
the MV-algebras for which the lattice of ideals (Id(A), A, V,*,{0}, A) is a Boolean
algebra.

We study the prime spectrum Spec(A) and the maximal spectrum Max(A) of
an MV-algebra.

For any class of structures, the representation theorems have a special significace.

The Chang’s Subdirect Representation Theorem is a fundamental result.

The idea of associating a totally ordered abelian group to any MV- algebra
A is due to Chang, who in [42] and [43] gave first purely algebraic proof of the
completeness of the Lukasiewicz axioms for the infinite-valued calculus. In [45] is
proved the Chang completeness theorem starting that if an equation holds in the
unit real interval [0, 1], then the the equation holds in every MV- algebra. This proof
is elementary, and use the good sequences; good sequences and I' functor were first
introduced in [105].

An applications is the equivalence between MV- algebras and lattice ordered
abelian groups with strong unit.

We also prove that there is one-to-one correspondence between MV- algebras
and Wajsberg algebras; each MV- algebra can be seen as Wajsberg algebra and
conversely. MV- algebras will turn out to be particular residuated lattices.

Chapter 3 contains results on BL— algebras.

For more details we recommemd [113] and [129].

We recall the basic definitions, examples and rules of calculus in BL— algebras;
we also prove some results about injective objects in the category BL of BL— al-
gebras; the principal role is played by the MV -center of a BL-algebra, defined by
Turunen and Sessa in [132]; this is a very useful construction, which associates an
MV-algebra with every BL-algebra. In this way, many properties can be transferred
from M V-algebras to BL-algebras and backwards.

So, we prove that :
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The category MYV of MV-algebras is a reflective subcategory of the category BL of
BL-algebras and the reflector R : BL — MV preserves monomorphisms (Theorem
3.12).

As consequence, we obtain that if A is a complete and divisible MV-algebra,
then A is an injective object in the category BL (Theorem 3.14).

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems
of A. We put in evidence characterizations for the meet-irreducible elements of
Ds(A). For the lattice Ds(A) (which is distributive) we denote by Spec(A) the set
of all (finitely) meet-irreducible (hence meet-prime) elements (Spec(A) is called the
spectrum of A) and by Irc(A) the set of all (completely) meet-irreducible elements of
the lattice Ds(A) and we put in evidence characterizations for elements of Spec(A)
and Irc(A).

Relative to the uniqueness of deductive systems as intersection of primes we
prove that this is possible only in the case of Boolean algebras.

The notions of archimedean and hyperarchimedean BL— algebras are introduced
and characterized. A Nachbin type theorem is obtained: for a BL-algebra A, A is
hyperarchimedean iff any prime deductive system is minimal prime (Theorem 3.56).

Chapters 4 and 5 (Pseudo MV - algebras, respectively, Pseudo BL - algebras)
presents the general theory of Pseudo MV - algebras and Pseudo BL - algebras,
algebras which are generalization of MV (BL) -algebras.

In 1999, Georgescu and lorgulescu (see [66], [68]) defined pseudo MV — alge-
bras as a non-commutative extensions of MV — algebras. Dvurecenskij extended
Mundici’s equivalence results. In [58], he proved that every pseudo MV — alge-
bra is isomorphic with an interval in an l-group and he established the categorical
equivalence between pseudo MV — algebras and l-groups with strong unit.

For a detailed study of pseudo MV — algebras one can see [68], [58].

For an exhaustive theory of l-groups we refer to [10].

In [67], [53], [54], A. Di Nola, G. Georgescu and A. Iorgulescu defined the pseudo
BL-algebras as a non-commutative extension of BL algebras (the class of pseudo
BL - algebras contains the pseudo MV-algebras, see [66], [68]).

We begin the investigation of filters and congruences. We define the filters
(ideals) of a pseudo BL(MV )-algebra; for a pseudo BL-algebra A we denote by
F(A)(Fn(A)) the lattice of all filters (normal filters) of A and we put in evidence
some results about the lattice F/(A)(Fn(A)). By using the two distance functions
we define two binary relations on , =p,py and =g(p), related to a filter F' of A; these
two relations are equivalence relations, but they are not congruences. The quo-
tient set A/L(F) and A/R(F') are bounded distributive lattices. We characterize
the prime and maximal filters of A, we prove the prime filter theorem and we give
characterizations for the maximal and prime elements on F(A)(Fn(A)). We char-
acterize the pseudo BL-algebras for which the lattice of filters (normal filters) is a
Boolean lattice. Archimedean and hyperarchimedean pseudo BL(MV')-algebras are
characterized. In end we prove a theorem of Nachbin type for pseudo BL-algebras.

In Chapter 6 we develop the theory of localization for BL(MV') -algebras. We
denote by A a BL -algebra and by B(A) the set of all boolean elements of L(A).

In Section 1, for an A—closed system S C A (1 € S and z,y € S implies zA
y € S) we consider the congruence g on A defined by:

(x,y) € Og iff there exists e € SN B(A) such that z Ae =y Ae.
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Then A[S] = A/0g verifies the following property of universality: If A’ is a BL-
algebra and f: A — A" is a morphism of BL-algebras such that f(SNB(A)) = {1},
then there exists an unique morphism of BL-algebras f': A[S] — A’ such that the
diagram

A P Al

N /

f I
A/

is commutative (i.e. f'opg = f), where ps : A — A[S] is the canonical onto
morphism of BL— algebras.

This result suggests us to call A[S] the BL-algebra of fractions relative to the
N—closed system S. If BL— algebra A is in particular an MV -algebra, then A[S]
is an MV — algebra.

In Section 2 we define the notion of strong multiplier on a BL— algebra A. We
denote by Z(A) the set of all order ideals of A:

Z(A)={ICA:ifz,yc A;jx <yandye€ I,then z € I'}.

By a partial strong multiplier on A we mean a map f: I — A, where I € Z(A),
which verifies the following conditions:

BLy) f(e®x)=e® f(x), for every e € B(A) and x € I,
BLjy) f(z) <z, for every x € I,
BL3) If e € IN B(A), then f(e) € B(A),
) x A f(e) =eA f(x), for every e € IN B(A) and x € I (note that e © x € I
sincee @z <eAz<x).

For I € Z(A), we denote M (I,A) ={f:1 — A| f is a strong multiplier on A}

and M(A)= U M(I,A).
I€T(A)

If 1,1 € Z(A) and f; € M(1;,A),i = 1,2, we define f1 A fa, f1 V f2, f1 (] fo,
fi—= fo:hinly — Aby (fi A f2)(@) = fi(@) A fa(2), (f1V f2)(z) = fi(z) V fa(z),
(1Ef2)(z) = filz)O[r — fa(x)] = fa(2)Ole — fi(2)], (/L = fo)(z) = 2O[fi(z) —
fa(z)], for every x € I N Iy and we obtain a BL-algebra (M(A),A,V,[,—,0,1).

If BL— algebra (A,A,V,®,—,0,1) is an MV — algebra (4,®,*,0) (i.e. z** =
x, for all x € A), then BL— algebra (M(A),A,V,[,—,0,1) is an MV — algebra
(M(A),EH,*,O) If 1,1, € I(A) and f; € M(II,A),Z = 1,2, we have f; H fo :
LNl — A (1B f)(z) = (fi(x)® fa(x)) Az, for every x € 1N Iy and for I € Z(A)
and f € M(I,A) we have f*: I — A, f*(z) = (f = 0)(z) =z & (f(z) — 0(x)) =
O (f(x) = 0) =2 (f(x))*, for every x € I.

We prove that the algebra of multipliers Mp,(A) for BL— algebras (defined
n [33]) is in fact a generalization of the algebra of multipliers Maq(A) for MV —
algebras (defined in [26]) (although they are defined different because of the different
choice of the term language).

So, if BL— algebra A is an MV — algebra, then Mprs(A) = May(A).

If we denote by R(A) = {I C A : I is aregular subset of A}, then M, (A) ={f €
M(A) : dom(f) € I(A) N R(A)} is a BL-subalgebra of M (A). Moreover, M,(A) is
a Boolean subalgebra of M(A).

On the Boolean algebra M,.(A) we consider the congruence p 4 defined by (f1, f2) €
p4 iff f1 and f3 coincide on the intersection of their domains.
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For f € M,(A) with I = dom(f) € Z(A) N R(A), we denote by [f,I] the
congruence class of f modulo p4 and by Q(A) the BL-algebra M,(A)/p4 which is
a Boolean algebra.

Let A be a BL(MYV)-algebra. A BL(MYV)-algebra F is called BL(MV)-algebra
of fractions of A if:

(BLfr1) B(A) is a BL(MYV)-subalgebra of F' (that is B(A) < F),
(BLfrg) For every o/, U/, € F,a’ # U, there exists e € B(A) such that eAad’ # e AV
and e A ¢ € B(A).

As a notational convenience, we write A < F' to indicate that F'is a BL(MV)-
algebra of fractions of A.

Ay is said to be a mazimal BL(MYV)-algebra of quotients of A if A < Ay and
for every BL(MV)-algebra F with A < F there exists an injective morphism of
BL(MV)-algebras i : F' — Ap. If A < F, then F is a Boolean algebra, hence Ay
is a Boolean algebra.

If BL(MV)- algebra A is a Boolean algebra, then B(A) = A and the axioms
sm— BLy,sm— BLsy,sm— BL3g and sm — BL4 are equivalent with sm — BL1, hence
Ajy is in this case just the classical Dedekind-MacNeille completion of A (see [122],
p.687).

The main result of Section 3 asserts that Q(A) = M,(A)/p4 is a mazimal
BL(MV)-algebra of quotients of A.

An interesting remark is that we can replace the Boolean algebra B(A) with a
Boolean subalgebra B C B(A) and finally we obtain that Q(A) is just Q(B) = the
MacNeille completion of B. In particular for B = B(A) we obtain the results of this
chapter.

In Sections 4 and 5 we study the BL(MV')— algebra of localization of A with
respect to a topology F on A (denoted by Ar).

The notion of topology for BL(MYV') - algebras is introduced in a similar way
as for rings, monoids or bounded distributive lattices. We define the notion of F—
multiplier, where F is a topology on a BL(MV)— algebra A. The F -multipliers
will be used to construct the localization BL(MV)— algebra Ay with respect to a
topology F . We define the congruence .+ on A by

(z,y) € OF < there exists I € F such that e Ax = e Ay for any e € I N B(A).

An F— multiplier is a mapping f : I — A/0r, where I € F and for every x € I and
e € B(A) the following axioms are fulfilled:

(m—BL1) f(e©z)=¢/0r A f(z) =e/0F O f(z),

(m — BLo) f(z) <z/0f.

In order to obtain the maximal BL(MV') -algebra of quotients Q(A) (defined in
Section 2 of this chapter) as a BL(MV') -algebra of localization relative to a topology
F, we develope another theory of multipliers (meaning we add the two new axioms
for F-multipliers and will be so called strong F-multipliers). These two new axioms
are:

(m — BL3) If e € INB(A), then f(e) € B(A/0F),
(m — BLy) (x/0£) A f(e) = (e/0x) A f(z), for every e € I N B(A) and = € I.

Analogous as in the case of F— multipliers if we work with strong-F— multipliers
we obtain a BL(MV)— subalgebra of Az denoted by s — Ax which will be called
the strong-localization BL(MV')— algebra of A with respect to the topology F.
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In Section 6 we describe the localization BL(MV)-algebra Ar in some special
instances. Contrary with the case of maximal BL(MV') -algebra of quotients, in
general Az is not a Boolean algebra.

For example, if we consider BL— algebra A = I = [0,1] and F is the topology
F(I)={I" e Z(A): I CI'} then Ar is not a Boolean algebra.

For F =Z(A)NR(A), s — Ar is exactly a maximal BL(MV)-algebra Q(A) of
quotients of A, which is a Boolean algebra.

If Fg is the topology associated with an A—closed system S C A, then the
BL(MV)-algebra s — Az, is isomorphic with B(A[S]).

MV — algebras can be studied within the context of abelian lattice-ordered
groups with strong units (abelian lu-groups) and this point of view plays a cru-
cial role in Section 7.

This point of view is possible by the fundamental result of Mundici (Theorem
2.60) [105] that the category of MV-algebras is equivalent with the category of
lu-groups ([3], [45], [105]).

In this section we translate the theory of localization MV -algebras defined in
Section 5 for BL— algebras and in particular for MV — algebras into the language
of localization of abelian lu-groups.

In Chapter 7 and 8, we develop - taking as a guide-line the case of BL(MV')
-algebras - the theory of localization for pseudo BL(MV') - algebras (which are non-
commutative generalization of these). The main topic of this chapter is to generalize
to pseudo BL(MV)— algebras the notions of BL(MV')— algebras of multipliers,
BL(MYV)— algebra of fractions and maximal BL(MV')— algebra of quotients. The
structure, methods and techniques in this chapter are analogous to the structure,
methods and techniques for MV (BL)— algebras exposed in Chapter 6.

Following the categorical equivalence between the category of l-groups with a
strong unit (lu-groups) and the category of pseudo MV -algebras ([58]) we translate
the theory of localization of pseudo MV -algebras into the language of localization
of lu-groups .

This was a short presentation of this book.

We hope that we convinced the reader that algebra of many-valued logic is a
mathematically interesting theory, with connections with other branches of mathe-
matics.

I think that this book is a base for future developments in the theory of local-
ization for other algebras of fuzzy logic.

It is a pleasure for me to thank Professor George Georgescu, from the Faculty
of Mathematical and Computer Science , University of Bucharest, for the discussions
which led to this book structure.

We also thank to Professor Dumitru Busneag for his careful and competent
reading and for suggesting several improvements.

Craiova, Aprils, 2, 2007



CHAPTER 1

Residuated lattices

The origin of residuated lattices is in Mathematical Logic without contraction. They
have been investigated by Krull ([93]), Dilworth ([52]), Ward and Dilworth ([136]), Ward
([135]), Balbes and Dwinger ([2]) and Pavelka ([111]).

In [80], Idziak prove that the class of residuated lattices is equational. These lattices
have been known under many names: BCK- latices in [79], full BCK- algebras in [93],
FLew- algebras in [107], and integral, residuated, commutative l-monoids in [13].

Apart from their logical interest, residuated lattices have interesting algebraic properties
(see [12], [52], [92], [108], [135], [136]).

In this chapter we recall the basic definition of residuated lattices with more details and
examples and we put in evidence many rules of calculus. For a residuated lattice A we denote
by Ds(A) the lattice of all deductive systems (implicative filters) of A; we put in evidence
characterisations for the maximal and prime elements on Ds(A) and some properties of the
lattice (Ds(A),C). Also, we characterize the residuated lattices for which the lattice of
deductive systems is a Boolean lattice.

Archimedean and hyperarchimedean residuated lattices are introduced and character-
ized; we prove some theorems of Nachbin type for residuated lattices.

For the preliminaries in general lattice theory we strongly recommend for reader the
very beautiful monograph Lattice theory of George Gratzer ([73]).

For further reading on residuated lattices we recommend [75] and [129].

1. Definitions and preliminaries

We review the basic definitions of residuated lattices, with more details and examples.
Also we put in evidence some rules of calculus and the connection between residuated lattices
and Hilbert algebras.

DEFINITION 1.1. A residuated lattice is an algebra
<A7 /\7 \/7 ®7 -, 07 1)

of type (2,2,2,2,0,0) equipped with an order < satisfying the following:

(LR1) (A, A, V,0,1) is a bounded lattice;
(LR2) (A,®,1) is a commutative ordered monoid;
(LR3) ® and — form an adjoint pair, i.e., c < a — biff a®c < b, for all a,b,c € A.

The relations between the pair of operations ® and — expressed by LRj3, is a
particular case of the law of residuation, or Galois correspondence (see [12]) and for
every z,y € A,x — y=sup{z € A: 2 ® 2z < y}. Namely, let A and B two posets,
and f: A — B amap. Then f is called residuated if there is a map g : B — A, such
that for any a € A and b € B, we have f(a) < b iff b < g(a) (this is, also expressed
by saying that the pair (f,g) is a residuated pair).

1
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Now setting A a residuated lattice, B = A, and defining, for any a € A, two
maps fo,9q : A — A, fo(z) =2 ® a and g,(x) = a — z, for any x € A, we see that
rOa= fo(r) <yiff x < gu(y) =a — y for every z,y € A, that is, for every a € A,
(fa, 9a) is & pair of residuation .

The symbols = and < are used for logical implication and logical equivalence.

In [80] it is proved that the class RL of residuated lattices is equational; one of
the equational axiomatizations of RL can be:

(L) Equations axiomatizing the variety of bounded lattices;

(M) Equations axiomatizing the variety of commutative monoids;

(Ry) (x0y) = z=2—(y = 2);

(Ry) [z = y)oalAy=(z -y oz (ie, (= y) Oz < y);

(R3) (xAy) —y=1.

EXAMPLE 1.1. Let p be a fized natural number and I = [0,1] the real unit
interval. If for z,y € I, we define x ©y = 1 —min{1,[(1 — z)? + (1 — y)?]"/?} and
x — y=sup{z € [0,1] : x ® z < y}, then (I, max, min, ®,—,0,1) is a residuated
lattice.

ExXAMPLE 1.2. If we preserve the notation from Exzample 1, and we define for
r,y€l, 0y = (max{0, 2P +y? —1})? and x — y = min{1, (1 — 2P +y?)/P}, then
(I, max, min, ®, —,0,1) become a residuated lattice called generalized Lukasiewicz
structure. For p = 1 we obtain the notion of Lukasiewicz structure (z © y =
max{0,x +y —1},2 —» y =min{l,1 —z + y} ).

ExaMPLE 1.3. If on I = [0,1], for z,y € I we define x ® y = min{z,y} and
x—y =114z <y andy otherwise, then (I, max, min, ®,—,0,1) is a residuated
lattice (called GOdel structure).

EXAMPLE 1.4. If consider on I = [0,1], ® to be the usual multiplication of
real numbers and for x,y € I,x — y = 1 if © < y and y/z otherwise, then
(I, max, min, ®, —, 0, 1) is a residuated lattice (called Products structure or Gaines
structure ).

EXAMPLE 1.5. If (A,V,A,,0,1) is a Boolean algebra, then if we define for every
vy € ArOy=xANy and x — y = 2’ Vy, then (A,V,A\,®,—,0,1) become a
restduated lattice.

Examples 1.2, 1.3 and 1.4 have some connections with the notion of t-norm.

We call continuous t-norm a continuous function ® : [0,1] x [0,1] — [0, 1] such
that ([0,1],®,1) is an ordered commutative monoid.

So, there are three fundamental t-norms:

Lukasiewicz t-norm: x @ y = max{0,z +y — 1};

Gddel t-norm: x Oy = min{z, y};

Product (or Gaines) t-norm: ©Opy=x QO y.

Since relative to natural ordering on [0, 1], [0, 1] become a complete lattice, every
continuous t-norm introduce a natural residum (or implication) by

r—y=max{z €[0,1]: x© z < y}.
So, the implications generated by the three norms mentioned before are
x—ry=min{l,y —x+ 1};
r—qgy=1if z <y and y otherwise;
x —py=1if z <y and y/x otherwise.
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DEFINITION 1.2. ([129]) A residuated lattice (A4, A,V,®,—,0,1) is called BL-
algebra, if the following two identities hold in A :
(BLy) 20 (x —y) =z Ay;
(BLs) (z— y) v (y— o) = 1.

For more details about BL-algebras, see Chapter 3.

REMARK 1.1. 1. Lukasiewicz structure, Gddel structure and Product struc-
ture are BL— algebras;
2. Any boolean algebra can be regarded as a residuated lattice where the oper-
ations ® and A coincide and © — y =z V.

REMARK 1.2. If in a BL— algebra A, x™* = x for allx € A, (where x* =x — 0),
and for x,y € A we denote x @y = (z* ©y*)*, then we obtain an algebra (A, ®,*,0)
of type (2,1,0) satisfying the following:

rd(ydz)=(rdy) ® 2,

Thy=yo,
P00 ==z,
z® 0" =0",

(*dy)dy= W ®x) @z, foralx,ye A
Then forallz,y € A,(y — x) — x =xVy = (x — y) — y. BL— algebras of this kind
will turn out to be so called MV — algebras (see [129] and Chapter 2). Conversely,
if (A, ®,",0) is an MV -algebra, then (A, \,V,®,—,0,1) is a BL-algebra, where for
r,yeA:
rOy=(z"®y"),
r—y=x"®y,1=0"
zVy=(x—y)—y=W—z)—zandzxANy=(z*Vy")

REMARK 1.3. ([129]) A residuated lattice (A, \,V,®,—,0,1) is an MV -algebra
iff it satisfies the additional condition: (x — y) — y = (y — z) — =z, for any

x,y € A (see Theorem 2.70).

EXAMPLE 1.6. ([84]) We give an another ezample of a finite residuated lattice,
which is not a BL-algebra. Let A = {0,a,b,c,1} with 0 < a,b < ¢ < 1, but a,b are
incomparable. A become a residuated lattice relative to the following operations:

— 10 a b ¢ 1 ®l0 a b ¢ 1
01 1 111 0l0 0 0 0O
alb 1 b 1 1 al0 a 0 a a
bla a 1 1 1° b0 0 b b b°
c|0 a b 1 1 c|0 a b ¢ ¢
110 a b ¢ 1 110 a b ¢ 1

The condition zVy = [(x — y) — y|A[(y — x) — z], for all x,y € A is not verified,
since c=aVb#[(a—b) = bA[(b—a)—a]=(b—b)A(a—a)=1, hence A is
not a BL-algebra.
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EXAMPLE 1.7. ([92]) We consider the residuate lattice A with the universe
{0,a,b,c,d,e, f,1}. Lattice ordering is such that 0 < d < ¢ < b < a < 1,0 <
d<e< f<a<1land elements {b, f} and {c,e} are pairwise incomparable. The
operations of implication and multiplication are given by the tables below :

-0 a b c de f1 ©|0abcde [ 1
o0f(1 1111111 0(00O0OO0DO0ODO0TO0O0O
ald 1 a a f f f1 a|0 ¢c ¢c ¢c 0 d d a
ble 1 1 a f f f 1 b0 c c ¢c 00 d b
c|f v 11 f f f 1, c¢c|0 c c c 000 ¢
dla 1 1 1 1 1 1 1 d|0 0 O0O0O0O0 0 d
elb 1 aa a1l 1 1 e|0dO0 00 d d e
fle 1 a a a a 1 1 f]0dd 0 0 dd f
111 a b ¢c de f1 1]0a b cde f 1

Clearly, A contains {a,b,c,d, e, f} as a sublattice, and that is a copy of the so-called
benzene ring, which shows that A is not distributive, and even not modular (see
[22]). But it is easy to see that a* = d,b* =e,c* = f,d" =a, e" =0 and f* = c.

EXAMPLE 1.8. ([92]) Let A be the residuate lattice with the universe {0,a, b, c,d, 1}
such that 0 <b<a<1l,0<d<c<a<1andc andd are incomparable with b.
The operations of implication and multiplication are given by the tables below :

— 10 a b ¢ d 1 ®l0 a b ¢ d 1
01 1 1 1 11 0/0 0 O OOO
al0 1 b ¢ ¢ 1 al0 a b d d a
blc a1l ¢ ¢ 1, ble b b 0 0 b
c|b a b 1 a 1 cl|lb d 0 d d c
dlb a b a 1 1 dlb d 0 d d d
110 a b ¢ d 1 110 a b ¢ d 1

Then A is obtained from the nonmodular lattice N5 (see [22]), called the pentagon,
by adding the new greatest element 1. Then A is another example of nondistributive
residuated lattice.

EXAMPLE 1.9. ([84]) We give an example of a finite residuate lattice which is
an non-linearly MV -algebra. Let A = {0,a,b,¢,d,1}, with0 < a,b<c<1,0<b<
d <1, but a,b and, respective c,d are incomparable. We define

— 10 a b ¢ d 1 ®l0 a b ¢ d 1
0(/1 1 1 1 1 1 0/0 0 0O OO O
al|ld 1 d 1 d 1 al0 a 0 a 0 «a
blec ¢ 1 1 1 1, b0 O 0 0 b b
cl|lb ¢ d 1 d 1 c|0 a 0 a b c
dla a ¢ ¢ 1 1 dl0 0 b b d d
110 a b ¢ d 1 1[0 a b ¢ d 1

and so A become a BL—algebra. We have in A the following operations:
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It is easy to see that 0*

@10 a b ¢ d 1
0/0 a b ¢ d 1
ala a c ¢ 1 1
blb ¢ d 1 d 1
cle ¢ 1 1 1 1
dld 1 d 1 d 1
1111 1 1 1 1

=1,a* =d,b*

= o
ISHES]
e N E=

SO

ISHESH

| =

=c¢,c=b,d" =a,1* =0 and 2™ = x, for
all x € A, hence A is an MV — algebra which is not chain.

EXAMPLE 1.10. ([84]) We give an another example of a finite residuate lattice
A = {0,a,b,c,d,e, f,g,1}, which is non-linearly MV — algebra, with 0 < a < b <
e<l0<ce< f<g<lija<d<g,c<d<e,but{a,c},{b,d}, {d, f},{b, f} and,
respective {e, g} are incomparable. We define

—10 a b ¢c d e f g1 ®|0 a b c de f g 1
o(1 11111111 0/0OOOOOOTO OO
alg 1 1 g 1 1 g 11 a|l0 0 a 0 0 a 0 0 a
b|f g1 f g 1 f g1 b0 a b 0 a b 0 a b
cle e e 1 1 1 1 1 1 c|0 0 0 0 0 0 ¢ ¢ c
d|d e e g 1 1 g 1 1° d|{0 0 a 00 a c c d
elc de f g1l f g1 el0 a b 0 a b c d e
flb b b e e e 1 11 f10 0 0 ¢ ¢ ¢ f f f
gla b b dee g 11 gl0 0 a ¢c ¢ d f f g
110 a b ¢c de f g1 110 a b ¢ d e f g 1
and so A become a residuated lattice. We have 0* = 1,a* = ¢,b" = f,c* = e, d* =

d,e*=c¢, f*=0b,g" =a.

EXAMPLE 1.11. ([84]) We give an example of a finite residuate lattice which is
an MV -algebra. Let A =1{0,a,b,c,d,1}, with0<a<b<1,0<c<d<1, buta,c

and, respective b, d are incomparable. We define

— 10 a b ¢ d 1 ®|l0 a b ¢ d 1
0O/1 1 1 1 11 0/0 0 OO O O
ald 1 1 d 1 1 al0 0 a 0 0 «a
blec d 1 ¢ d 1, b0 a b 0 a b
cl|lb b b 1 1 1 c|0 0 0 ¢ ¢ c
dla b b d 1 1 d|0 0 a ¢ ¢ d
110 a b ¢ d 1 110 a b ¢ d 1
It is easy to see that 0* =1,a* =d,b* =c¢,c* =b,d* = a.

In what follows by A we denote a residuated lattice; for x € A and a natural
number n, we define z* =z — 0, (z*)* = 2**, 2% = 1 and 2" = 2" ! ©® z for n > 1.

DEFINITION 1.3. An element a in A is called idempotent iff a®> = a, and it is
called nilpotent iff there exists a natural number n such that ¢ = 0. The minimum
n such that @™ = 0 is called nilpotence order of a and will be denoted by ord(a); if
there is no such n, then ord(a) = co. A residuated lattice A is called locally finite
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if every a € A,a # 1, has finite order. An element a in A is called dense iff a* = 0,
and it is called a wunity iff for all natural numbers n, (a’)* is nilpotent. The set of
dense elements of A will be denoted by D(A).

THEOREM 1.1. Let x,x1,x2,Yy,y1,y2,2 € A. Then we have the following rules of
calculus:

(lr—c) l—-z=z,0—z=1;
(Ir—co) 2Oy <z,y, hencex Oy <zANy,y<zx—yandx®0=0;
(Ir—c3) 20y <x—y;
(Ir—cy) z<yiffct —y=1;
(lr—c) z—y=y—ax=1lcr=yr—-1=10—-2=1,
(Ir—c) 20 (@ —y)<yr<(z—y) —y(lz—-y -y Dy=z—-y;
(lr—cr)z—-y<(x®z)— (yo=2);
(Ir —cg) o <y impliesz® 2z <y z;
(Ir—co) 2=y <(z—1x)—=(2—=y);

)

)

)

)

r—(y—2)=@0y) —z=y— (v — 2);
Ir —c1a) 1 — y1 < (y2 — 22) — [(11 — y2) — (v1 — 22)].

Proof. (Ir—c¢j). Sincex®©1 =2 <z = x <1 — z. If we have z € A such that
1oz=xz,thenz<zandsorx=sup{z€eA:10z<z}=1—x;

Fromlor=z<r=1<x—ux;sincer—zx<1l=z—x=1.

(Ir — c9). Follows from lr — ¢y and LRy. Asz Oy <y=y<z —y.

(Ir — c3). Follows from Ir —c; and Ir —co: 20y <yandy < z — y so
rTOy < xT—Yy.

(Ir—cy). Wehavezr <y zrzol<ysl<zr—oysz—oy=1

(Ir — ¢5). Follows from Ir — ¢4.

(Ir — cg). Follows immediately from LRj.

(lr—c7). By LRs wehave z -y < (z0z2) - (y0z) & (zr -y 0rxoz <
yoze (r—y)o0x<z— (yoz). But by Ir — cg, we have (x — y) ©®z < y and
y<z—(y®z),hence (r - y) 0z <z— (yo 2).

(Ir — cg). Follows from Ir — cy.

(Ir—cg). By LR3 wehave x —y< (z —z) = (z —my) < (z - y) O (2 —x) <
z—ye@—y)o(z—2)0z<y.

Indeed, by Ir — ¢ we have that (z - y) O (z = 2)©2< (v —y) Oz <y.

(Ir — c10). As in the case of Ir — ¢g.

(Ir — c11). It follows from Ir — ¢g and Ir — cp.

(Ir — c12). The first equality follows from z©y©® (y — z) < x ® z and the second
from Ir — c11.

(Ir —c13). We have (z — (y — 2)) © (z©y) < (y — 2) ©y < z, hence
x— (y — z) < (x®y) — z. On the another hand, from ((z©@y) — 2) © (zOy) < z,
we deduce that ((z©y) — 2z) ©x <y — z , therefore (x @ y) — 2z <z — (y — 2),
so we obtain the requested equality.

(Ir — c14). We have to prove that (r1 — y1) © (y2 — 22) © (y1 — y2) © 1 < T9;
this inequality is a consequence of applying several times Ir — cg. B

REMARK 1.4. From lr — c1 and lr — ¢4 we deduce that 1 is the greatest element
of A.
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THEOREM 1.2. If x,y € A, then :

(Ir —c16). Wehave x » 2™ =2z — (2" - 0) =2 > (r - 0) =2 - z* =1
and 2™ — (2" - z) = (™ O z*) -z P =1

(Ir—c17). 1" <0< 0=1—-0«< 0061 <0, analogously, 0* = 1;

(Ir — c18). It follows from Ir —¢jg for z =0:1 = (x — y) — (y* — 2*) hence
r—y<y*—at.

(Ir — c19). From lr — c14 we deduce that z* < 2*** and from = < 2** we deduce
that z** - 0 <z — 0 & 2" < x*, therefore z*** = z*. R

THEOREM 1.3. If A is a complete residuated lattice, x € A and (y;)ier a family
of elements of A, then :

Ir—c0) 20 (Vi) = V(zOyi);

el i€l
Ir—ca) 20 (Ayi) < Ao wi);
i€l icl
Ir—cp) = (Ayi) = N\(@ — v
icl i€l
Ir—co3) (Vyi) =2 = N\(yi — );
i€l icl
Ir—coa) V(yi =) < (Ayi) —
iel i€l
Ir—eo5) V(@ — i) <z — (Vi)
i€l icl
Ir—c) (Vyi) = Ay
icl i€l
Ir—car) (Awi)* > V.
i€l iel
Proof. (Ir—cy). Clearly, x@y; < x®(\/ i), for each i € I, therefore \/ (z®y;) <
el i€l
O (Vi) -
i€l
Conversely, since foreveryi € I, x O y; < V(2 0ui) = vyi <z — [ V(z Oy,
13 icl
then Vy; <z — [ \/(x®y;)], therefore z ® (Vi) < V (x ®y;), so we obtain the
i€l i€l i€l i€l

requested equality.
(Ir — ¢a1). Clearly .
(Ir — co2). Let y = Awy; . Since for every i € I, y < y;, we deduce that
el
x—y<x—y;, hence z — y < A (x — y;); On the another hand, the inequality
el
N (x — yi) < x — yis equivalent with 2 ® [ A (z — v;)] < y. This is true because
iel iel
by lr —co1 we have 2 O [A(z = v)] < Alz© (z — vi)] < ANyi =v.
icl iel iel
(Ir —co3). Let y = \Jy;; since forevery i € [, y; <y=y—x <y, — =y —
i€l
< A\ (g — x); Conversely, A (i —2) <y — 2 &y 0 [AW— )] <.
iel iel iel
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By Ir — ez we have y © [\ (y = @) < Aly® (5 — 2)] "= AV (i © (y: —

il iel icl icl
x))] < Az =z, so we obtain the requested equality.
el
(Ir — coq). By lr —enq, forevery i € I, y; — o < (A yi) — « thus \/ (y; — z) <
il icl
(Avi) — =
el

(Ir — cg5). Similary with Ir — coq4.
(Ir — c6). In particular by taking x = 0 in Ir — co3 we obtain (\V v;)* = Ay}

i€l i€l
(Ir — ca7). In particular by taking z = 0 in Ir — co4 we obtain (Ay;)* > Vy/. B
iel el

COROLLARY 1.4. If z,2',y,y,z € A then:
(Ir —cog) xVy=11impliesz Oy =1xAy;
(Ir —c) v = (y = 2) 2 (= y) = (z — 2);
(Ir —c30) zV(y©z) > (xVy)©(xVz), hence xVy™ > (xVy)"and ™ Vy" > (zVy)™"
for any m,n natural numbers;
(Ir—es) (=9 O —y)<(@zVa) = (yVy)
(Ir—ez) (—=y) 0@ —y) < (@A) = (yAy).
Proof. (Ir — cgg). Suppose zVy = 1. Clearly z ©y < z and z ®y < y. Let now
t € Asuchthat t <z andt <y.Bylr —cia wehavet —» (z0Oy) > 20 (t —y) =
r@l=zandt— (zQy) >yo(t—z)=yoOl=y,s0t— (zOQy)>zVy=1,
hencet — (xOy)=1<t<zOy, thatis, Oy =z Ay.
(Ir — co9). We have by Ir —c13: 2 — (y — 2) = (z©®y) — z and (z —
y) — (x = 2)=[z0(x —-y) — 2z ButzoOy < z06 (x — y), so we obtain
(z0y) —z2ko@—y))-zer—(Y—2)2(@—y) —(2—2)
(Ir—c30). By Ir — a9 we deduce (zVy)® (xVz) = 22V (z0y)V(r©2)V(y©2) <
<zV(zoy)VEez)V(yoz) =zV(yoz).
(Ir — ¢31). From the inequalities:
20—y o —-y)<zo(@@—y)<zAy<yVy and
Yo@—y o —y)<do@ -y) <z Ay <yVy we deduce that
@—yo@ —y)<e—(yvy)and (z—y) (@ —y) <2’ — (yVy).
So, (z = y) 0 (&' =) < [z~ (wVy) Al = (yvy)] "= (@va) = (yVy).
(Ir — c32). From the inequalities:
, , lr—ce
(A )O(x—y) O —y)<ze(r—y) < yand
(Ao (x—y) ok —y) <z o@ —y) l7n<c6 y we deduce that
(w—>y)

/

(@ —y)<(zna) —yand (2 - y) O (@ —y) < (zna) =y,
0, (x =)o —y) < [(zAr)) = yIA[(zA)) — o] (zAz') = (yAy).M
If B={aj,aq,...,a,} is a finite subset of A we denote [IB = a1 ® ... ® ay.
PROPOSITION 1.5. Let Ay, ..., A, finite subsets of A.
(Ir —es3) If a1 V ...V a, =1, for all a; € A;,i € {1,...,n}, then
(ITA) V...V (IIA,) =1

Proof. For n = 2 it is proved in [14] and for n = 2, A; a singleton and Az a
doubleton in [11] (Lemma 6.4). The proof for arbitrary n is a simple mathematical
induction argument. W

lr—coo
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COROLLARY 1.6. Let aq,...,a, € A.
(Ir —c34) If a1 V...V, = 1, then a¥ v ... vV ak = 1, for every natural number k.

PROPOSITION 1.7. Suppose A is a locally finite residuated lattice. Then for all
a,be Ajavb=1iffa=1orb=1.

Proof. Assume a Vb = 1. Then, since a Vb < [(a — b) — b A [(b — a) — d]
we deduce that (a - b) b= (b—a) - a=1,hencea - b=">band b — a=a.
Let now a # 1. Since the residuated lattice A is locally finite (under consideration)
there is a natural number m such that a™ = 0. Nowb=a - b=a — (a — b) =
a*—b=.=a"—-b=0—-b=11

PROPOSITION 1.8. In any locally finite residuated lattice A, for all x € A
() 0<z<liff0<a* <1,

(i) z* =0 iff x = 1;

(t31) z* =1 iff v =0.

Proof. (i). Assume 0 < x < 1, ord(z) = m > 2. Then, 2™ 10z = 0,27 20z #
0, so by the definition of 2*,0 < ™! < z* < ™2 < 1. Conversely, let 0 < 2* < 1,
ord(x*) = n > 2. Then by similar argument, 0 < (z*)"~! < z** < (z*)" 2 < 1.

If now & = 0, then z* = 1, a contradiction. Therefore 0 < z < z** < 1.

(7). If z* = 0 but = # 1, then 0 < z < 1, which leads to a contradiction z* # 0.
Thus z = 1.

(7i7). Analogously as (ii). B

By bi-residuum on a residuated lattice A we understand the derived operation
«—— defined for z,y € A by z «— y = (z — y) A (y — x). Bi-residumm will offer
us an elegant way to interpret fuzzy logic equivalence.

THEOREM 1.9. If A is a residuated lattice and x,vy,x1,y1, T2, Y2 € A, then

(birez1) x «—— 1 = x;

(birezo) x — y=1z=1y;
(bzrez;;) Ty =19y T,

(birezs) (x «—y) O (y «— 2) <z 2

(birezs) (1 < y1) A (22 < y2) < (1 A22) < (Y1 A y2);
(birezg) (1~ y1) A (22 < yo) < (21 V 22) — (11 V 12);
(birezr) (z1 «— y1) © (22 «— y2) < (21 © 22) «— (Y1 © Y2);
( ) (X1 =) O

birezs (1‘2 — y2) < (331 552) (?/1 ?JZ)-

Proof. (birez;) — (birezs). Are immediate consequences of Theorem 1.1.

(birezy). By Ir — c10, (x — y) ® (y — 2) <z — 2, therefore (z «+— y) © (y «——
2) <(x—=y) Oy — 2) <x — z Similarly, (z «— y) O (y «— 2) < z — z. We
conclude that (z «— y) © (y «— 2) <z« 2.

(birezs). If we denote a = z1 «— y; and b = x9 < yo, using the above rules
of calculus we deduce (a Ab) ® (x1 Ax2) < [(z1 — y1) A (22 = y2)] © (21 A xa) <
[(x1 — y1) © 21] A [(22 — y2) © 22] <y1 Aya, hence a Ab < (z1 Aw2) — (y1 Aya).

Analogously we deduce a Ab < (y1 Ay2) — (z1Ax2), hence aAb < (z1 Axg) «—
(y1 A y2).

(birezg). With the notations from birezs we have

(aAB) ® (21 V 22) = [(@ A D) ® 2] V [(a A ) © 22] < [(21 — 31) © 1] V [(2 —
y2) ©® x2] < y1 Aya, hence a Ab < (21 V x2) — (y1 V y2).
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Analogously we deduce aAb < (y1 Vy2) — (1 Va2), hence aANb < (21 Vxg) «—
(Y1 V y2).

(birezz). We have (a®b)®(z10z2) < [(11 — y1)O71]O[(T2 — y2) Ox2] < Y1OY2,
hence a ®b < (21 ©® 22) — (y1 © ¥2).

Analogously we deduce that a®b < (y10y2) — (x1022), 50 a®b < (21 Ox2) «—
(11 © y2)-

(birezg). We have (a ©b) ® (z1 — x2) < (y1 — 1) © (22 — y2) © (21 — x2) <
(y1 — x2) ® (x2 — y2) < y1 A y2, and from here the proof is similary with the proof
of birez;. B

PRrROPOSITION 1.10. Let A be a residuated lattice and x,y1,y2,21,20 € A. If
<y 1y and & < z) —— 2z, then 2* < (y1 z1) (y2 22).

Proof. From z < y; «— y2 = x < y2 — y1 = = © y2 < y; and analogously we
deduce that x © z1 < z9.

Thenz 0z < (y1 — 21) = (Y2 = 22) © 2020 (Y1 — 21) < (y2 — 22) &
rOzO(y1 — 21) ©y2 < 29.

Indeed, x©z O (y1 — 21)Oy2 < zO(y1 — 21) Oy1 < Oz < 29 and analogously
x Oz < (y2 — 22) — (y1 — 21), therefore we obtain the inequality requested . B

PROPOSITION 1.11. Suppose A is complete and x,x;,y; € L (i € I). If x <
x; «— y; for everyi € I, then x < (A x;) — (A wi).
el iel
Proof. Since x < x; «— y; for every ¢ € I, we deduce that z ® x; < y; and
then 2 ® (Az;) < Az ®z;) < Ayi, hence 2 < (Ax;) — (Avi)-

i€l i€l icl i€l i€l
Analogously, x < ( Avyi) — (A zi), therefore we obtain the requested inequality.
iel iel

2. Boolean center of a residuated lattice

Let (L,V,A,0,1) be a bounded lattice. Recall (see [73]) that an element a € L
is called complemented if there is an element b € L such that avVb =1 and aAb = 0;
if such element b exists it is called a complement of a. We will denote b = a’ and
the set of all complemented elements in L by B(L). Complements are generally not
unique, unless the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be
distributive, the complements are unique.

LEMMA 1.12. Suppose that a € A have a complement b € A. Then, the following
hold:

(i) If ¢ is another complement of a in A, then ¢ =b ;
(i1) ' =band V/ = q;
(iii) a® = a.
Proof. See [92], Lema 1.3, p.14. &
Let B(A) the set of all complemented elements of the lattice L(A) = (A, A, V,0, 1).

LeEMMA 1.13. Ife € B(A), then € = ¢* and e = e.

Proof. If e € B(A), and a = ¢/, then e Va = 1 and e A a = 0. Since e ®
a <eNa=0,then e ®a = 0, hence a < e — 0 = ¢e*. On the another hand,
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e*=10e" =(eVa)oe r o (e@e")V(a®e*) =0V (a®e*) =a® e, hence
e* < a, that is €* = a. The equality e** = e follows from Lemma 1.12, (i7).1

REMARK 1.5. Ife, f € B(A), theneAf,eV f € B(A). Moreover, (eV f) = e Af’
and (e Nf) =€V f.So,e— f=¢€VfeB(A).

Proof. See [92], Lema 1.7, p.15. &

LEMMA 1.14. Ife € B(A), then
(Ir —c35) e©@x =eAx, for every x € A.

Proof. See [92], Lema 1.6, p.15. &

COROLLARY 1.15. The set B(A) is the universe of a Boolean subalgebra of A
(called the Boolean center of A).

Proof. We prove that for any z,y,z € B(A), the distributive law holds. By
lr — c35 and properties of residuated lattices, we ave the following series of identities:
rAyVz)=z0yVz)=@@oy)VEoz)=(@Ay)V(zAz). B

PROPOSITION 1.16. For e € A the following are equivalent:
(1) e € B(A);
(ii) eVe*=1.

Proof. (i) = (i7). If e € B(A), by Lemma 1.13, eVe' =eVe* =1.

(73) = (7). Suppose that e Ve* = 1. We have: 0 = 1* = (e Ve*)* e gx pert >
e* Ne, (by lr —c16), hence e* A e =0, that is, e € B(A).l

DEFINITION 1.4. A totally ordered (linearly ordered) residuated lattice will be
called chain .

REMARK 1.6. If A is a chain, then B(A) ={0,1}.

PROPOSITION 1.17. For e € A we consider the following assertions:
(1) e € B(A);
(2) 2 =¢ and e = **;
(3) e2=cand e* — e =¢;
(4) (e = x) — e =e, for every x € A;
(5) ene* =0.

(1) (1) = (2),(3), (4) and (5),
(1) (2) % (1), (3) # (1),(4) % (1), (5) = (1),
(131) If A is a BL—algebra then the conditios (1) — (5) are equivalent.

Proof. (i). (1) = (2). Follows from Lemma 1.12 (4i7), and Lemma 1.13.

(1) = (3). If e € B(A), then eVe* = 1. Since 1 = eVe* < [(e — €) —
e*] N [(e* — e) — e, by Ir — ¢g and Ir — ¢;.

We deduce that (e — €*) — ¢* = (¢ — €) — e = 1, hence e — ¢* < e* and
e* — e <e (bylr—cy), that is, e — e* = e* and ¢* — e = e (by Ir — c2).

(1) = (4). If x € A, then from 0 < z we deduce e* < e — z hence (e — z) —
e<e* —e=e, by (1) = (3). Since e < (e — ) — e we obtain (e — z) — e =e.

(1) = (5). Follows from Proposition 1.16 (since by Lemma 1.13, ¢/ = ¢*).
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(73). Consider the residuated lattice A = {0,a,b,c, 1} from the Example 1.6; it
is easy to verify that B(A) = {O, 1}.

(2) # (1). We have a® = a,a* = b,b* = a, hence a** = b* = a, but a ¢ B(A).

(3) » ()Wehavea2—aanda —a=b—a=a, buta%B()

(4) # (1). It is easy to verify that (a — z) — a = a for every x € A, but
a ¢ B(A).
(5) # (1). We have a Aa* = aAb=0,but aVa* =aVb=c#1, hence
a¢ B(A). 1

REMARK 1.7. 1. If A=1{0,a,b,c, 1}, is the residuated lattice from Exam-
ple 1.6, then B(A) = {0,1};

2. If A={0,a,b,c,d,e, f,1}, is the residuated lattice from Ezample 1.7, then
B(A) = {0,1}; also B(A) = {0,1}, where A is the residuated lattice from
Example 1.8;

3. If A = {0,a,b,c,d, 1}, is the residuated lattice from Ezxample 1.9, then
B(A) ={0,a,d,1};

4. If A = {0,a,b,c,d,e, f,g,1}, is the residuated lattice from Example 1.10,
then B(A) ={0,b, f,1};

5. If A = {0,a,b,c,d, 1}, is the residuated lattice from Ezample 1.11, then
B(A) ={0,b,¢,1}.

LEMMA 1.18. Ife, f € B(A) and x,y € A, then:
lr—036) x@(m—>e):e/\x,e®(e—>m):6/\x;
V(zroy)=(eVr)o©(eVy)

Az Oy) =(eNz)©(eAy);
Ir—c9) eO(z—y)=e0[e0z) = (eOy))
Ir—cyp) 20 (e—= f)=20[x0e) = (z0 f)]
Ir—cy)e—(x—y) =(e—x)—(e—y).

T*637

) e
lT‘ — 638)
) €
) ©

Proof. (Ir — c36). Since e < & — e, then x ©® e < 2 ® (x — e), hence = A
e <z@®(x — e). From 2z ® (x — e) < z,e we deduce the another inequality
rO((r—e)<zAe,s0x®(r—e)=eAx.

Analogous for the sequend equality.

(Ir — c37). We have

(eva)@evy) "= [(eva)@e Veva) @yl =[(eVr) o Ve@y) V(zoy)
=[levz)nelV[eoy V(zoy]=eV(eoy V(zoy) =eV(xOy).

(Ir — c38). As above,
(eNz)O(eny)=(cO@x)0(e@y)=(c@e)0(x0y)=e0(z0y)=cA(zOy).

(Ir —e39). By lr —c7 we have x — y < (e®z) — (e @ y), hence e ® (x — y) <
e®lle@x)— (e®y).

Conversely, (e®z)0(e@z) = (e@y)| <e@y<ysoed®[e®z) — (eOy)] <
x—y.Hencee®[(e0x) = (e0y) <ed (x —y).

(Ir —cxo). Wehave 20 [(z 0 €) = (20 fl =20 [(z @ e) = (x A f)] "=
20[(zoe) > ) A(zoe) > ] =20 1A (x0e) » f] =20 (@oe) — f) ="

s 20 [z — (e — f)] s ANle— f)=x20 (e — f), since e — f € B(A),
see Remark 1.5.

(Ir — ¢41). Follows from Ir — ¢13 and Ir — ¢3¢ since e Az = e © x.0
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COROLLARY 1.19. Ife € B(A) and z,y € A, then:
(Ir —cq2) eN(xzVy)=(enz)V(eNy).

DEFINITION 1.5. Let A and B be residuated lattices. f: A — B is a morphism
of residuated lattices if f is morphism of bounded lattices and for every xz,y € A :

flxoy) = f(z)© f(y) and f(z — y) = f(z) — f(y).

Following current usage, if f is one-one we shall equivalently say that f is an
injective homomorphism , or an embedding . If the homomorphism f : A — B is
onto, we say that f is surjective . A bijective morphism of residuated lattices will
be called isomorphism of residuated lattices (we write A ~ B). The kernel of

homomorphism f : A — B is the set Ker(f) = f71(0) = {z € A: f(z) = 0}.

DEFINITION 1.6. A Heyting algebra is a lattice (L,V,A) with 0 such that for
every a,b € L, there exists an element a — b € L (called the pseudocomplement of
a with respect to b) such that for every x € L, aAx < b iff z < a — b (that is,
a—b=sup{r € L:aAx <b}).

DEFINITION 1.7. Following Diego ([51]), by Hilbert algebra we mean an algebra
(A, —,1) of type (2,0) satisfying the following identities:

(H) z = (y —z) =1

(H2) (z—=(y—2) = (z—y) = (z—2) =1

(Hs) f z - y=y — x =1, then x = y.

REMARK 1.8. ([51]) If (L,V,A,—,0) is a Heyting algebra, then (L,—,1) is a
Hilbert algebra, where 1 = a — a for an element a € L.

Taking as a guide -line the case of BL— algebras (see Example 3.9), a residuated
lattice A will be called G- algebra if 2> = x, for every z € A.

REMARK 1.9. In a G-algebra A, x ®y = x Ny for every z,y € A.
PROPOSITION 1.20. In a residuated lattice A the following assertions are equiv-
alent :
(i) 2% = for every x € A;
(i) 2O (x —y)=xOy=1x Ay for every z,y € A.
Proof. (i) = (i7). Let 2,y € A. By Ir — ¢12 we have
rOr—-y)<(z0z) = (z0y)er0(r—y) <z—(z0y) &
toy<z—(r—(20y) =22 @20y =z— (z0y) =>
zO(x—y) <zOuy.

Sincey <z —y, thenzOy<z0(x—y),s0x0 (r—y)<zOy.

Clearly, r©y < x,y. To prove t @y = x Ay, let t € Asuch that t < x andt <y.
Thent =t> <z ®y, thatis, zOy =z Ay.

(ii) = (i). In particular for z =y we obtain z Oz =z Az =2 < 22 =2. B

PROPOSITION 1.21. For a residuated lattice (A, \,V,®,—,0,1) the following are
equivalent:
(i) (A,—,1) is a Hilbert algebra;
(i) (AN, V,©,—,0,1) is a G-algebra.
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Proof. (i) = (7). Suppose that (A, —,1) is a Hilbert algebra, then for every
x,y,z € A we have
r—(y—2)=@—y —(@—2)
From Ir — c13 we have
r—(y—2)=(oy —zand (z—~y) = (r—-2) =20 (r—y) =2

so we obtain
(oY) —mz2=(20(x—y))—=

2

hence z ®y = x ® (z — y); for x = y we obtain z° = z, that is, A is a G- algebra.

(73) = (i). Follows from Proposition 1.20. W

3. The lattice of deductive systems of a residuated lattice

In this section we put in evidence the congruences of a residuated lattice and present
some results relative to lattice of deductive systems of a residuated lattice. We characterize
the subdirectly irreducible residuated lattices and the residuated lattices for which the lattice
of deductive systems is a Boolean algebra.

DEFINITION 1.8. A non empty subset D C A is called a deductive system of A,
ds for short, if the following conditions are satisfied:
(Ds1) 1 € D;
(Dsg) If z,& — y € D, then y € D.

Clearly {1} and A are ds ; a ds D of A is called proper if D # A.

REMARK 1.10. 1. A ds D is proper iff 0 ¢ D iff no element z € A holds
x,x* € D;
2. x €D iff ™ € D for everyn > 1.

REMARK 1.11. A nonempty subset DC A is a ds of A iff for all x,y € A :
(Ds)) If z, y € D, then x ®y € D;
(Dsh) If v € D,y € A,z <y, theny € D.

Indeed, assume that D C A, D # () is a subset of A satisfy Ds}] and Ds),. In
such case there is an element x € D C A and as x < 1 we have 1 € D. Assume
z,o —y €D. Thenz® (x — y) <y € D and so D is a ds. Let conversely, D be a
ds. Assume x,y € D. Since x — [y — (x @ y)]=1€ D, we have y — (x ©® y) € D,
therefore * ©® y € D. Thus Ds; holds. To verify Dsy let © € D,z < y. Then
r—y=1€D, hencey € D.

REMARK 1.12. Deductive systems are called also implicative (or congruence)
filters in literature. To awvoid confusion we reserve, however, the mame filter to
lattice filters in this paper. From lr — co and Remark 1.11 we deduce that every ds
of A is a filter for L(A), but filters of L(A) are not, in general, deductive systems
for A (see [129]).

We denote by Ds(A) the set of all deductive systems of A.

In wath follows we will take in consideration the connections between the con-
gruences of a residuated lattice A and the implicative filtres (deductive systems) of
A.

Whith any deductive systems D of A we can associate a congruence 6p on A by
defining : (a,b) € Op iff a — b,b — a € D iff (a — b) ® (b — a) € D. Conversely,
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for 6 € Con(A), the subset Dy of A defined by a € Dy iff (a,1) € 0 is a deductive
system of A. Moreover the natural maps associated whith the above are mutually
inverse and establish an isomorphism between the lattices Ds(A) and Con(A).

So, as in the case of lattices we have the following result:

THEOREM 1.22. Let A be a residuated lattice, D € Ds(A) and 8 € Con(A).
Then
(1) Op € Con(A) and Dy € Ds(A);
(ii) The assignments D ~~ 0p and 0 ~ Dy give a laticeal isomorphisms between

Ds(A) and Con(A).

For a € A, let a/D be the equivalence class of @ modulo 6p. If we denote by
A/ D the quotient set A/0p, then A/D becomes a residuated lattice with the natural
operations induced from those of A. Clearly, in A/D, 0 =0/D and 1 =1/D.

PROPOSITION 1.23. Let D € Ds(A), and a,b € A, then
(¢1) a/D =1/D iff a € D, hence a/D # 1 iff a ¢ D;
(43) a/D =0/D iff a* € D;

(t3t) If D is proper and a/D = 0/D, then a ¢ D;

(iv) a/D <b/D iffa —be D.

Proof. (i). We have a/D =1/D iff (a - 1)® (1 —-a) € Dif 1®a=a € D.

(77). We have a/D =0/D iff (a - 0)® (0 —a) e Diff a* ®1=a* € D.

(¢i7). Follow from Remark 1.10.

(). By lr — ¢4 we have a/D <b/D iff a/D — b/D =1 iff (a — b)/D = 1/D iff
a—beD (by (i) N

We recall (see [22]) some fundamental concepts of Universal Algebra.

Let A and (A;);cr be algebras of the same type. A subdirect representation of
A with factors A; is an embedding f : A — [[A4; such that each f; defined by f;

i€l
= m; o f is onto A;, for each ¢ € I. Here, m; denotes the i— th projection. Such an
A is also called subdirect product of A;.

An algebra A is subdirectly irreducible (si for short) iff it is non-trivial and

for any subdirect representation f : A — [[A;, there exists a j such that f;is
i€l

an isomorphism of A onto A;. A fundamental subdirect representation theorem of

Birkhoff’s says that every algebra has a subdirect representation with si factors.

Two other important types of algebras (see [22], Chapter 3) are: directly in-
decomposable algebras, i.e., these that cannot be nontrivially represented as direct
products and simple algebras, i. e., these that have two-element congruence lattices
(see [22], p.89).

Clearly, simple implies si implies directly indecomposable; neither of the converse
implications holds in general.

By Proposition 1.23 it follows immediately that a residuated lattice A is subdi-
rectly irreducible iff it has the second smallest ds, i.e. the smallest ds among all ds
except {1} (see and [18]).

The next theorem characterises internally subdirectly irreducible and simple
residuated lattices.

THEOREM 1.24. ([92]) A residuated lattice A is:

(i) subdirectly irreducible iff there exists an element a < 1 such that for any
x < 1 there exists a natural number n > 1 such that z" < a;
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(73) simple iff a can be taken to be 0.
COROLLARY 1.25. ([18], [92]) If A is subdirectly irreducible, then B(A) = {0, 1}.

PROPOSITION 1.26. ([92]) In any si residuated lattice, if x V y = 1, then either
z=1ory=1 holds.

Therefore, every si residuated lattice has at most one coatom (recall that are
element a of a lattice L with the greatest element 1 is a coatom if it is maximal
among elements in L\{1}).

The next result characterises these si residuated lattices which have the coatom:

THEOREM 1.27. ([91]) A residuated lattice A has the unique coatom iff there
erists an element a < 1 and a natural number n such that x™ < a holds for any
z <1

Directly indecomposable residuated lattices also have quite a handly description.
It was obtained for a subvariety of residuated latticers, called product algebras, by
Cignoli and Torrens in [46].

For arbitrary residuated lattices we have:

THEOREM 1.28. ([92]) A nontrivial residuated lattice A is directly indecompos-
able iff B(A) ={0,1}.

REMARK 1.13. The lattices from Ezxamples 1.6, 1.7 and 1.8 are directly inde-
composable.

For a nonempty subset S C A, the smallest ds of A which contains S, i.e.
MN{D € Ds(A) : S C D}, is said to be the ds of A generated by S and will be
denoted by [5).

If S = {a}, with a € A, we denote by [a) the ds generated by {a} ([a) is called
principal).

For D € Ds(A) and a € A, we denote by D(a) = [D U {a}) (clearly, if a € D,
then D(a) = D).

PROPOSITION 1.29. Let S C A a nonempty subset of A, a € A, D,D1,Dy €
Ds(A). Then
(2) If S is a deductive system, then [S) = S;
(@) [S) ={r € A:50..0s, <z, for somen >1 and s1,...,5, € S}. In
particular, [a) = {x € A:x > a", for somen > 1};
(t9t) D(a) ={z € A:x>d®a", whithd € D and n > 1},
(iv) [DyUDg) ={x € A:x>d; ®dy for some dy € Dy and dy € Dy}

Proof. (7). Obvioulsly.

(#1). If we denote by S’ the set from the right part of equality from enounce, it is
immediate that this is an deductive system which contain the set S, hence [S) C S’
. Let now D € Ds(A) such that S C D and « € S’ . Then there are s1,...,5, € S
such that s1 ® ... ® s, < z. Since s1,...,8, € D = 51 ®...® s, € D = x € D, hence
S" C D; we deduce that S” C ND = [5), that is, [S) = 5.

(1), (iv). Following by (ii). B

LEMMA 1.30. Let D € Ds(A) and a € A. Then D(a) ={zx € A:a" — x € D,
for some n > 1}.
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Proof. If z € D(a), then x > d ® a", for some n > 1 and d € D. Thus,
d<a" —x,s0a" —x€D.

Conversely, assume that d = o — x € D for some n > 1. We also have
(a"®d) - x=d— (a" — x) =d— d =1, hence a” ©®d < z. Therefore, x € D(a).
[ |

PROPOSITION 1.31. For any element x of a residuated lattice A, there is a proper
ds D of A such that x € D iff ord(z) = 0.

Proof. Let D be a proper ds and z € D. Then 2™ € D, whence ™ # 0 for
any natural number n. Therefore ord(x) = oco. Conversely, if ord(xz) = oo, then
D =[z) ={y € A:a" <y for some natural number n} is a proper ds of A and
zeD. 1

For Dy, Dy € Ds(A) we put
DiANDy=DiNDyand DV Dy = [D1UD2).

PROPOSITION 1.32. If a,b € A, then
(1) [a)={z€eA:a<z}iffa®a=a;
(74) a < b implies [b) C [a);
(iid) [a) N [b) = [a V b);
(iv) [a) v [b) = [a ND) = [a©b);
(v) [a)=11if a=1.

Proof. (i), (ii). Obviously.

(3i). Since a,b < a V' b, by (ii), [a Vb) C [a), [b), hence [a V b) C [a) N [b). Let
now z € [a) N[b); then x > o™,z > b" for some natural numbers m,n > 1, hence
x>ad™" Vb > (aVb)™, (by lr —c30), so x € [aVb), that is, [a) N [b) C [a V b).
Hence [a) N [b) = [a V b).

(iv). Since a®b < aAb < a,b, by (i7), we deduce that [a),[b) C [aAD) C [a®b),
hence [a) V [b) C[aAD) C[a®b).

For the converse inclusions, let = € [a®b). Then for some natural number n > 1,
x> (a®@b)™=a"©b" € [a) V[b) (since a™ € [a),b™ € [b)), (by Proposition 1.29,
i1)), hence x € [a) V [b), that is, [a ©® b) C [a) V [b), s0 [a) V [b) =[a Ab) = [a ® D).

(v). Obviously. B

DEFINITION 1.9. We recall ([73], p.93) that a lattice (L, V, A) is called Brouwe-
rian if it satisfies the identity a A (\/b )= \/(a/\ b;) ) (whenever the arbitrary unions

exists). Let L be a complete lattlce and let a be an element of L. Then a is called
compact if a < VX for some X C L implies that a < VX7 for some finite X; C X.
A complete lattice is called algebraic if every element is the join of compact elements
(in the literature, algebraic lattices are also called compactly generated lattices).

PROPOSITION 1.33. The lattice (Ds(A),C ) is a complete Brouwerian lattice
(hence distributive), the compacts elements being exactly the principal ds of A.

Proof. Clearly, if (D;);cr is a family of ds from A, then the infimum of this
family is A D; = N D; and the supremum is VD; = [UD;) = {z € A: z >
iel iel iel iel

Ty © ... © Ty, where i1,.., i, € I,z € Di, 1 < j < m}, that is, Ds(A) is
complete.
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We will to prove that the compacts elements of Ds(A) are exactly the principal

ds of A. Let D be a compact element of Ds(A). Since D = \/ [a), there are m > 1
aeD
and ay, ..., ay, € A such that D = [a1) V...V [ap) = [a1 © .... ©® an,), (by Proposition
1.32, (iv)). Hence D is a principal ds of A.
Conversely, let a € A and (D;);er be a family of ds of A such that [a) C 'VIDZ"
1€
Then a '\/IDi = [UIDZ-), so we deduce that there are m > 1, i1, ...,%, € I, 2;; € Dj;
1€ 1€
(1<j<m)suchthata>uz; ©..0z,.
It follows that a € [D;; U...UD; ), s0 [a) C [Dy U...UD; )=D; V..VD
For any ds D we have D = \/ [a), so the lattice Ds(A) is algebraic.

tm*

acD
In order to prove that Ds(A) is Brouwerian we must show that for every ds D and
every family (D;);er of ds, D/\(.\/]Di) = '\/I(D/\Di) & Dﬂ(‘VIDz') = [.UI(DHDZ‘)).
1€ 1€ 1€ 1€

Clearly, [_UI(D ND;)C DN (.\/[DZ-).
1€ 1€
Let now z € DN (_VIDi). Then z € D and there exist i1,...,im € I,7;; € D;;
1€
(1 < j < m)such that z > z;, ©® ... ® x;,,,. Then z = z V (25, © ... ® x;,,) >
(xVzy) © .. © (xVay,) (by Ir — c30). Since x V x;; € DN Dy, for every 1 <
j < m we deduce that = € '\/I(D N D;), hence DN (‘VIDi) C Vv (DN D;), that is,
1€ 1€

el
Dﬂ(\/Di): \/(DﬂDi)..
el i€l

COROLLARY 1.34. If we denote by Ds,(A) the family of all principal ds of A,
then Dsp(A) is a bounded sublattice of Ds(A).

Proof. Apply Proposition 1.32, (4it), (iv) and the fact that {1} = [1) € Ds,(A)
and A =[0) € Ds,(A). B

For D1, Dy € Ds(A) we put
D1—>D2:{CL€A:D10[CL)§D2}.

LEMMA 1.35. If Dy, Dy € Ds(A) then

(1) D1 — Dy € Ds(A);
(#i) If D € Ds(A), then D1 N D C Dy iff D C Dy — Do, that is,

Dy — Dy =sup{D € Ds(A): DiND C Dy}.

Proof. (7). Since [1) = {1} and [1) N D; = {1} C Dy we deduce that 1 € D; —
Ds.

Let z, y € A such that <y and x € D; — Dy , that is, [x) N D; C Ds. Then
[y) C [x),so [y)N Dy C [x)N Dy C Do, hence [y) N Dy C Do, that is, y € D1 — Dy .

To proof that (Ds)) is verified, let x, y € A such that z,y € D1 — Da, hence

[IE) N Dy € Dy and [y) N Dy C Do.

We deduce ([z) N D1) V ( [y) N D1) C Da, hence by Proposition 1.33, ([z)V
[y)) N D1 € Ds. By Proposition 1.32 we deduce that [x ©® y) N D; € Da, hence,
z Oy € Dy — Do, that is, D1 — Dy € DS(A)

(73). Suppose D1 N D C Dy and let x € D. Then [z) C D, hence [z) N D; C
DNDyC Dy sox € Dy — Dy, thatis, D C Dy — D>.
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Suppose D C D1 — Dy and let x € D1 N D. Then x € D, hence x € D1 — Do,
that is, [x) N D; € Ds. Since z € [x) N D; C Dy we obtain z € Ds, that is,
DiNnDCD,. N

For D1, Dy € Ds(A), we denote
Di«Dy={xe€A:xVy€ Dy, forall ye Di}.
PROPOSITION 1.36. For all D1, Dy € Ds(A), D1 *x Dy = D1 — Ds.

Proof. Let x € Dy * Dy and z € [x) N Dy, that is, z € Dy and z > 2™ for some
n > 1. Then x V z € Dsy. Since z = zV a"™ > (z V x)" (by Ir — c30) we deduce that
z € Do, hence x € D1 — Do, so D1 * Dy C Dy — Ds.

For converse inclusion, let € D1 — Ds. Thus [z) N Dy C Da, so, if y € D; then
xVy € [£)NDy, hence xVy € Dy. We deduce that © € Dyx Dy, so Dy — Dy C DyxDs.
Since Dy x Dy C D1 — D9 we deduce that Dy x Dy = Dy — Do. B

COROLLARY 1.37. (Ds(A),V,A,—,{1}) is a Heyting algebra, where for D €
Ds(4),

D*=D—-0=D—{l}={z€A:xVy=1, for everyy € D},
hence for every x € D and y € D*,x VvV y = 1. In particular, for every a € A,
[a)*={x € A:xVa=1}
PROPOSITION 1.38. If x,y € A, then [x ®y)* = [z)* N [y)*.

Proof. If a € [x®y)*, then aV(z®y) = 1. Since 20y < x,y then aVe = aVy = 1,
hence a € [z)* N [y)*, that is, [zt © y)* C [z)* N [y)*.

Let now a € [x)* N [y)*, thatis,aVz =aVy =1

By Ir — c30 we deduce aV (z ®y) > (aVz)©® (aVy) =1, hence aV (z®y) =1,
that is, a € [x O y)* .

It follows that [z)* N [y)* C [x ©® y)*, hence [z O y)* =[z)*N[y)*. A

THEOREM 1.39. If A is a residuated lattice, then the following assertions are
equivalent:
(1) (Ds(A),V,N,*,{1}, A) is a Boolean algebra;
(ii) Ewvery ds of A is principal and for every a € A there exists n > 1 such that
aV(a")*=1.

Proof. (i) = (ii). Let D € Ds(A) ; since Ds(A) is supposed Boolean algebra,
then DV D* = A. So, since 0 € A, there exist a € D, b € D* such that a ©® b= 0.

Since b € D* | by Corollary 1.37, it follow that a Vb = 1. By Ir — cog we
deduce that a Ab = a ® b = 0, that is, b is the complement of a in L(A). Hence
a,b € B(A) = B(L(A)).

If x € D, since b € D*, we have bVz = 1. Since a = a A (bV ) e (anb)V(aN
x) = a A x we deduce that a < z, that is, D = [a). Hence every ds of A is principal.

Let now x € A; since Ds(A) is a Boolean algebra, then [z) V [2)* = A &
[) (x) =A< {acA:a>cOa", with c € [x)" and n > 1} = A (see Proposition
1.29, (ii)).

So, since 0 € A, there exist ¢ € [z)* and n € w such that ¢ ® 2" = 0. Since
¢ € [x)*, then x Ve = 1. By lIr — ¢15, from ¢ ® 2" = 0 we deduce ¢ < (z™)*. So,
l=xzVe<zV(z")" hence zV (z™)* = 1.
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(79) = (7). By Corollary 1.37, Ds(A) is a Heyting algebra. To prove Ds(A) is
a Boolean algebra, we must show that for D € Ds(A) , D* = {1} only for D = A
([2], p- 175). By hypothesis every ds of A is principal, so we have a € A such that
D = [a).

Also, by hypothesis, for a € A, there is n € w such that a V (a")* = 1. By
Corollary 1.37, (a™)* € [a)* = {1}, hence (a")* = 1, that is, a” = 0. By Remark
1.10, we deduce that 0 € D, hence D = A. R

4. The spectrum of a residuated lattice

This section contains some characterizations for meet-irreducible and completely meet-
irreducible ds of a residuated lattice A.

DEerINITION 1.10. Let L be a lattice with the least element 0 and the greatest
element 1. We recall that (see Definition ??) an element p < 1 is finitely meet-
irreducible if p = x Ay implies p = x or p = y; an element p < 1 is meet-prime if
x Ay < pimplies ¢ < p or y < p. Dually is defined the notions of join-irreducible
and join-prime.

REMARK 1.14. If L is distributive, meet-irreducible and meet-prime elements are
the same.

These definitions can be extended to arbitrary meets and we obtain the concepts
of completely meet (join)-irreducible and completely meet (join)-prime elements,
which are no longer equivalent.

We denote by Ir(L) (Irc(L)) the set of all meet-irreducible (completely meet-
irreducible) elements of L.

PROPOSITION 1.40. Let D € Ds(A) and a,b € A such that aV b € D. Then
D(a)ND(b) = D.

Proof. Clearly, D C D(a) N D(b). To prove converse inclusion, let x € D(a) N
D(b). Then there are di,ds € D and m,n > 1 such that z > d; ®a™ and x > da @ b".
Then x > (dy ©a™)V (de ©b") > (d1 Vd2) ® (dy V") © (d2 Va™) ® (aVb)™, hence
x € D, that is, D(a) N D(b) C D, so we obtain the desired equality.l

COROLLARY 1.41. For D € Ds(A) the following are equivalent:
(Z) If D = Dy N Dy whith D1, Dy € DS(A), then D = Dy or D = Da;
(ii) Fora,b€ A, ifavbe D, thena € D orbe D.

Proof. (i) = (ii). If a,b € A such that a Vb € D, then, by Proposition 1.40,
D(a)ND(b) = D, hence D = D(a) or D = D(b),soa€ Dorbe D.

(73) = (i). Let Dy, Dy € Ds(A) such that D = Dy N Da. If by contrary D # D,
and D # Dy then there are a € D1\D and b € D2\D.

If denote c =a Vb, then c € D1 N Dy =D, soa € D orbée D, a contradiction.
|

DEFINITION 1.11. We say that P € Ds(A) is prime if P # A and P verify one
of the equivalent assertions from Corollary 1.41.

REMARK 1.15. Following Corollary 1.41, P € Ds(A), P # A is prime iff P is a
meet-irreducible ds in the lattice (Ds(A), Q).
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We denote Spec(A) = Ir(Ds(A))\{A} and by Irc(A) = Irc(Ds(A))\{A}.

ExAMPLE 1.12. Consider the example from Remark 1.1 (2) of residuated lattice
I = [0, 1] which is not @ BL— algebra. If v € [0,1],z > %, then x + x > %, hence
rOx =zxANx =z 50 [x) = [z,1]. Ifa,b € I and aV b € [x) = [z,1], then
a Vb = max{a,b} > x, hence a > = or b > z. So, a € [z) or b € [x), that is,
[x) € Spec(I).

EXAMPLE 1.13. Consider the residuated lattice A = {0,a,b,c,1} from Example
1.6. It is imediate to prove that

Ds(A) = {{1},{1,c},{1,a,c},{1,b,c}, A}
and
Spec(A) = {{1},{1,a,c},{1,b,c}}.
Since {1,c} = {1,a,c} N{1,b,c}, then {1,¢c} ¢ Spec(A). Since ® coincide with A,
the ds of A coincide with the filters of the associated lattice L(A).

PROPOSITION 1.42. For a proper ds P of A consider the following assertions:
(1) P € Spec(A);
(2) Ifa,be A, and aVb=1, thena € P orb € P;
(3) Foralla,be A,a—be P orb—ac€ P;
(4) A/P is a chain.

Then
(1) (1) = (2) but (2) # (1);
(1) (3) = (1) but (1) % (3);
(i7i) (4) = (1) but (1) % (4).
Proof. (i).(1) = (2) is clearly by Corollary 1.41, (since 1 € P).
(2) # (1) Consider A from Example 1.6. Then D = {1, c} ¢ Spec(A). Clearly, if

z,y € Aand xVy =1,thenz =1ory =1, hencex € Dory € D, but D ¢ Spec(A).

(ii). To prove (3) = (1), let a,b € A such that a Vb € P. By Ir — ¢g we obtain
aVb<[la—0b —bA[b— a)— a], hence (a — b) — b,(b — a) — a € P. If
a—be€ Pthenbe P;if b— a € P, then a € P, that is, P € Spec(A).

(1) # (3) Consider A from Example 1.6. Then P = {1} € Spec(A). We have
a—b=b#1landb—a=a#1, hencea—band b—a ¢ P.

(7i7). To prove (4) = (1) let a,b € A. Since A/P is supposed chain, a/P < b/P
or b/P < a/P < (by Proposition 1.23) a — b€ P or b — a € P and we apply (7).

(1) # (4) Consider A from Example 1.6 and P = {1} € Spec(A). Then A/P = A
is not a chain. W

REMARK 1.16. If A is a BL— algebra, then all assertions from the above propo-
sition are equivalent, see Theorem 3.23 and Proposition 3.30.

REMARK 1.17. If in Example 1.6 we consider P = {1,a,c} or P = {1,b,c}, then
P € Spec(A), and A/P = Ly = {0,1}.

REMARK 1.18. 1. In general, in a residuated lattice A, if P is a prime
ds and Q) is a proper ds such that P C @, then @ is not a prime ds.
For example, if consider A = {0,a,b,c,1} from Ezxample 1.6. We have
P={1},Q ={1,c} € Ds(A), P C Q,P = {1} € Spec(A) but Q is not a
prime ds (see Example 1.13);
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2. If the residuated lattice A is a BL— algebra and P is a prime ds, @ is a
proper ds such that P C Q, then Q is a prime ds, (see Theorem 3.25).

REMARK 1.19. If P is a prime ds of A, then A\P is an ideal in the lattice
L(A) = (A, A, V,0,1).

Proof. Since P is proper, 0 ¢ P, hence we have 0 € A\P. If a < b and b € A\P,
then a € A\P, since P is a ds of A. If a,b € A\P (that is, a ¢ P and b ¢ P), then
aVbe A\P, since P is a prime ds. B

THEOREM 1.43. (Prime ds theorem) If D € Ds(A) and I is an ideal of the
lattice L(A) such that DN I = &, then there is a prime ds P of A such that D C P
and PNI =g.

Proof. Let Fp = {D’ € Ds(A): D C D' and D'NI = (}. A routine application
of Zorn’s lemma shows that Fp has a maximal element P. Suppose by contrary that
P is not a prime deductive system, that is, there are a,b € A such that a Vb € P,
but a ¢ P,b ¢ P (see Corollary 1.41).

By the maximality of P we deduce that P(a), P(b) ¢ Fp, hence P(a) NI # ()
and P(b) NI # (), that is, there are py € P(a) NI and ps € P(b) N 1. By Proposition
1.29, p1 > f ®a™ and pa > g ® b"™, whith f,g € P and m,n natural numbers.

lr—c lr—c
Then p1Vps > (FO@™)V(gOb?) > (fVg)@(gVa™) o (fVb)o b va™) >
lr—c3o

> (fVvg) e(gva™) o (fVvb") e (aVb)™™. Since fVg,gVa™ fVvbreP
we deduce that p1 Vps € P; but p1 Vpo € I, hence PN 1 # &, a contradiction.
Hence P is a prime ds. B

REMARK 1.20. If A is a nontrivial residuated lattice, then any proper ds of A
can be extended to a prime ds.

REMARK 1.21. In general, if A is a residuated lattice, the set of proper ds includ-
ing a prime ds P of A is not a chain, but if the residuated lattice is a BL— algebra,
then the set of proper ds including a prime ds P of A is a chain, (see Theorem 3.26).
If we consider the residuated lattice from Example 1.6 and the prime ds P = {1}.
The set of proper ds including a prime ds P = {1} of A is {{1,¢c},{1,qa,c},{1,b,c}},
but {1,a,c} € {1,b,c} and {1,b,c} € {1,b,c}, so {{1,¢},{1,a,c},{1,b,c}} is not a
chain.

COROLLARY 1.44. Let D € Ds(A) and a € A\D. Then:
(i) There is P € Spec(A) such that D C P and a ¢ P;

(ii) D is the intersection of those prime ds which contain D;

(131) NSpec(A) = {1}.

PROPOSITION 1.45. For a proper ds P € Ds(A) the following are equivalent:

(i) P € Spec(A);

(i4) For every x,y € A\P there is z € A\P such that x < z and y < z.

Proof. (i) = (ii). Let P € Spec(A) and x,y € A\P. If by contrary, for every
a € A with z < a and y < a then a € P, since x,y < x V y we deduce that =V y
€ P, hence, x € P or y € P, a contradiction.

(ii) = (i). Suppose by contrary that there exist Di, Do € Ds(A) such that
DyNDy =P and P # Dy, P # Ds. So, we have x € D;\P and y € Dy\P. By
hypothesis there is z € A\ P such that z < z and y < z.

We deduce z € D1 N Dy = P, a contradiction.
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COROLLARY 1.46. For a proper ds P € Ds(A) the following are equivalent:

(i) P € Spec(A);
(43) If v,y € A and [x)N[y) C P, thenx € P ory € P.

Proof. (i) = (ii). Let z,y € A such that [x) N]y) C P and suppose by contrary
that =, y ¢ P. Then by Proposition 1.45 there is z € A\P such that z < z and
y < z.Hence z € [zr)N[y) C P,so z € P, a contradiction.

(ii) = (7). Let z,y € A such that xt Vy € P. Then [zVy ) C P .

Since [z Vy) = [z)N[y) (by Proposition 1.32, (iii)) we deduce that [x)N[y) C P,
hence, by hypothesis, x € P or y € P, that is, P € Spec(A4). &

COROLLARY 1.47. For a proper ds P € Ds(A) the following are equivalent:
(i) P € Spec(A);
(ii) For every o, € A/P,a # 1,8 # 1 there is v € A/P,v # 1 such that
a<y, B<7.

Proof. (i) = (ii). Clearly, by Proposition 1.45 and Proposition 1.23, since if
a = a/P, with a € A, then the condition « # 1 is equivalent with a ¢ P.

(7i) = (i). Let o, € A/P. Then in A/P, « = a/P # 1 and = b/P # 1. By
hypothesis there is v = ¢/P # 1 (that is, ¢ ¢ P) such that a, 3 < ~ equivalent with
a— c,b— ce P If consider d = (b — ¢) — ((a — ¢) — ¢), then by Ir — cg, we
deduce that a,b < d. Since ¢ ¢ P we deduce that d ¢ P, hence by Proposition 1.45,
we deduce that P € Spec(A). B

THEOREM 1.48. For a proper ds P € Ds(A) the following are equivalent:
(i) P € Spec(A);
(ii) For every D € Ds(A), D — P =P or D CP.

Proof. (i) = (ii). Let P € Spec(A). Since Ds(A) is a Heyting algebra (by
Corollary 1.37) for D € Ds(A) we have

P=(D—-P)n((D— P)—P)

andsoP=D—PorP=(D—P)—PIfP=(D—P)— Pthen DCP.

(i) = (i). Let Dy, Dy € Ds(A) such that D; N Dy = P. Then Dy C Dy — P
(see Lemma 1.35, (ii)) and so, if Dy C P, then P = D5 and if Dy — P = P, then
P = Dy, hence P € Spec(A). R

DEFINITION 1.12. ([73], p.58) Let (L,V,A) a lattice with 0 and € L. An
element =* € L is a pseudocomplement of x if x Ax* =0, and x Ay = 0 implies
that y < z* (that is, 2* = sup{y € L : x Ay = 0}). The lattice L is called
pseudocomplemented if every element x € L has a pseudocomplement z* € L.

REMARK 1.22. If (L,V,A,—,0) is a Heyting algebra, then (L,V,A,*,0) is a
pseudocomplemented lattice, where for every x € L, x* = x — 0.

We recall that if (L,V,A*,0,1) is a pseudocomplemented distributive lattice,
then two subsets associated with L ([2], p.153) are

Rg(L)={x € L: 2™ ==z} and
D(L)={x € L:z" =0}.
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The elements of Rg(L) are called regular and those of D(L) dense. Note that
{0,1} € Rg(L),1 € D(L) and D(L) is a filter in L and Rg(L) is a Boolean algebra
under the operations induced by the ordering on L ([2], p.157).

COROLLARY 1.49. For a residuated lattice A, Spec(A) C D(Ds(A))URg(Ds(A)).

Proof. Let P € Spec(A) and D = P* € Ds(A); then by Theorem 1.48, D C P
or D — P = P equivalent with P* C P or P* — P = P. Since Ds(A) is a Heyting
algebra then P* — P = P** so P** = A or P** = P equivalent with P* = {1} or
P** = P, that is P € D(Ds(A)) U Rg(Ds(A)). &

Relative to the uniqueness of deductive systems as intersection of primes we
have:

THEOREM 1.50. If every D € Ds(A) has a unique representation as an inter-
section of elements of Spec(A), then (Ds(A),V,A\,*,{1}, A) is a Boolean algebra.

Proof. Let D € Ds(A) and D' = N{M € Spec(A) : D ¢ M} € Ds(A). By
Corollary 1.44, (ii), DN D" = N{M € Spec(A)} = {1}; if DV D" # A, then by
Corollary 1.44, (i), there exists D" € Spec(A) such that DV D' C D" and D" # A.
Consequently, D" has two representations D' = N{M € Spec(A) : D ¢ M} =
D" N (N{M € Spec(A) : D ¢ M}), which is contradictory. Therefore DV D' = A
and so Ds(A) is a Boolean algebra. B

REMARK 1.23. For the case of distributive lattice see [73], p.77.
As an immediate consequence of Zorn’s lemma we obtain:

LEMMA 1.51. If D € Ds(A), D # A and a ¢ D, then there exists D, € Ds(A)
mazximal with the property that D C D, and a ¢ D,.

Proof. Let Fp, = {D' € Ds(A) : D C D' and a ¢ D'}; clearly Fp, # 0,
because D € Fp 4.

If C is a chain in Fp, then UC € Fp,. By Zorn’s lemma there exists a ds D,
which is maximal subject to containing D and a ¢ D,. B

DEFINITION 1.13. D € Ds(A), D # A is called mazimal relative to a if a ¢ D
and if D' € Ds(A) is proper such that a ¢ D', and D C D', then D = D'.

If in Lemma 1.51 we consider D = {1} we obtain:
COROLLARY 1.52. For any a € A,a # 1, there is a ds D, maximal relative to a.

THEOREM 1.53. For D € Ds(A),D # A the following are equivalent:
(i) D € Irc(A);
(#i) There is a € A such that D is mazimal relative to a.
Proof. (i) = (ii). See ([69], p.248), since by Proposition 1.33, Ds(A) is an
algebraic lattice.
(17) = (7). Let D € Ds(A) maximal relative to a and suppose D = iQIDi with

D; € Ds(A) for every i € I. Since a ¢ D there is j € I such that a ¢ D;. So, a ¢ D;
and D C D;. By the maximality of D we deduce that D = Dj, that is, D € Irc(A).
]

THEOREM 1.54. Let D € Ds(A) be a ds,D # A and a € A\D. Then the
following are equivalent:
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(i) D is mazximal relative to a;
(ii) For every x € A\D there is n > 1 such that 2" — a € D.

Proof. (i) = (ii). Let x € A\D. If a ¢ D(z) = DV [z), since D C D(z) then
D(z) = A (by the maximality of D) hence a € D(x), a contradiction. We deduce
that a € D(x), hence a > d ® 2™, with d € D and n > 1. Then d < 2™ — a, hence
" —a€D.

(i) = (i). We suppose by contrary that there is D' € Ds(A), D’ # A such that
a ¢ D' and D C D’. Then there is zg € D’ such that xy ¢ D, hence by hypothesis
there is n > 1 such that 2 — a € D C D'. Thus from 2 — a € D" and z} € D/,
we deduce that a € D’ , a contradiction. l

COROLLARY 1.55. For a ds D € Ds(A), D # A the following are equivalent:

(i) D e Irc(A);
(7i) In the set A/D\{1} we have an element p # 1 with the property that for
every o € A/D\{1} there is n > 1 such that o™ < p.

Proof.(i) = (ii). By Theorem 1.53, D is maximal relative to an element a ¢ D;
then, if denote p =a/D € A/D, p # 1 (since a ¢ D ) and for every a = b/D, o # 1
(that is b ¢ D) by Theorem 1.54 there is n > 1 such that " — a € D, that is,
a™ <p.

(7i) = (i). Let p=a/D € A/D\{1}, (that is,a ¢ D ) and a = b/D € A/D\{1},
(that is, b ¢ D). By hypothesis there is n > 1 such that o < p equivalent with
b"™ — a € D. Then, by Theorem 1.54, we deduce that D € Irc(A). R

DEFINITION 1.14. A ds P of A is a minimal prime if P € Spec(A) and, whenever
Q € Spec(A) and Q C P, we have P = Q.

PROPOSITION 1.56. If P is a minimal prime ds, then for any a € P there is
b e A\P such that a Vb= 1.

Proof. Let P be a minimal prime ds and a € P.
We define the set

Se ={x € A: thereis b € A\P such that a Vb > x}.

If b € A\P then aVb >b,s0b € S, that is, A\P C S,. Moreover, a € S,
because a V0 =a > a and 0 € A\P.

We shall prove that S, is an ideal of the lattice L(A).

Let z,y € A such that y € S, and z < y. Thus, there is b € A\ P such that
aVb>y>x henceaVb>zx s0ox €S,

If x,y € S, then there are b,c € A\P such that aVb > x and a V¢ > y. If
we suppose that bV c € P we get b € P or ¢ € P because P is a prime ds. Thus,
bVee AA\Pand aV (bVec)>axVy,soxVyeE S, hence S, is an ideal.

Now, we suppose that 1 ¢ S,. It follows that {1} NS, = & so, by Theorem 1.43,
there is a prime ds @ such that S, NQ = @. Since A\P C S, we get @ C P. But @
is prime and P is minimal prime, so P = Q. On the other hand, a € S,, so a ¢ Q.
We get a € P\Q , which contradicts the fact that P = @. Thus, our assumption
that 1 ¢ S, is false. We conclude that 1 € S, and the proof is finished. B
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5. Maximal deductive systems; archimedean and hyperarchimedean
residuated lattices

In this section we introduce the notions of archimedean and hyperarchimedean residu-
ated lattice and prove two theorems of Nachbin type for residuated lattices.

DEFINITION 1.15. A ds of A is mazimal if it is proper and it is not contained
in any other proper ds.

The following result is an immediate consequence of Zorn’s lemma:

PROPOSITION 1.57. In a nontrivial residuated lattice A, every proper ds can be
extended to a mazximal ds.

We shall denote by Max(A) the set of all maximal ds of A.
PROPOSITION 1.58. Maxz(A) C Spec(A).

Proof. Let M € Max(A) and Dy, Dy € Ds(A) such that M = D; N Dy. By the
maximality of M we deduce that M = Dy or M = Dy, hence M € Spec(A) (see
Corollary 1.41). H

We have:

THEOREM 1.59. If D is a proper ds of A, then the following are equivalent:

(1) D is a maximal ds;
(i) For any x ¢ D there exist d € D,n > 1 such that d ® 2" = 0.

Proof. (i) = (ii). If v ¢ D, then [D U {x}) = A, hence 0 € [D U {z}). By
Proposition 1.29, (iii), there exist n > 1 and d € D such that d ® 2" < 0. Thus
doz™=0.

(7) = (7). Assume there is a proper ds D’ such that D C D’. Then there exists
x € D’ such that x ¢ D. By hypothesis there exist d € D, n > 1 such that doz™ = 0.
But z,d € D’ hence we obtain 0 € D’, a contradiction. ll

COROLLARY 1.60. If M is a proper ds of A, then the following are equivalent:
(i) M is a maximal ds;

(ii) For any x € A,x ¢ M iff (2"™)* € M, for some n > 1.

THEOREM 1.61. If M is a proper ds of A, then the following are equivalent:
(i) M is a mazimal ds,

(ii) A/M s locally finite.

Proof. (i) < (i7). It follows by observing that the condition (ii) can be re-
formulated in the following way: for any = € A,z/M # 1/M (that is, x ¢ M),
(x/M)" =0/M, for some n > 1< 2"/M =0/M < (") € M. R

DEFINITION 1.16. The intersection of the maximal ds of A is called the radical
of A and will be denoted by Rad(A). It is obvious that Rad(A) € Ds(A).

EXAMPLE 1.14. Let A be the 5—element residuated lattice from Example 1.6. It is
easy to see that A has two mazimal ds: {1,a,c} and {1,b, c}, hence Rad(A) = {1, c}.

For any n > 1 and a € A we denote na = [(a*)"]*.

THEOREM 1.62. ([63], [92])



5. MAXIMAL DEDUCTIVE SYSTEMS; ARCHIMEDEAN AND HYPERARCHIMEDEAN RESIDUATED LATTICBES

(1) Rad(A) = {x € A: for any n > 1 there exists m > 1 such that m(z") =
1}y ={x € A: for anyn > 1 there is k, > 1 such that [(z")*]*» = 0} (that
is, Rad(A) is the set of unityes of A);

(7i) D(A) € Ds(A) and D(A) C Rad(A).

For a residuated lattice A we make the following notation:
Radpr(A)={a€ A: (a")" <a, for every n > 1}.
PROPOSITION 1.63. For a residuated lattice A, Radpr(A) C Rad(A).

Proof. Let a ¢ Rad(A), hence there is a maximal ds M with a ¢ M. Then
there is n such that (a)* € M, (by Corollary 1.60). If suppose a € Radpy(A) then
in particular for this n we have (a")* < a, hence a € M, by (Ds}), a contradiction.
Hence (a™)* £ a, i.e. a ¢ Radpr(A), that is, Radpr(A) C Rad(A). R

REMARK 1.24. If A is a BL— algebra, then Rad(A) = Radpr,(A).
PROPOSITION 1.64. If A is a residuated lattice, then B(A) N Rad(A) = {1}.

Proof. Obviously, 1 € B(A) N Rad(A). Let e € B(A),e # 1. By Theorem 1.43,
there is a prime ds P of A such that e ¢ P. By Proposition 1.16, (ii), we have
eVe*=1¢€ P, soe* € P (since P is prime and e ¢ P). By Proposition 1.57, there
is a maximal ds M such that P C M. It follows that e* € M, so e ¢ M. Thus,
e ¢ Rad(A). &

DEFINITION 1.17. An element a of a residuated lattice A is called infinitesimal
if a # 1 and a™ > a* for any n > 1.

We denote by Inf(A) the set of all infinitesimals of A.

ExampLE 1.15. If A = {0,a,b,c,1} is the 5—element residuated lattice from
Ezample 1.6, then a is not infinitesimal (since a* = b and a # b); analogously, we
deduce that b is not infinitesimal Since ¢* = 0, then ¢ = ¢ > 0 = ¢*, for every
natural number n, hence c is an infinitesimal element of A. So, Inf(A) = {c}.

LEMMA 1.65. For every a,b € A, we have:
(Ir —cq3) a™ © b < (a ® b)*™.

Proof. By Ir — ¢y9, (a® b)* = a — b*, so (a® b)* ® a < b*. By Ir — ¢11 we
deduce that b** < [(a® b)* ® a]* = (a® b)* — a*, so b © (a® b)* < a*. Then
a™ <[ © (a®@b)*]* =b"* — (a®b)*™, that is, a™ © 0™ < (e © b)**. A

COROLLARY 1.66. For every a € A andn > 1 we have:
(l?“ _ C44) (a**)n S (an)** .

PROPOSITION 1.67. For every nonunit element a of A (a # 1), a is infinitesimal
implies a € Rad(A).

Proof. Let a # 1 be an infinitesimal and suppose a ¢ Rad(A). Thus, there is a
maximal ds M of A such that a ¢ M. By Corollary 1.60, there is n > 1 such that
(a™)* € M. By hypothesis a™ > a* hence (a")* < a**, so a™ € M. By lr — cyq we
deduce that (a™)" < (a™)**, hence (a™)** € M. If denote b = (a™)* we conclude
that b,b* € M, hence 0 = b* ©® b € M, that is, M = A, a contradiction.ll

COROLLARY 1.68. Inf(A) C Rad(A).
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REMARK 1.25. 1. If A is the residuated lattice from Fzample 1.6, then
Inf(A) C Rad(A), since Inf(A) = {c} and Rad(A) = {1, c} (see Ezamples
1.1/ and 1.15),

2. In general, Rad(A)\{1} € Inf(A). Indeed, let A be the residuated lat-
tice from Example 1.7. Then the ds of A are {1},{1,a,b,c} and A. It is
easy to see that A has two prime ds: {1},{1,a,b,c} and a unique maz-
imal ds {1,a,b,c}; hence Rad(A) = {1,a,b,c}. Obviously, a is an infin-
itesimal element of A (a™ = ¢, for every n > 1, a* = d and ¢ > d).
But (b> = ¢,b* = e and c,e are incomparable), (> = c,c* = f and ¢, f
are incomparable), (d*> = 0,d* = a and a > 0), (2 = d,e* = b and
d<b),(fP=df*=candd < ¢),(0* =0,00 =1 and 0 < 1), so we
conclude that b,c,d,e, f,0 ¢ Inf(A). It follows that Inf(A) = {a}. Thus
Inf(A) C Rad(A) and Rad(A)\{1} € Inf(A)

REMARK 1.26. If A is a BL algebra, then Rad(A)\{1} = Inf(A), see Proposi-
tion 3.52.

PROPOSITION 1.69. Fora € A andn > 1, the following assertions are equivalent:
(1): a™ € B(A);
(it): aV (a")" =
Proof. (i) =
a" Vv (a")* = 1. B
aV(a™)* =1.
(#4) = (7). Since a V
we obtain 1 = a” Vv [(a")
deduce that " € B(A). B

(73). Since a™ € B(A), by Proposition 1.16 we deduce that
ut " < a,s0 1 = a” Vv (a")* < aV (a")*. We obtain that
(a")* =1 "= an v [(@")*]" = 1. Since [(a")*]" < ("),
" <a" Vv (a™)*, so a” V (a")* = 1. By Proposition 1.16 we

LEMMA 1.70. If a € A and n > 1 then the following hold: o™ € B(A) and
a™ > a*, implies a = 1.

Proof. By Proposition 1.69, a” € B(A) < a V (a™)* = 1. By hypothesis,
a™ > a*. By Ir — c12 we obtain (a")* <a**,so 1 =aV (a")* <aVa™ =a™, hence
a** =1, that is, a* = 0.

Then (¢ ®a) = 0=a — (a -0 =a —0=a" =
(a?)* = 0. Recursively we obtain that (a™)* = 0. Then a V (a
a=11

0, we deduce that
ny* :a\/O— 1, hence

LEMMA 1.71. In any residuated lattice A the following are equivalent:

(i) For every a € A,a™ > a* for any n > 1 implies a = 1;
(ii) For every a,b € A,a"™ > b* for any n > 1 implies a Vb = 1,
(131) For every a,b € A,a™ > b* for anyn > 1 impliesa — b=>b andb — a = a.

Proof. (i) = (ii). Let a,b € A such that " > b* for any n > 1. We get
(aVb)*=a*ANb* <b* <a” < (aVb)" hence (aVb)" > (aVb)*, for any n > 1. By
hypothesis, a Vb = 1.

(#9) = (4i3). Since 1 = a Vb < [(b — a) — a| A [(a — b) — b] we deduce that
(b—a) —a=(a—b) —-b=1,thatis,a >b=band b — a =a.

(791) = (7). Let a € A such that o > a* for any n > 1. If consider b = a we
obtainaVb=1&aVa=1<a=101
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DEFINITION 1.18. A residuated lattice A is called archimedean if the equivalent
conditions from Lemma 1.71 are satisfied.

One can easily remark that a residuated lattice is archimedean iff it has no
infinitesimals.

ExampPLE 1.16. 1. Consider A = {0,a,b,c,1} the residuated lattice from
Ezample 1.6. Since ™ = c¢ for every natural number n, and ¢* = 0 we
deduce that c" > ¢* for everyn > 1 but ¢ # 1, hence A is not archimedean;

2. Consider A = {0,a,b,c,d,e, f,1} the residuated lattice from Example 1.7.
We have a* = d,b* =e,c* = f,d* = a,e* =b and f* = c. Sincea > d = a*
and a™ = ¢ for everyn > 2 and ¢ > d = a* we deduce that a™ > a*, for
every n > 1, hence A is also not archimedean;

3. Consider A = {0,a,b,c,d, 1} the residuated lattice from Example 1.9. We
have a™ = a for every n > 1 and a* = d hence a™ # a* for every n >
1;6" =0 for every n > 1 and b* = c hence b" } b* for everyn > 1; ¢ = a
* ¢t =b,d" =d for every n > 1 and d* = a, hence d" } d* = a, for every
n > 1. Hence if x € A and x™ > x*, for everyn > 1, then x = 1, that is, A
s archimedean.

DEFINITION 1.19. Let A be a residuated lattice. An element a € A is called
archimedean if it satisfy the condition:

there is n > 1 such that a™ € B(A),

(equivalent by Proposition 1.69 with a V (a™)* = 1). A residuated lattice A is called
hyperarchimedean if all its elements are archimedean.

REMARK 1.27. If the residuated lattice A is a BL(MV)— algebra we obtain the
Definition 3.12(respectively, 2.7 and 2.8).

ExampPLE 1.17. 1. Consider A ={0,a,b,c,d, 1} the residuated lattice from
Ezxample 1.9; By Ezxample 1.16 we deduce that A is archimedean. By
Remark 1.7 (3) we have B(A) = {0,a,d,1}. Since a®> = a € B(A),
> =0 € B(A),c? = a € B(A) and d> = d € B(A) we deduce that A
s even hyperarchimedean.

2. Consider A = {0,a,b,¢,d,e, f,g,1} the residuated lattice from FEzample
1.10; we have B(A) = {0,b, f,1} (see Remark 1.7). Since a* = 0 €
B(A),b> =be B(A),c?=0¢€ B(A), d®> =0¢€ B(A),e? =be B(A), f* =
f € B(A) and g*> = f € B(A) we deduce that A is hyperarchimedean.

3. If consider A ={0,a,b,c,d,1} the residuated lattice from Ezample 1.8 we
deduce that B(A) = {0,1}. Since a™ = a ¢ B(A), for every n > 1, we
deduce that A is not hyperarchimedean; since a* = 0, then a™ = a > 0 = o,
for everyn > 1, but a # 1, so A is not even archimedean.

From Lemma 1.70 we deduce:
COROLLARY 1.72. Ewvery hyperarchimedean residuated lattice is archimedean.

THEOREM 1.73. For a residuated lattice A, if A is hyperarchimedean, then for
any ds D, the quotient residuated lattice A/D is archimedean.

Proof. To prove A/D is archimedean, let z = a/D € A/D such that z" > z*
for any n > 1. By hypothesis, there is m > 1 such that aV(a™)* = 1, i.e. a™ € B(A).
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It follows that x V (z™)* =1 (in A/D), i.e. 2™ € B(A/D). In particular we have
2™ > x*, so by Lemma 1.70 we deduce that = = 1, that is, A/D is archimedean. B
We recall a theorem of Nachbin type for lattices (see [2], p.73):

THEOREM 1.74. A distributive lattice is relatively complemented iff every prime
ideal is mazximal.

Now, we present an analogously theorem of Theorem 1.74 for residuated lattices:

THEOREM 1.75. For a residuated lattice A the following assertions are equivalent:

(i) A is hyperarchimedean;
(7i) Spec(A) = Max(A);

(7i1) Any prime ds is minimal prime.

Proof. (i) = (ii). Since Max(A) C Spec(A), we only have to prove that any
prime ds of A is maximal. Let P € Spec(A). To prove P € Max(A), let x ¢ P. Since
A is hyperarchimedean there is n > 1 such that 2" € B(A), hence z V (z")* = 1,
(by Proposition 1.69). Since 1 € P we deduce that z V (2™)* € P. Since « ¢ P, by
Corollary 1.41 we deduce that (z™)* € P, that is, P € Maxz(A) (see Corollary 1.60).

(ii) = (i7i). Let P, @ prime ds such that P C . By hypothesis, P is maximal,
so P = @Q. Thus () is minimal prime.

(791) = (7). Let a be a nonunit element from A. We shall prove that a is an
archimedean element. If we denote

D=a)"={x€ A:aVaz=1} (by Corollary 1.37),
then D € Ds(A). Since a # 1, then a ¢ D and we consider
D'=D(a)={r€A:x2>do®a" for some d € D and n > 1}.

If we suppose that D’ is a proper ds of A, then by Corollary 1.43, there is a prime
ds P such that D’ C P. By hypothesis, P is a minimal prime. Since a € P, using
Proposition 1.56 , we infer that there is x € A\ P such that a vz = 1. It follows that
x € D C D' C P, hence x € P, so we get a contradiction.

Thus D’ is not proper, so 0 € D’, hence there is n > 1 and d € D such that
d®a"=0. Thusd < (a")* . Weget aVd<aV(a")*.But aVvd=1 (since d € D),
so we obtain that a V (a™)* = 1, that is a is an archimedean element. Wl

In the end of this section we recall another theorem of Nachbin for lattices (see

(73], p. 76):

THEOREM 1.76. Let L be a distributive lattice with 0 and 1. Then L is a Boolean
lattice iff P(L) is unordered (where P(L) is there set of all prime ideals of L).

Now, we present an analogously theorem of Theorem 1.76 for residuated lattices:

THEOREM 1.77. For a residuated lattice A the following assertions are equivalent:

(i) A is hyperarchimedean,
(73) (Spec(A), C) is unordered.

Proof. (i) = (ii). Let A be hyperarchimedean, and suppose by contrary that
there are P,Q € Spec(A),P C Q. Chose a € Q\P. Then a"™ € Q for every n > 1,
hence (a")* ¢ @ and (a™)* ¢ P for every n > 1. Since A is hyperarchimedean, there
exists n > 1 such that a V (a™)* =1 (see Proposition 1.69). Then aV (a")* =1 € P,
hence (a™)* € P (since a ¢ P, see Corollary 1.41 ), a contradiction.
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(73) = (i). Now let (Spec(A),C) be unordered and a € A, and let us assume
that a is not archimedean element, that is, a™ ¢ B(A) for every n > 1.

The set I, = {zx € A: 2z ®a"” = 0 for some n > 1} is an ideal for the lattice
L(A) = (A, A, V,0,1). Indeed, if x,y € A,y € I, and x < gy, then y©a"™ = 0 for some
n > 1. Since x ® a” <y ® a"™ = 0 we deduce that z ® a™ = 0, hence z € I,. Also, if
x,y € I, then there are m,n > 1 such that xt®a™ = y©a™ = 0. If denote p = m+n,
thenz®aP =y©aP =0. By Ir —cg, (zVy)©al = (x©@a?)V(y©aP) =0V 0 =0,
hence zVy € I,, so I, is an ideal of L(A). Consider I = the ideal of L(A) generated
by I, U{a} = (I, U{a}] = (a] vV I, (where (a] = {z € A: 2z <a}).

Clearly I = {x € A: 2z < yVa with y € I,}. The ideal I does not contain 1,
since if suppose 1 € I, then there exist y € I, and n > 1 such that y Va = 1 and
y©a” =0.Bylr—cs, y"Va" = 1. Since y" < y we deduce that y™ ® a™ = 0, so
by Ir — cag, y™ A a™ = 0, hence a™ € B(A), a contradiction.

Following Theorem 1.43 (with D = {1}), there is a prime ds P of A (i.e. P €
Spec(A)) such that PN 1T = 0.

Consider P, = the ds generated by PU {a} (i. e. P, = P(a) =[a) VP ={x €
A:xz>y®a” with y € P and n > 1}); here, we recall that [a) is the ds generated
by {a}— see Proposition 1.29, (ii).

Note that 0 ¢ P,, otherwise y ® a™ = 0 for some y € P and n > 1. Then
yePnI=40.

Following Theorem 1.43 (with D = P,), there exists a prime ds @ of A (i.e.
Q € Spec(A)) such that 0 ¢ @ and P, C Q.

Then P C @, a contradiction since (Spec(A), C) is supposed unordered. B

6. Residuated lattice of fractions relative to a A— closed system

In this section, taking as a guide-line the case of rings we introduce for a resid-
uated lattice A the notion of residuated lattice of fractions relative to a A-closed
system S. In particular if A is an MV -algebra (pseudo MV-algebra), BL-algebra,
(pseudo BL-algebra) we obtain the results from Chapters 6, 7 and 8 (see Remarks
1.31 and ?7).

DEFINITION 1.20. A nonempty subset S C A is called A—closed system in A if
1€ S and z,y € S implies z Ay € S.

If P is a prime ideal of the underlying lattice L(A) = (A, A, V) (that is P # A
and if z,y € A such that xt Ay € P, then x € P ory € P ), then S = A\P is a
A—closed system.

We denote by S(A) the set of all A—closed system of A (clearly {1}, A € S(A4)).

For S € S(A), on A we consider the relation 8¢ defined by (x,y) € g iff there
ise€ SN B(A) such that z Ae =y Ae.

LEMMA 1.78. The relation 0g is a congruence on A.

Proof. The reflexivity (since 1 € S N B(A)) and the symmetry of fg are
immediately. To prove the transitivity of 6g, let (z,y), (y,2) € 5. Thus there are
e, f € SNB(A) such that zAe = yAe and yAf = zAf. If denote g = eAf € SNB(A),
then gAz = (eANf)hxz = (eANx)Nf=(yAhe)Nf=wyANf)Ahe=(zNf)A
e=zA(fNe)=2zAg, hence (z,z) € 0g .
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To prove the compatibility of g with the operations A, V,® and — , let x,y, 2,t €
A such that (z,y) € 0g and (z,t) € g. Thus there are e, f € SN B(A) such that
xANe=yANeand zA f=tA f; we denote g =e A f € SN B(A), see Remark 1.5.
We obtain:

(@A)Ng=(xN2)N(enf)=(xNne)NzAf)=(yne)NENF)=(yAt)Ag,
hence (z A z,y At) € g and

lr

(@V2)Ag "= (av2)0g "= (20 g) V(2 09) "= [(eAf) Azl V[(eAf)Az] =

=lena)nfIVien(fAz)]=[eAy) AfIVIeA(fAH)] =

—[(erAH)AYVIEAHA] "= (yog V(tog "= (v og "= (yVi)Ag.
hence (zV z,y Vt) € Og.

By Ir — ¢35 we obtain:
(O2)ANg=(202)0g=(20e)0 20 f)=(Ae)O=Af)=(WAe)O(ANSf)=

=yoe)otof)=wot)og=(yot)Ay,
hence (z ® z,y ®t) € g and by Ir — csg:

(—=2)ANg=(1—>2)09=90[g0z) > (902)]=9g0[(gNT) = (gN2)]=

=g0lgNny) = (@A) =g0[(gOy) = (9O =y —t)Og=(y—1t)Ag,

hence (x — z,y — t) € 05 .1

For x € A we denote by x/S the equivalence class of = relative to g and
by A[S] = A/fs. By ps : A — A[S] we denote the canonical map defined by
ps(x) = x/S, for every x € A. Clearly, A[S] become a residuated lattice, where
0=0/S,1=1/S and for every z,y € A,x/SANy/S = (x Ny)/S,x/SVy/S =
(xVy)/S,z/SeOy/S = (x0oy)/Sz/S — y/S = (x — y)/S. So, ps is an onto
morphism of residuated lattices.

REMARK 1.28. Since for every s € SN B(A), s \s = s A1 we deduce that
s/S=1/S =1, hence ps(SN B(A)) = {1}.

REMARK 1.29. If S = {1} or S is such that 1 € S and SN(B(A)\{1}) = &, then
forz,y € A, (z,y) €0s <= x N1 =yA1l<= x =y, hence in this case A[S] = A.

REMARK 1.30. If S is an A—closed system such that 0 € S (for example S = A
or S = B(A)), then for every xz,y € A, (x,y) € Og (since x N0 = y A0 and
0 € SN B(A)), hence in this case A[S] = 0.

PROPOSITION 1.79. Ifa € A, then a/S € B(A[S]) iff there is e € SN B(A) such
that a vV a* > e. So, if e € B(A), then e/S € B(A[S]).

Proof. For a € A, we have by Proposition 1.16, a/S € B(A[S]) < a/S V
(a/S)* =1« (aVa*)/S =1/S iff there is e € SN B(A) such that (a Va*) ANe =
lhNe=e& aVa* >e.

If e € B(A), since 1 € SN B(A) and 1 = eV e* > 1, we deduce that e/S €
B(A[S]).
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THEOREM 1.80. If A" is a residuated lattice and f : A — A’ is an morphism of
residuated lattices such that f(S N B(A)) = {1}, then there is an unique morphism
of residuated lattices f': A[S] — A’ such that the diagram

A B AlS]
N e
f I
A/
is commutative (i.e. f'opg = f).

Proof. If z,y € A and ps(z) = ps(y), then (z,y) € Og, hence there is e €
S N B(A) such that x A e = y A e. Since f is morphism of residuated lattices, we
obtain that f(zAe) = f(yAe) < f(x)Afle) = f(y)ANfle) & f(x)AN1 = f(y) ANl &
Fw) = £(y).

From this remark, we deduce that the map f’: A[S] — A’ defined for x € A by
f(x/S) = f(x) is correct defined. Clearly, f’ is an morphism of residuated lattices.
The unicity of f’ follows from the fact that pg is an onto map.H

DEFINITION 1.21. Theorem 1.80 allows us to call A[S] the residuated lattice of
fractions relative to the AN—closed system S.

REMARK 1.31. If the residuated lattice A is a BL— algebra, then x/S Ny/S =
(xANy)/S=(x6(r—y)/S=2/SE (/S —y/S) and (z/S — y/S)V (y/S —
z/S)=((x —=y)V(y—=x)/S=1/S =1, hence A[S] is a BL— algebra. In this
case, A[S] is the BL-algebra of fractions relative to the N—-closed system S, and we
obtain the Theorem 6.3 Analogous if A is a pseudo BL— algebra, so we obtain the
Theorem 8.3.

Suppose now that P is a prime ideal of the underlying lattice L(A). Then P # A
and S = A\P is a A—closed system in A;we denote A[S] by Ap and Ip = {x/S :
x € P}.

LEMMA 1.81. If x € A such that x/S € Ip, then x € P.

Proof. Ifz/S € Ip, then x/S = y/S with y € P = there is e € SN B(A) such
that tAe=yNe<y=xANe€P = x &P (since Pis prime and e € S = A\P,
hence e ¢ P). R

PROPOSITION 1.82. The set Ip is a proper prime ideal of the underlying lattice
L(Ap).

Proof. If z,y € P, then /S V y/S = (x Vy)/S € Ap (since z Vy € P).
Consider now = € P and y € A such that y/S < x/S. Then y/S — z/S =1/S <
(y —x)/S=1/S < there is e € SN B(A) such that e A (y — ) = e A1 = e, hence
e<y—zrxsey<zrseAy <z TheneAy € P, hence y € P, soy/S € Ip,
that is, Ip is an ideal of Ap.

If by contrary, Ip = Ap, then 1/S € Ip, hence 1 € P (by Lemma 1.81) <
P = A, a contradiction.

To prove that Ip is prime, let x,y € A such that x/SAy/S € Ip. Then (zAy)/S €
Ip = xANy€P,by Lemma 1.81 ==z €PoryeP =z/S € Ipory/S € Ip, hence
Ip is a proper prime ideal in lattice L(Ap). B
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REMARK 1.32. Following the model of commutative rings, the process of passing
from A to Ap is called localization at P (taking as a guide-line the case of rings, see

[81]).



CHAPTER 2

MYV-algebras

MV-algebras are particular residuated lattices.

MV-algebras were originally introduced by Chang in [42] in order to give an algebraic
counterpart of the Lukasiewicz many valued logic (MV = many valued). Just take a quick
view over this domain. In 1958, Chang defined the MV-algebras and in 1959 he also proved
the completeness theorem which stated the real unit interval [0, 1] as a standard model
of this logic. The structures directly obtained from Lukasiewicz logic, in the sense that
the basic operations coincide with the basic logical connectives (implication and negation),
were defined by Font, Rodriguez and Torrens in [62] under the name of Wajsberg algebras.
Wajsberg algebras and MV - algebras are categorically isomorphic. One great event in the
theory of MV-algebras was Mundici’s theorem from 1986: the category of MV-algebras is
equivalent to the category of abelian lattice-ordered groups with strong unit [105]. Through
its consequences, this theorem can be identified at the origins of a considerable number of
results on MV-algebras.

In the last years, one can distinguish at least three fruitful research directions, coexisting
and communicating with deeper and deeper researches on MV-algebras.

One direction is concerned with structures obtained by adding operations to the MV-
algebra structure, or even combining MV-algebras with other structures in order to obtain
more expressive models and powerful logical systems.

Another direction is centered on the non-commutative extensions of MV-algebras, called
pseudo MV-algebras (psMV-algebras, for short), introduced by Georgescu and Torgulescu in
1999 [66], [68].

Finally, the third direction I want to emphasize began with Hajek’s book, where BL-
logic and BL-algebras were defined [74], [75]. Juste notice that Lukasiewicz logic in an
axiomatic extension of BL-logic and, consequently, MV-algebras are a particular class of BL-
algebras (see Remark 3.4). The non-commutative corresponding structures, called pseudo
BL-algebras, were introduced by Di Nola, Georgescu and Iorgulescu [67], [53], [54].

The standard reference for the domain of MV-algebras is the monograph [45].

In this chapter, we recall some basic definitions and results abut MV-algebras.

For an MV-algebra A, we denote by Id(A) the set of ideals of A. We present some known
basic definitions and results relative to the lattice of ideals of A.

We study the prime spectrum Spec(A) and the maximal spectrum Max(A) of an MV-
algebra.

For any class of structures, the representation theorems have a special significace.

The Chang’s Subdirect Representation Theorem is a fundamental result.

The idea of associating a totally ordered abelian group to any MV- algebra A is due
to Chang, who in [42] and [43] gave first purely algebraic proof of the completeness of the
Lukasiewicz axioms for the infinite-valued calculus. In [45] is proved the Chang completeness
theorem starting that if an equation holds in the unit real interval [0, 1], then the the

35
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equation holds in every MV- algebra. This proof is elementary, and use the good sequences;
good sequences and I' functor were first introduced in [105].

An applications is the equivalence between MV- algebras and lattice ordered abelian
groups with strong unit.

We also prove the one-to-one correspondence between MV- algebras and Wajsberg al-
gebras; each MV- algebra can be seen as Wajsberg algebra and conversely. MV- algebras
will turn out to be particular residuated lattices.

For further reading on MV- algebras we recommend [45].

1. Definitions and first properties. Some examples. Rules of calculus

We introduce MV- algebras by means of a small number of simple equations, in an
attempt to capture certain properties of the real unit interval [0, 1] equipped with addition
x @y = min{l,z + y} and negation 1 — = see Remark 1.2. We show that every MV-
algebra contains a natural lattice-order. An main result is Chang’s Subdirect Representation
Theorem, stating that if an equation holds in all totally ordered MV- algebras, then the
equation holds in all MV- algebras.

DEFINITION 2.1. An MV -algebra is an algebra A = (A, ®,*,0) of type (2,1,0)
satisfying the following equations:

(M) 2@ (y®2) = (B y) ® 2;

(MV3)

(MV3)

(MVy) x** = x;
( ) x®0* = 0%

(MVs) (*@y)*dy=(y*"dx) @, foral z,y,z € A.

Note that axioms MV;-M V3 state that (A, ®,0) is an abelian monoid.

REMARK 2.1. If in MVg we put y = 0 we obtain x** = 0** & x, so, if 0** =0
then x** = x for every x € A. Hence, the axiom MVy is equivalent with (MVY)
0** = 0.

In order to simplify the notation, an M V-algebra A = (A4, ®,*,0) will be referred
by its support set, A. An MV -algebra is trivial if its support is a singleton. On an
MV-algebra A we define the constant 1 and the auxiliary operations ®, & and —
as follows :

1=0%
TOy= (" @y,
roy=z0y" = (" Dy,
T —oy=a" Dy,
for any z,y € A.

We consider the operation * more binding that any other operation, and ® more

binding that ¢ and &.

REMARK 2.2. ([82]) In MV -algebra A = (A, ®,*,0) we have:

rTOY=y0ou
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(MVy) z® 1% = 1%
(MV6/) (z*Oy)* Oy =(y*Ox)* O, forall z,y € A, that is (4,®,*,1) isan MV —
algebra.

A subalgebra of an MV - algebra A is a subset A’ of A containing the zero element
of A, closed under the operations of A and equipped with the restriction to A’ of
these operations.

In the sequel, we provide some basic examples of MV -algebras.

EXAMPLE 2.1. A singleton {0} is a trivial ezample of an MV -algebra; an MV -
algebra is said nontrivial provided its universe has more that one element.

EXAMPLE 2.2. Any Boolean algebra is an MV -algebra in which the operations
@ and V coincide and * is the Boolean negation.

We recall that a lattice-ordered group (I-group) (see [10]) is a structure (G, +, 0, <
) such that (G,+,0) is a group, (G, <) is a lattice and the following property is
satisfied:

for any z,y,0,0 e Gix <y=a+z+b<a+y+b.
For any [-group, (G,+,0,<) and for any g > 0 in G we denote
0,9] ={x € G:0<z<g}

If G is an [-group, then a strong unit is an element v > 0 such that for any x € G
there is a natural number n such that —nu < z < nu, see Definition 2.11.

In the sequel, an [u-group will be a pair (G, u) where G is an [-group and u is a
strong unit of G. If (G, u) and (H, v) are lu-groups then an lu-group homomorphism
is an I-group homomorphism h : G — H such that h(u) = v.

ExXAMPLE 2.3. Let (G,+,0,<) be an abelian l-group and u € G, u > 0. If we
define
r®y=uA (zv+vy)
and
f=u—uz,
forz,y € [0,u], then [0,u]c = ([0, u], ®,*,0) is an MV -algebra. For any x,y € [0,u],
we get
rOy=(x—-u+ty) Vo,
r—y=w—z+y) Au,
roy=(x—y) Vo,
and the lattice operations coincide to those of G. In particular, if we consider the
real unit interval [0,1] and for all x,y € [0,1] we define
x @y =min{l,z + y}
and
' =1-u,
then ([0,1],®,",0) is an MV -algebra.

EXAMPLE 2.4. The rational numbers in [0,1], and, for each integer n > 2, the
n-element set L, = {0 L., n=2 1} yield examples of MV —subalgebras of [0, 1].

Ym—1°" n—1°
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EXAMPLE 2.5. Given an MV -algebra (A, ®,*,0) and a nonempty set X, the
set AX of all functions f : X — A becomes an MV -algebra with the pointwise
operations, i.e., if f,g € AX then (f ® g)(z) = f(z) @ g(x), f*(z) = [f(2)]* for
any x € X and 0 is the constant function associated with 0 € A. The continuous
functions from [0,1] into [0,1] form a subalgebra of the MV -algebra [0, 1],

EXAMPLE 2.6. (Chang’s MV -algebra C - see [42]) Let {c,0,1,+,—} be a set of
formal symbols. For any n € N we define the following abbreviations:

0, ifn=0, 1, ifn=0,
ne = ¢, ifn=1, 1—nc:= 1—c¢, ifn=1,
c+(n—1ec, ifn>1, l—-(n—1)c—¢, ifn>1.

We consider C = {nc:n € N} U{l —nc: n € N} and define the MV -algebra
operations as follows:

(®1) if x = ne and y = mc then x &y := (m + n)c;
Jifr=1—ncandy=1—mc then x Dy :=1;
yife=ncandy=1—mc and m <n then x @y :=1;
yifr=ncandy=1—mc andn <m thenx Qy:=1— (m —n)c;
yifr=1—mc andy =nc and m <n then x @y :=1;
)ifr=1—mcandy=nc andn <m thenx Qy:=1— (m —n)c;

(*1) if © = nc then z* := 1 — nc;
(*2) if £ =1 — nc then z* := nc.

Then, the structure (C,®,*,0) is an MV -algebra, which is called the Chang’s
algebra.

THEOREM 2.1. If z,y,z € A then the following hold :

(

( ) By = (3" OyY");

(mv—c3) 2dl=1Lz01l=z,200=0;

(mv—c4) (z0y) Sy =(yOr)D7;

(mv—cs5) @z* =120z =0,(z0y) =z*dy", (zdy) =20y 20 (" dy) =
Yo on)royoz) =0y Oz

(mv—cs) 260=2,002=0,z02x=0,1cx=a* 261=0;

(mv—cr) c@r=z ifftrOz=ux.

Proof. (mv — ¢;1). Obviously, 1* = 0** = 0.

(mv —cz). We have 2* O y* = (@™ @ y™)* = (2 @y)",sox @y = (zPy)™* =

(mv—c3). Wehave z @1 =20 0" =0*=1,201= (2" @ 1")* = 2™ =z and
0= (z"®0")* =1" =0.

(mv—c5). By MVywe have 1l = (2" @ 1)*@ 1= (1"@z)*®r=a"dr ="
and x @ z* = (z* @ ™)* = 1" = 0.

Also (zOy)" = (@ ®yY)™ =" dy", (rSy)" = (¢ )** =" Oy
zO (@ oy =@"e @ oyl =76 @ ey)] = ( v ey
ey )" oy =(@sy)oy

and (z0y) Oz = [(z0y) © = @@y @) =70y @)

OW e =z0{Hy0oz2).
The other relations follows similarly. B

9

LEMMA 2.2. For xz,y € A, the following conditions are equivalent:
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(i) z* oy =1;

(i) 2 © y* =0

(i) y = 2 ® (y © x);

(iv) There is an element z € A such that v & z = y.

Proof. (i) = (i7). Follows from MV, and mv —¢; : 2 © y* = (2" @ y**)* =

(ii) = (ii3). Follows from MVz and mv —¢y : 2@ (yoz) = 2@ (y © a*) =
yd (roy*)=yd0=

' (iv). Take in (7ii), z =y © x.

(iv) = (i). Wehave 2* @y =" @ (z®2) = (=" @2) @z =" 1®2z"=% 1. R

For any two elements x,y € A let us agree to write z < y iff x and y satisfy the
equivalent conditions (i) — (iv) in the above lemma. So, < is an order relation on A
(called the natural order on A).

Indeed, reflexivity is equivalent to mv — ¢, (z < z iff 2* @ x = 1) antisimetry
follows from conditions (i7) and (éii) (if # <y and y < x then y = 2 @ (z* ©® y) and
r=y®(y*©z) but by MV, 2@ (2" ©Oy) =y (y* ©@x), so z = y ) and transitivity
follows from condition (iv) (if x < y and y < z then there exist u,v € A such that
y=xz@duand z=y®dv,s0 z=xdudv, that is, z < z).

We will say that an MV-algebra A is an MV-chain if it is linearly ordered
relative to natural order.

The order relation in Chang’s algebra C is defined by: =z < y iff [x = nc and
y=1l—mclorjr=ncandy=mcandn <m]or[xr=1—ncand y=1—mc and
m < n ]. In conclusion, C is a linearly ordered MV-algebra:

C={0,¢c,...,nc,....1 —ne,....,1 — ¢, 1}.
THEOREM 2.3. If x,y,2z € A then the following hold :

(mv—cs) @ <y iy <
(mv—cg) Ife <y, thenz®z<ydzandx®z<yo z;

)
mv—cyp) Ife <y, thenxzSz<ySzandz0y <26 ;
mv—ci) rOYy<r,rOy <y
mv—ci2) (xdy) oz <uy;
v—ci3) 2O z<yiffc <z*Dy;

mv—ciy) THYPrOY=xPy.

Proof. (mv — cg). Follows from Lema 2.2, (i), since z* @y = (y*)* @ x*.

(mv—cy). Weget y@ 2@ (2@ 2) =y (02" 02" =yd (" dr0z) =
(yoax")@xoz=10x0z2 =1, @z < y® z The other inequality follows
similarly.

(mv—ci3). Wehave 20z <y < (z02)"@dy=1<*@z"dy =12 < 2*Py.

The other relations follows similarly. B

LEMMA 2.4. On A, the natural order determines a bounded distributive lattice
structure. Specifically, the join xVy and the meet x Ay of the elements x and y are
given by:

rVy=(@oy dy=(yor)dr=x0y dy=yo0z o,

rtAhy=@"Vy ) =z0(@" oy =y [y o).
Clearly, rOy<zANy<z,y<zazVy <zdy.
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Proof. Obviously, y < (z0y)@yand z < (z0y) @y =" (yoz)® .

Suppose z < zand y < z. By Lema 2.2, (i) and (iii), *®z = 1 and z = (20y)®y.

Then, (z6y) ©y)* @2 = (0 y) OYOYG (:69) = (Y6 (6 y)) & (26
Y @ (z0y) =yo(xoy ) o dyd (20y) =y (z0y))dr*dz=11t
follows that (zroy)dy<z,soxVy=(r6y) dy.

We now imediately obtain the second equality as consequance of first equality
together with mv — cg. B

We shall denote this distributive lattice with 0 and 1 by L(A) (see [42], [45]).

We recall that:

DEFINITION 2.2. An MV-algebra is called Kleene algebra iff it satisfies the ad-
ditional condition:

Az <yVy
PROPOSITION 2.5. ([45]) In any MV -algebra A, the following properties hold:
(1) (A,®,1) is an abelian monoid;
(71) (A,V,A,0,1) is a bounded distributive lattice;
(1i1) (A,V,A,*,0,1) is a Kleene algebra;
(iv) (A,V,A,®,—,0,1) is a residuated lattice.

For each z € A , let 0z = 0,2" = 1 and for each integer n > 0, (n+1)z = nx® x,
and 2"t = 2" © x, respectively.

We say that the element x € A has order n, and we write ord(z) = n, if n is the
last natural number such that nxz = 1. We say that the element x has a finite order
, and we write ord(z) < oo, if = has order n for some n € N. If no such n exists, we
say that = has infinite order and we write ord(x) = co. An MV -algebra A is locally
finite if every non-zero element of A has finite order.

THEOREM 2.6. If x,x1,...20,Y, 2, (x;)ics are elements of A, then the following
hold:

Eﬁi _ 22; acxeav yy:* (_w@yA) g,(;x/\Ay?i);Q f/—v (zc V) © (@ AY);
(o — e17) 76 (f) = Azon)
(mv—crs) ©0 (f”) = Vo)
(mv — c19) @ A (\G/I:c> = V(@A)
(mv — ¢30) TV (é\lx) = AV
(mv — 1) 7@ (\E/Ix> = V(@ on)

(mv—cy2) O (/\JIZ> = A (z ®©x;), (if all suprema and infima exist).
el i€l
If I ={1,2,...,n} then
(mv —ca3) zV(210...0x,) > (2V21)O...0(zVay,); in particular x™Vy™ > (xVy)™"
for every m,n > 0;
(mv—ca) 2N (X1 & ... ) < (A1) B ... B (T Axp); in particular (mz) A (ny) <
mn(x Ay) for every m,n > 0;
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(mv —co5) If tVy =1 then 2™V y™ =1 for every m,n > 0;
(mv —ca6) If © ANy =0, then for every integers m,n > 0, (mzx) A (ny) = 0.

Proof. (mv—cis). (xVy)* = (z®z*0y)* = 2*0(zdy*) = 2*0 (2 @y*) = =*
and (zAy)* =[zo @@ @y =" (0y") =2"® (@ Oy") =" Vy"

(mv—ci5). We get (zVy)©(zAy) =@ (2" 0y) Dy O (tDy")] = 2D (27 Oy)
WO (r*oOy)'] =2@y® (Y Or*Oy) = 2@y®0 = 2oy and 2Oy = (*By*)* = [(z*V
Yo @ Ay = (@7 vy ) o @ Ay")T = (2 AYT) O (VYY) = (zVy) O (zAy).

Ay*
)

(mv — c17). It is obvious that x @ | Ax; | < x @ x;, for any i € I. Let z € A
el
such that z < x ® x;, for any ¢ € I. Then z < 2** B x;, forany i € I, so z ® z* < x;,
for any i € I.
Thus we have that z ©@ 2* < Az, s0 2 <z @ (/\.%‘Z) . Hence =z @& (/\x2> =
iel iel iel
A (5 25).
iel
(mv —c1g). It is obvious that x ®z; < x® (\/a@) , for any i € I. Let z € A such
el
that © © z; < z, for any ¢ € I. Then x; < z* @ z, forany i € I, so \/x; < z* D 2.
iel
Thus we have that (\/z;) ® x < z. We deduce that = ® (\/:m) =V (z O ).
i€l iel iel

(mv — c1g). By definition, = A <\/x> _ ( Vm) . [(\/xi>*@x:| mu—crs

y e () o))

Foranyi € I wehavez; < \/zj,s0 [ Vz;| <zf=|(Vuz;| dz<zidzr=
jer jer jer
2O || Vz | @z <zio(zfdx) =2
Jel
*
We deduce that \/ |z;© || Vz; | @=
iel jel

Another inequality is obviously.
(mv — cg0). It follows smilarly with mv — ¢jg.

) <V (zAxm).

el

(mv — c91). We remark that t @ z; < z @ <\/xz> , for any ¢ € I. Let z such
that * @ z; < z for any ¢ € I. We get =* A x; :ZG;:* O (z®x;) < a* O z, for any
i € I. Using mv — cy9, it folows that z* A [ \/z; | = V (z" A z;) < 2* © 2. Thus,

iel iel
z @ [:c*/\ (\/xz>] <z®(*Oz)=zVz=az

el
Using mv — c17, it folows that z @ [x* A \/:ch>] =(xdx")A [az @ <\/xl>} =

i€l i€l
e ()] 2= ()
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Thus, z @ <\/xz> <z

el
(mv — c92). It is obvious that  ® (/\xz> <x®u, forany i € I. Let z € A
such that z <z ® x;, for any 7 € I. Thelllei* Dz<*P (rO©ux;) =x*Vuay, for any
iel,sor*®z< A\(@*Va) =z"V </\§c,>
iel iel
Thus we have that z©(z* & z) < zO [:c* \Y </\xl>} = (z@x*)V [:C@ </\l‘l>:| =

el i€l

v [x@ (/\%)] =0 </\xz> . We deduce that
icl iel
z=xAN2<z0® </\:c,>

i€l
The other relations follows similarly. B

REMARK 2.3. (z ©@y*) A (y @ z*) =0, for any z,y € A.

Proof. Indeed, 0 = (zAy)© (xAy)* = (zAy) O (z*Vy*) = [z (z* Vy*)] A ly®
(@*Vy )] = [(z0z") V(zoy)A[(yoz")V(yoy )] = [0V (zoy ) A[(yoz*) VO] =
oy )A(yoar). B

LEMMA 2.7. If a,b,x are elements of A, then:

(mv—ca7) [(anNz)®(DAZ) Az =(aDb) Ax;

(mv —cg) a* Nx > 2O (aAx).

Proof. (mv — ca7). By mv — ¢17 we have

[(anz)®d(OAz)ANz=((aNz)BD)A((aANZ)Pr) Ao =

={(anz)db)ANz=(aDbD)AN(xdDb) ANz =(a®b)A=x.
(mv — co8). We have

) mv—cs

O (anz) =20 (@ Vve) "= (z0d)V (o2

my=cs

(x@a")V0i=2z0d <a" Azl
For any MV-algebra A we shall denote by B(A) the set of all complemented
elements of L(A); the elements of B(A) are called the boolean elements of A.

THEOREM 2.8. For every element e in an MV -algebra A, the following condi-
tions are equivalent:

(1) e € B(A);
(ii) eVe =1;
(1i1) e Ne* =0;
(iv) ede=e
(v) e@e=e.

Proof. First we prove the folowing implications: (iv) = (iit) = (i) = (v) =

(iv).

(iv) = (iii). e Ne* =e* O (e Pe)=e* O (ede)=€e*®e=0.
(7i1) = (ii). 1 =0" = (eNe*)* =e* Ve.
(ii) = (v).e=e@l=e@(eVe)=(e@e)V(eme)=(e@e)V0=ecOe.
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(v) = (iv). By hypothesis, e* @ e* = e*. It follows that e = e G0 =e@ (e@e*) =
ede@(e*pe’)=ed(ene’)=(ede)N(ede*)=(ede)ANl=ecde.

For the equivalence (i) < (ii7) see the proof of Theorem 4.11 (the equivalence
(1)  (iv)) A

THEOREM 2.9. Ife € B(A) andx € Athene@xr=eVz ande®x =eA .

Proof. Obviously, e @z > eV x and e ® x < e A x. We shall prove that
edr<eVzandeAz <e®uz. Thus, (e®z)O(evVa) =(edz)O(e"Nx*) =
[(edz)oe|A[ledr)0az*] =axANeNeAz" =0and (e Nz)© (e ® ) =
(enz)O(e*dr*)=e0 (" Da") N[z (" Da*)=era*AxAe*=0. 1

COROLLARY 2.10. ([45])

(i) B(A) is subalgebra of the MV -algebra A. A subalgebra B of A is a boolean
algebra iff B C B(A),

(ii) An MV -algebra A is a boolean algebra iff the operation @ is idempotent,
i.e., the equation © ® x = x is satisfied by A.

EXAMPLE 2.7. 1. If A is an MV -chain, then B(A) ={0,1} = Ls.

2. If A is an MV -algebra and X a nonempty set, then B(AX) = (B(A))X
(see Exzample 2.5). In particular, if A = [0,1] then B(A) = La, hence
B([0,1]%) = (L2)X for every nonempty set X.

REMARK 2.4. For e € B(A) we denote A(e) = {z € A:x < e} = (¢ (see
Proposition 2.12); for v € A we introduce = = z* Ne € A(e). Then (A(e),®,%,0,¢)
is an MV -algebra.

COROLLARY 2.11. Ifa € B(A) and z,y € A, then:

(mv—c9) a* Nz =20 (aAx)
(mv —c30) aN(z®y)=(aNz)®(aNy);
(mv—cs1) aV(z@y)=(aVa)d(aVy).
Proof. (mv — cag). See the proof of mv — cos.
(mwv — c30). We have:

mv—ciy

(aNz)®(aNy) [(anz)®a]lA[(ahz)By] =
=[larnz)VaAllady) A(z@y)=aA(a®y) A(z@y) =aA(zSy).
(mv —c31). We have (aVz) @ (aVy) =(adz)d(ady)=(a®a)d(zdy) =
a®(zdy)=aV(zdy). B
DEFINITION 2.3. Let A and B be MV —algebras. A function f: A — B is a
morphism of MV —algebras iff it satisfies the following conditions, for every z,y € A :
(MVz) f(0) =0;
(MVs) f(xdy) = flz)a f(y);
(MVy) f(z™) = (f(z))".

REMARK 2.5. One can immediately prove that:

f(1) =1,
flxoy) = f(z)o f(y),
flzvy) = f(x)V f(y),
flxny) = flz) A fy),

for every x,y € A.
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Recall that, following current usage, if f is one-one we shall equivalently say that
f is an injective homomorphism, or an embedding. If the homomorphism f: A — B
is onto B we say that f is surjective. The kernel of a homomorphism f: A — B is
the set Ker(f) = f~1(0)={z € A: f(x) =0}.

We denote by MV the category whose objects are MV —algebras and whose
morphisms are MV —algebras homomorphisms. Since MYV is an equational category,
then the monomorphisms in MYV are exactly the injective morphisms ([2]). If A and
B are MV — algebras we write A = B iff there is an isomorphism of MV — algebras
from A onto B (that is a bijective morphism of MV — algebras).

2. The lattice of ideals of an MV-algebra

For an M V-algebra, we denote by Id(A) the set of ideals of A. We present some known
basic definitions and results relative to the lattice of ideals of A. For Iy, s € Id(A) we
define I1 A Is = I} N Iy, I} V Iy= the ideal generated by I3 U I3 and for I € Id(A),
I"={ac€ A:aNz =0, for every x € I'}. Theorem 2.17 characterizes the MV -algebras
for which the lattice of ideals (Id(A), A, V,*,{0}, A) is a Boolean algebra.

DEFINITION 2.4. An ideal of an MV-algebra A is a nonempty subset I of A
satisfying the following conditions:

() fzel,yc Aand y <z, then y € [;

(I2) If z,y € I, then x® y € I.

REMARK 2.6. If I is an ideal then 0 € I;x,y e = a2V y e Lixdyel < Vv
y el

We denote by Id(A) the set of ideals of an MV -algebra A.

The intersection of any family of ideals of A is an ideal of A. For a nonempty
set M C A, we denote by (M] the ideal of A generated by M , i.e., the intersection
of all ideals I D M. If M = {a} with a € A, we denote by (a] the ideal generated
by {a} ((a] is called principal).

Note that (0] = {0} and (1] = A.

An ideal I of an MV — algebra A is proper iff I # A.

EXAMPLE 2.8. (The ideals of [0,1]) Let A = [0,1] be the MV -algebra from

Ezample 2.3 and I C [0,1] an ideal. Suppose that there is x € [0, 1] such that x # 0.
It follows that there is n € N such that nx = @ ...dx = (zd...dx) A1l = 1.

n ort n ori

Since I is an ideal, it follows that nx = 1 € I and I = [0,1]. We deduce that for
x #0,(x] = A, thus Id(A) = {{0},[0,1]}.

EXAMPLE 2.9. If consider the MV -algebra A = L% from Example 2.4 , then
Id(A) = {Il = {(070)};12 = ((07 1)] = {(070)7(07 1)};I3 = ((170)] = {(070)7 (1<70)}7

REMARK 2.7. If f : A — B be an MV -algebras homomorphism then Ker(f) is
a proper ideal of A. Indeed, since f(0) = 0 we deduce that 0 € Ker(f). If a,b € A
such that a < b and b € Ker(f), then f(a) < f(b) and f(b) = 0. We get f(a) =0,
so b € Ker(f). If a,b € Ker(f) then f(a®b) = f(a)® f(b) = 040 = 0, so
a®be Ker(f). Hence Ker(f) is an ideal. Since f(1) =1, we get 1 ¢ Ker(f), so
Ker(f) is a proper ideal.
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PROPOSITION 2.12. (i) If M C A is a nonempty set, then
(M={z€A:2<x1®..Dx, for some x1,...,x, € M}.

In particular, for a € A, (a] = {x € A: x < na for some integer n > 0}; if
e € B(A), then (e] ={z € A:x<e };
(id) If I, I € Id(A), then

L VI def (LUDL)l={a€ A:a <z ®xy for some x1 € [1and x5 € I3};

(131) If z,y € A, then (z] N (y] = (z Ay].

Proof. (i). We denote I ={z € A: 2z <2 ® ... D, for some z1,...,x, € M}
and we prove that [ is the smallest ideal containing M. We remark that M C I, so
I is non empty. Let a < b and b € I, so there are n > 1 and z1,...,x, € M such
that a <b<x1 ®... ® x,. It follows that a € I.

Let now, a,b € I. Then a < 21 ® ... Dxy and b < y1 P ... B y,, for some
Tlyeers Ty Yy ooy Ym € M. We get aBb <21 P ... B2, Py1 B ... Bym soad®be l.
Thus [ is an ideal containing M. Let I’ another ideal of A that contains M and let
a an arbitrary element from I. Hence a < x1 @ ... ® z,, and x1,...,2, € M C I'.
Because I’ is an ideal, it follows that z1 @ ... ®x, € I',soa € I' and I C I'. We
proved that I is the smallest ideal containing M, so (M] = 1.

(7). Follows by (1).

(i74). Obviously, z € (z] and y € (y|. Since x Ay < z,y we get z Ay € (x] and
x Ay € (y]; then z Ay € (2] N (y], which is an ideal. Then (z A y] C (x] N (y].

Conversely, suppose that z € (z] N (y]; then z < nx and z < my for some
m,n > 1. It follows that z < nz Amy < n(x Amy) < nm(x Ay), by mv — cay; thus
z€(xny]. N

For I € Id(A) and a € A\ I we denote by I(a) = (a| VI = (I U{a}].

REMARK 2.8. For I(a) we have the next characterization:
I(a) ={x € A: 2 <y@na, for somey € I and integer n > 0}.
COROLLARY 2.13. Let I € Id(A) and a,b € A\I; then I(a) N I(b) = I(a A D).

Proof. Since a A b < a,b we deduce a Ab € I(a) N I(D), hence I(a) N I(b) D
I(a AD). Let now z € I(a) N I(b). Then x < x; @ ma and = < x2 @ nb for some
x1,22 € I and positive integers m,n. If y = 1 ® 29 € I, and p = m + n, then
z < (z1 @ma) A (z2 ®nb) < (y®pa) A (y®pb) ""="Ty @ (pa A pb) <y @ p*(aAb)
(by mv — ca4), hence = € I(a A D), that is I(a) N I(b) C I(a A b). We deduce
I(a)nI(b)=1I(aNb).R

COROLLARY 2.14. If x,y € A then (z] V (y] = (z & y].

Proof. It is suffices to show the inclusion (x ® y] C (2] V (y]. If z € (z @ y]
then z < n(x @ y) for some integer n > 0. But n(z & y) = (nx) & (ny) and so
z < (nx) @ (ny). Since nz € (x] and ny € (y| we deduce that z € (z] V (y] that is
(z @yl € (2] V (y]. W

For I, I € Id(A), we put

LN =1 NI,

L VI = (Il UIQ],
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Ilﬁlgz{QEAl(a]ﬂflgIQ}.
Then (Id(A), V, A, {0}, A) is a complete Brouwerian lattice (see Definition 1.9).

LEMMA 2.15. If I, I € Id(A), then
(1) I —» I, € Id(A),
(i) If I € Id(A), then L N1 C I iff I C I} — I (that is,

L — Iy = sup{[ € Id(A) :LNIC IQ})

Proof. (i) Since (0)N I; C I we deduce that 0 € I} — I. If z,y € A, z < y and
y € I} — Iy, then (y]NI; C Is. Since (z] C (y] we deduce that (z]NI; C (y]|NI; C Io,
hence x € Iy — Iy . Let now z,y € I} — Iy; then (x]NI; C Iy and (y]N1I; C Io. We
deduce ((z]N 1)V ((y)N 1) C I hence ((z] V (y]) NI C I, s0 (x@y] NI C I (by
Corollary 2.14), that is z @y € I} — Is.

(7i) (=) Let I € Id(A) such that 1 NI C Iy . If x € [ then (z]N 1 CINIL C
Iohence x € IT1 — I , that is I C I} — I».

(<) We suppose I C I} — Iy and let z € 1 NI ; then x € I, hence x € I} — Iy
that is (z] NIy C Is. Since z € (z] N [} then z € Iy that is [ NI C I,.M

REMARK 2.9. From Lemma 2.15 we deduce that (Id(A), V,N,—,{0}) is a Heyt-
ing algebra; for I € Id(A),

F=I—{0}={zeA:(z]nI=1{0}}

COROLLARY 2.16. (1) For every I € Id(A), I* ={x € A:x ANy =0 for
every y € I} (see [68], p.114);

(i) Foranyx € A, (z]* ={ye A: (yn(z] ={0}} ={ye A:xANy=0}(by
Proposition 2.12, (iii)).

THEOREM 2.17. If A is an MV -algebra, then the following conditions are equiv-
alent:
(1) (Id(A),V,N,*,{0}, A) is a Boolean algebra;
(it) BEwvery ideal of A is principal and for every x € A, there isn € N such that
zA(nx)* =0 2" Vnr=1.

Proof. (i) = (ii). If I € Id(A), because Id(A) is supposed Boolean lattice then
IVvI*= A, hence 1 € [ VI*. By Proposition 2.12 (ii), 1 = a ® b with a € I and
b € I*. By Corollary 2.16 (i), z Ab =0 for every z € I .

So (z*Vb ) =0 2"V =1 (@b )" @b =1 z20b" <b* < zdb* =b*
for every x € I .

Since a & b =1 we obtain b* < a hence z @ b* = b* < a for every x € I. Finally,
we obtain < z @ b* < a, hence z < a for every = € I, that is I = (a).

Let x € A; since Id(A) is a Boolean algebra then (z] V (z]* = A. By Corollary
2.16 (ii), we have

(@] V (z]" = (] () = A =
& {a€eA:a<y®nzx,for some y € (z]'and n € N} = A.
(see Remark 2.8).

So, since 1 € A, there exists y € (z|* and n € N such that y @ nz = 1. Since
y € (x]*, then y Az = 0.

By Lemma 2.2, from y @ nx = 1 we deduce (nz)* <y. So,

(nzx)* Nz <yANz=0,
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hence (nx)* Nz =0« 2" Vnr =1.

(7i) = (i). By Remark 2.9, Id(A) is a Heyting algebra. To prove Id(A) is a
Boolean lattice we must show I* = {0} only for I = A ([2], p.175).

By hypothesis, every ideal is principal, then I = (a] for some a € A. Also, for
a € A, there is n € N such that a A (na)* = 0. By Corollary 2.16 (ii), (na)* € (a]* =
{0}, hence (na)* = 0, that is na = 1. By Proposition 2.12 (i), we deduce that 1 € I,
hence I =A. 1

The distance function d : A x A — A is defined by
dz,y) =(@@oy)@yor)=(@cy & (you).
THEOREM 2.18. In every MYV -algebra we have:

() d(z, y)—Oiﬁx—y,

(#) d(x,0) =0,d(z,1) =
(i) d(z*,y°) = d(, 1)
(iv) d(z,y) = d(y, 2);
v) d(z,2) < d(z,y) ® d(y, 2);
(vi) d(z ®u,y ®v) < d(z,y) ® d(u,v);
(vit) d(z ®u,y ©®v) < d(z,y) ® d(u,v).

Proof. (i). If x = y then it is obvius that d(z,y) = 0. Conversely, if d(z,y) =0
then x O y*=y©a* =0. We get that x <y and y <z, s0x =1y.

(i), (ii1). Follows by easy computations.

(iv). We get d(z,y) = (z0y)® (yoz)=(yoz)® (r0Y) =d(y, 7).

(v). We firstly prove that x © z* < (x @ y*) ® (y © 27¥).

Indeed, (z ©2*)* D (2 0y ) D (YO 2*) = 27D 2d (zOy") & (y© 2*) =
*@(zoy)]@ze (yo)]=(z"Vy )& (zVy) 2y ®y=1

Now, d(z,2) = (z02) @ 202") < (z0y ) e (Yo 2)d o0y ® (yoa*) =
d(z,y) ® d(y, 2).

(vi). We firstly prove that () : (z @ u)*© (y®v) < (z* Oy) ® (v* Ov).

We have [(z®u)*© (ydv)]*®(@*0y) @ (u* Ov)=20ud (v 0v*) & (2" O
y) @ (u* ©v) =

[z@ (" Oy)l@ud (Y ov)® (U o) =ye(y" o) dud
ye Wy ov)eus (u ov))se(y ox)=(yVv)ae[uV)

>(yvo)d(uVo)>v*dov=1.

Now we prove (vi) using the inequality (%) : d(z D u,y®v) = (xDu)*© (ydv) d
yovr oo < (o 0y s W 0v) & (i ©1) & (v* ©w)] = d,y) & d(u, v)

(vii). Follows by (ii) and (vi) : d(x © u,y ©® v) = d((z* © u*)*, (y* ® v*)*) =
dz* @u*,y* dv*) <d(z*,y*) @ d(u*,v*) =d(z,y) ® d(u,v). B

As an immediate consequence we have:

(y* o) @ (u*ov) =
@y o)

ProposiTION 2.19. If f: A — B is an MV —algebras homomorphism then the

following assertions are equivalent:
(1) f is injective;

(ii) Ker(f)={0}.

Proof. (i) = (ii). We suppose that f is injective and let a € Ker(f). Then
f(a) = f(0) =0,s0a=0.

(73) = (i). Convesely, let Ker(f) = {0} and a,b € A such that f(a) = f(b). ]
follows that f(d(a,b)) = d(f(a), f(b)) = 0. Since Ker(f) = {0} we get d(a,b) = 0
so a = b. Thus f is an injective homomorphism. W
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ExXAMPLE 2.10. (1) I want to determine all the homomorphisms of MV -
algebras f : [0,1] — [0,1]. Let A = [0,1] be the MV -algebra from Example
2.8 and f : [0,1] — [0,1] be an MV -algebras homomorphism. By Remark
2.7, Ker(f) is a proper ideal of [0,1], so by Ezample 2.8, Ker(f) = {O}
Thus, by Proposition 2.19, f is injective. We remark that f( )=1-— f(f),
so f(3) = 3. Since f is increasing, f([0, %]) - [O, 3] and so to determine f

f(4)@f(4) = f(%) =

it is suffice to determine f|[0 We have i @ 1=

§
1= f3) =1 By inductz’on we prove that f(5) = 5= for every n > 1.
1 1 1
For x = 2% < % we get f(z) = f(an@...@Q—n) = f(2n)@ @f( ) =
k ori krrz
1 11 1, ) )
2769...69? = 274— —1—27 = 5. We deduce that f(55) = 2n for £ o < 3
k ori k ori

Let x € [0, ;] We know that there are two sequences (an)n>1, (bn)n>1 €
[0, ] by the form such that a, < x < by, with ap, < apy1 < x < by < by
for every n . Smce f is increasing we get ap, < apy1 < f(x) < bpy1 < by.

Thus, f(x) = lim a, = lim b, = x. We proved that f(x) = x for any
x € [0,1]. In conclusion, the only MV -algebras homomorphism f :[0,1] —
[0,1] is the identity.

(73) A similar conclusion can be obtained if we consider the MV -algebra QN[0, 1]
or the MV -algebras Ly, with n > 2. Indeed, if f : L, — Ly, be an MV -

1 1
algebras homomorphism, then p—] ®...P0 1 =1= f(m) B..PH f(m) =
n—1 ori rom'
1= f(ﬁ) # 0. Suppose that f(ﬁ) = % k > 1. Then f(n_Q) =
1 1 1 1 .
e ——) = _— —_—) . —) >
fot®e —0) = [t e ef(o) . Weget [(z) >
n—2 ori n—2 ori
_ 2 _ _
= S0 2 e 0 r = 1= [ = L But 35 =
n—2 ori
(ﬁ) = f (%) 1-f <ﬁ) < 1, a contradiction. In conclusion, the

only MV -algebras homomorphism f : L, — L, is the identity.

DEFINITION 2.5. An equivalence relation ~ on a MV-algebra A is a congruence
if the following properties are satisfied:
(Con —mu) x ~y = z* ~y*
(Con—muwg) x ~y, 2’ ~y = axda ~ydy, for every z,2' y,y € A.

PROPOSITION 2.20. Let I be an ideal of an MV -algebra A. Then the binary
relation ~; on A defined by x ~g y iff d(x,y) € I (equivalent with x © y* € I and
y©a* € 1) is a congruence relation on A. Moreover, I = {x € A:x ~ 0}.

Proof. Firstly we prove that ~j is an equivalence on A. The reflexivity, x ~; x
follows by the fact that d(z,z) = 0 € I, for any x € I; The reflexivity, x ~; y =
y ~g x, follows by the fact that d(x,y) = d(y, z); in order to prove the transitivity,
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we suppose that  ~; y and y ~; z, that is d(z,y),d(y,2) € I. By Theorem 2.18,
(v),d(z,2) < d(z,y) @ d(y,z) € I,so d(xz,z) € I and x ~ z.

Now we have to prove the congruence properties. If z ~; y then d(z,y) =
d(z*,y*) € I, so z* ~1 y*.

Suppose z ~; y, 2’ ~; 3y . Then d(z,y),d(2',y’) € I. By Theorem 2.18,
(vi),d(z® 2,y ®y) < d(z,y) ®d(2',y) € I, so dlzx ® 2’y ®y') € I . Hence
2@ ~rydy. B

PRrROPOSITION 2.21. Conversely, if 0 is a congruence relation on A, then Iy =
{r e A:(z,0) €0} €Id(A) and (z,y) € 0 iff (d(x,y),0) € 6.

Proof. Because 0 is reflexive we get 0 € Iy, so Iy is non empty. If x < y and
y€lpthenz =z Ayand (t =2z Ay, AN0=0) €0, so (x,0) € §and x € Ip. If
x,y € Iy, then (z,0) € 6,(y,0) € 0 so, by Con —mus, (@ y,0) € 0 soxdy € Iy.
Hence Iy is an ideal. B

PROPOSITION 2.22. The assignement I ~>~y is a bijection from the set Id(A)
of ideals of A onto the set of congruences on A; more precisely, the function « :
Id(A) — Con(A) defined by o(I) =~ is an isomorphism of partially orderd sets.

Proof. Let I and J be too ideals such that ~;=~; . If a € A we get a =
d(a,0) el & a~;0<a~;0%4 d(a,0) € Jsol =J Thus, o is injective. The
map « is also surjective since for any ~€ Con(A) we have a(Is) =~ .

The proof is complete showing that [ C J < ~;C~; .1

If I is an ideal of A and x € A, the congruence class of x with respect to ~j
will be denoted by z/I, i.e. /I = {y € A: x ~; y}; one can eassy to see that
x € Iiff x/I =0/1. We shall denote the quotient set A/ ~y by A/I. Since ~ is a
congruence on A, the MV-algebra operations on A/I given by

w/Toy/TY ey

and
(z/D) < a1,

are well defined. Hence, the system (A/I,®,*,0/I) becomes an MV — algebra,
called the quotient algebra of A by the ideal I. The assignement x — x/I defines a
homomorphism p; from A onto the quotient algebra A/I, which is called the natural
homomorphism from A onto A/I; we remark that Ker(p;) = I.

Clearly, if x,y € A then z/I < y/I iff (z* @ y)/I = 1/I iff (z* D y)* € [ iff
zoyelifzoy* el

3. The spectrum and the maximal ideals

In this Subsection we study the prime spectrum Spec(A) and the maximal spectrum
Max(A) of an MV-algebra. If every ideal I € Id(A) has a unique representation as in-
tersection of prime ideals then Id(A) is a Boolean algebra (see Theorem 2.39). We give a
new characterizations for prime ideals of an MV-algebra (see Theorem 2.40, Theorem 2.41,
Corollary 2.42 and Theorem 2.43).

REMARK 2.10. An ideal proper P is finitely meet-irreducible in Id(A) iff INJ C
P=1CUPorJCP, forall,J e Id(A). Indeed, let I,J € Id(A) such that
INJ =P We deduce that INJ C P so, I C P orJ C P. But since INJ =P
we have that P C I,J. Finally, we obtain I = P or J = P, so P is finitely meet-
irreducible in Id(A).
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DEFINITION 2.6. A proper ideal P of A is prime if it satisfies the following
condition:

for each x and y in A, either tSy=x0y" € Porysr=yoax* € P.

Following tradition, we denote by Spec(A) the set of all prime ideals of A. Spec(A)
is called the spectrum of A.

An ideal I of an MV-algebra A is called mazimal iff it is proper and no proper
ideal of A strictly contains I, i.e., for each ideal J # I, if I C J, then J = A. We
denote by Max(A) the set of all maximal ideals of A.

The next lemma summarize, some easy relations between ideals and kernels of
homomorphisms.

LEMMA 2.23. ([45]) Let A,B be MV — algebras and f : A — B a homomor-
phism. Then the following properties hold:

(i) For each ideal J € Id(B), the set f~1(J) ={x € A: f(x) € J} is an ideal
of A. Thus, in particular, Ker(f) € Id(A);

f(z) < fly) iff v Sy € Ker(f);
f s injective iff Ker(f) ={0};
Ker(f) # A iff B is nontrivial;
Ker(f) € Spec(A) iff B is nontrivial and the image f(A), as a subalgebra
of B, is an MV — chain.

(i
(i1
(iv

(v

NN

The well-known isomorphism theorems have corresponding versions for MV —
algebras. We only enounce the first and the second isomorphism theorem, since
their proof follows directly from the classical ones, as an immediately consequence
of Lema 2.23.

THEOREM 2.24. (The first isomorphism theorem) If A and B are two MV —
algebras and f : A — B is a homomorphism, then A/Ker(f) and Im(f) are iso-
morphic MV — algebras.

THEOREM 2.25. (The second isomorphism theorem) If A is an MV — algebra
and I, J are two ideals such that I C J, then (A/I)/pr(J) and A/J are isomorphic
MYV — algebras.

THEOREM 2.26. For a proper ideal P € Id(A) the following are equivalent:

(i) P is finitely meet-irreducible in Id(A), (equivalently by Remark 2.10 with
INJCP=I1ICPorJCP, forall,JeldA));
(ii) P € Spec(A);
(1i1) A/P is chain;
(iv) If x Ny € P, thenxz € P ory € P;
(v) Ift ANy =0, thenx € P ory € P.

Proof. We prove the equivalences (i) < (iv), (i7) < (iv).

(i) = (iv). Let =,y € A such that z Ay € P. Then (z] N (y] = (x Ay] C P, so
rePoryeP.

(iv) = (i). Let I, J € Id(A) such that I NJ C P. If we suppose that I ¢ P and
J ¢ P then there are z € I\P and y € J\P. We get xt Ay € INJ C P, and by
hypothesis, x € P or y € P, a contradiction. Thus, I C P or J C P.
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(ii) = (iv). Suppose that Ay € P and x ©y* € P. It follows that (z©y*)® (x A
y) € P. But (z0y*)®(xAy) = [(z0y*) x| A [(20y")Dy] = [(x0y*)Dx|A(xVy) > .
We get x € P. Similarly, if 2* © y € P we infere that y € P.

(iv) = (ii). Obviously, since (z ©®y*) A (y @ x*) =0 € P.

We prove the equivalence (iii) < (iv) < (v).

(ii1) = (iv). ANy e P=x2/PNy/P=0/P = z/P=0/Pory/P=0/P=
rePoryeP.

(iv) = (v). Obviously, x Ay = 0 € P, so by (iv) we deduce that z € P or y € P.

(v) = (iii). Let 2 /P,y/P € A/P; since (x © y*) A (y ® 2*) = 0 € P we deduce
by (v) that /P <y/P or y/P < x/P, so A/P is totally ordered. B

REMARK 2.11. We have a directly proof for the implication (ii) = (iii) : Let
x/P,y/P € A/P and suppose that x ®y* € P. Then (x/P)® (y/P)* = (x©y*)/P =
0/P, sox/P <vy/P.

THEOREM 2.27. If A is an MV — algebra then the following properties hold:

(i) Every proper ideal of A that contains a prime ideal is prime;
(ii) For each prime ideal I of A, the set T = {J € Id(A) : I C J and J # A}
18 totally ordered by inclusion.

Proof. (i). Let I and P proper ideals of A such that I C P and P is prime. Let
xz,y € A. Since P is prime it follows that xt ©@ y* € P or y ® * € P. Because P C [
we deduce that t ©y* € I or y ® 2* € I, so [ is a prime ideal of A.

(ii). Let J,K € Z and suppose that J ¢ K and K ¢ J. Thus, there are two
elements z,y € A such that x € J\K and y € K\J. Since [ is prime, we get
xOy* el CKoryoaz* el CJ It follows that x Vy =y ® (z ©@y*) € K or
xVy=z®(yoz*) € J, sox € K or y € J, which is a contradiction. Thus, J C K
and K C J and 7 is linearly ordered. B

COROLLARY 2.28. FEwvery prime ideal of an MV — algebra A is contained in a
unique mazimal ideal of A.

Proof. ([45]) Let I € Spec(A). The set T ={J € I[d(A):J # Aand I C J} is
totally orderd by inclusion. Therefore, M = JUIJ is an ideal. Further, M is a proper
€

ideal, because 1 ¢ M; we conclude that M is the only maximal ideal containing I.
[ |
The next result will play an important role:

THEOREM 2.29. (Prime ideal theorem) Let A be an MV — algebra, I € Id(A)
and a € A\I. Then there is P € Spec(A) such that I C P and a ¢ P. In particular
for every element a € A,a # 0 there is P € Spec(A) such that a ¢ P.

Proof. ([45]) A routine application of Zorn’s Lemma shows that there is an
ideal P € Id(A) which is maximal with respect to the property that I C P and
a ¢ P. We shall show that P is a prime ideal. Let z,y be elements of A and
suppose that both z 6y ¢ P and y © x ¢ P. Then the ideal (P U {z © y}] must
contain the element a. By Remark 2.8, a < p @ n(x © y), for some p € P and
some integer n > 1. Similarly, there is an element ¢ € P and an integer m > 1
such that a < ¢ ® m(y © x). Let u = p® ¢ and s = max{n,m}. Then u € P,
a<u®s(xoy)and a < ud s(y © z). Hence by mv — ¢17 and mv — ¢13 we have
a<udszoy|Audsiyor)=ud[s(zrey) As(yox) =u, hence a € P, a
contradiction. l
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COROLLARY 2.30. Any proper ideal I of A can be extended to a prime ideal.
Proof. Apply Theorem 2.29.

THEOREM 2.31. For any MV — algebra A, the following are equivalent:
(i) Ais an MV — chain;

(i) Any proper ideal of A is prime;

(131) {0} is a prime ideal;

(iv) Spec(A) is linearly ordered.

Proof. (i) = (ii). Let I € Id(A), proper ideal. Since A is an MV — chain and
pr: A — A/I is a surjective homomorphism we deduce that A/I is also an MV —
chain and by Lemma 2.23, (v), [ is a prime ideal.

(74) = (7). Is obvious.

(7i1) = (iv). By Theorem 2.27, (i) and the fact that {0} is a prime ideal, we
deduce that Spec(A) = {I € Id(A) : I is proper and {0} C I'}. Hence by Theorem
2.27, (i7) Spec(A) is linearly ordered.

(iv) = (i). Let z,y € A and suppose that z £ y and y £ z, so z © y* # 0 or
y © x* # 0. By Theorem 2.29, there are P, prime ideals such that z ® y* ¢ P
and y © 2" ¢ Q. Hence y ® 2* € P and = ® y* € Q. By hypothesis, Spec(A) is
linearly ordered, so P C @ or @ C P. Thus, y ® z* € QQ or x ® y* € P, which is a
contradiction. We have x <y or y <z, so A is an MV — chain. B

REMARK 2.12. Relative to Theorem 2.31, (i) = (iv), we have a more general
result: If A is an MV — chain, then the set I1d(A) is totally ordered by inclusion.
Indeed, let I,J € Id(A) such that I ¢ J and J € I. Then there exists two elements
z,y € A such that x € I\J and y € J\I. Whence x £ y and y % x, a contradiction.

COROLLARY 2.32. If A is an MV — algebra then:
(i) For every I € Id(A),I =n{P € Spec(A) : I C P},
(7i) N{P € Spec(A)} = {0}.

Proof. Apply Theorem 2.29. If a # 0 there is a prime ideal P € Spec(A) such
that a ¢ P, so a ¢ N{P € Spec(A)}.1

The next proposition generalizes a well known property of maximal ideals in
boolean algebras:

PROPOSITION 2.33. If M is a proper ideal of A then the following are equivalent:
(1) M is maximal;
(1) for any a € A, a ¢ M iff (na)* € M for some integer n > 1.

Proof. (i) = (ii). Suppose that M is a maximal ideal of A. Since a ¢ M, then
(M U {a}] = A, so there exist € M and n > 1 such that na & z = 1. We deduce
that (na)* <x € M, so (na)* € M.

Conversely, if a € M, then na € M, for each integer n > 1; since M is proper
we deduce that (na)* ¢ M.

(ii) = (7). Let I # M be an ideal of A such that M C I. Then for every a € I\M
we must have (na)* € M for some integer n > 1. Hence 1 = na® (na)* € I, sol = A
and M is maximal. l

PROPOSITION 2.34. If M is a proper ideal of A then the following are equivalent:

(i) M is mazimal;
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(i) for any a € A, if a ¢ M then there isn € N such that (a*)™ € M,
(7i1) A/M s locally finite (i.e., every nonzero element from A/M has a finite
order).

Proof. By Proposition 2.33, (i) < (i4), since (na)* = (a*)", by mv — cs.

(i) = (4i7). We proved that every nonzero element from A/M has a finite order.
Let a/M # 0/M. Then a ¢ M so there is n € N such that (a*)" € M. We deduce
that (a*)"/M = 0/M = n(a/M) = 1/M. We obtain that A/M is locally finite.

(7i1) = (7). Let I # M be an ideal of A such that M C I and consider a € I\ M.
Because a/M # 0/M we must have n(a/M) = 1/M, for some integer n > 1, so
(na)/M = 1/M, thus (na)* € M C I. We have, na, (na)* € I so I = A and M is
maximal. l

REMARK 2.13. If A is locally finite, then A is a chain. Indeed, suppose that
z,y € A such that x ¢« y and y £ x. Then z © y* # 0,y © z* # 0, so there is n
such that n(z © y*) = 1,n(y © z*) = 1. Since (x © y*) A (y © 2*) = 0, by mv — ca6
we deduce that [n(z © y*)| A [n(y © 2*)] = 0, but [n(z @ y*)| A [n(y©z*)] =1, a
contradiction. Conversely assertion, is not true. Indeed, the Chang MV — algebra
C is chain but nc < 1 for every n.

The intersection of the maximal ideals of A is called the radical of A; it will be
denote by Rad(A).

From the Theorem 2.29 and Corollary 2.28 we deduce that:
COROLLARY 2.35. FEvery nontrivial MV — algebra has a mazimal ideal.

LEMMA 2.36. Any maximal ideal of an MV — algebra is a prime ideal and any
proper ideal of A can be extended to a maximal ideal.

Proposition 2.34 Remark 2.13
= =

Proof. M maximal

. Theorem 2.26 . .
chain = M is prime. B

A/M is locally finite A/M is a

REMARK 2.14. M prime ideal = M mazximal ideal. Indeed, in Chang MV —
algebra C, {0} is a prime ideal but {0, ¢, ...,nc, ...} is the only mazimal ideal.

REMARK 2.15. In [0,1] and Ly, {0} is a mazimal ideal.

DEFINITION 2.7. Let A be an MV — algebra. An element x € A is called
archimedean if there is n > 1 such that nx € B(A).

LEMMA 2.37. The following condition are equivalent:

(i) = is an archimedean element;
(7i) there is m > 1 such that z* V nx = 1;
(131) there is n > 1 such that nx = (n + 1)z.

Proof. (i) = (i7). Using Theorem 2.9, we have z* Vnr =2* ®nx =2* dz @
(n—1)z=1.

(i) = (4i7). We have 1 = 2* Vnz = (nz) & (nz)* © 2* = (nx) ® (nx & z)* =
(nz) ® [(n+ 1)z]* = (n+ 1)z < nz. Obviously, nx < (n+ 1)z, so nx = (n + 1)z.

(ii7) = (i). ne = (n+ 1)z = (n+2)x = ... = (2n)x implies (nx) & (nx) = nz, so
nr € B(A). B

DEFINITION 2.8. An MV — algebra A is called hyperarchimedean if all its ele-
ments are archimedean.
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REMARK 2.16. Any finite MV — algebra is hyperarchimedean.

REMARK 2.17. A is hyperarchimedean iff Max(A) = Spec(A). For the proof see
Theorem 3.56 for the case of BL— algebras.

PROPOSITION 2.38. Let A and B be MV — algebras, f : A — B a homomorphism
of MV — algebras and M be a mazimal ideal of B. Then the inverse image f~'(M)
18 a mazimal ideal of A.

Proof. By Lemma 2.23, (i), f~'(M) is an ideal of A; f~!(M) is proper since
f(1)=1¢ M.

Let x ¢ f~Y(M), so f(x) ¢ M. By Proposition 2.33 there is an integer n > 1
such that (nf(x))* € M. It follows that (nz)* € f~1(M), whence by Proposition
2.33, f~1(M) is a maximal ideal of A. B

Relative to the uniqueness of ideals as intersection of primes we have:

THEOREM 2.39. If A is an MV — algebra and every I € Id(A) has a unique
representation as an intersection of elements of Spec(A), then (Id(A),V,A,*,{0}, A)
1s a Boolean algebra.

Proof. Let I € Id(A) and I' = N{P € Spec(A) : I ¢ P} € Id(A). By Corollary
2.32 (i1), INI" =nN{P € Spec(A)} = {0}; if I VI # A, then by Theorem 2.29 there
exists I"” € Spec(A) such that I v I’ C I"” and I” # A. Consequently, I’ has two
representations I’ = N{P € Spec(A) : I ¢ P} = I" N (N{P € Spec(A) : I ¢ P}),
which is contradictory. Therefore IV I’ = A and so Id(A) is a Boolean algebra. B

THEOREM 2.40. For a proper ideal P € Id(A) the following assertions are equiv-
alent:
(1) P € Spec(A);
(13) For every x,y € A\P there exists z € A\P such that z < x and z < y.

Proof. (i) = (ii). Let P € Spec(A) and x,y € A\P. If by contrary, for every
a € A with a <z and a < y then a € P, since z Ay < x,y we deduce z Ay € P.
Hence, by Theorem 2.26 (iv), z € P or y € P, a contradiction.

(1i) = (i). I suppose by contrary that there exist I1,Iy € Id(A) such that
ILiNnIy=P,and P # I, P # I». So, we have x € I;\P and y € I\ P. By hypothesis
there is z € A\ P such that z < z and z < y.

We deduce z € I; NI = P - a contradiction. Il

THEOREM 2.41. Let A be an MV — algebra and I a proper ideal of A. The next
assertions are equivalent:
(1) I € Spec(A);
(43) If v,y € A and ()N (y] C I, thenxz €I ory € I.

Proof. (i) = (ii). Let x,y € A such that (z] N (y] C I and suppose by contrary
that =, y ¢ I. Then by Theorem 2.40, there is z € A\I such that z < z and z < y.
Hence z € (z] N (y] C I, so z € I, a contradiction.

(ii) = (7). Let z,y € A such that xt Ay € I. Then (x Ay| C T .

Since (z] N (y] = (x Ay] (by Proposition 2.12, (iii)) we deduce that (z]N(y] C I,
hence x € I or y € I, that is I € Spec(A) (by Theorem 2.26 (iv)). W

COROLLARY 2.42. Let A be an MV — algebra. For I € Id(A) the next assertions
are equivalent:
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(1) I € Spec(A);
(ii) For every z,y € A/I,x # 0,y # 0, there exists z € A/I,z # 0 such that
z<zx and z < y.

Proof. Clearly, by Theorem 2.40, since if z = a/I, with a € A, then the
condition x # 0 is equivalent with o ¢ 1. B
As in the case of residuated lattices (see Theorem 1.48) we have:

THEOREM 2.43. Let A be an MV — algebra. For a proper ideal I € Id(A) the
next assertions are equivalent:
(1) I € Spec(A),
(ii) For every J € Id(A),J - I1=1 orJ CI.

THEOREM 2.44. ([68]) Let A be an MV — algebra and P € Id(A). Then P is
meet-irreducible element in the lattice Id(A) iff there is an element a € A\P such
that P is an maximal element in the set {I € Id(A):a ¢ I}.

4. Subdirect representation theorem

For any class of structures, the representation theorems have a special signifi-
cance.
We denote by I an nonempty set. The direct product of family {A;}ier of MV —
algebras, denoted by []A4; is the MV — algebra obtained by endowing the cartesian
i€l
product of the family with the MV — operations defined pointwise. In other words,
[TA; is the set of all functions f: 1 — ‘UIAi such that f(i) € A;, for all ¢ € I, with
i€l S
the operations * and @ defined by f*(i) = (f(4))* and (f @ g)(3) = f(i) ® g)(7).
The zero element of [[A; is the function 0: I — 'UIAi such that 0(i) = 04, € A;.
i€l =
For every j € I the map 7; : [[A; — A; is defined by 7;(f) = f(j); each 7 is a
1€l
homomorphism onto Aj;, called the j-th projection function . In particular for each
MYV — algebra A and nonempty set X, the MV — algebra AX is the direct product
of the family {A;},ex , where A, = A for all z € X.

PROPOSITION 2.45. Let a natural number n and ey,...,e, € B(A) such that
eiNej =0 for any i # j and _\Zei =1, then A s isomorphic with the direct product
1=
n
of the family {A(e;)}i=1,n and the isomorphism is given by f : A — [[ A(e;), f(x) =

i=1
(x ANer,..,x Nep).

Proof. By Theorem 2.9 the function f is an morphism of MV — algebras.

If z,y € A such that f(z) = f(y) then x Ae; =y Ae; for any i = 1,...,n. We get
that z =z Al =zA(e1V..Ve,) = (xAer)V...V(zAe,) = (yAer) V...V (yAey) =
yA(e1V..Vey,) =yAl=y,so f is injective. In order to prove the surjectivity, we

consider (z1,...,zy) € [[ A(e;). If we denote z = .\j/lxi, then f(x) = (x1,...,zy). We

=1
have proved that f is an MV — algebra isomorphism. H

n
PROPOSITION 2.46. Let A = [[ A;. Then there exist ey, ...,e, € B(A) such that
i=1

eiNej =0 for any i # j and i\ZeZ' =1 and A; = A(e;), foralli=1,...,n.
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Proof. Let e; = (1,0,...,0),...,e, = (0,...,0,1). &

DEFINITION 2.9. An MV — algebra A is indecomposable if A = A; x Ay implies
Ajq or Ag is trivial, where A; and Ay are too MV — algebras and A; x Ag is their
direct product.

By Propositions 2.45 and 2.46 we obtain:
PROPOSITION 2.47. An MV — algebra A is indecomposable iff B(A) = {0, 1}.
COROLLARY 2.48. If A is an MV — chain then A is indecomposable.

EXAMPLE 2.11. The MV — algebra [0,1] and Chang’s MV — algebra C' are in-
decomposable.

DEFINITION 2.10. An MV — algebra A is a subdirect product of a family {A;}ier

of MV — algebras iff there exists a one-one homomorphism h : A — [] A; such that
el

for each j € I the composite map 7; o h is a homomorphism onto A;.

If A is a subdirect product of a family {A;};c; , then A is isomorphic to the sub-
algebra h(A) of []A;; also, the restriction to h(A) of each projection is a surjective

el

map. '

In [45] it is prove the following result, as particular case of a theorem of universal
algebra, due to Birkhoff:

THEOREM 2.49. An MV — algebra A is a subdirect product of a family {A;}ier
of MV — algebras iff there is a family {J;}icr of ideals of A such that:
(1) A; = A/)J; for each i € I and

The following result is fundamental:

THEOREM 2.50. (Chang’s Subdirect Representation Theorem) Every nontrivial
MYV — algebra is a subdirect product of MV — chains.

Proof. By Theorem 2.49 and Lemma 2.23 (v), an MV — algebra A is a sub-
direct product of a family {A;};c; of MV — chains iff there is a family {P,};cr
of prime ideals of A such that iQIPZ- = {0} (the monomorphism is ® : A —

[I A/P,®(a) = (a/P)pespec(a)- To prove apply Corollary 2.32, (i) to the
PeSpec(A)
ideal {0}. W

5. MV-algebras and lu-groups; Chang completeness theorem

The idea of associating a totally ordered abelian group to any MV- algebra A is due
to Chang, who in [42] and [43] gave first purely algebraic proof of the completeness of the
Lukasiewicz axioms for the infinite-valued calculus. In [45] is proved the Chang completeness
theorem starting that if an equation holds in the unit real interval [0, 1], then the the
equation holds in every MV- algebra. This proof is elementary, and use the good sequences;
good sequences and I' functor were first introduced in [105].

An applications is the categorical equivalence between MV- algebras and lattice ordered
abelian groups with strong unit.

We recall the definition of an lu-group:
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DEFINITION 2.11. An lu-group is an algebra (G, +,—,0,V, A, u), where
lu—G1) (G,+,—,0) is a group;
) (G,V, ) is a lattice;
lu — G3) For any x,y,a,b € G,x <y impliesa+z+b<a+y+b;
lu—Gy4) u > 0 is a strong unit for G (that is, for all x € G there is some natural
number n > 1 such that —nu < x < nu ).

If G is abelian, then (G, +, —,0,V, A, u) will be called abelian lu-group.

REMARK 2.18. ([10], Propositions 1.2.2, 1.2.14) If G is an ordered group (I-
group, see [10]) then

(1) (G,V,A) is a distributive lattice and for every x,y,z € G

(i) Ife <y thenz+zx<z+4+yandz+z<y-+z;

(i11) = <y iff —y < —a;

() (Vy)+z=(x+2)V(y+z)iz+(@Vy) =(z+2)V(z+y);
() @AYy +z=(@+2)A(y+2)z+(@Ay)=(z+z)A(z+y)

REMARK 2.19. For each element x of an l-group G, the positive part x™, the
negative part x~ and the absolute value of x are defined as folows: x+ =0V, 2~ =
0V (=), |z =2t +2~ =xT Va~; a strong unit u of G is an archimedean element
of G, i.e. an element u € G such that for each x € G there is an integer n > 0 with
|z| < nu.

Following common usage, we let R, (), Z denote the additive abelian groups of
reals, rationales, integers with the natural order.

EXAMPLE 2.12. (R, +) with the natural order is an abelian lu-group, where for
example u = 1.

EXAMPLE 2.13. (Q,+) and (Z,+) are abelian lu-groups with the natural order
and v = 1.

EXAMPLE 2.14. Let (X,T) be a topological space and C(X) the aditive group
of real - valued continuous functions defined on X. We make C(X) an l-group by
providing it with its usual pointwise order: f < g iff f(z) < g(z) for all z € X.
If denote by Cy(X) the subgroup of bounded elements of C(X), then Cy(X) is an
abelian lu-group where order units are the elements u € Cy(X) with the property that
there exists ¢ > 0 such that u(z) > ¢ for every x € X.

PROPOSITION 2.51. ([45]) If (G, u) is an abelian lu-group then for any x > 0 in
G there are x1,.. Ty € [0,u] such that x = x1 + ... + xy,. Hence, any abelian lu-group
is generated by its unit interval [0, u].

The best reference to general lattice ordered groups is [10] and [50].
We shall often write (G, u) to indicate that G is an abelian lu-group with strong
unit u. If (G,u) is an abelian [u-group then the unit interval of G is

0,ulg ={9€G:0<g<u}.

It has a canonical MV — algebra structure given by Example 2.3. Mundici’s result
says that for any MV — algebra A there is an abelian lu-group (G4, u) such that
A and [0,u]g, are isomorphic. The categorical equivalence means that the entire
theory of abelian lu-groups applies to MV — algebras. The main work involved has
the flavor of translation.
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DEFINITION 2.12. Let G and G’ be l-groups. A function h : G — G’ is said
to be l-group homomorphism iff h is both a group homomorphism and a lattice
homomorphism i.e., for each z,y € G, h(z —y) = h(z) — h(y), h(x Vy) = h(x) V h(y)
and h(z Ay) = h(z) Ah(y). 0 <u e G,0<u € G and let h : G — G’ is said
to be l-group homomorphism such that h(u) = «'. Then h is said to be a unital
[-homomorphism .

We recall that we denote by MYV the category of MV — algebras and by UG we
denote the category whose objects are abelian lu-groups and whose morphisms are
abelian [u-group homomorphisms. The definition of Mundici’s functor

r:-ug — my
is strainghtforward (see [3], [45]):
I'(G,u) :==[0,u]q,
L(h) = o),

where (G, u) is an abelian lu-group and h : (G,u) — (H,v) is an abelian lu-group
homomorphism.

EXAMPLE 2.15. If G = R and v = 1, then I'(R,1) = [0,1] (see Ezample 2.3).

EXAMPLE 2.16. If G = Q and u = 1, then T'(Q,1) = Q N [0,1] (see Example
2.4).
EXAMPLE 2.17. If G =Z and u =1, then I'(Z,1) = {0,1} = Ls.

EXAMPLE 2.18. If G = Z and u =n > 2, then T'(Z,n) is isomorphic with MV -

algebra Ly, (see Ezample 2.4). Also, T'(-1-2,1) = L,, where -2=7 = {27 : 2 € Z}.

EXAMPLE 2.19. Let G = Z X Z be the lexicographical product, i.e. the group
operations are defined on components but the order relation is lexicographic:

(n1,n2) < (m1,m2) iff ngn < my orng =my and nz < my.
We remark that G is a totally ordered abelian I-group and u = (1,0) is a strong unit.

Then the MV -algebra T'(G,u) is isomorphic with Chang’s algebra C' (see Example
2.6).

A sequence a = (aq, ag, ....) of elements of an arbitrary MV -algebra A is said to
be good iff for each i =1, 2...
a; D ai+1 = ai,
and there is an integer n such that a, = 0 for all r > n.
Instead of a = (a1, ag, ....,an, 0,0, ..) we shall often write a = (a1, ag, ...., ay).
For each a € A, the good sequence (a, 0, ..., 0...) will be denoted by (a).

DEFINITION 2.13. For any two good sequences a = (ay,aq,....,a,) and b =
(b1,b,....,by,) their sum ¢ = a+ b is defined by ¢ = (cy,c2,....), where for all
i=1,2..

c; = a; D (ai_l ® bl) D...PD (a1 ® bi—l) @ b;.

We denote by M4 the set of good sequences of A equipped with the addition.
In [45] we have the following results of good sequences:

PROPOSITION 2.52. Let A be an MV -algebra. Then (Ma,+) is an abelian
monoid with the following additional properties:
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(i) (cancellation) For any good sequences a,b,c if a+b =a+ c then b =c;
(ii) (zero-law) If a+ b = (0) then a=b = (0).

DEFINITION 2.14. For any two good sequences a = (aj,as,....,a,) and b =
(b1, b, ....,by) we write b < a iff b and a satisfy the equivalent conditions:

(i) There is a good sequence ¢ such that b 4+ ¢ = a;
(i) b < a; foralli=1,2,..n.

REMARK 2.20. Let a and b be good sequences. If b < a then there is a
unique good sequence ¢ such that b +c = a. This c, denoted a — b s given by
c = (ai,a2,.....an,...) + (b7,05,.....0%,...). In particular, for each a € A, we have

(@) = (1) = (a).

PROPOSITION 2.53. Let a = (a1,a2, ....,an,...) and b = (b1, by, ...., by, ...) be good
sequences of an MV -algebra A. The sequences

aVb= (a1 Vby,..,a,Vby,...)

and

aAb= (a1 Aby,...,an A by, )
are good and are in fact the supremum and infimum of a and b with respect the
order defined by Definition 2.14.

REMARK 2.21. For all a,b € A, we have ((a) + (b)) A (1) = (a ©b).

From the abelian monoid My enriched with the lattice-order we obtain (via
Maltzev theorem) an abelian [-group G4 such that My is isomorphic, both as a
monoid and as a lattice, to positive cone Gj. Let us agree to say that a pair of
good sequences (a,b) is equivalent to another pair (a’,b’) iff a + b’=a’ + b. The
equivalence class of the pair (a,b) shall be denoted by [a,b]. Let G4 be the set
of equivalence classes of pairs of good sequences, where the zero element 0, is the
equivalence class [(0), (0)], an addition + is defined by

[a,b] + [c,d] = [a+ ¢c,b +d],

a subtraction - is defined by
—[a,b] = [b, a].
Then G4 = (Ga,0,+,—) is an abelian group. We shall now equip G4 with a
lattice -order. We define
[a,b] < [c,d]
iff
a+d<c+b,
where < is the partial order of M 4. The supremum (Y) and infimum (A) are given
by:
[a,b] Y [c,d] =[(a+d)V (c+b),b+d]
and
[a,b] A [e,d] =[(a+d)A(c+b),b+d]
The I-group G 4 with the above lattice order is called the Chang I-group of the MV
-algebra A. The element ug = [(1), (0)] is a strong unit of the l-group G 4.

A crucial property of the lu-group G 4 is given by the following result (for more
details, see [45]):
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THEOREM 2.54. The correspondence a — ¢ 4(a) = [(a), (0)] defines an isomor-
phism from the MV -algebra A onto the MV -algebra I'(G a,ua) = [0, u4].

Proof. By definition, [(0), (0)] < [a,b] = uy4 iff there is ¢ € A such that (a,b)
is equivalent to ((c), (0)). Thus, ¢4 maps A onto the unit interval [[(0), (0)], ua] of
G 4. Is obviously that this map is one-one. By Remark 2.21, ¢ 4(a & b) = (p4(a) +
©4(b)) Nuyg and by Remark 2.20, ¢ 4(a*) = ug — p4(a); we deduce that ¢, is a
homomorphism from the MV-algebra A onto the MV-algebra I'(G4,u4) = [0, u4].
]

Using the good sequences we obtain the Completeness Theorem (for more details,
see [45]):

THEOREM 2.55. An equation holds in [0, 1] if and only if it holds in every MV -
algebra.

The natural equivalence between M V-algebras and abelian lu-groups with strong
unit was first established in [105], building on previous work by Chang [43] for the
totally ordered case.

We shall prove that I' is a natural equivalence between the categories UG and
MV.

We give an explicit construction of an adjoint functor of T

Our starting point is the lu-group G 4 with order unit w 4.

Let A and B be MV-algebras, h : A — B a homomorphism. If a = (a1, as, ...)
is a good sequence of A then (h(ai),h(asz),...) is a good sequence of B. If h* :
My — Mp is defined by h*(a) = (h(a1),h(az),...) for all @ € My, then we have:
h*(a+b) = h*(a) + h*(b), h*(a VvV b) = h*(a) V h*(b), h*(a A b) = h*(a) A h*(b). Thus,
h* : My — Mp is both a monoid homomorphism and lattice homomorphism. Let
us define the map h# : G4 — Gp by h¥([a,b]) = [h¥(a), h¥ (b)] and let uy and up
be the strong units of G4 and Gpg. Then the map h* is a unital I-homomorphism
of (Ga,uy) into (Gp,up). For the definition of the functor

2: MV - UG
(the inverse of the functor I" which together with I'" determine a categorical equiva-
lence), let us agree to write Z(A) = (Ga,ua) and Z(h) = h¥.
In our present notation, Theorem 2.54 states that the map a — @ (a) =

[(a), (0)] defines an isomorphism of the MV-algebra A and I'(E(A)).
Using the maps ¢4 (A € MV) we obtain:

THEOREM 2.56. The composite functor I'= is naturally equivalent to the identity
functor of MY. In other words, for all MV -algebras A, B and homomorphism
h: A — B, we have a commutative diagram

A LA B
Lva L vp
['(Z(4)) F(E—(>h)) ['(E(B))

in the sense that, for each a € A, pg(h(a)) = (I'(E(h))(va(a)).

Proof. ([45]) For each a € A, pp(h(a)) = [(h(a)), (0)] and p4(a) = [(a), (0)].
Further, Z(h)([(a), (0)]) = [(h(a)),(())], the latter being an element of I'(Z(B)).
Since I‘(E(]h)) is the restriction of Z(h) t ), we can write (I'(Z(h))(¢4(a)) =

[(h(a)), (0)] = ¢p(h(a)). B
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Now, we prove that the composite functor XI" is also a naturally equivalent to
the identity functor of the category UG.

We first define the dual of the maps 4.

In [45] it is proved the following (see, Lemma 7.1.3, p. 141 and Corollary 7.1.6,
p. 145):

LEMMA 2.57. Suppose G is an abelian I-group with order unit u, and let A =
['(G,u) C G. For each 0 < a € G there is a unique good sequence g(a) = (aq, ..., an)
of elements of A such that a = a1 + ... + ay.

THEOREM 2.58. For every (G,u) € UG let the map ¢¥(g .y * G — Gr(au)) be
defined by ¥ (a) = [g(a*),g(a™)], for all a € G. It follows that ¢ ¢, is an
l-group isomorphism of G onto Gr(au)) and P (g u)(w) = [(u), (0)].

From Theorem 2.58, using the maps ¢ (g ,) we have the following :

THEOREM 2.59. The composite functor Z1 is naturally equivalent to the identity
functor of UG. In other words, for any two abelian l-groups with strong unit (G, u)
and (H,v) and unital l-homomorphism f : (G,u) — (H,v), we have a commutative
diagram

Guw L (#@w)
! w(G,u) ! w(H,v)
E(T(G,u)) E(I(G,w))

=()
in the sense that, for each a € G, Yy ,)(f(a)) = (ET(f) (VG u)(a)).

)
Proof. ([45]) By Lemma 2.57 we can write g(at) = (ay, ..., a,), for a uniquely
determined good sequence (ay, ... an) € Mrp((au))- Letting h = T'(f), we then ob-

tain f(a)* = f(at) = Zf(az) Zh(az) whence g(f(a)") = (h(a1), ..., h(an)) =

h*(g(a™)). Similarly, (f( ) = (g ( 7)), whence ¥ g, (f(a))

[.h*(g(a*)),h*(g(a’))]Zh#([( "),9(a7)]) = E@(/ )) l9(a™), 9(a7)])

From the Theorems 2.56 and 2.59 we immediately get:

COROLLARY 2.60. (Mundici) The functor I' establishes a categorical equivalence
between UG and MV .

EXAMPLE 2.20. Let (A, A,V,*,0,1) be a Boolean algebra; then (A,V,*,0) is an
MV — algebra (see Example 2.2)
(i). If A={0,1} = Lo, then G4 = Z(A) = (Z,+) (because M4 = (N,+)).
(13). If A is finite, then there exists a natural number n such that A = LY. So,
Z(A) =E(L5) = (E(Ly))" = Z" withuw = (1,1,...,1).

(#i1). If A is infinite, then there exists an infinite set X such that A is a Boolean
subalgebra of Ly (we can consider for evample X = {f : A — Ly : f is
morphism of Boolean algebras}). Then, Z(A) is isomorphic with an abelian
lu-subgroup of Z(L5) = ZX. Clearly, the function v : X — Z, u(z) = 1,
for every x € X is not a strong unit for ZX, but if consider G = {f € Z~ :
there exists an natural number n such that f < nu}, then u is a strong unit
for G. Thus, E(A) is isomorphic with an abelian lu-subgroup of G.

lg(f(a)™), 9(f(a)7)] =
ET U@ Gw(a))-
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EXAMPLE 2.21. For an MV -chain A we consider G 4 as the set of all the order
pairs (m,a) with m € Z and a € A. If on G4 = Z x A we define:

(m+1,0) = (m, 1),
B (m+n,a®b) ifad®b <1,
(maa)+(nab) _{ (m_‘_n+1,a®b) zfaEBb: 1,
—(m,a) = (-m —1,a%),
then (G a,+,(0,0)) is an abelian group. Moreoever if we set (m,a) < (n,b) iff m <n

orm =n and a < b (lexicographical order), then G4 becomes an abelian lu-group,
(0,1) is a strong unit and G4 = Z(A).

In the sequel G will designate an abelian lu-group with strong unit u, and A will
designate [0, u]q-

DEFINITION 2.15. For any integer k, let 7 : G — A be defined by
mr(9) = ((g — ku) Au) V0.
PROPOSITION 2.61. The maps wp, k € Z, have the following properties for all
f,geG:

(mv —c32) moja = La;

(mv — c33) Tk(9) > 7ry1(9), for all k € Z;

(mv —c34) T6(fVg) = mk(f) V7r(g) and T (f A g) = mk(f) A mr(g), for all k € Z,
(hence my is an increasing map for all k € Z ).

Proof. (mv —c32). If g € A (that is 0 < g < u), then my(g) = (g Au) VO =
gV 0 =g, hence mg4 = 14.

(mv — c33). From Remark 2.18, we deduce that ku < ku +u = (k + 1)u, so
—(k+1)u < —ku, hence g— (k+1)u < g— ku. Therefore m11(g9) = ((9— (k+1)u)
u) VO < ((g—Fku) Au)V0=mk(g).

(mv — c34). For f,g € G and k € Z we have:

m(fVg) =((fVg) —ku)Au) V0=
= (((f = ku) V(g — ku)) Au) VO = (((f = ku) Au) V ((g — ku) Au)) VO =

= [((f = ku) Au) VO]V [((g = ku) Au)) VO] =7 (f) V mr(g)
and analogously 7 (f A g) = mx(f) A 7r(g). B

>

REMARK 2.22. By the proof of Proposition 2.61 we deduce that mv—csge, mv—css
and mv — c34 are true in general when G is non-abelian.

6. MV-algebras and Wajsberg algebras

Mathematicians want to minimize the set of axioms of a certain mathematical theory
and maximize the set of consequences of these axioms. In this section we introduce the
Wajsberg algebras, which have important consequences each having direct application in
fuzzy logic. We also study MV- algebras by giving first a long definition of this algebraic
structure.This definition shows some basic properties of this structure. We also prove that
there is one-to-one correspondence between MV- algebras and Wajsberg algebras; each MV-
algebra can be seen as Wajsberg algebra and conversely. MV- algebras will turn out to be
particular residuated lattices.
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DEFINITION 2.16. An algebra (L, —,*,1) of type (2,1,0) will be called Wajsberg
algebra if for every x,y, z € L the following axioms are verifyed :

(W) 1 —a=u;

W) (z —y) = [y —2)— (z—2)] =1

W3) (x—=y) my=(y—z)—wx

W) (2" —y") = (y =) = 1.

A first example of Wajsberg algebra is offer by a Boolean algebra (L, V, A, ,0,1),
where for z,y € L,x — y=2' V.

For more information about Wajsberg algebras, I recommend to the reader the
paper [62] and the book [22]

If L is a Wajsberg algebra, on L we define the relation x <y <z — y = 1; it
is immediate that < is an order relation on L (called natural order ) and 1 is the
greatest element in L.

THEOREM 2.62. Let L be a Wajsberg algebra and x,y,z € L. Then

) <y —
) Ifx <y —z theny < x — z;
)z —y<(z—z)—(2—y)
w—cs) T (y— 2) =y — (= 2,
) If x <y, then z » x < z — y;
)
)

Proof. (w —¢1). From Wy we deduce that z — y < (y — 2) — (z — 2); since
x—y=1,then (y - 2) - (x = 2) =1, hencey — 2z <z — z.

(w — ¢3). From y = 1 and w — ¢; we deduce that 1 — = < y — =z, hence
r<y—x.

(w—e3). Ifx <y — z, then (y — 2) —» 2z <z — 2. By W3 we deduce that
(z —y) —my<xz—z Since y < (z — y) — y we deduce that y <z — z.

(w —cq4). By Wy we have that z — =z < (x — y) — (2 = y) , so by w — c3 we
deduce that + — y < (z = z) — (2 — ¥).

(w—rc5). Wehave y < (z - y) »y = (y — 2) — z. By w — ¢4 we deduce that
(y—2)—=2<(z—(y—2)—(@—2) hencey <(z—(y—2) = (@ —2),
therefore v — (y — 2) <y — (z — 2).

By a symmetric argument y — (r — z) < & — (y — z). So, it follows the
required equality.

(w — ¢g). Follows immediate from w — ¢4.

(w—c7). We have z* — 1* <1 — x =z, so, 1* <.

(w — cg). We have z* < (1*)* — 2* < x — 1*, by w — ¢4. On another hand,
- 1"<l—oz=z=>z—-1"< @ -1 > 1" =01" - %) — z*
= 1* > 2" <(r—1%) - z* by w— c3.

Since 1* < z*, by w — ¢g we deduce that 1 = (x — 1*) — z*, hence x — 1* < z*,
sorx—1"=z* 1

We deduce that 1* is the lowest element of Wajsberg algebra L relative to natural
ordering, that is, 1* = 0.

As in the case of residuated lattices, for x € L we denote z** = (z*)*.

The following result is straighforward :
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ProprosiTION 2.63. If L is a Wajsberg algebra and x,y € L, then

(w —cg) % = m;

(w—ci) 28 =y =y—zr*—>y=y" —ux
(w—ec11) x<y&y <az"

Proof. (w — ¢9). From (z — 1*) — (z — 1) = 1 we deduce by w — ¢5 that
x — [(x = 1*) = 1*] = 1. Thus, z < ™. By Wy, (z* - 1*) - (1 - z) =1, so
z** — x = 1. Hence, ** < x. We obtain that z** = .

(w—c19). By Wy and w — ¢g we have 2* — y* <y — z =y — ™ < a2* — y*.

(w—ecn1). If z <y, then 2 — y = 1, thus, by w — ¢g, 2™ — y** = 1, hence, by
Wy, 1 — (y* — 2*) = 1, which implies y* < z*. By a similar argument, y* < z*
implies ™ < y**, so by w —cg, z < 3.1

PROPOSITION 2.64. Let L be a Wajsberg algebra. Relative to the natural order-
ing, L become lattice, where for x,y € L,

(wy):zVy=(r—y)—y

and
(wn) rz Ay = (2" Vy*)

Proof. From w—cy we deduce that z,y < (z - y) »y=(y —z) —x.Ifz€ L
is such that x,y < z then z — z = 1 and by W we deduce that (z — 2) — z = z.
Also, z <y —x hence (y > z) 22 < (2 —z) 2z =(x—2) > 2z=zo0r
(x = y) =y < z, therefore x Vy = (z — y) — y.

To prove that x Ay = (2* V y*)* , we observe that from z* y* < z* V y* we
deduce that (z* Vy*)* < 2™ =z, y* =y.

Let now z € L such that z < z,y. Then o*,y* < 2" = z*Vy* < 2" = z =2 <
(* Vy*)*, hence z Ay = (z* Vy*)*. B

COROLLARY 2.65. If L is a Wagsberg algebra and x,y € L, then

w—c12) (€A =z VY,
( ) ( y)* Vy*
w—rc3) (xV =x Ny .
( ) ( y)* Ay

In what follows we want to mark some connections between Wajsberg algebras
and residuated lattices.
If L is a Wajsberg algebra, for z,y € L we define x © y = (z — y*)*.

THEOREM 2.66. If (L,—,*,1) is a Wajsberg algebra, then (L,V,\,®,—,0 =
1*,1) is a residuated lattice.

Proof. To prove that the triple (L, ®, 1) is a commutative monoid, let x,y, z €
L. Wehavez Oy = (z —y") =@ —y) =@y —a™) =@y—2") =y0u,
hence the operation ® is commutative.

For the associativity of © we have : 2O (y©z2) =20 (20y) =20 (z = y*)* =
z—-GEoy) T =Gy =@y =—@—-y)" =
20—y =20(@0y) =0y Oz

Also,z01=(z — 1) =(x — 0)" = 2™ = =z.

We have to prove x Oy <z z <y — 2.

Indeed, z0y<ze (r—y)V' <zozz<r-oy sr<lzoy'=y—z&
r<y—z 1

Thus, all properties valid in any residuated lattice hold in Wajsberg algebras,
too.
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COROLLARY 2.67. If L is a Wajsberg algebra and x,y,z € L, then
(w—rcu) (Vy) —=z=(—2)A({y—2)
(w—e15) @ — (yA2) = (z— y) A (2 — 2);
Ew_clﬁ) (—=y)Vy—z)=1

w—oc17) (xANy) = z=(—y) — (zr— 2).

)

Proof. (w — c14),(w — ¢15). Follows from Theorems 2.66 and rules of calculus
from residuated lattices .

(w—c16). We have (y — z) = (¢ —y) = [(zVy) — 2] = [(aVy) = y] = [2" —
@vy)] =l = (@vy) =y = {[z" = (aVvy)] > (@ Vyr}t=

=y = "V(@Vy)]=["V(@Vy) ] -y=[zA(yVe) - y==x— y hence
=y Vy—z)=[z—y)—@y—2)]—>@y—2)=@Fy—2)—=(y—z) =1

(w — c17). We have (z Ay) — z = (z*Vy* )" — (") =2 — (* Vy*) =
F oyt m ) e =2 ooy ] =@y - (27— 2
=@—y) —(z—2)0

REMARK 2.23. By Theorem 2.66, any Wajsberg algebra can viewed as a resid-
uated lattice. In general, the converse is not true. For an erxample of residuated
lattice which is not Wagsberg algebra see [129].

We will give necessary and sufficient conditions for a residuated lattice to be
Wajsberg algebra.

Define on a Wajsberg algebra L a binary operation &, for z,y € L, by s @y =
z* — y. Then we have

(mup) iz Ay=(xBy") Oy
and
(moy) iz Vy=(z0y")oy.

Indeed, 2/\y = (2" Vy")* =[(2" = y") =y ]" =y = (@ = ") =yO (" —
)=y @dy) = (rey) OyandaVy = —y) —y= (& —y™)" —y=
(oY) —y=(@oy)ay.

Is eassy to verify that the following equations under the given notation are
satisfied in every Wajsberg algebra:

ThYy=y>duz; rOYy=yQOux;
T®(Ydz)= (DY) d 2 rOYoz)=(0y) Oz
@zt =1, rOx* =0;

rd1l=1; z©0=0;

z®0=ux; zO1=uz;

(z@y)" =z" Oy, (zOy) =z" Y%

o = 1 1" =0;

rVy=yVuz; TANYy=yANzx;
zV(yVz)=(xVy)Vz s A(YNz)=(xAy) Az

r®YA2)=@eyYA(rdz); 20(@yV2)=(x0y) V(rOz2),
that is, (L, ®,®,*,0,1) is an MV — algebra (see Definition 2.1).
Also the converse is true: given an MV — algebra (L, ®,®,*,0,1) we can define
a binary operation — such that the Wajsberg algebra axioms hold.

PROPOSITION 2.68. Define on an MV — algebra (L, ®,®,*,0,1) a binary oper-
ation — by
r—y=x"dy (z,y € L).
Then we obtain a Wagsberg algebra (L,—,*,1).
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Proof. Let x,y,z € L. We show that (L,—,*,1) satisfies the axioms W; — Wj.

Indeed, 1 mz=1"®zx=0dx = z;

@@=y —lly—2)—(@—2)]=(@"0y)alye) e@ ez))=(20y)e
[(yoz )@ (" @2)] = [y oz)@a’]|@[(yos )@z = (y"Var) @ (yVe) 2y dy =1

and (z —y) »y= (2" 0yY) Dy = (z0y")dy=aVy=yVr= (yor")dr=
(@) Bo = (y— ) —

Finally, y —z=y*"@x =20 y* =z y* =2* — y*.

Thus, (z* -y ) @ (y—z)=1,s0 (2" —-y") - (y—x)=1. 1

By Theorems 2.66 and 2.68 we deduce

THEOREM 2.69. There is a one-to-one correspondence between MV — algebras
and Wajsberg algebras.

REMARK 2.24. By Theorem 2.69 we deduce that an MV — algebra has all the
Wagsberg algebra properties and conversely. Moreover, the category of MV — algebras
and the category of Wajsberg algebras are equivalent. Still, the Wajsberg algebras are
special, since they are the structure that naturally arise from Lukasiewicz logic.

THEOREM 2.70. Let (L,V,N,®,—,0,1) be a residuated lattice . Then (L, —,* 1)
is a Wagsberg algebra iff (x — y) — y = (y — x) — =z, for every x,y € L, where
¥ =x —0.

Proof. ,,= 7. The condition is clearly necessary.

,,< 7. From (x — 0) - 0= (0 — z) — = we deduce that z** =1 — x = «z,
hence z** = z, for x € L. So, take in consideration the calculus rules Ir —c; —Ir — cog
from residuated lattices, we deduce that W7, Wy and W3 holds.

ForWy:2* >y =(x—-0—-(y—0=y—[(zr—0) —-0=y—a*=y—
x and the proof is complete. B

REMARK 2.25. Theorem 2.70 states that Wajsberg algebras, or equivalently,

MV — algebras, are exactly those residuated lattices where x NV y and (x — y) — y
coincide.



CHAPTER 3

BL-algebras

BL-algebras are particular residuated lattices.

The origin of BL-algebras is in Mathematical Logic. BL-algebras have been introduced
by Héjek [75] in order to investigate many-valued logic by algebraic means. His motivations
for introducing BL-algebras were of two kinds.

The first one was providing an algebraic counterpart of a propositional logic, called
Basic Logic, which embodies a fragment common to some of the most important many-
valued logics, namely Lukasiewicz Logic, Godel Logic and Product Logic. This Basic Logic
(BL for short) is proposed as the most general many-valued logic with truth values in [0, 1]
and BL-algebras are the corresponding Lindenbaum-Tarski algebras.

The second one was to provide an algebraic mean for the study of continuous t-norms
(triangular norms) on [0, 1]. An exhaustive treatment of t-norms can be found in the mono-
graph [89].

It turns out that the variety of BL-algebras is generated by the class of algebras of the
form ([0, 1], min, max, ®, —, 0, 1), where ® is a continuous t-norm and — is its residuum
[44], called usually BL-algebras.

The standard references for the domain of BL-algebras are the monographs [75], [129].

In this chapter we present some basic definitions and results on BL-algebras and we give
more examples.

The MV-center of a BL-algebra, defined by Turunen and Sessa in [132], is a very
important construction, which associates an MV-algebra with every BL-algebra.

In this way, many properties can be transferred from MV-algebras to BL-algebras and
backwards. We shall use more times this construction. We present some results in the more
general setting of pseudo BL -algebras [53] and new results about the injective BL-algebras:
we prove that the complete and divisible MV-algebras are injective objects in the category
of BL-algebras.

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. We put
in evidence characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean
BL-algebras, too, are characterized (Corollary 3.55). Also, we prove a Nachbin type theorem
for BL-algebras (see Theorem 3.56).

These results are in the general spirit of algebras of logic, as exposed in [118].

1. Definitions and first properties. Some examples. Rules of calculus.
DEFINITION 3.1. ([75]) A BL-algebra is an algebra
A= (ANV,0,—,0,1)
of type (2,2,2,2,0,0) satisfying the following;:
(BL1) (A,A,V,0,1) is a bounded lattice;

(BL2) (A,®,1) is a commutative monoid,;
(BL3) ® and — form an adjoint pair, i.e. ¢ < a — biffa®c < b, for all a,b,c € A;

67
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(BLy) aNb=1a® (a— b);
(BLs) (a —b)V (b—a) =1, for all a,b € A.

REMARK 3.1. BL—algebras are exactly the residuated lattices satisfying BLy, BLs
(see Definition 1.2).

In order to simplify the notation, a BL-algebra A = (A, A,V,®,—,0,1) will be
referred by its support set, A. A BL-algebra is nontrivial if 0 £ 1 .

REMARK 3.2. For any BL-algebra A, the reduct L(A) = (A,A,V,0,1) is a
bounded distributive lattice. Indeed, let x,y,z € A. First, x ANy,x Az <x A(yV z),
therefore, (x Ny)V (x A z) <xA(yV z). The converse holds, too as by BLy,lr — ¢
and lr — c12 (since by Remark 3.1, A is a residuated lattice), we have x A\ (y V z) =
(yvz)ollyvz) =z ={yollyVve) —ajv{zolyvz) -z} <yo(y —
DV[zo0(z—x))=wAx)V(zAz)=(zAYy)V(zAz).

A BL -chain is a totally ordered BL-algebra, i.e., a BL-algebra such that its
lattice order is total.

For any a € A, we define a* = a — 0 and denote (a*)* by a**. Clearly, 0* = 1.

We define a” = 1 and a™ = a" ! ® a for n € N\{0}. The order of a € A,a # 1,
in symbols ord(a) is the smallest n € N such that a™ = 0; if no such n exists, then
ord(a) = 0.

A BlL-algebra is called locally finite if all non unit elements in it have finite
order.

EXAMPLE 3.1. Define on the real unit interval I = [0, 1] the binary operations
® and — by
r©y=max{0,z+y—1}
x—y=min{l,1 —z+y}.
Then (I,<,®,—,0,1) is a BL-algebra (called Lukasiewicz structure).
EXAMPLE 3.2. Define on the real unit interval I = [0,1]
r ®y = min{z,y}
r—y=1iffx <y andy otherwise.
Then (I,<,®,—,0,1) is a BL-algebra (called Gédel structure ).

EXAMPLE 3.3. Let ® be the usual multiplication of real numbers on the unit
interval I = [0,1] andx — y = 1 iff x <y and y/x otherwise. Then (I,<,®,—,0,1)
is a BL-algebra (called Product structure or Gaines structure ).

REMARK 3.3. Not every residuated lattice, however, is a BL-algebra (see [129],
p.16). Consider, for example a residuated lattice defined on the unit interval, for all
xz,y,z € I, such that

1
rOy =0, iﬁx+y§§ and x ANy elsewhere

1
r—y=1ifz <y and max{§ —x,y} elsewhere.

Let0<y<x,x—|—y<%. Theny<%—x and 0 £y =z ANy, but x ® (x — y) =
x@(% —x) = 0. Therefore BL4 does not hold.



1. DEFINITIONS AND FIRST PROPERTIES. SOME EXAMPLES. RULES OF CALCULUS. 69

ExAMPLE 3.4. If (A,A,V,],0,1) is a Boolean algebra, then (A, A\,V,®,—,0,1)
is a BL-algebra where the operation © coincide with A and © — y =|x V y, for all
x,y € A.

EXAMPLE 3.5. If (A, A, V,—,0,1) is a relative Stone lattice (see [2], p.176), then
(A, N, V,®,—,0,1) is a BL-algebra where the operation ® coincide with A .

ExXAMPLE 3.6. If (A,®,*,0) is an MV -algebra, then (A,A\,V,®,—,0,1) is a
BL-algebra, where for x,y € A :
TOy= (" &y’),
r—y=z"dy,1=0"
zVy=(z—y) —wy=Wy—2x) >z andzAhy=(x"Vy")"

REMARK 3.4. If in a BL— algebra, x** = x for all x € A, and for x,y € A we
denote v &y = (" © y*)* then (A,®,*,0) is an MV — algebra.

REMARK 3.5. MV —algebras will turn to be particular case of BL—algebras.
Indeed, by Theorems 2.66 and 2.69, MV —algebras are residuated lattices where the
BL-algebra axioms BLy, BL5 hold by wy,w — c16 and mua.

EXAMPLE 3.7. From the logical point of view, the most important example of a
BL-algebra is the Lindenbaum-Tarski algebra Lpy of the propositional Basic Logic
BL. The formulas in this logic are built up of denumerable many propositional vari-
ables vy, ...v, with two operations & and — and one constant 0 as follows:

(i) every propositional variable is a formula;
(17) 0 is a formula;
(1i1) if ¢, are formulas, then p& and ¢ — 1 are formulas.
Let us denote by F'mla the set of all formulas of BL. Further connectives can be
defined:
O N = p&(d — 1),
PVY = (0 =) = Y)A (¥ — ¢) — ¢),

1¢:=¢ —0,
¢ i=(d—Y)A (Y — ),
1:=0—0.

The axioms of a BL are:

1) (=) — ((¢—>x)—>(¢>—>x));
(p&etp) —

(p&etp) — <w&¢>

E¢&(¢ V) — (Y& — ¢));

(

(A
(A2)
(As3)
(As)
(45) (¢ = (¥ = x)) = ((¢&) — x);

(As) ((9&t)) — x) = (& — (¥ — Xx));

(A7) (¢ =) = x) = (¥ = @) = x) = Xx);

(As) 0— o.

The deduction rule is modus ponens: if ¢ and ¢ — ¢ then . We say that ¢
is a theorem and we denote by b ¢ if there is a proof of ¢ from Ay — Ag using
modus ponens. The completeness theorem for BL says that = ¢ if and only if ¢ is a
tautology in every standard BL-algebra [44].

5
6
7
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On the set Fmla of all formulas we define the equivalence relation = by:

=1 iff £
Let us denote by [¢] the equivalence class of the formula ¢, and Ly, the set of all
equivalence classes. We define

0 := [0],

1:= 1],
[o] A Y] = [o A9,
(0] V [¥] == [o V],
(6] © [¢] := [p&y],
[¢] = [¥] == [¢ — 9.

Then (Lpr,\,V,®,—,0,1) is a BL-algebra.

EXAMPLE 3.8. A product algebra (or P-algebra) ([75], [46]) is a BL-algebra A
satisfying:

(P) ¢*<(a®c—boc)— (a— b);

(Py) aNa*=0.

Product algebras are the algebraic counterparts of propositional Product Logic
[75]. The standard product algebra is the Product structure.

EXAMPLE 3.9. A G-algebra ([75], Definition 4.2.12) is a BL-algebra A satis-
fying:
(G) a®a=a, foralla € A.

G-algebras are the algebraic counterpart of Godel Logic. The standard G-algebra
is the Gaddel structure.

ExampLE 3.10. If (A, A,V,®,—,0,1) is a BL-algebra and X is a nonempty
set, then the set AX becomes a BL-algebra (AX,A,V,®, —,0,1) with the operations
defined pointwise. If f, g € AX, then

(f A g) (=) = f(z) A g(z),
(fVg)(z)=f(z)Vg(z),
(fog)(z) = f(z)©g(z),
(f = 9)(@) = f(z) — g(x)

forallz,y € X and 0,1 : X — A are the constant functions associated with 0,1 € A.

ExAMPLE 3.11. ([84])

We give an example of a finite BL-algebra which is not an MYV -algebra. Let
A={0,a,b,c,1}.
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Define on A the following operations:

— 10 ¢c a b 1 ®l0 ¢ a b 1
01 1 1 11 0/0 0 0 0O
c|0 1 1 1 1 c|0 ¢c ¢ ¢ c
al0 b 1 b 1° al0 ¢ a ¢ a
b 10 a a 1 1 b|0 ¢ ¢ b b
110 ¢ a b 1 10 ¢ a b 1

We have, 0 < ¢ < a,b < 1, but a,b are incomparable, hence A is not a BL—
chain. We remark that z © y = = Ay for all z,y € A, so ord(x) = oo for all
x € A,x # 0. It follows also that t ®©x = xAx = x for all z € A, so A is a G-algebra.
It is easy to see that 0" =1 and z* =0 for all x € A,x # 0,80 0" =0 and z** =1
for all x € A,z # 0. Thus, A is not an MV — algebra.

EXAMPLE 3.12. ([84])
We give an example of a finite MV -algebra which is not an MV -chain. The set

L3><2 = {O,Q,b,c,d,l} ~ L3 X L2 = {0,1,2} X {0, 1} =

={(0,0),(0,1),(1,0), (1,1),(2,0), (2, 1)}

organized as lattice as in figure

and as BL—algebra with the operation — and
rOy=min{z:x<y—z}=(x—y ) 2" =2-0

as in the following tables, is a non-linearly ordered MV -algebra

— 10 a b ¢ d 1 ®l0 a b ¢ d 1
0(1 1 1 1 11 0/0 0 OO OO
al|ld 1 d 1 d 1 al0 a 0 a 0 «a
ble ¢ 1 1 1 1, b0 0 0 0 b b
cl|lb ¢ d 1 d 1 c|0 a 0 a b c
dla a ¢ ¢ 1 1 dl/0 0 b b d d
110 a b ¢ d 1 110 a b ¢ d 1

We have in Lgyxo the following operations:
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— Q0 o9 OO
— Q0 o8 OO
— Q= Q0 oS
— QL QL QX
e el )
QU
oS
S O
ISHEESH
O =

=0 0 2 28
— = = =0 o0lo

It is easy to see that 0* = 1,a* = d,b* = ¢,¢* = b,d* = a,1* =0 and 2™ = x,
for all x € A, hence L3xs is an MV — algebra which is not chain.

By Remark 3.1, all properties valid in any residuated lattices hold in any BL-
algebras. Using this rules of calculus and axioms BLy4, BLs it is eassy to proved that
if A is a BL-algebra and a,d’,aq,...,an,b,b',¢,b; € A, (i € I) we have the following
rules of calculus (for more details see [75] and [129]) :

(bl —c1) a®b<a,b hencea®b<aAband a®0=0;

(bl — c2) a <bimpliesa®c<bO¢;

(bl —c3) a<biffa—b=1;

(bl—c4) 1 wa=a,a—a=1a<b—aa—1=1,

(bl —¢5) a®a* = 0;

(bl —cs) a©@b=0iff a < b

(bl —c7) avb=1impliesa®b=aAb;

(bl—cg) a— (b—c)=(a®b) - c=b— (a— c);

(bl —cg) (a—b) —(a—c)=(anb) —c

(bl — c10) a— (b—¢) > (a—b) — (a— c);
(bl—cn)a<b1mphesc—>a<c—>bb—>c<a—>candb*§a*;
(bl —c12) a<(a—b)—b,((a—b)—b —b=a—1b
(bl—clg)c@(avb):((:@a)v(c@b);

(bl —c14) c®(aNb)=(c@a)A(cOb);

(bl —c15) aVb=((a—b) = b)A((b—a)— a);

(bl — c16) (aAND)* =a™ A", (aV D)™ =a™ VD", hence a Vb= 1 implies a" V" =1

for any n € N;

bl—617 (b/\C):(a—>b)/\(a—>c)7
bl — c18 (a/\b)—>c—(a—>c)\/(b—>c);
bl — c19) (aVb) = c=(a—c)A(b— c);

a—b<(b—c)— (a—c);
a—b<(c—a)— (c—b)
a—>b<( ©c) = (boo);
©b—c)<b—(aOc);
bec) (a—b)<a—cg
ar — az) © (ag — az) © ... © (ap—1 — ap) < ay — ap;
b<cand ¢c— a=c— bimplies a = b;
\/(b@ ¢) > (aVb)®(aVc), hence a™ V" > (aVb)™, for any m,n € N;
(a—b) O (a—>b)§(a\/a/)—>(b\/b/);
(a—b)o(d —b)<(anad)— (bAD);
(@—=0b)—c<(b—a)—c)—c
)

a® (Abi) < A\(a©bi);

el iel

a,
a

NN N N N N N N N N TN N N N N
S
=
Q
N
=

—_ L D D
o~ —
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iel el
a— (Abi) = A(a— bi);
i€l icl
(Vbi) = a= A(bi — a);
iel iel
V(bi = a) < (Abi) = a;
icl el
V(e = bi) <a— (Vbi);
i€l i€l
aN(\Vbi)=V(aAb;);if Ais a BL-chain then aV (Ab;) = A (aV b),
i€l i€l i€l i€l

(whenever the arbitrary meets and unions exist)

(bl —c32) a<a™ ,1*=0,0"=1,a"™ =a*,a" <a* —

(bl — c33) (aAb)* =a*Vb* and (a Vb)* = a* A D

(bl — c34) (a AD)*™ = a™ AD™ | (aVb)™ =a™ Vb (a®b)™ =a™ b, (a —
b)** = a** — b**;

(bl —¢c35) (@™ — a)*=0,(a™ —a)Va™ =1;

(bl — c36) a =a™ © (a™ — a);

(bl —c37) a—b"=b—a*"=a"* - b*=(a®b)*

(bl — e38) If o™ < a** — a, then a** = q;

(bl — c39) b* < a implies a — (a ® b)** = b**.

Proof. (bl — ¢1). See lr — co.
(bl — c2). See lr — cg.
(bl — ¢3). See lr — ¢y.
(bl — c4). See lr — ¢;.
(bl — ¢5). See lr — cy5.
(bl — cg). See lr — cy5.
(bl — ¢7). See lr — cos.
(bl — ¢g). See lr — c13.

)

bl — co 61;08 [(

( . We have (a — b) — (a — ¢) a—b)®al —c=(aNb) —c.

( ). See Ir — cag.

(bl — c11). See Ir — c11.

( ). Follows from a A b < b.

( ). See Ir — cap.

(bl — c14). By lr —co1, c® (aAD) < (c®a) A(cOb).

onversely, we prove first that a = b=a — (aAb):aANb<b=a— (aNb) <
a—banda—b<a—(aNb)sad(a—b <ahnbsaAb<aAb.

Q

So, we get a - b=a — (aA\b) bl§022 (c®a) — (c® (aAb)).

Thusa - b< [(c®a) = (c®b)] = [(c®a) — (c® (aAb))] and by replacing a
by b and b by a we obtain b — a < [(c©b) = (c®a)] = [(c®b) = (cO(bAa))]. It
is eassy to proof that the right term of the last two inequalities are equal (see also,
psbl — co3) and we denote the common value by z. So, a — b < z,b — a < z.

On other side, (a — b) V (b — a) Hls 1, therefore we get 1 < 2V z = x, hence
=1

Thus (c®a) = (c®b) < (c®a) = (cO(aAb) & (cOa)O(c@a) = (cOb)] <
cOaNb) & (cOa)AN(cO®b) <c®(aNb).
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(bl—c15). Denote x = ((a — b) — b)A((b — a) — a). By BLy, aAb = a®(a — b)
soa < (a —b) — b; from bl—cy, b < (a — b) — b; it follows that aVb < (a — b) — b.
Analogous, a Vb < (b — a) — a. Hence aVb < ((a — b) = b) A ((b — a) — a).

Wehavez =201 £ 20 [(a = b)V(b— a)] "= 260 (a — b)|V]z® (b — a);
but t®(a —b) =[(a—b) = b)A((b—a)—al®(a—0b) <[la—b) —blo(a—
b) Bl (a — b)Ab < b; similary, x® (b — a) < a. Hence, z = [z® (a — b)|V[z® (b —
a)] < bV a. It follows that a Vb = x.

(bl —c16).- favb=1then,a=a01l=a®(aVd) =(a®a)V(a®b) <
a®? Vv b. Hence a®> Vb > a. Then (a> Vb) Vb > aVb=1,soa®?Vb=1. Similarly,
b=10b=(a®?Vvb)ob=(a20b)V (b®b) <a?Vb’ Thus, a®> vV b*> > b; hence
a’Vv(a®Vvb)>a’Vvb=1,50a> Vb =1,

It follows that 1 = aVb = a?Vb? = (a?)?V (b?)? = ... . We obtain a®" Vb?" =1,
for each integer n > 1. Since n < 2" it follows that a™ Vv b" > a?" v = 1, which
implies a” V b" = 1.

(bl — c17). See lr — cao.

(bl — ¢18). Let t € A such that a — ¢,b — ¢ <t, s0 (a Ab) — c.

Conversely,.........cccceveennn.

(bl — 619). See Ir — C23.

(bl - CQQ). See Ilr — C10-

(bl — c21). See lr — cq.

(bl - 622). See Ilr — Cr.

(bl - 623). See lr — C12.

(bl — co4). Wehave (b —¢c)®(a—b)<a—cea®(b—c)O(a—b) <ce

(anb)®(b—c) <ec.
But (anb)©(b—¢c)<b)O(b—c)=bAc<c
(bl — c95). Similarly with bl — caq4.
(bl —c96). Wehave a =aANc=cO(c—a)=cO®(c—b)=cAb=0D
(bl — ca7). See Ir — c3p.
(bl — co8). See Ir — c31.
(bl — ca9). See Ir — c39.
(bl — c30). We have [(b—a) — ] ®[(a—=b) =] <[(b—a)—]A[la—b) —

c]bl_:clg [(b—a)V(a—b)]—c=1—c=cso,(a—b) —c<((b—a)—c)—c

(bl — c31). See Theorem 1.3.
(bl — ¢32). See lr — ¢16 and Ir — c17.
(bl —c33). For (aVb)* = a*Ab*, see lr —cag. By Ir —ca7, we have (aAD)* > a* Vb*.

bl—c
Conversely, we get that a — b =a — (a A b) < (aANb)* — a* and b — a =

b— (bAa) blgcm (a Ab)* — b*, s0
(a = b)®(anb)* < a* and (b — a)®(anb)* < b*. It follows that (aAb)* = 1O (aA
b)* =[(a—=b)V(b— a)]©(anb)* = [(a — b)©(anb)*]V[(b — a)®(anb)*] < a*Vb*.
bl — c34). We prove that (a ® b)** = o™ © b**.
Since a®b < a, we have that (a®b)*™ < a* and (a®b)* = (a®b)*™* Aa™ = (b —
See also psbl — cxa.
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(bl — c35). Since a* < @™ — a we have (¢ — a)* < a*. Hence (a™ —
CL)* = o™ A (CL N CL) s ® [a** N (CL** N a)*] — a** ® [(CL** N (L) @CL**]* —
a”* © (@ Na)* =a" Oa" = 0
a* = 1.

On the other hand, we have [a** — (a** — a)] — (¢** — a) = [(a™ — (a™* —
0) ©0*] = a = [a™ A (* — )] — a = [(@ — 0) © (&™ — @) — a™)] - 0 =

[(a* —a)® (a* — (6™ = a)*)] ma=[(a" —a)©a*] 5 a=1

So, (™ — a) Va** = 1.

(bl — c36). We have a™* © (¢™* — a) = a™ Na = a.

(bl — c37). See Ir — c19.

(bl — c38). If o™ < a* — a, then by bl — ¢35, ™ — a = (™ — a) Va** =1,
hence a** = a.

(bl — c39). Assume that b* < a, then by using bl — c37, a — (a®b)** = (a®b)*
a*=[a—=b")oa*=(aAb*)* =b". 1

REMARK 3.6. Also, we obtain the rules (bl — c¢1) — (bl — ¢39) by (psbl — c1) —
(psbl — ce9) if x ©y =y ©x, for all x,y € A, that is, the pseudo BL-algebra A is a
BL-algebra (see Chapter 5).

ProposiTION 3.1. If in a BL-algebra A, z** = z, for all z € A, then for all
z,ye AjzVy=(y— ) — x.

Proof. zVy = (zVy)™ = @*ANy") =250 (2% - y)]* = (=5 — y") —

*x WZC10 (

x y—z)—s¥=y—z)—z N

REMARK 3.7. By Proposition 3.1, if z** = z, holds for all z € A, then for all
r,y€ Ay - z) x=zVy=(r —y) — y. In[129], MV — algebras where
defined in following way: BL— algebras of this kind will turn out to be so called
MYV — algebras.

As an immediate consequence of Theorem 2.70 and Proposition 3.1 we obtain
(see Remark 1.2):

THEOREM 3.2. A BL— algebra A is an MV — algebra iff ™ = x for all x € A.

For any BL-algebra A, B(A) denotes the Boolean algebra of all complemented
elements in L(A) (hence B(A) = B(L(A))).

PROPOSITION 3.3. Fore € A, the following are equivalent:
(i) e € B(A);

(i) e@e=e and e = **

(1ii) e e=-¢€ and e — e =¢;

(iv) eve* =1.

Proof. (i) = (i7). Suppose that e € B(A). Then eVa =1 and e Aa = 0,
for some a € A. By bl — ¢g and bl — c; we obtain a < e*. Moreover e* = 1 ® e* =
(evVa)@e*=(e@e)V(a®e) =0V (a®e*) =a®e* <a. Hence e* < a. Thus,
a = e* is the complement of e. It follows that e* € B(A) and, similarly, e** is the
complement of e*. But the complement of e* is also e. Since L(A) is distributive, we
get e = e**

(73) = (i7i). We have that e — e* =e— (e = 0)=(e®e) = 0= — 0 =¢".
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Hence, ene* = e®(e — €*) = e@e” = 0. Since eAe* = e*Ne =€e*O(e* — e) =0,
by bl — cg we obtain that e* — e < €™ = e. But, by bl — ¢4, e < e* — e. We have
that e* — e=e.

(791) = (iv). Applying bl — ci15, eVe* =1 < (e — €*) — € =1 and (e* —
e) — e = 1. By (iii),e* — e = e, hence (¢ — e) — e = 1. We also have that
e—e=e—(e—=0)=(e0e)—0=e—0=¢" S0, (e —e€")—e*=1.

(iv) = (7). From eV e* = 1 it follows that, by bl — c7,e Ae* = e ® e* = 0. Hence
e* is the complement of e. That is, e € B(A).l

REMARK 3.8. Ifa€ A, ande € B(A), thene®a=eANa,a —»e=(a®e")* =
a*Ve;ife <aVa*, thene®a € B(A). Indeed, eNa = e®(e — a) =eGe®(e — a) =
e®(ena)=(eGe)AN(e@a)=eAN(e@a)=e®a.

PROPOSITION 3.4. For e € A, the following are equivalent:
(i) e € B(A);
(ii) (e = x) — e =e, for every x € A.

Proof. (i) = (i7). If x € A, then from 0 < x we deduce e* < e — x hence
(e - x) —e<e*—e=ce. Since e < (e — ) — e we obtain (e —» z) — e =ce.

(i) = (7). If z € A, then from (e — z) — e = e we deduce (e — z)®[(e — z) —
e] = (e — x) ®e, hence (e — x) Ae = e Ax. For x = 0 we obtain that e* Ae = 0.
Also, from hypothesis (for z = 0) we obtain e* — e = e. So, from bl — ¢15 we obtain

*

eve' = [(e—e€")—=e|A[(e"—e)— €

(e —e€*) = e A(e—e)

I
= O = = ==
Cﬁ
!
®
*
S~—
!
®
X
>
—_

hence e € B(A).l

REMARK 3.9. If L3xo is the MV — algebra from Ezample 3.12, we remark that
0p0=0,aPa=a,cdc=1#c,bdb=d#bd®d=dand 1d1 =1, hence
B(A) ={0,a,d,1}.

LEMMA 3.5. Ife, f € B(A) and x,y € A, then:

eO@—y)=e0fleor) = (eOy);
rO(e—fl=z0[(z0e) = (z0 f)]
e—(@—y)=(e—z)—=(e—y).
Proof. (bl — c49). We have

l

(eva)®(eVy) "= [(eva)oe V(eva) Oyl "= [(eva)@e] Vedy) V (zOy)]

=leva)relVeoyV(zoyl=eV(eoy V(Ezoy) =eV(zoy).
(bl — ca1). We have

(enz)O(eAy)=(cOr)O(cOy)=(e0e)O(z0y)=eO(rOy) =eA(zOy).
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(bl—C42) By bl — co2 we have z — y < (e®z) — (e ® y), hence e ® (x —
) < e®[(e®x) = (e ®y)]. Conversely, e ® [([e ®x) — (e ®y)] < e and (e ®
Jolleoz) = (e0y]<evy<ysoed|e®r) = (e0y)] <z —y. Hence
Ollevr) = (eoy)<eo(z—y).
(bl — c43). We have

rolxoe) = @ofHl=r0(oe) — (@A f) ="

" o(z0e) m ) A((z0e) — f)] =
—20[IA(zoe) = Nl=20 (z0e) — f)

M oo (e—fl=aAle—f)=20 (e — f).

(bl — c44). Follows from bl — cg and bl — cg since e Az =e © z.1

LEMMA 3.6. If a,b,x are elements of A and a,b < x then
(bl —cg5) a©(x —b) =b0O (z — a).

Proof. We have
a®(x—b)=@ANa)o(x—b =06 (x—a)]e(x—Db)
=z0@—=b]o(r—a)=xAb)O(x—a)=b0(x—a).l

PROPOSITION 3.7. For a BL- algebra (A, \,V,®,—,0,1) the following are equiv-
alent:
(i) (A,—,1) is a Hilbert algebra;
(i) (A,A,V,—,0,1) is a relative Stone lattice.

Proof. (i) = (i7). Suppose that (A, —,1) is a Hilbert algebra (see Definition
1.7), then for every z,y,z € A we have

r—(y—z2)=(@ -y —(@—>2)
From bl — cg and bl — cg we have
r—(y—z2)=(0y) —2
and
(z—y)—(@—2)=(@AY) — 2
so we obtain
(zoOy)—z=(xAy) ==

hence z ® y = x Ay, that is (A, A,V,—,0,1) is a relative Stone lattice.
(ii) = (). If (A, A,V,—,0,1) is a relative Stone lattice, then (A, A,V, —,0,1) is
a Heyting algebra, so by Remark 1.8, (4, —, 1) is a Hilbert algebra. B

DEFINITION 3.2. Let A and B be BL—algebras. A function f: A — B is a
morphism of BL—algebras iff it satisfies the following conditions, for every z,y € A :

(BLg) f(04) = 0p;
(BL7) f(xr©y) = f(z)® f(y);
(BLg) f(x —y) = f(z) — f(y).
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REMARK 3.10. If f : A — B is a morphism of BL—algebras then for every

x,y € A,

f@) =1f(@)], f(1a) = 1B,

fleoy) = f(z)@ fly), wherex Sy = (" ©y*)",
if © <y then f(x) < f(y),
flany) = f@) A fy), flevy)=flx)V )

Indeed, using BLg — BLg we obtain: f(x*) = f(x — 04) = f(z) — f(04) = f(x) —
Op = [f(@)]*; f(1a) = f(04 — 04) = f(0a) — f(04) =0p — 0p =1p; f(xrDy) =
flamoy)) = [l oy = [f") o fy)]" = [f(2)* © fu)]" = fz)® fy);
if x <y then x — y = 1y, thus f(r — y) = f(1la) < f(x) — f(y) = 1p, hence
f(x) < f(y); fahy) = [0z —y)) = f2)0flz —y) = f(2)O[f(z) = f(y)] =
F@Nf); flavy) = (2 —=y) = Ay = 2) = 2) = f((z = y) = y)Af((y —
z) = x)=[( f(z) = f() = FWINF(y) = f(@) = f(@)] = flz) V f(y).

We deduce that every morphism of BL -algebras is a morphism of MV — algebras
(see Definition 2.3).

We shall denote by BL the category whose objects are nontrivial BL— algebras
and whose morphisms are BL— morphisms. Clearly, the category MV of MV —
algebras is a subcategory of BL.

2. Injective objects in the BL-algebras category.

The first aim of this Subsection is to present the MV-center of a BL-algebra, defined
by Turunen and Sessa in [132]. This is a very important construction, which associates an
MV-algebra with every BL-algebra. In this way, many properties can be transferred from
MV-algebras to BL-algebras and backwards. We shall use more times this construction. We
present some known results, which can be found in [70] and we also prove some new ones.

The second one was to present some results about the injective BL-algebras.

We recall that an MV-algebra is called complete if it contains the greatest lower bound
and the lowest upper bound of any subset. In [129] the injective MV-algebras are charac-
terized: In fact, an MV-algebra A is injective if and only if A is complete and divisible, i.e.
for any a € A and for any natural number n > 1 there is « € A, called the n-divisor of a,
such that nx = a and a* @ [(n — 1)x] = *. It is also known that all injective MV-algebras
are either isomorphic to Lukasiewicz structure or, more generally, isomorphic to retracts of
power of Lukasiewicz structure.

In [30], we prove that the complete and divisible MV-algebras are injective objects in
the category of BL-algebras (see also [63]).

2.0.1. MV-center of a BL-algebra. As we saw in Example 3.6, MV -algebras are
BL-algebras, and more, a BL-algebra A is an MV-algebra iff a** = a for every
a€ A

The MV-center of a A, denoted by MV (A) is defined as

MV(A)={acA:a™ =a} ={a":a € A}.

Hence, a BL-algebra A is an MV-algebra iff A = MV (A).
By Proposition 3.3 follows that B(A) C MV (A).

ExXAMPLE 3.13. ([132]) If A is a product algebra or a G-algebra, then MV (A)
is a Boolean algebra. If A is the Product structure or the Gédel structure, then

V(A) ={0,1}.
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EXAMPLE 3.14. If A is the 5-element BL-algebra from Example 3.11, MV (A) =
{0,1}.
PROPOSITION 3.8. ([132], Theorem 2) Let A be a BL-algebra and let us define
foralla,be A,a* ®b* = (a®b)*. Then
(1) (MV(A),®,*,0) is an MV -algebra;
(ii) the order < of A agrees with the one of MV (A), defined by
a<yyvbiffat®b=1, for alla,b € MV (A);

(131) the residuum — of A coincides with the residuum — prvin MV (A), defined
by
a—pyyb=a" @b, for all a,b € MV (A);

(iv) the product ®pryon MV (A) is such that
aOuy b=(a®b)*” =a®b, foralabe MV(A);
(v) MV (A) is the largest MV — subalgebra of A.
PROPOSITION 3.9. B(A) = B(MV (A)).
Proof. Applying Proposition 3.3, (ii), we get that B(4A) = MV(A)N{a € A:
a®a=a}=B(MV(A)), following Theorem 2.8. W

2.1. Reflexive subcategories.

REMARK 3.11. ([2], p.31) Since the categories MV and BL are equational, then
in these categories the monomorphisms are exactly the one-one morphisms.

DEFINITION 3.3. ([2], p-27) A subcategory B of category A is reflective if there
is a functor R : A — B called reflector, such that for each A € Ob(A), there exists
a morphism ®g(A) : A — R(A) of A with the following properties:

(Ry) If f € Homa(A, A"), then ®r(A")o f = R(f)oPr(A), that is the diagram

A ANV
log () Lor(An
R(4) 2D Rean

is commutative,
(R2) If B € Ob(B), and f € Homy4(A, B), then there exists a unique morphism
' € Homp(R(A), B), such that f’ o ®r(A) = f, that is the diagram

PR (A)
SALEY

A R(A)
N\ /
f I

B

is commutative.

THEOREM 3.10. ([2], p.29) Suppose R : A — B is a reflector. Then R preserves
inductive limits of partially ordered systems.

THEOREM 3.11. ([2], p.30) Suppose R : A — B is a reflector which preserves
monomorphisms. If B is an injective object in B, then it is also injective in A.
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THEOREM 3.12. The category MY of MV-algebras is a reflective subcategory of
the category BL of BL-algebras and the reflector R : BL — MYV preserves monomor-
phisms.

Proof. Let (A, A,V,®,—,0,1) € Ob(BL) and define

R(A)=MV(A)={z":z € A} ={z € A: 2™ =z}
By Proposition 3.8, (R(A), A, V,®,*,0) is the greatest MV -subalgebra of A via the
operations:
and

We define & (A) : A — R(A) by ®r(A)(x) = z**, for every x € A.

By bl — ¢34 we deduce that ®r(A) is a morphism in BL.

If A,A" € Ob(BL) and f € Hompc(A, A"), then R(f) : R(A) — R(A’) defined
by R(f)(z*) = f(z*) = (f(z))* for every x € A is a morphism in MV.

Indeed, if z,y € A, then R(f)(z" ® y*) = R(f)(z ©y)*) = (f(z ©y))* =
(f(z) © fy)* = f(@)" & f(y)* = (R(f) (") & (R(f)(y")) and R(f)((z")")
(f(@™)" = (f(x))" = (R(f)(z))".

So, we obtain a functor R : BL — MV .

To prove R is a reflector, we consider the diagram

A Lo
Log(a) log(an)
R(4) 2 R@)

with A, A" € Ob(BL).

I£2' € A, then (B (A')of)(x) = Br(A)(f(2)) = (F(2))* and (R(f)oDr (4))(x
R(F)(@r(A)(2)) = R(H)(@™) = (F(*)* = (F(@))" = (f(2))"*, hence D (A')of
R(f) o Pr(A), that is the above diagram is commutative.

Let now A € Ob(BL), M € Ob(MV) and f: A — M a morphism in BL.

l:

A Y R
N /
/ 7

M

For x € A, we define f'(2*) = f(2*) = f(2)* (hence f' = fir(a))-

For z,y € A, we have f'(z* ®y") = ['((z0y)") = (f(z©y))" (f(
@) fy)", f(27)) = f(2)™ = f(z) = (f(z"))" and f'(0) = /(1" =
1* = 0, hence f’ is an morphism in MV. Since (f' o Pr(A))(z) = f/(Pr(A)(x)) =
f(x*) = f(z)* = f(x), we deduce that f o Pr(A) = f.

If we have again f” : R(A) — M a morphism in MV such that f” o ®r(A) =
, then for any = € A, (f" o ®r(A))(z*) = f(x*), hence f"(z*) = f(a*) = f/'(z*), so
= .

Let now f: A — A" a monomorphism in BL and z,y € A such that R(f)(z*) =
R,
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Then f(z*) = f(y*), hence x* = y*, that is R(f) is a monomorphism in MV
(by Remark 3.11). B

We recall that an MV -algebra is called complete if it contains the greatest lower
bound and the lowest upper bound of any subset.

DEFINITION 3.4. An MV-algebra A is called divisible if for any a € A and for

any natural number n > 1 there is € A such that nz = a and a* & [(n — 1)z] = z*.

In [63] and [129], p.66, it is proved:

THEOREM 3.13. For any MV -algebra A the next assertions are equivalent:

(1) A is injective object in the category MV,
(7i) A is complete and divisible M'V -algebra.

THEOREM 3.14. If A is a complete and divisible MV-algebra, then A is an in-
jective object in the category BL.

Proof. By Theorem 3.13, A is an injective object in the category MV. Since
MYV is reflective subcategory of BL and the reflector R : BL — MYV preserves
monomorphisms (by Theorem 3.12), then by Theorem 3.11 we deduce that A is
injective object in the category BL. B

3. The lattice of deductive systems of a BL-algebra

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. We put
in evidence characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean
BL-algebras, too, are characterized (Corollary 3.55). We also prove some results relative
to the lattice of deductive systems of a BL-algebra (Theorem 3.20 characterizes the BL-
algebras for which the lattice of deductive systems is a Boolean lattice) and we put in
evidence characterizations for prime and completely meet-irreducible deductive systems of
a BL-algebra (see Proposition 3.31, Corollary 3.33, Theorem 3.34, Theorem 3.39, Theorem
3.40 and Corollary 3.41).

Also we introduce the notions of archimedean and hyperarchimedean BL-algebra and
we prove a Nachbin type theorem for BL-algebras (see Theorem 3.56).

3.1. The lattice of deductive systems of a BL-algebra. As in the case of
residuated lattices (see Definition 1.8) we have:

DEFINITION 3.5. A non empty subset D C A is a deductive system of A, ds for
short, if the following conditions are satisfied:
(bl — Dsy) 1€ Dy
(bl — Dsg) If 2,0 — y € D , then y € D.
Clearly {1} and A are ds; a ds of A is called proper if D # A.
REMARK 3.12. A ds D is proper iff 0 ¢ D iff no element a € A holds a, a* € D.
REMARK 3.13. In [130] it is proved that a non empty subset D C A is a ds of
A, iff D is a filter of A (i.e. for alla, b€ A:

(bl — Ds'1) a, b € D implies a ® b € D;
(bl — Ds'y) a € D and a < b implies b € D).
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REMARK 3.14. A deductive system D C A is a lattice filter of A. Indeed, let
a,be D. Sincea — [b— (a®b)] =1¢€ D, we have b — (a®b) € D, and, moreover,
a®beD. Nowacb<a®l=a,a0b<10b=>b, hencea®b<aAb, soaNbe D.
Convesely, if aNb € D then a,b € D asaNb < a,b. Thus, D is a lattice filter of A.

Deductive systems are called also implicative filters in literature.

We denote by Ds(A) the set of all deductive systems of A.

For a nonempty subset M C A we denote by [M) the ds of A generated by M
(that is, [M) =nN{D € Ds(A) : M C D}).

If M = {a} with a € A, we denote by [a) the ds generated by {a} (]a) is called
principal).

For D € Ds(A) and a € A\D, we denote by D(a) = [D U {a}).

PROPOSITION 3.15. (1) If M C A is a nonempty subset of A, then:
M)={acA:210..0z, <a, for somezy,...,x, € M}.
In particular, for a € A,
[a) ={x € A:x>a", for somen € N};
(i) If D € Ds(A) and a € A\D, then
D(a)={zrecA:x2>yea", withye D andn € N};

(i7i) If x,y € A, and z <y , then [y) C [z);
() If z,y € A, then [z) N [y) = [z V y).

Proof. (i), (i7). As in the case of residuated lattices (see the proof of Proposition
1.29).

(7i1). Let z € [y). Then there is n > 1 such that z > y™ > 2", hence z € [z).

(1v). As in the case of residuated lattices (see the proof of Proposition 1.32, (iii)).
|

REMARK 3.15. Ife,f € B(A), then [e) = {x € A : e < z} and [e) = [f)
iff e = f. Indeed, by Proposition 3.15, [e) = {x € A : x > €" = e, for some
neN}={xeA:e<uz};ifle)=|[f), thenec [f),soe> f and f € [e), so f > e.
We deduce that e = f.

EXAMPLE 3.15. Let A be the BL—algebra from Ezample 3.11. Then [a) =
{a,1},[b) = {b,1} and [c) = {a,b,c, 1}.

REMARK 3.16. ([129], p.17) If D € Ds(A) and a € A, then a € D iff a" € D,
for any n € N.

For Dy, Dy € DS(A) we put D1 A Dy = D1 N Dy and D1V Dy = [Dl U DQ) =
{a€A:a>x0y, for some x € Dy and y € Dy}.
Then (Ds(A), A, V,{1}, A) is a complete Brouwerian lattice.

PROPOSITION 3.16. The lattice (Ds(A), C) is an algebraic lattice (see Definition
1.9).

Proof. See the proof of Proposition 1.33. B
LEMMA 3.17. If z,y € A, then [x) V [y) = [z O y).
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Proof. Since z ®y < z,y, then [x),[y) C [z ®y), hence [x) V [y
If z € [x®y), then for some natural number n, z > (O y)" = z"
hence z € [z) V [y), that is [t ©®y) C [z) V [y), so [z) V [y) =[x O y).
For D1, Dy € Ds(A) we put
D1—>D2:{CL€A:D1H[CL)§D2}.
LEMMA 3.18. If Dy, Dy € Ds(A) then
(1) D1 — Dy € Ds(A);
(ii) If D € Ds(A), then Dy N D C Dy iff D C Dy — Ds (that is, D1 — Dy =
sup{D € Ds(A): D1 N D C Ds}).

Proof. See the case of residuated lattices (Lemma 1.35). H

REMARK 3.17. From Lemma 3.18 we deduce that (Ds(A),V,A,—,{1}) is a
Heyting algebra; for D € Ds(A),

D'=D—-0=D—-{l}={zcA:[x)nD={1}}
and so, fora € A,

[a) ={z e A:[z)N]a) = {1}} =
={zecA:[zva)={1}}={x€d:xVa=1}.

PROPOSITION 3.19. If x,y € A, then [x ®y)* = [x)* N [y)*.

Proof. Ifa € [z®y)*, then aV(x®y) = 1. Since 2Oy < x,y then aVae = aVy =1,
hence a € [z)* N [y)*, that is [x © y)* C [x)* N [y)*.

Let now a € [x)*N[y)*, thatisaVez =aVy=1.

By bl — co7 we deduce aV (z®y) > (aVa)®(aVy) =1, hence aV (z O y) =1,
thatisa € [z @ y)* .

It follows that [x)* N[y)* C [ ®y)*, hence [z O y)* =[z)* N [y)*. A

As in the case of residuated lattices (see Theorem 1.39) we have:

THEOREM 3.20. If A is a BL-algebra, then the following assertions are equiva-

lent:
(7) (Ds(A),V,N*, {1}, A) is a Boolean algebra,
(ii) Every ds of A is principal and for every x € A, there is m € N such that
zV(z")* = 1.

3.2. The spectrum of a BL-algebra. For the lattice Ds(A) (which is dis-
tributive) we denote by Spec(A) the set of all (finitely) meet-irreducible (hence
meet-prime) elements (Spec(A) is called the spectrum of A) and by Irc(A) the set

of all (completely) meet-irreducible elements of the lattice Ds(A) (see Definition
1.10).

DEFINITION 3.6. ([129], p.18) A proper ds D of A is called prime if, for any
a,b € A, the condition a Vb € D impliesa € D or b € D.

THEOREM 3.21. A non-degenerate BL-algebra contains a prime ds.
Proof. See [129], p.18, Theorem 1. B

EXAMPLE 3.16. Let A be the BL—algebra from Example 8.11. Then the ds of A
are {1},{a,1},{b,1},{a,b,c,1} and A. Since © = A the ds of A coincide with the
filters of the associated lattice L(A). It is eassy to see that A has three prime filters

{a,1},{b,1},{a,b,c,1}.
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A congruence relation on a BL— algebra A is an equivalence relation with respect
to the operations ®, —,V and A.

In [129], (p.21, Propositions 26, 27 and 28) it is proved that there is one-to-one
correspondence between deductive systems of A and congruence relations on A.

Indeed, if ~ is a congruence relation on a BL— algebra A then D = {a € A :
a ~ 1} is a deductive system of A. Conversly, if D is a deductive system of A then
by defining z ~p y iff (z — y) ® (y — x) € D, we obtain a congruence relations on
A.

Starting from a ds D, the quotient algebra A/D becomes a BL-algebra with the
natural operations induced from those of A. We let /D be the congruence class of
r modulo =p, z € A.

In [75] it is proved the following result:

PROPOSITION 3.22. Let D be a ds of A and z, y € A.
(i) ©/D =1/D iff x € D;

(it) /D =0/D iff * € D;

(#i1) if D is proper and x/D = 0/D then x ¢ D;

() z/D <y/D iff t —y € D;

(v) A/D is BL— chain iff D is a prime ds of A.

THEOREM 3.23. ([53],[54],[129]) For a proper P € Ds(A) the following are
equivalent:
(i) P is prime;
(ii) For alla,b€e A,a—be P orb—ac P;
(7i1) A/P is a chain.

Proof. First we prove the equivalence (i) < (i7).

(7) = (4i). Since for all a,b € A, (a — b) V (b — a) = 1 € P, we have that either
a—bePorb—acP

(73) = (7). Assume either a — b € P or b — a € P, holds for all a,b € A. Let
aVbe P, and say,a — b€ P. Now aVb< (a—b) —be P, therefore b € P. Thus,
P is prime.

(i) = (di3). If P is prime then by equivalence (i) < (ii), for all a,b € A,
a—bePorb—ae€P. Thusa/P <b/Porb/P<a/P,so A/P is a chain.

(i) = (di7). If A/ P is chain, then for all a,b € A, eithera/P < b/Porb/P < a/P,
whence either a — b € P or b — a € P. Thus, by equivalence (i) < (ii), P is prime.
|

THEOREM 3.24. A is a BL— chain iff then any proper ds of A is a prime ds of
A.

Proof. Assume first that A is a BL— chain and let D a proper ds of A. Then
forall a,b € A, avVb=aoraVb=5b ThusaVvVbe Diff a € D orb e D and so
each ds D of A is prime. Conversely, if each ds D of A is prime, then, in particular,
{1} is prime and as, for all a,b € A, (a — b) V (b — a) = 1, either a — b =1 or
b — a =1, that is, either a < b or b < a, whence A is a BL— chain.ll

THEOREM 3.25. If P is a prime ds of A and D is a proper ds of A such that
P C D, then also D is prime.

Proof. Assume a,b € A such that avb € D. Since P is prime either a — b € P or
b— a € P. Assume that a — b € P. Thena — b € D. SinceaVb < (a - b) - be D
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we deduce that b € D. Analogously, the condition b — a € P implies a € D, thus D
is prime. W

THEOREM 3.26. The set of proper deductive systems including a given prime ds
P of A is totally ordered with respect the inclusion.

Proof. Let D, D’ two proper ds containing P such that D ¢ D’ and D" ¢ D.
Then there are two disjoint elements a,b € A such that a € D\D' and b € D'\D.
Since P is prime eithera - b€ Porb —a € P.Ilfa - b€ P C D, thenb € D,
a contradiction. Similarly, if b — a € P C D', then a € D’, another contradiction.
Thus, either D C D' or D' C D. R

DEFINITION 3.7. If D is a proper ds and there exists another proper ds D’ such
that D C D’ we say that D can be extended to D'.

THEOREM 3.27. Any proper ds D of a non-degenerate BL— algebra A can be
extended to a prime ds.

Proof. See [129], p.19, Theorem 2. B
As in the case of residuated lattices (see Theorem 1.43) we have:

THEOREM 3.28. (Prime ds theorem) If D € Ds(A) and I an ideal of the lattice
L(A) such that DN I = &, then there is a prime ds P of A such that D C P and
PNnI=g.

COROLLARY 3.29. If D € Ds(A) is proper and a € A\D, then there is P €
Spec(A) such that D C P and a ¢ P. In particular, for D = {1} we deduce that for
any a € A,a # 1, there is P, € Spec(A), such that a ¢ P,.

PROPOSITION 3.30. For a proper P € Ds(A) the following are equivalent:
(i) P is prime;

(ii) P € Spec(A);

(1i1) If a,b € A andaVb=1, thena € P orb € P.

Proof. (i) = (ii). Let Dy, Dy € Ds(A) such that D1 N Dy = P.

Since P C Dy, P C Dy, by Theorem 3.26, D1 C Dy or Dy C D1, hence P = Dy
or P = Ds.

(73) = (7). Let a,b € A, such that a Vb € P.

Since P(a)NP(b) = (PV]a))N(PV[b) =PV ([a)N[b)) = PV]aVb) =P, then
P = P(a) or P = P(b), hence a € P or b € P, that is P is prime.

(i) = (iii). Clearly, since 1 € P.

(#i7) = (i). Followings by Theorem 3.23, (ii) = (i) (since (a — b)V (b — a) =1
for every a,bec A). B

As in the case of residuated lattices we have the following results:

PROPOSITION 3.31. For a proper P € Ds(A) the following are equivalent:
(i) P € Spec(A);

(ii) For every x,y € A\P there is z € A\P such that x < z and y < z.

COROLLARY 3.32. For a proper P € Ds(A) the following are equivalent:
(1) P € Spec(A);

(id) If z,y € A and [x) N [y) C P, thenx € P ory € P.

COROLLARY 3.33. For a proper P € Ds(A) the following are equivalent:
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(i) P € Spec(A);
(ii) For every x,y € A/P,x # 1,y # 1 there is z € A/P,z # 1 such that x < z,
y <z

THEOREM 3.34. For a proper P € Ds(A) the following are equivalent:

(i) P € Spec(A);

(i4) For every D € Ds(A), D - P =P or D CP.
COROLLARY 3.35. For a BL-algebra A, Spec(A) C D(Ds(A)) U Rg(Ds(A)).
REMARK 3.18. From Corollary 3.29 we deduce that for every D € Ds(A),

D =n{P € Spec(A) : D C P} and N{P € Spec(A)} = {1}.

Relative to the uniqueness of deductive systems as intersection of primes we
have:

THEOREM 3.36. If every D € Ds(A) has a unique representation as an inter-
section of elements of Spec(A), then (Ds(A),V,AN,*,{1}, A} is a Boolean algebra.

LEMMA 3.37. If D € Ds(A), D # A and a ¢ D, then there exists D, € Ds(A)
mazimal with the property that D C D, and a ¢ D,.

If in Lemma 3.37 we consider D = {1} we obtain:

COROLLARY 3.38. For any a € A,a # 1, there is an ds D, maximal with the
property that a ¢ D, .
THEOREM 3.39. For D € Ds(A),D # A the following are equivalent:
(i) D € Irc(A);
(ii) There is a € A such that D is mazimal relative to a (see Definition 1.13).

THEOREM 3.40. Let D € Ds(A),D # A and a € A\D. Then the following are
equivalent:

(i) D is mazximal relative to a;
(13) For every x € A\D there is n € N such that 2" — a € D.

COROLLARY 3.41. For D € Ds(A), D # A, the following are equivalent:
(1) D € Irc(A);
(#4) In the set A/D\{1} we have an element p # 1 with the property that for
every x € A/D\{1} there is n € N such that ™ < p.

PROPOSITION 3.42. If P is a minimal prime ds (see Definition 1.14), then for
any a € P there is b € A\P such that a Vb= 1.

3.3. Maximal deductive systems; archimedean and hyperarchimedean
BL-algebras.

DEFINITION 3.8. An ds of a BL-algebra A is mazimal if it is proper and it is
not contained in any other proper ds.

We shall denote by Max(A) the set of all the maximal ds of A; it is obvious
that, Max(A) C Spec(A).
We have:

THEOREM 3.43. For M € Ds(A), M # A, the following conditions are equiva-
lent:
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(1) M € Max(A);

(ii) For every x ¢ M there isn € N such that (z™)* € M;

(7i1) AJM 1is locally finite.

Proof. (i) = (ii). Assume that M € Max(A) and z ¢ M. Define a subset D
of Aby D ={z € A :forsomey € M,n € N,y ®z"™ < z}. Obviously, 1 € D. If
a,a — b € D then for some y,y’ € M,n,m € N, holds y ® 2" < a,y ® 2™ < a — b.
Since y©y € M and (y@z2") 0 (Y ©2™) = (yOy)©0z"™ <a® (a — b) <b.
Thus b€ D, so D is a ds.

Since, for any y € M,y ©x <y, we have M C D. Butas1l e M and 1 ®z < z,
we also have x € D. Since M is maximal, D = A, so 0 € D. Then there exists
yeM,ne Nyoaz" <0< y < (z")". Hence (z™)* € M.

(49) = (iit). Let /M € A/M be such that x/M # 1/M, so x ¢ M. Then
there is n € N such that (2")* € M and therefore (z"/M)* = (2™)*/M = 1/M,
so z" /M < (z")*/M = 1*/M = 0/M. We deduce that =" /M = (x/M)" = 0/M,
whence A/M is locally finite.

(797) = (i). Let D be a ds such that M C D. Then there is an element x € A
such that x € D and « ¢ M. Then z/M # 1/M and therefore /M = 0/M for
some n, that is 0 ~p; ™. Since M C D, then 0 ~p 2™, that is 2" /D = 0/D. But
x € Dsoa™ € D, thus 2" /D = 1/D, therefore 0/D = 1/D, which implies 0 € D, so
D = A, whence M is maximal. H

In [129] it is proved that:

THEOREM 3.44. If A is a locally finite BL— algebra, then =™ = x for any
element x € A.

REMARK 3.19. By Theorem 3.44 and Theorem 3.2, we see that any locally finite
BL— algebra is an MV — algebra; in particular the quotient algebra A/M induced
by a maximal ds M of a BL— algebra A is an MV — algebra.

THEOREM 3.45. In a non-degenerate BL—algebra any proper ds can be extended
to a mazximal, prime ds.

Proof. Let D € Ds(A) be a proper ds. By Theorem 3.27, D can be extended
to a prime ds P. Let the set 7 = {D’: P C D', D" a proper ds on A}. By Theorem
3.26 F is a totally ordered set, and by Theorem 3.25, D' € F is a prime ds. Let
M = U{D’: D' € F}. Obviously, 1 € M. If a,a — b € M, then a,a — b € D', for
some D' € F,sob e D' C M. Therefore, M is a ds. Since 0 ¢ D’ for any D' € F, we
deduce that 0 ¢ M. Thus M is a proper ds and obviously is prime. The maximality
of M is implied by the construction of M.

Let us remind that a BL— algebra A is a subdirect product of a family {A;}icr
of BL— algebras if

(i) Ais a BL— subalgebra of []A;;

i€l
(1) for all j € I the BL— morphism A — [[4; LEN A; is onto.
i€l

A representation of A as a subdirect product of nontrivial BL—algebras {A; }ier

consists a monomorphism « : A — [[A; such that a(A) is a subdirect product of

i€l
the family {A4;}icr.

THEOREM 3.46. ([75], Lemma 2.3.16) Every BL— algebra is a subdirect product
of BL— chains.
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Applying a general result of universal algebra ([18], Lemma I1.8.2, P.57), we get
also the following generalization of the above theorem:

THEOREM 3.47. If {D;}icr is a family of filters of A such that 'ﬂID,- = {1}, then
1€
the family {A/D;}icr determines a subdirect representation of A.

If f: A— Bisa BL— morphism, then the kernel of f is the set Ker(f) = {a €
A: f(a) =1},

PROPOSITION 3.48. Let f : A — B be a BL— morphism. Then the following

properties hold:
(i) for any (proper, prime) ds D' of B, the set f~Y(D') ={a € A: f(a) € D'}
is a (proper, prime) ds of A; in particular, Ker(f) is a proper ds of A;

(i) if M’ is a mazimal ds of B, then f~1(M') is a mazimal ds of A;
if f is surjective and D is a ds of A, then f(D) is a ds of B;
if f is surjective and M is a mazimal ds of A such that f(M) is proper,
then f(M) is a mazimal ds of B;

(v) f is injective iff Ker(f) = {1}.

Proof. (i). The proof follows directly from the classical ones.

(ii). By (i) we have that f~1(M’) is a proper ds of A. To prove that it is maximal
we shall apply Theorem 3.43. Let # € A such that x ¢ f~Y(M’), so f(z) ¢ M’
Since M’ is a maximal ds of B, there is n > 1 such that [f(z™)]* € M’, that is
f((z™)*) € M’. We deduce that (z™)* € f~1(M') .

(7i7). Obvioulsy, 1 = f(1) € f(D). Let x,y € f(D), that is there are a,b € D
such that z = f(a),y = f(b). It follows that a ®b € D, so z ®y = f(a) ® f(b) =
fla©b) € f(D).

Let now z,y € B,z < y and x € f(D). Then, there is a € D such that z = f(a),
and since f is surjective, there exists b € A, such that y = f(b). Then y =xVy =

fla)V f(b)=f(aVvbd)and aVb>a€ D, bOCL\/bGD Thus, y € f(D).

(iv). LetheaproperdsofB such that f(M) C N. We have M C f~1(f(M)) C
f~Y(N) and since f~!(N) is proper, we must have M = f~1(N). It follows that
f(M) = f(f~Y(N)) = N since f is surjective.
(v). Similarly with the proof of Proposition 2.19. B

DEFINITION 3.9. As in the case of residuated lattices, the intersection of the
maximal ds of A is called the radical of A. It will be denoted by Rad(A). It is
obvious that Rad(A) is ds.

EXAMPLE 3.17. Let A be the BL—algebra from Example 3.11. It is eassy to see
that {a,b,c, 1} is the unique mazimal ds of A, hence Rad(A) = {a,b,c,1}.

ProPOSITION 3.49. ([53], [64]) Rad(A) ={a € A: (a")* < a, for anyn € N}.
PROPOSITION 3.50. For any a,b € Rad(A), a* ® b* = 0.

Proof. Let a,b € Rad(A); to prove a* ®b* = 0 is equivalent with (a* ®b*)* =
Suppose that (a* ® b*)* # 1. By Corollary 3.29, there is a prime ds P such that
(a* ®b*)* ¢ P. By bl — c37 we have (a* ® b*)* = a* — b** ¢ P, so by Theorem 3.23,
b** — a* € P, that is (b™ ©® a)* € P.

By Theorem 3.45 there is a maximal ds M such that P C M. Then b** ©a ¢ M.
By Theorem 3.43, there is n € N such that [(b** ® a)"]* = [(b")** ©® a"]* € M; so,
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if denote ¢ = (b")** ©® a”, we have ¢* € M. Since a,b € Rad(A) then we infer that
a,b € M, hence ¢ = (b")*™ ®a" € M. Hence c and ¢* are in M which contradicts
the fact that M is a proper ds of A. B

PROPOSITION 3.51. Let A be a BL— algebra. Then B(A) N Rad(A) = {1}.
Proof. See the proof of Proposition 1.64. B

DEFINITION 3.10. As in the case of residuated lattices, an element a € A is
called infinitesimal if a # 1 and a™ > a*, for any n € N.

PROPOSITION 3.52. For every nonunit element a of A the following are equiva-
lent:
(1) a is infinitesimal;
(77) a € Rad(A).

Proof. (i) = (ii). Let a # 1 an infinitesimal and suppose a ¢ Rad(A). Thus,
there is a maximal ds M of A such that a ¢ M. By Theorem 3.43, there is n € N
such that (a™)* € M. By hypothesis a” > a* hence (a")* < a**, so a** € M,
hence (a**)" = (a™)** € M. If denote b = (a")* we conclude that b,b* € M which
contradicts the fact that M is a proper ds.

(ii) = (i). Let a € Rad(A); then (a™)* < a for any n € N. For n = 1 we obtain
that a* < a. Since for any n € N,a" € Rad(A) we deduce that (a™)* < a”. Since
a* ®a" < a* ®a =0 we obtain that a* ® a” = 0 for any n € N, hence by bl — cg,
a* < (a™)*. So, for any n € N, a* < (a")* and (a")* < a”, hence a* < a", that is a
is an infinitesimal. W

REMARK 3.20. If BL-algebra A is an MV — algebra, an element a is infinitesimal
if a # 0 and na < a*, for each integer n > 0. In [45], the set of all infinitesimals in
A is denoted by Infinit(A) and it is proved (Proposition 3.6.4, p. 13) the following
result: For any MV — algebra A, Rad(A) = Infinit(A) U {0}.

LEMMA 3.53. Ifa € A, n € N such that aV (a")* =1 and a™ > a*, then a = 1.

Proof. By bl — ¢1; we obtain (a")* < a**,s0 1 =aV (a")* < aVa*™ = a*,
hence a** = 1, that is a* = 0. Then ¢ — (@ — 0) = a — 0 = 0. From bl — cg we
deduce that (a?)* = 0. Recursively we obtain that (a™)* = 0. Then a V 0 = 1, hence
a=11

LEMMA 3.54. In any BL-algebra A the following are equivalent:
(i) For every a € A,a™ > a* for any n € N implies a = 1;
(ii) For everya,b e A,a™ > b* for anyn € N impliesa — b=b andb — a = a.

Proof. (i) = (ii). Let a,b € A such that a” > b* for any n € N. We get
(aVb)*=a*ANb" <b* <a” < (aVDb)" hence (aVb)" > (aVb)* for any n € N. By
hypothesis, a V b = 1. From bl — ¢15 we deduce (a - b) - b= (b - a) - a =1,
hencea - b=0band b — a =a.

(ii) = (i). Let a € A such that a™ > a* for any n € N. By hypothesis for n =1
and b = a we obtain a > a*, hence a* — a = 1. But a* — a = a (by (ii)),soa = 1.1

DEeFINITION 3.11. A BL-algebra A is called archimedean if the equivalent con-
ditions from Lemma 3.54 are satisfied.

One can easily remark that a BL-algebra is archimedean iff it has no infinitesi-
mals.



90 3. BL-ALGEBRAS

DEFINITION 3.12. Let A be a BL-algebra. An element a € A is called archimedean
if it satisfies the condition:

there ism € N,n > 1, such that a V (a™)* = 1.
A BL-algebra A is called hyperarchimedean if all its elements are archimedean.
From Lemma 3.53 we deduce:
COROLLARY 3.55. Ewvery hyperarchimedean BL-algebra is archimedean.
Now, we have a theorem of Nachbin type (see [2], p.73) for BL-algebras:

THEOREM 3.56. For a BL-algebra A the following are equivalent:

(i) A is hyperarchimedean;

(ii) For any ds D, the quotient BL-algebra A/ D is an archimedean BL-algebra,
(131) Spec(A) = Max(A);
(iv) Any prime ds is minimal prime.

Proof. (i) = (ii). To prove A/D is archimedean, let + = a/D € A/D such that
a™ > z* for any n € N. By hypothesis, there is m €N, m > 1 such that aV (a™)* = 1.
It follows that x V (z™)* = 1 (in A/D). In particular we have 2™ > x*, so by Lemma
3.53 we deduce that x = 1, that is A/D is archimedean.

(74) = (7). Since Max(A) C Spec(A), we only have to prove that any prime
ds of A is maximal. If P € Spec(A), then A/P is a chain (see Theorem 3.23). By
hypothesis A/P is archimedean. By Theorem 3.43 to prove P € Max(A) is suffice
to prove that A/P is locally finite.

Let = a/P € A/P, © # 1. Then there is n € N,n > 1, such that 2" # z*.
Since A/P is chain we have 2" < z*. Thus 2" < z®2* = 0, hence 2" ! = 0, that
is o(x) < oo. It follows that A/P is locally finite.

(#i7) = (iv). Let P, @ prime ds such that P C @Q. By hypothesis, P is maximal,
so P = Q. Thus @ is minimal prime.

(iv) = (). Let a be a nonunit element from A. We shall prove that a is an
archimedean element. If we denote

D=la)={x€A:aVaz=1} (by Remark 3.17),
then D € Ds(A). Since a # 1, then a ¢ D and we consider
D'=D(a)={r€A:2>d®a" for some d € D and n € N}.

If we suppose that D’ is a proper ds of A, then by Corollary 3.29, there is a prime
ds P such that D’ C P. By hypothesis, P is a minimal prime. Since a € P, using
Proposition 3.42 , we infer that there is x € A\ P such that aVVz = 1. It follows that
x €D C D' C P, hence x € P, so we get a contradiction. Thus D’ is not proper, so
0 € D', hence there is n € N and d € D such that d ® @™ = 0. Thus d < (a™)* (by
bl —cg). Weget aVd<aV(a")*.But aVd=1 (since d € D ), so we obtain that
aV (a™)* =1, that is a is an archimedean element. B



CHAPTER 4

Pseudo MV-algebras

If G is an lu-group, then the interval [0, u] can be endowed with a structure that leads
to a non-commutative generalization of MV- algebras.

In 1999, Georgescu and Iorgulescu (see [66], [68]) defined pseudo MV- algebras as a
non-commutative extensions of MV- algebras. Dvurecenskij extended Mundici’s equivalence
results. In [58], he proved that every pseudo MV- algebra is isomorphic with an interval in
an l-group and he established the categorical equivalence between pseudo MV- algebras and
l-groups with strong unit.

For a detailed study of pseudo MV- algebras one can see [68], [58].

For an exhaustive theory of l-groups we refer to [10].

In this chapter, we review the basic definition of pseudo MV-algebras with more details
and more examples, but we also prove many results about the lattice of ideals.

1. Definitions and first properties. Some examples. Rules of calculus

Since MV — algebras are categorically equivalent to abelian [-groups with strong
unit (lu-group), started from arbitrary [-groups and thus obtained the more general
notion of pseudo MV -algebra.

If we consider that the [-group G from Example 2.3 is not necessarily abelian,
then it makes sense to define two negations on the interval [0, u] :

f=u—zx

and

5 =—-z+u

for any = € [0, u).

This was the starting point of the theory of pseudo MV-algebras [68].

We shall present briefly some basic definitions and results (for more details, see
[66], [68]) .

We consider an algebra A = (A,®,”,%,0,1) of type (2,1,1,0,0). We put by
definition:
and we consider that the operation ® has priority to the operation .

DEFINITION 4.1. A pseudo MV — algebra is an algebra A = (A, ®,®,”,5,0,1)
of type (2,2,1,1,0,0) satisfying the following equations:
(psMV1) 2@ (y®2) = (z DY) ® 2;
(psMVa) 260=06® 2z = x;
(psMV3) z@l=1¢z =1,
(psMVy) 15 =0,17 =0;
(psMVs) (2~ ©y7)® = (z°Dy®S)7;
(psMVg) 2@ 2°0y=y@yS0r=20y dy=yoz Pua;
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(psMV7) 20 (27 ©y) = (z©Y°) Oy;
(psMVg) (z7)% =z, for every x,y, z € A.

We denote a pseudo MV — algebra A = (A, ®,®,” ,%,0,1) by its universe A.
We can define two implications corresponding to the two negations:

Ty =2 ®yand x ~ y:=y D"

for any =,y € A.
If A" C A we write A’ < A to indicate that A’ is a pseudo MV — subalgebra of
A.

EXAMPLE 4.1. A singleton {0} is a trivial example of a pseudo MV — algebra;
a pseudo MV — algebra is said nontrivial provided its universe has more that one
element.

EXAMPLE 4.2. Let us consider an arbitrary l-group (G,+,—,0,<). For each
ue€ G, u>0, let

O,ul ={zreG:0<x<u}

and for each x,y € [0,u], let By =uA(z+y),z0y=(zr—u+y)V0,z~ =u—=x
and % = —x + u. Then ([0,u],®,®,” ,%,0,u) is a pseudo MV — algebra. We
remark that the order relation is the restriction of the order relation on G. Moreover,
(x7)” =u+z—u and (25)% = —u+ x + u, for every z,y € [0,u].

In [58] Dvurecenskij proved that every pseudo-MV algebra is isomorphic with
an interval in an [-group.

EXAMPLE 4.3. Clearly, every MV algebra is a pseudo MV — algebra, where the

unary operations —,5 coincide.

Every commutative pseudo MV — algebra (i.e. @ is commutative) is an MV —
algebra (see Proposition 4.9). Also, every finite pseudo MV — algebra is an MV
algebra.

For another classes of pseudo MV — algebras (local, archimedean) see [58] and
[100].

THEOREM 4.1. If x,y,z € A then the following hold:

psmv —c1) y©r = (25 DyS)";
PSMU — € m@y—(y Or7)% =% 0r%)7;

PSMY — C3

PSMY — Cg
PSMY — Cg

(=)

OS—O‘_l

smv—c;) xO1l=10x=2,r00=00x = 0;
smv—cg) T@xS =127 Qx =1

SV — C4

(w@y) =y 0z, (zdy)% =y° O x%;
(roy) =y @27, (z0y)° =y° ©r°;

(psmv —c10) (25 O y)DYS = (y° O z) ® =5
(psmv —c11) 2O (2~ DY) =y O (y~ Dx);
(psmv—c12) 2O (YO 2z)=(xOyY)O 2.

)
)
)
)
)
psmv—c7) x @z =0,250x =0;
)
)
)
)
)

Proof. (psmv — c1). Follows by psM V5 and by definition of ©.
(psmv—c3). xBy = [(x®y)®]” = (y= ©2x=)"; analogously, zdy = (y~ Oz~ )S.
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(psmv — ¢3). In psMVs we make z = 1. So, (1@ yS)” = (1-" @y )° =
s M Vs
(0@yS)" =0®y )= (y°) =@y )°"="

(psmv — ¢4). 0% psMVa (17)s psMVs 1 nd o— PV (15)= Pomes g
(Psmv — 05). rO1 = (xS P 18)— — (33 sy 0) — (xS)— = analogously,
1oz =ux;

0= (25®0%)” =(z°®1)” =1~ = 0; analogously, 0 ® x = 0,

(psmv — ¢g). In psM 'V we make = = 1; then y ® y= = 1.

nydyS=1wemakey =12 ;thenz” @z =2 & (z7)S =1.

(psmv—c7). z@x” = [(z7)S®2%]” = (x®2®)” = 0; analogously, 2= ©z = 0.

(psmv —cg). (x®y)” =[(27)® @ (y7)%]” =y~ ©a~; analogously, (z ®y)® =
yS O xS,

(psmv—cyg). (x@y)~ = [(y~®x7)%]” =y~ @z~ ; analogously, (z0y)% = yS@xS.

(psmu—cyp). In (xOy~ )@y = (yOz~ )@z we make the substitution of x by = and
ofy by y=; then (z50y) @y = [z20(y7)%]Dy° = [y®O(2°) 702 = (yZOr)Da®.

(psmv —c11). 2O (- @y) = [(z” QYY) D25 = [(¥° 0 x) ®2®]” = [(2°©
y)oy®T =yo(y o).

(psmv—ci2). (1OY)O2z = [(r0y)©2)7|% = [z~ O (rOy)"]® = [z~ Oy ©27)]® =
(zTey )@ IP=[yoz) @27 |S=[(20(@y02) °=20(yo=z) N

LEMMA 4.2. For x,y € A, the following conditions are equivalent:

(i) 2~ @y =1
) S@I—O
(ii1) y =z @ (2° O y);
(iv) 2= 20 (™ ®y);
v) There is an element z € A such that x ® z = y;
(vi) 2Oy~ =0;
(vit) y@x =1.

Proof. (i) = (ii). - dy=1=y"0z=(z" ®y)°=1%5=0.

(it) = (i). y°*Or=0=2"@y=(y°Oz) " =0 =1

g MV,

(i1) = (ii1). »SOr=0=>y=y® S 0z) "="za (5 0y).

(7i1) = (v). Clearly.

w)=0G).27dy= ®@@dz)=@ dr)dz=102z=1.

(1) = (iv). Clearly.

(iv) = (). =20 (2" @y)=yO(y ©2)=y°0r=y0yo(y z)]=
©

Y=oy oy~ &z)=0.

(i) = (vi). z =201 = 260 (z” ®y) = (x@YS)Oy = 20y~ = [(z®yS)OyY|Oy~ =
(zoy®)o oy )=0.

(vi) = (i). y—OEBy—( QY)Y x@( Qy),soxr” By=z Dlzd

(22 0y)]l = (2~ ©x) @ (2 ®y)=1€9( @ )
(vi) = (vit). x Oy =0= (zOy )= ( ) PaS=1=ydz®=1.
(vii) = (i7). We have z = 2 © 1 = (y 2% O MV y© (y~ & x). So,

Sor=yohoy on)=00y ol er)]=00(y o) =01
For any two elements x,y € A let us agree to write x < y iff x and y satisfy

the equivalent conditions (i) — (vii) in the above lemma. So, < is a partial order

relation on A (which is called the natural order on A).



94 4. PSEUDO MV-ALGEBRAS

ProPOSITION 4.3. < is an order relation on A.

Proof. We have: z < x < 2~ @ ax = 1, obviously; if x <y and y < x we have

y=x® (2 0y) psgvﬁy@(ySQx) =gx;if x <y and y < z, there exist a, b such
thaty=z@®aand z=y®b,soz=(xPa)db=z<2 R

REMARK 4.1. If A= (A,®,®,”,%,0,1) is a pseudo MV — algebra then
(A7 ®) 6975 77 9 ]-a 0)
is also a pseudo MV — algebra, called the dual pseudo MV — algebra of A.

PROPOSITION 4.4. The following properties hold:
(psmv —ci3) z <y iffy~ <z~ iff yS <25
(psmv—ciy) Ife <y, thenz®z<y®zand zdz < zDy;
(psmv—ci5) Ife <y, thenz©z<y©zand 20z < zOy;
(psmv —cig) 2Oy <ziffy<az @z iff v < zdyS;
(psmv—ci7) 2Oy <z, 20y<yrz<zrdyy<zrdy.

Proof. (psmv—ci3). y~ <z- & (z7)%0y =020y =04z <y and
Y£$L<1S e (%) @S =leydrS=1lsr<y.

(psmv — c14). If * <y, then there exists an element a € A such that x @ a =y,
50, 2BYy=z2® (x®a)=(20x)Pa=>2dr<2dy;

Byz <y=y®r5=1= ydz8(z®2)% = y®28(z502%) = yd2°a(2T02z) =
1o(@te2)=1=202<yd -z

(psmv —c15). 2 <y=9y°<2°5=2y"@2° <150 = 20x< 20y
analogously the other proof.

(psmv —ci6). Wehave 2Oy <z & (2Qy) " ®z=1&y ®x  ®z=1y<
T @zand 2z Oy<ze 200y S=120y0215=12< 2 y5.

(psmv — c17). Follows from psmv — ¢14 and psmv — c¢15. B

PROPOSITION 4.5. On A, the natural order determines a lattice structure. Specif-
ically, the join x V y and the meet x Ay of the elements x and y are given by:

tVy=z01°0y=y0y°0r=20y Gy=yOr O,
sANy=20@ @y =yo(y &2)=(26y%)0y=(yd1%) 0

Proof. For the join we have z~ @2 @ (25 0y) = 1=z <z ® 25 Oy and
similarly, y < y @ y= ® x. Let 2,y < z. We shall prove that y &y © x < z.

Remark that [y ® (yS 02)]" @2=[(y°0x)” Oy |®z=[a" ®y) Oy |Oy®
(250y) =[yo(z~@y) |Dr” dyd(2°0y) = YO (2~ dy) |G~ 020 (¥ Ox) = 1.

For the meet it is obvious that 2 ® (z~ ®y) = (D y®) Oy < x,y. Let 2 < x,y;
then x7,y~ < z7, hence = Vy~ < z~. It follows that z = (27)% < (z~ Vy )% =
[z” @ (7)) 0y =

ooy )P =[zoy)Fo@)®=[F)%e2%0r=(yo%)0r =
zO(xz" dy). A

REMARK 4.2. Clearly, Oy <zAy<z,y<aVy<zdy.

THEOREM 4.6. Let I be an arbitrary set. If x,y,z, (x;)icr are elements of A,
then the following hold:

(psmv — c18) =& (/\%) = N\ (z @ x);

il iel
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(psmv — c19) (/\xz> D= A(z; ®x);

(psmv — cx0) x ZIQ\G/I%) _ \Z(az o 21);
(psmv — ca1) <Z\E/I$l> Ox= Z\E/I(xl © x);
(psmv — ca2) = A <1\6/sz> = Z\g/j(x A x;);
(psmv — ca3) x V (Z/E\Iarl> = Z/G\I(x Vz;);

(psmv — ca4) = @ (Vﬁ> - Viom)
(psmv — ca5) (\/xz> ozxr=\(r; dx);

i€l iel
(psmv — c6) T © (/\xz> = N\ (z©z);
icl iel

(psmv — ca7) </\ xl> ©x = A(z; ®z),if all suprema and infima exist.
iel i€l

Proof. (psmv — c¢18). Obviously, = @ (/\CL‘Z> < x & xy, for every i € I.
el
Let now y < x & x;, for every i € I; then y < (25)” @ 1z, for every i € 1. We
deduce that = © y < x;, for every i € I and hence 2% ©® y < A z;; it follows that

il
y < ()" @ < A :m) =x® </\ acz) . Therefore we get that x® </\ xz> = A (zdx;).
iel iel iel il

( psmv — ¢19). Remark first that (/\ a?Z) @z < z; Dz, for every i € I. Let now
el
y <z;®x, for every i € I; then y < x; @ (x~)=, for every i € [ and y©z~ < xy, for

every i € I ;it follows that and hence y©x~ < A z; and hencey < | A xl> D(x7)® =
iel iel
(/\%) @ x. Therefore we get that </\:1:Z dzr= Az ®x).
iel iel iel
(psmuv — cg0). Obviously, x ® z; <z ©® (\/xl> ,foreveryi € I. Let x © x; <y,
el
for every i € I; then x; <z~ @y, foreveryi € I so \Vz; <z~ dy.
i€l
It follows that x ® <\/ xl) < y. Therefore we get that x ® <\/ xz) =V (zox).
iel iel iel
(psmv — c21). Remark first that z; © ¢ < (\/xz> ©® x, for every i € I. Let
el
x; Oz <y, for every i € I; then x; < y®a=, for every i € I and hence \/ z; < yPzS.
el
It follows that < \ CBZ> ®x < y and therefore we get that < \ xz> oz =\ (z;01).
iel iel iel
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(s = ). Wehave o (V) = (V) © (j\e/lxj> Y
o ((y) o)

But for any i € I, z; < \/a:j:><\/$]> S(xi)_:><\/:cj> Gz < (z;)” Gz

jel Jjel jel

V

el

=220 V| @z <z,0(x)” @) =2A2; =V |20 Vzj| @x|| <
JEI i€l jEI

V (z A ;).
icl

We obtain z A <\/w,> <V (zAxm).

iel iel
The inequality \/ (z Az;) <z A <\/ xz) is obvious.
iel el
S
(psmv — ca3). We have:z\/(/\a:i) = (/\azz>€B ANzj| Oz =
icl iel jEI
S
iel jeI
S S
But foranyi eI, Azj<zi= ()< | Azj| = (@)%0z<| Az;j| ©
jel jel jel

S S
r=;0 () 0r<xz;d ANzj| Ox|eaVey <z;® Nz | ©z|.
jeI jel

Hence, A (zVz;) < A\ |z: & ((/E\Ix]) ©) a:)

i€l i€l
We obtain A (zV ;) <zV (/\a:z> .
iel el

The inequality = V < A a:z> < A (z V x;) is obvious.
i€l iel
(psmv—caq). Obviously, z@x; < z@ (\/xz) , for every i € I. Let now x®x; < v,
i€l
for every i € I; remark that x < y.
For every i € I we have 25 © (z ® ;) <25 O y.
On other hand 25 © (z @ z;) = 2% © ((z°)” ® x;) = 2= A z;, hence 25 A

z; < 25 ©y. It follows that 25 A [ Vi ) 7"= V(25 A ;) < 25 © g, hence
iel el

T® [.CL‘S A (\/xlﬂ < z®(x°0y) = xVy =y, since z < y; but =@ [ws A (szﬂ =
i€l i€l

(x ®xZ)A [m @ (Z\G/Ixzﬂ =@ <Z\€/Imz) )
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Finally, we obtain x & <\/xz> < y. Therefore we get that = & <\/xz> =

i€l icl
V (x @ z;).
el
(psmuv — cg5). As in the case of psmv — cay.

(psmuv —cag). Obviously, z® (/\ xz) =zQ@u;, forevery i € I. Let now y < 2O x;,
el
for every i € I; remark that y < x.
For every i € [ we have 2~ @y < 2~ @ (z O x;). But 2~ @ (z O zy) = 2~ @
[(z7)S ©a) =2~ Vay, for every i € I.

So, z~ @y <z~ Vuxy, for every i € I. It follows that x~ Gy < A (™ V) bomiczs
el
x\/(/\xl) . Hence z® [x v (/\xzﬂ >rO(x” By) =xAy =y, since y < x; but
el el

ol ()] o )] oo () mee ()2

Therefore we get that x © </\ x| = Nz O ay).

i€l i€l
(psmuv — co7). Has a similar proof with psmv — co. B
By Proposition 4.5 and Theorem 4.6 we deduce:

COROLLARY 4.7. On A, the natural order determines a distributive bounded
lattice structure.

We shall denote this distributive lattice with 0 and 1 by L(A) (see [42], [45]).

THEOREM 4.8. If x,y, 2z are elements of A, then the following hold:

psmu —cag) (T Ay)” =2~ Vy ,(zVy) =z Ay;

psmu — ca9) (x Ay)S =25 VyS, (xVyS =2%AyS;
psmu —c3) TOY Ay@zr =025 0yAyS ©x =0
psmv —c31) (Y@ 2®)V(zdy®) =1y  dr)V(e  dy) =1
psmu —c32) cVy=xO (xANy)” Dy;

psmv —c33) ANYy=0=>xdy=1zVy;

psmv —c3q) cANYy=0=zxA(ydz)=xA z;

psmv —c35) If yQr=2@c andx Oy =120 2z then y = z;
psmv —c3g) If tBy=a@z andy©x =2z Oz then y = z;
psmu —c37) x Dy =y iffrT Sy =]

pPSMU —c33) TDY = iff 25 ® yS = y=;

psmu —c39) cdDx =z ifft Oz = x.

Proof. (psmv —cgg). We have (x Ay)” = (2@ y5S)0y) =y @ (z®yS)” =
y @O yor )=y &y )0z =2 Vy and (zVy) =(xzdz50y) =
(@2 0y)" 0z =(y ®r)0z =y ®@)%)0r” =z~ Ay,

(psmv —cg9). We have (zAy)S = [z0(z” @y)|° = (2~ dy)°®z° = (¥ 0z)d
2% =[S0 (2%)7 @2 =2°VyS and (2Vy)® = [(z0y7) Y% =y 0 (z0y7)% =
Yoy )T ea®]=yS o[(y®)” @25 =a% AyS.

(psmv —c3p). Wehave x @y~ =0Vz Oy =20z VazQy == ).

Similarly, y @2~ =y ® (z= Vy ). Then z 0y~ AyoOa~ =[z0 (z~ Vy )| A
yo(z=Vy)]=(@Ay) 0@ Vy)=(zAy)O@@Ay)” =0.
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The second equality is obtained by replacing x by = and y by y= in the first
one.
(psmuv — c31). Follows by psmuv — c30 applying = and —, respectively.

(psmv—csp). 2O (zAy)~ @y = P ro (VY )@y = (2027 )V (z0y )@y =
(xOy )By=zVy.

(psmv — ¢33). If © Ay =0, then in psmv — c32 we obtain x Vy =2 ©0” Qy =
rO1loy=xdy.

(psmv — c34). First, we remark that z < zA(zdz2) = 0 z)A(zd 2) =
(zAy)@z]AN(z@z)=(Bz)AN(yBz)AN(xdz2). Thenz Az <z A(ydz) <
(@) Nydz)AN(zd2)AN(ydz)=(xAy)d(zAz)=xAz.

(psmv—cs5). Weget 2~ Vy =2~ @[(z7)%0yl=2" @ (z0y) =2 (0 z) =
@ [(@7)%0z =" VyandaT Ay =[yo (@)% 02 = (ydr) 01 =
(z@z)Ozr” =[z® (z7)%]©@ax~ =z~ Az Since (4,V,A) is a distributive lattice,
it follows that y = z.

(psmuv — c36). Similarly proof with psmuv — c35.

(psmuv—c37). We have the following implications: &y =y = [z&(y7)S]|0y~ =
yoy =0=zANy =0=z" =2 d(xAy )=("dz)AN(z” By )=a" &y~
and z~ @y~ =27 =2z ANy =z0 (@ by )=z0z =0=>y=(zAy )dy=
(oY AN(y @y)=2dy.

(psmuv —cag). Similarly, we have the following implications: @y = x = 2S5 Ay =
2SO ((2%) @y =250 @by =250 =0=yS = @S Ay &y =
(2 @yS)A(yoy®) =20y and 250 yS =yS = 15 ANy = (250 y°) 0y =
£ oy=0=20@ANy) == (z®@25)AN(zdy)=z=>1dy=u1.

(psmv —cag). By psmv—cgr, 2 @r =z~ o~ =2~ & (27 Ga™)® = (z7)°
Srzor=z 1

PROPOSITION 4.9. Every commutative pseudo MV — algebra (i.e. & is commu-
tative) is an MV — algebra.

Proof. Since t@y = yPx, for any x,y € A, it follows that xOy = (y~ ®x™)® =
(" @y )®=yOoz.Hencez " @r=1=2@randz 0z =0=20z5.

Then by psmv — ¢35 we deduce that 2= = 2=, for any x € A, so (4,®,®,”,0,1)
is an MV — algebra. B

LeEMMA 4.10. If a,b, z are elements of A, then:

(psmv —cao) [(aNz) B (bAZ) ANz = (a®b)Ax;
(psmv —cq1) zAha” >x@(aAz)” anda® ANz > (aNz)®Ox .

Proof. (psmv — cq0). By psmv — ¢15 and psmv — ¢19 we have
[(anz)d(OAz)|ANx=((aNz)DO)A((aNz)D ) \Ne=
=((anz)db)ANz=(aDb)AN(xdb) ANz = (aDb)Ax.

(psmv — ca1). We have

psmMu—cag
= (

z@(aNz)” =0 (a” Va )

psmv—cy
=

r@a )V(xox)

r@a )V0=x0a <zxAa"
and
psmv:—021(

(anz)®Oz=(a®V2®)Oz

psm;—w (

a®ox)V (2% Or)
a®Or)V0=a®o0z<a®Az.R
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2. Boolean center

For a pseudo MV — algebra A we denote by B(A) the boolean algebra associated
with the bounded distributive lattice L(A). Elements of B(A) are called the boolean
elements of A.

We characterize the elements of B(A) in therms of pseudo MV — algebra oper-
ations.

THEOREM 4.11. For every element e in a pseudo MV — algebra A, the following
conditions are equivalent:
(1) e € B(A);
(ii) eVe = 17
(1i1) eV eS =1,
(iv) ene” = 0,
v) e NeS =0;
(vi) e®e=e;
(vii) e@e=e.

Proof. First we prove the equivalences: (iii) < (iv) < (vi).

(1ii) = (vi).eVeS =1=e=(eVeS)Oe=(e®e)V (e ®e)=e®e. Then
apply psmv — c3g.

(vi) = (iv).e@e=e=eNe” =[ed(e)%]

(iv) = (iii). eNe” =0=eVeS =€V (e)

Hence, (i1i) < (iv) < (vi).

Similarly, (i) < (v) < (vi).

We deduce that the equivalent conditions (i) and (iv) state that e~ is a com-
plement of e, thus, in particular, (iv) = (i), and that the equivalent conditions (i)
and (v) state that e is also a complement of e.

(i) = (iv). Assume there exists a € A such that e Aa =0 and e V a = 1. Thus,
eNa=0=¢e" =e @®(ehNa)=(e" e )A(e- ®a)=e ®a=a<e and
eVa=1=e =(eVa)®e =(e@e )V(a®e )=a®e = e <a. Wededuce
a=¢e ,s0,eNe” =0.

(iv) = (4). From e A e” = 0 it follows that, by psmv — c33,e Ve~ =ede =1
Hence e~ is the complement of e. That is, e € B(A).

(vi) < (vii). See psmv — c3g.

(vii) & (ii). eGe=e=e Ve=e¢ @[(e)°0e=¢ ®(e@e)=e¢ de=1.

Oe =(ede)0e =ede =0.
S=(ene)®=0%=1

[ |
REMARK 4.3. By Theorem 4.11 it follows that for every e € B(A), e~ = €%.

PROPOSITION 4.12. Ife € B(A) and x € A, then

(i) edr=eVe=ade, for all v € A;
(i) ez =eNx=xQe, for all x € A.

Proof. (i). We have that evVe < e®z and (e®x)O(eVr)” = (edz)O(e”Ax™) =
(c@w)oe A [(edr)or] = [(cdr)oe |A[(ed(s)%)or] = [(cr)oe JA(cAz™) <
eNe  =0,s0ePzx<eVuz thus,edr=ceVuz.

Analogously, eVa < x®eand (eVz)SO(zde) = [eSO(x@e)|A 250 (xDe)] =
ESoEde)) A0 (%) @e))=[So(xde)]A(xZAe) <eS Ae=0, hence
rPe<eVr thus, rde=eVuz.
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(77). We have that z ©e = (e~ ®z™)S © (e-Vvar)® @ (- ®e)® =eOum.
Since (e~ Va7 )S =e Az we obtain that ez =eAz=z0ec. B

COROLLARY 4.13. (1) B(A) is subalgebra of the pseudo MV — algebra A.
A subalgebra B of A is a boolean algebra iff B C B(A),

(7i) A pseudo MV — algebra A is a boolean algebra iff the operation @ is idem-
potent, i.e., the equation x ® x = x is satisfied in A.

PROPOSITION 4.14. For x € A, the following are equivalent:

(1) there is a natural number n > 1 such that nx € B(A);
(7i) there is a natural number n > 1 such that x= V nx = 1;
(7i1) there is a natural number n > 1 such that 5V nx = 1;
(iv) there is a natural number n > 1 such that nx = (n + 1)z.

Proof. First we prove the equivalences: (i) < (iv) < (ii).

(i) = (iv). Suppose that nz € B(A). Then nx & nx = nz and nx = (n + 1)z,
since nz < (n+ 1)z < 2nz = nx.

(v) = (m) If ne = (n+1)x, then ™ Vner =2~ © (nx)” & (nz) =[(n+1)z]” &
(n2) = (n2)~ & (na) = 1.

(73) = (7). Assume that 2~ Vnz = 1; hence [(n+1)z]”®(nz) = (nx®x)” d(nz) =
[~ ® (nz)"] @ (nz) = 2~ \/nle: (n+ 1z <nzx= (n+1l)z=nr=nz =
nx @ nx = nx € B(A).

We prove that the equivalences: (i) < (iv) < (4i).

(iv) = (ii7). If nx = (n+ 1)z, then 25 V nx = (nz) ® [(nx)S @ %] = (nz) @
(z ®nx)S = (nz) @ [(n+ 1)z|® = (nz) ® (nz)S = 1.

(#4i) = (4). Assume that =V nz = 1; hence (nz) @ [(n + 1)z]® =
(nx)]® = (nz) ®[(nz)° ©25]=25Vnr=1= (n+ 1)z <nzx= (n+
nr =nx ®nx = nx € B(A). B

(nz) ® [z @
)z =nx =

COROLLARY 4.15. If a € B(A), then for all x,y € A:

(psmv —ca2) zAhNa” =2zO (aAz)” and a® ANz = (a Ax)® O x;
(psmv —ca3) aN(z DY) = (aNz) D (aNy);
(psmv —caa) aV(xDy) = (aVz)®(aVy).

Proof. (psmv — c¢42). See the proof of psmv — ¢41.
(psmv — ca3). We have:

pSMUV—cC18

(anNz)®(any)” = "llarz)®a]lA[(anz)Dy]

psmu—cig

[(e@a) AN (z@a)A[lanz) Dyl =

=aAN(z@a)A[ady) A(@ody))=aA@dy A(zdy)=a (zBy).

(psmv — caa). We have

(avz)®(aVy)=(adz)d(ady) =

=(a@a)®(zdy)=a®(zdy)=aV(zdy)N
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3. Homomorphisms and ideals

DEFINITION 4.2. Let A and B be pseudo MV — algebras. A function f: A — B
is a morphism of pseudo MV — algebras if it satisfies the following conditions, for
every r,y € A :

(psMVy) f(0) = 0;
(psMVig) f(z@y) = f(z) ® f(y);
(psMV11) f(x™) = (f(2))7;
(psMVig) f(2%) = (f(2))S.

REMARK 4.4. It follows that:

f)=1,
flzoy) = flz) o f(y),
flavy) = f(z Y),
flxNy) = flz) A fy),

for every x,y € A.

Proof. We have f(1) = 1 since 1 = x & 2= in A implies f(1) = f(x & 2%) =
f(@)& f(2°) = f(z) & (f(2))® =1 in B;
flxoy) = f(x) O f(y) since f(z Oy) = f((y° ©2%)7) = (f(y° @ 2%))” =

(f(2) @ f(22)7) = (f(=) © F)2)7) = f(z) © f(y).

By Proposition 4.5 we deduce f(:c\/y) flzd (S 0y) = fx)e f(zS0y) =
f@)e[f(z2)ofy)] = f(@)elf(@)2of(y)] = f(@)V Iy )andf(ﬁAy) o o
y)) f@)ofx™oy) = f@)olf(@7)efy)] = f@)olf (@) & fy)] = f(@)Afy).

We recall that a bijective morphism f of pseudo MV — algebras is called iso-
morphism of pseudo MV — algebras; in this case we write A = B.
In any pseudo MV — algebra A one can define two distance functions:

d—(z,y) = (z 0y )@ (yOr~),ds(z,y) = (25O y) & (y° O x).
PROPOSITION 4.16. The two distances verify the following properties:

(i) d—(z,y) = (z Oy ) V(y© 2~ ),ds(z,y) = (2% ©y) V (y © 2);
(i) d—(z,y) = d—(y,2) and ds(v,y) = ds(y,z);
(#i1) Z_Ex,z; <d_(z,y)®d_(y,2)®d_(x,y) and ds(x, z) < ds(z,y)Dds(y, 2)D
S -’L',y .

Proof. (7). Follow by psmuv — ¢39 and psmv — css3.

(73). Follow by (i) and by commutativity of V.

(7i7). Follow by [68], Proposition 1.35, (9) and (10). W

Fore more details relative to distance functions see [68], Proposition 1.35.

DEFINITION 4.3. An ideal of a pseudo MV — algebra A is a nonempty subset
of A satisfying the following conditions:

(I7) 0 € I;
(1) fxel,yec Aand y <z, then y € I;
(I5) If x,y € I, thenazd y e I .
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If A is a pseudo MV — algebra, then an ideal I of A is proper if I # A. We
denote by Id(A) the set of all ideals of A. The intersection of any family of ideals of
A is still an ideal of A.

For every subset M C A, the smallest ideal of A which contains M (i.e., the
intersection of all ideals I O M), is said to be the ideal generated by M, and we
denote by (M] this ideal. If M = {a} with a € A, we denote by (a] the ideal
generated by {a}((a] is called principal).

As in the case of MV —algebras we have:

PROPOSITION 4.17. If M C A, then
(M={zcA:x<x1®..Dx, for some x1,...,x, € M}.

In particular, fora € A, (a] = {x € A: x < na for some integer n > 0}; if e € B(A),
then (e] = {x € A: x < e }. Remark that (0] = {0} and (1] = A. Also, for every
ideal I of pseudo MV -algebra A and each a € A we have (I U{a}]={x € A:z <
(1 ®n1a) @ ... & (T, ® npma) for some x1,...,Tm € M and for some integers m > 1
and N, ...,y > 0},

For any ideal I, one can associate two equivalence relations =py) and =g(y) on
A defined by:
=LY iff d_(.%',y) S Ia

r =g y iff ds(z,y) € I.
LEMMA 4.18. The relations =,y and =g(r) are equivalence relations on A.

Proof. The relation =p,is reflexive since * =pj) v & d_(z,7) = (r©27) @
(z®27) =0®0 = 0 € I, which is true. For symmetry we have r =p;) y &
d_(z,y) €l & d_(y,z) € I &y =) = (by Proposition 4.16, (ii)).

The relation =p,)is tranzitive since (v =) y and y =r(p) 2)& (d_(v,y) € [
andd_(y,z) € I) = d_(x,y)®d_(y, 2)Pd_(x,y) € I = d_(z, z) € I (by Proposition
4.16, (i11)) & = =) 2.

The proof that =g () is an equivalence relation is similar. W

REMARK 4.5. I ={r € A o =15 0} ={r € A: 2 =g 0}.

Proof. We have z =d_(7,0) € [ & x =p) 0 and x = ds(7,0) € [ & = =p(p)
0.

The relations =pyjand =g being equivalence relations, we can consider the
quotient sets A/ =pand A/ =gy . We denote by z/ =pand x/ =g the
equivalence classes of an element x € A and called this classes left and right class
of z. We define on the set of classes two binary relations <) and <g by:
v/ =<y y/ = it r oy € Tand 2/ =g <gra) ¥/ =ra it yS Oz el . Tt
eassy to prove that the relations <) and <pg() are partial order relations on the
respective sets.

For any ideal I, the map ¢ : A/ = — A/ =p(pdefined by ¢(x/ =1)) =
(7)/ =r(n)is a bijection between the sets A/ =) and A/ =p(p) -

We shall examine the set Id(A) of ideals of a pseudo MV — algebra A.

It is eassy to prove that (Id(A),N,V) is a complete Browerian lattice, where
meet is the intersection of sets and the join of an arbitrary collection of ideals is the
ideal generated by the union (as sets) of these ideals, the order relation being the
inclusion of sets.



3. HOMOMORPHISMS AND IDEALS 103

An ideal with the property that its set of left classes is totally ordered is called
prime.

REMARK 4.6. For any ideal I of A, the set of left classes is totally ordered by
<p(n)ilf the set of right classes is totally ordered by <g(r) . Indeed v/ = <L)
y/ = Wroy € Liff @) o0y € Iiff (7)) =rpy>ra (¥~ )/—R iff

o(x/ =) Zrm Y/ =L1))-

The prime ideals are characterized in the next theorem:

THEOREM 4.19. For P € Id(A) the following are equivalent:

(i) P is prime (that is, A/ =ppyor equivalently A/ =g(py, is totally ordered);
(1) {I € Id(A) : I D P} is totally ordered under inclusion;
(131) P is finitely meet-irreducible in Id(A);

(iv) Ifanbe P thena€ P orb e P;

v) Ifanb=0 thena € P orbec P;

(vi) For any a,b € A, a@b e€ePorboa €P;
(vii) For any a,b€ A,a®©be P orb® ®ac P.

Proof. First we prove the implications (i) = (it) = (iii) = (iv) = (v) = (7).

(i) = (7). Suppose that I, J are incomparable ideals containing P : I O P,J O P
and I ¢ J,J ¢ I. Then there exists ¢ € I\J and j € J\I. Let us consider the
left classes i/ =pp) and j/ =rp) - By (i), we have i/ =pp)<pp) j/ =rp) OF
i/ =y Snwp) i/ Erp), 50,1 ©j- € Por joi~ € P. We deduce that i © j~ & j =
1V ] GJor]G)z @®i=jViel, hencei e Jorje€l, acontradiction.

(ii) = (iti). f INJ = P then P C I and P C J. By (ii), we have I C J or
J CI. Suppose I C J;then P=INJ=1,s0 P=1.

(791) = (iv).Since (a Ab] C P we obtain (PV (a]) N (P V (b]) = (PV ((a]N(b])) =
(P V (a Ab]) = P. By (i), it follows that P = PV (a] or P = PV (b] so, a € P or
be P.

(iv) = (v). If aANb=0 € P then by (iv),a € Porbe P.

(v) = (i). Let x/ =rp),y/ =np)€ A/ =r(p); since a ©b~ ANb©a~ =0 € P we
deduce by (v) that a/ =rpy<r(p) b/ =r(p) 0r b/ =r(P)<L(P) @/ =L(P), 50 A/ =1(P)
is totally ordered by <rp) .

(v) = (vi). Since by psmv — c30, a @b~ ANb®a~ = 0 € P we deduce that
a®b-€Porboa” €P.

(vi) = (iv). Suppose that aAb € P, and that a®b™ € P , hence (a®b™ )& (aNb) €
P.Buta<[(a®b )®a]A(aVd)=[(a®b )@a]A[(a®@b™) Db = (a®b™)®(aAb).
We get that a € P.

(v) = (vii). Following by psmuv — c39, a © b A a® © b = 0, so we deduce that
aS©bePorb°®acP

(vii) = (iv). Suppose that a Ab € P and a® @b € P. Since b < (aVb) & [bD
(aSob)]=[ad(@SOb|ADb® (a®ob)] = (aAb)® (a®®b) € P. We get that b € P.
|

By Theorem 4.19 follows immediately:

COROLLARY 4.20. If P,Q € Id(A),P C Q and P is prime, then @Q is prime.
Proof. As in the case of M V- algebras (see the proof of Theorem 2.27). W

THEOREM 4.21. (Prime ideal theorem) Let A be a pseudo MV — algebra, I €
Id(A) and a € A\I. Then there is a prime ideal P of A such that I C P and a ¢ P.
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Proof. A routine application of Zorn’s Lemma shows that there is an ideal
P € Id(A) which is maximal with respect to the property that I C P and a ¢ P.
We shall prove that P is a prime ideal. Let z,y € A and suppose that P is not
prime, i.e., t@y~ ¢ P and y©z~ ¢ P. Then the ideal (PU{z ®y~ }] moust contain
the element a. By Remark 4.17, a < (s1®ni(z Oy )) & ... & (Sm B np(x © y 7))
for some s1, ..., S, € P and for some integers m > 1 and nq, ..., n,, > 0. Similarly,
there is t¢1,...,tx € P and for some integers k¥ > 1 and qi,...,qx > 0. such that
a<(t1oayer )@ 0togyer)). Let s =51 @...® sy and t =t @ ... Dty;
then s,t € P. Let n = zrzlla}ni{nl} and ¢ = %E?)ii{q’} Then a < m(s®n(z ©y™))

and a < k(t® q(y ©x7)). Let now u = s @t and p = max{n,q}. Then u € P,
a<mudplrey”)) and a < k(u® p(y ©x7)). Hence a < [m(u @ p(x ©y~))] A
[kudply©ar™))] < k[(mu@p(zoy™)) A(udplyoz))] < mk([(uep(zOy™))]A

[(u@ply©z7))]) =mklu® (plz ©y™) Ap(y ©27))]
= mk[u ® 0] = mku € P, hence a € P, a contradiction. Bl

REMARK 4.7. If pseudo MV — algebra A is an MV — algebra we obtain Theorem,
2.29.

DEFINITION 4.4. An ideal H is normal if the following condition holds:
(N) for every x,y € A, yoz~ € Hiff 2°0ye H.

LEMMA 4.22. Let H be a normal ideal. Then
(i) The condition (N) is equivalent with the condition

(N"): foranyxz € A, HOx =2 H,

that is, for each h € H, there exists h' € H such that h® x = x ® h' and
for each h' € H, there exists h € H such that x & h' = h & x.

(ii) The axiom (N) implies implies the following equivalences: h € H < h= €
H and he H < ht € H.

Proof. (i). (N) = (N'). Let xt € Aand h€ H. We put y = h@® z, y < x. Then
(yozr™)dz = yVe =y = 2®(z50y). Hence hdz = y = (yoz~ )dx = 2B(250y). If
yOx~ € H we get that h' = 2@y € H, so there exists i’ € H such that hdx = x®h
. Similarly, for each h' € H, there exists h € H such that z®h' = h@® x. Thus (N’)
holds.

(N') = (N). (Dvurecenskij) Suppose that y ©x~ € H; then putting hy = y©z~
we have Vy = (yOz~ )@z = hi @z = v® (25 Oy) and there exists hy = 250y € H
such that t Vy =2 @ hy. Then 250y <250 (xVy ) =20 (x @ hy) =25 ANhy <
he € H. It follows that = © y € H. Similarly, if we assume that x5 ©y € H we
obtain that y © x~ € H. Thus (N) holds.

(7). In (N) for y = 1 we obtain 2~ € H iff 2 € H. Take then x = 25 and
r=x";wegetthatr€ Ho 2z c Handec He 2t c H R

REMARK 4.8. Ife € B(A), then (e] = {x € A:xz < ne=ce, for somen > 1} =
{r € A:x < e} is a normal ideal of A. Indeed, if x,y € (e] we get y©x~ € (e] &
yor- <ewy<ed(z7)® =edr=ade=(25)"Pe & 250y < e 250y € (€.

LEMMA 4.23. (Dvurecenskij) Let H be a normal ideal of A and a € A\H. Then
(HU{a}]={z € A:x < h®na for some h € H and some integers n > 1}.
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Proof. By Proposition 4.17, (HU{a}|={r € A: 2 < (h1 ®nia)® ... ® (hym &
nma) for some hq,...,h,, € H and for some integers m > 1 and ny,...,n, > 0}.
If m =1, then z < hy @ nja. If m = 2, then z < (h; ® n1a) ® (he ® nga) =
h1 & (n1a® ha) ®nga = hy @ (hy®nia) Bnsa = (h1 S hb) B (n1a @ nga) = hia B niga
with hio = hy @ by € H and n12 = ny + ng is a natural number.

By induction we get that = < hja_, ®nia._ma with his = hio m—1Ph,, € H
and nio. m = N1 + ... + ny, 18 a natural number. W

The next proposition generalizes a well known property of maximal ideals in
boolean algebras and MV — algebras. The idea that I must be a normal ideal to
be able to prove one of the implications by ussing the above lemma belongs to A.
Dvurecenskij.

PROPOSITION 4.24. For any proper normal ideal I of a pseudo MV — algebra A,
the following conditions are equivalent:
(i) I is a mazimal ideal of A,
(i1) For each x € A< [(nz)® € I or (mx)~ € I for some integers n,m > 1].

Proof. (i) = (ii). Suppose that I is a maximal ideal of A and let x € A\I.
Then ({z} UI] = (I U{z}] = A, so for some integers m,n > 1 and a,b € I we have
1 =nx@®a=>b&me. Hence, 1 = ((nz)®)” ®a=>ba ((mx)”)%, so (nz)® < a and
(mx)~ < b. Then we get (nx)® € I or (mz)~ € 1.

If x € I, then nx € I. Since I is proper, i.e. 1 ¢ I, it follows that (nz)S ¢ I and
(nx)~ ¢ I.

(7i) = (7). Let J be an idealof A such that I C J. Then for every z € J\I we
have by (ii),(nxz)® € I or (mz)~ € I for some integers n,m > 1, so (nx)% € J

or (mx)~ € J. Since z € J we have nx,mx € J, so nx & (nx)® =1 € J or
(mz)” @ma =1 € J. We deduce that 1 € J and J = A, so I is a maximal ideal of
A N

DEFINITION 4.5. A congruence on A is an equivalence relation = on an pseudo
MYV — algebra A satyisfing the following conditions:

(C1)ifr=yanda=bthenzda=ydband aBx =bdD y;

(Cy) if z =y then 2~ =y~ and 2% = yS.

If H is a normal ideal then = )<=pg(); let =p denote one of therm. The
binary relation =g is a congruence on A and we have H = {x € A : z =5 0} =
0/ =g . Conversely, if = is a congruence on A, then 0/ == {r € A: 2z =0} is a
normal ideal of A and x =y iff d_(x,y) = 0, or equivalently, x = y iff ds(z,y) = 0.

We deduce that there is a bijection between the set of normal ideals and the set
of congruences of a pseudo MV — algebra.

To any normal ideal H of A we shall denote the equivalence class of x € A with
respect to =g by x/H and the quotient set A/ =g by A/H . We remark that A/H
becomes a pseudo MV — algebra with the natural operations induced by those of
A:(z/H)®(y/H) = (zdy)/H; (x/H)” = (z7)/H;(x/H)S = (x%)/H. This pseudo
MV — algebra (A/H,®,” ,,0/H = H,1/H) is called the quotient algebra of A by
the normal ideal H.

The correspondence * — x/H defines a homomorphism py from A onto the
quotint algebra A/H, which is called the natural homomorphism from A onto A/H;
Ker(py) = H since x € Ker(py) < /H = puy(r) =0/H =H & z =4 0 &
d_(z,0) € H and ds(z,0) € H < x € H.
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REMARK 4.9. If A is a pseudo MV — chain, then the set of normal ideals of A
is totally ordered by inclusion. Indeed, if I, J are normal ideals of A such that I ¢ J
and J € 1, then there would be elements a,b € A such that a € J\I and b € I\J,
whence a % b and b £ a, which is impossible.

REMARK 4.10. Note that a normal ideal I is prime iff A/I is a linearly ordered
pseudo MV — algebra.

If Ais an MV — algebra, then d_ = dg, i.e.
d—(z,y) =ds(z,y) =d(z,y) = (z0y ) O (yOa")

and d is the distance function of A.
It is obvious that, in this case, any ideal of A is normal.



CHAPTER 5

Pseudo BL-algebras

In [53], [54], [67], A. Di Nola, G. Georgescu and A. Iorgulescu defined the pseudo BL-
algebras as a non-commutative extension of BL- algebras (the class of pseudo BL - algebras
contains the pseudo MV-algebras, see [66], [68]). The corresponding propositional logic was
established in [76], [77].

Apart from their logical interest, pseudo BL-algebras have interesting algebraic proper-
ties (see [37], [53], [54], [70], [94]).

1. Definitions and first properties. Some examples. Rules of calculus

We review the basic definitions of pseudo BL- algebras, with more details and more
examples; a lot of identities are true in a pseudo BL-algebra. Also we put in evidence
connection between pseudo BL-algebras and pseudo MV-algebras, BL-algebras and Hilbert
algebras.

DEFINITION 5.1. A pseudo BL— algebra is an algebra
(A7 \/7 /\7 ®7 _>7 ~ 07 1)

of type (2,2,2,2,2,0,0) satisfying the following:
(psBL1) (A,V,A,0,1) is a bounded lattice;
( ) (A,®,1) is a monoid;
(psBL3) a®b<ciff a<b— ciff b<a~ cforall a,b,c € A
(psBLs) aNb=(a—b)©a=a® (a~D);
( )

psBLs) (a—b)V(b—a)=(a~b)V(b~a)=1,forallabe A

We shall agree that the operations A, V, ® have priority towards the operations
—
EXAMPLE 5.1. Let (A,®,®,”,%,0,1) be a pseudo MV — algebra and let —, ~>
be two implications defined by
Toy=ydr,zmy=1dy.
Then (A,V,N\,®,—,~ 0,1) is a pseudo BL— algebra.

EXAMPLE 5.2. Let us consider an arbitrary l-group (G,V,A,+,—,0,1) and let
u € G,u<0. We put by definition:

rOy=(@+y)Vu,z@y=(x—u+y) A0,
T =u—x2%=—-z+u.

Then A = ([u,0],®,®,”,%,0 = u,1 =0) is a pseudo MV — algebra and we define
two implications:

r—y=(y—a)AN0,z~y=(—x+y)AO.
Then A = ([u,0],V,\,®, —,~,0=u,1=0) is a pseudo BL— algebra.

107
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A pseudo BL— algebra is nontrivial if 0 # 1. An element a € A,a # 1 is called
non-unit. For any pseudo BL— algebra A, the reduct L(A) = (A,V,A,0,1) is a
bounded distributive lattice. For any a € A, we define

e =a—0and a® =a~ 0.

We shall write a= instead of (a7)~ and a® instead of (a=)S.

We define a® = 1 and a” = a" ! ®a for n > 1. The order of a,a # 1, in symbols
ord(a) is the smallest n > 1 such that a™ = 0; if no such n exists, then ord(a) = co.

A pseudo BL— algebra is called locally finite if all non unit elements in it are
finite order.

Now we are able to make the connections of pseudo BL— algebras with BL—algebras
and pseudo MV —algebras.

DEFINITION 5.2. A pseudo BL— algebra A is commutative iff t ©y = y © x, for
any x,y € A.

PROPOSITION 5.1. A pseudo BL -algebra A is commutative iff x ~ y = x — v,
for all x,y € A. Any commutative pseudo BL—algebra A is a BL—algebra.

Then we shall say that a pseudo BL— algebra is proper if it is not commutative,
i.e. if it is not a BL algebra.
PROPOSITION 5.2. Let (A,V,\,®,—,~> 0,1) be a pseudo BL— algebra with the

property:
(P):forallx e A (2°)” =x = (z7)%.

Let us define on A a new operation by
yer=( 0y )°=@%0y%) =1 -sy=y —ua
Then (A,®,®,” ,%,0,1) is a pseudo MV — algebra.
The next Corollary generalizes the following results from [75]: A BL algebra
(A, V,A,®,—,0,1) is an MV algebra iff 2** = x, for all x € A (where z* = 2 — 0).
COROLLARY 5.3. A pseudo BL— algebra A is a pseudo MV — algebra iff A has
property (P).

In [37], [53], [54] it is proved that if A is a pseudo BL— algebra and a, ay, ..., ap,a’,b, b, ¢, b; €
A, (i € I) then we have the following rules of calculus:
psbl —c1) a®(a~b)<b<a~ (a®b)and a® (a~b) <a<b~ (bOa);

(

(psbl —c2) (a —b)®a<a<b— (a®b)and (a - b)®a<b<a— (b®a);
(psbl —c3) ifa<bthena®c<bOcand cOa<cOb;

(psbl —c4) ifa<bthenc~a<c~bandc—a<c— b

(psbl —c5) ifa<bthenb~c<a~candb—c<a—c

(psbl —cg) a<bifa—b=1iff a ~b=1;

(

(psbl —cg) 1 ~~a=1—a=a;

(psbl —cg) b<a~>band b<a— b

(psbl — c19) a©@b<aAband a®b < a,b;
(psbl —c11) a~1=a—1=1;
(psbl — c12) a~~»b< (c®a)~ (c®b);
(psbl —c13) a - b<(a®c)— (bOc);

(

)
)
)
)
)
)
psbl —c7) a~a=a—a=1;
)
)
)
)
|
) ifa<bthena<c~ banda<c— b

psbl — c14
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(psbl —c15) a— (bOc) >bO(a—c)and a~ (bOc) > (a~b) O
(psbl — c16) if a < b then b~ < a~ and b° < a%;
(psbl —c17) 0©a=a®0 = 0;
(psbl —c18) (a~b)O(b~c)<a~cand (b—¢c)©®(a—0b) <a—c
(psbl — c19) (a1 ~ az) © (ag ~ ag) © . @ (Ap—1 ~ ap) < ag ~ ag;

(an—1 = ap) ®...® (a2 — a3) © (a1 — a2) < a; — ap;
(prl—Cg())a\/b—((aWb) ) (b~ a) — a);
(psbl — c21) aVb=((a—0b)~b)A(((b—a)~ a);
(psbl — c2) a~ (b~c¢)=(b®
(anb)and a — b=a— (aAb);
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a)~canda— (b—¢)=(a®b) - c;a~b=a~

(psbl — ca3) ((;wg)gw()awc)—(bwa)w(bwc)and(a—>b)—>(a—>c)—(b—>
(psbl —ca4) cO(aNb) =(c@a)A(c®b) and (aAb)©c=(a®c)A(bOc);
(psbl — ca5) (a~b) ® (a' ~b) < (aVvd)~ (bVD);

(psbl — ca6) (@~ b) @ (' ~ V) <(and)~ (DAY);

(psbl — co7) (a—b)® (a/ = V)< (aVvd)— (bVD);

(psbl — cog) (a—>b)®(a'—>b') <(and)— (bAD);

(psbl — ca9) (@ ~>b) ~»c<((b~a)~c)~cand (a —b) —c<((b—a)—c)—c;
(psbl—c;;o)(aWb)w <((b~a)~c)—cand (a—b) —c<((b—a)—c)~c;
(psbl — c31) a S(bwc)e(awc)anda—>b§(b—>c)M+(a—>c);
(psbl—c;:,g)ang(cwa) (cb)anda —b<(c—a)— (c—b);
(psbl — c33) if aVb=1then a®b=aAb;

(psbl — c34) if a Vb =1 then, for each n > 1,a™ V" =1,

(psbl — c35) for each n € w, n > 1,

(a—b)"V(b—a)"=1,
(@~>b)"V (b~ a)"=1;

(psbl — e36) a A ('\e/Ibi) = '\e/l(a A b;),

@ (V) = V(@ob),

(Vo oa=Vbioa,

a~ (Ab) = Ala~b),
el el

a— (Ab) = Ala—b),
el el

(Vbi) ~a= A~ a),

i€l i€l

(Vb)) = a= A —a),

el el

(whenever the arbitrary meets and unions exist)
(psbl —c37) 15=1"=0,05=0" =1
(psbl — c38) a®a® =a~ ©®a=0;
(psbl — c39) b<a® iff a®b=0;
(psbl —cq0) b<a” iff b®a=0;
(psbl — cq1) a < a” ~ bya<a® — b
(psbl — cq2) a
(psbl — cy3)
(psbl — cq4)

av~>b<b$—>a ,a—b<b  ~a;

a—b5=b~a,a~b" =b— a5

<(a~b) —ba<(a—b)~b, hence a < (a®)",a < (a™)%;
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(psbl — c45) a < b implies b= < a® and b~ < a~;
(pol ) ((0%) ) ==, {(a")?)" =
(psbl — c47) a — a® =a~ a~;

(psbl — c48) (a® ) =a—b,(a®@b)SS=b~a
(psbl — c49) (@ AD)S =aS Vb3, (aVb)® =a%Ab®
(psbl — cs50) (aANb)” =a~ Vb ,(aVb)™ =a" Ab”
(psbl — c51) (a Ab)E =at /\bt (avVb)t=atvdt
(psbl — c52) (aANb)= =a=Ab~,(aVb)==a= Vb~
(psbl — c53) (aVe)®(bVeva®)<(a®b)Vc
(psbl — cs54) (bVevVa )®(aVe)<(b@a)Ve
(psbl —cs5) aV (b®c) > (aVb) O (aVec).

Proof. (psbl —c¢1). a ® (a ~ b) = a A b < a,b; the second inequalities follow by
psBLs:b<a~ (a®b)<ac0b<aGbanda<b~ (bOa)<bOa<bOa.

(psbl — c2). Has a similar proof with psbl — c;.

psbl—ca psbl—cy

(psbl —c3).a<b < c¢— (b®c),soby psBLs,a ®c<bGcanda<b <

¢~ (c®b) psgls ®a < ¢ ®b.
psbl—c
(psbl — ¢4). c® (¢ ~ a) < ' a < b, so by psBL3, ¢ ~ a < ¢ ~ a; (¢ —
psbl—c

a) ®c < 2agb, hence by psBL3, ¢ — a < ¢ — b.

psbl—c3 psbl—cy
(psbl — ¢5). If a < b then we deduce that a® (b~¢) < bO(b~c¢) < ¢

S0 b~ c<a~c, by psBL3; if a < b then
sbl—c3

(b—>c)®ap < (b%c)@bpsjihb/\cgb; hence b — ¢ < a — ¢,by psBL3.

(psbl —cg). a <biff a®1 <biff 1 <a~biff a~ b=1, by psBLy,psBLs and
psBL;.

(psbl — ¢7). Obviously, by psbl — cg, since a < a.

psbl —cg). a =1ANa © ~a)=1~aanda=1Aa —
bl 1ra™2 100 1 da=1 1
a)®©l=1—a,s0l~a=1—a=a.

(psbl — c9). a < 1 implies by psbl —c5, 1 ~b<a~band 1 —b<a— bso

b<a~> band b<a— bby psbl — cs.
psbl—cg psbl—cs3
(psbl — c1p). Since b < a—b,thena®b < a®(a—b)

psBLy4

BL
P2 anb <a,b

(psbl — c11). By psbl — cg since a < 1.
psbl—c, s s
(psbl — c12). a~b < 3(6@ a) ~ (cob) & Bls (c@a)@(aWb)<c®prL4
c®(@nb)<cO®b.
psbl—c: s s
(psbl — c13). a — b < 3(a@ c)— (bO )pBL3 (a—b)O (a6 )<b®chL4
(aNb)©c<bOec.
psbl — c14). By psbl —cg,a <b<c~banda<b<c—b
bl B bl b b and b b
(psbl — c15). (awb)@cgaw(b@c)pSgLS’a@[(aWb) ]<b®cp5§>L4
psBLg psBL4

(anb)©c<boOcand b® (a —¢) <a— (bOC¢)
bo(anc)<bOe.
(psbl — c16). Follows from psbl — c5, by taking ¢ = 0.

(psbl — c17). Clearly, 0 ©1 = 1 ® 0 = 0. Then since a < 1, it follows that
psbl—cs3 psbl—c3
a®0 < 1®0=0and0®a < 001=0.Hencea®0=06a=0.

bo(a—c)]oa<boce
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(psbl — c15). We get (@~ b) @ (b~ ¢) < a~ "B a@|(awb)o (b )] <c

psBLa (aAb)® (b~ c) < ¢, which is true, since (a Ab) © (b~ ¢) <b® (b~ c) psBLa
ngcwd@ﬁ@@@fﬂﬁ<a%cﬁ$q®*@®w—%M®a<thw—a

¢) ® (a Ab) < ¢, which is true, since (b —¢) ® (aAb) < (b—¢c)Ob PEM A<

(psbl — c19). Have a similar proof with psbl — c¢17 and psbl — c;3.

(psbl — ¢gp). Denote z = ((a ~» b) — b) A ((b ~ a) — a). By psBL4, a Nb =
a® (a~0b)soa<(a~ b)— b;from psbl — cy, we also have that b < (a ~ b) — b;
it follows that a Vb < (a ~» b) — b. Analogous, a Vb < (b ~» a) — a. Hence
aVb<((a~b)—Db)A(((b~ a)— a).

We have z = 201 "E" 20 [(a~ b)V (b~ a)] P"E (20 (a ~ b)]V [z ® (b~
@i but £ © (a ~ b) = [((a ~ b) — b) A (b~ a) — a)] @ (a ~ b) < [(a ~

b) — b ® (a ~ b) poBla (@ ~ b) ANb < b; similary, * ® (b ~» a) < a. Hence,
r=[r®(a~b)]V][re (b~ a) <bVa. It follows that a Vb = z.
(psbl — c21). Has a similar proof with psbl — cg.
sbl — c92). We have the following equivalences:

(p
(b®a) ~ c<a~ (b~ c) pegls a®[(bea) ~ ¢ <b~ B bOa®((bGa) ~
<c

PE2 b0 a) o [(boa) ~ d <c PES hoa)Ae < (b®a)

andaW(bwc) (boa)~c” “Bf Pboa)Ofa~ (b)) <cebolad (a~

b)) <cE balan-e)) <cPEan(bwe)<b-e

So, (b®@a)~c=a~ (b~ c).

The second equality has a similar proof.

aANb=a®(a~ b < aAbimplies a ~ b < a ~ (a Ab); On the other
side, a AD < b prl c5
a—>b—a—>(a/\b).

(psbl — c23). We have (a ~» b) ~ (a ~ ¢)
(aANb) ~c=(bAa)~ ¢ PPl
(a—b)— (a—c) peblez [(a —b) ®d] B (anb) —c=(bANa) — ¢
[(b—a) @b — "= (b= a) — (b— o).

(psbl — ca4). By psbl — coo and psbl — c12 we get a ~» b = a ~ (a Ab) <
(c®a)~ (c®(aNnb)).

sbl—c
Thusa~s b < b [(c®a) ~ (cOb)] ~ [(c®a) ~ (c®(aAb))] and by replacing

o)l

a~ (aANb) <a~ b soa~ b=a~ (aADb); Similarly,

psbl—ca2 psBLy4

@G (a ~ b)] ~ c

b (b~ a)] ~ ¢ "= (b~ a) ~ (b~ ¢) and
psBLy

abyband bby aweobtainb~ a < [(cOb) ~ (c@a)] ~ [(cOb) ~ (cO(bAA))].
By psbl — ca3, the right term of the last two inequalities are equal and we denote the
common value by z. So, a ~» b < x,b~ a < x.

On other side, (a ~ b) V (b~ a) psBls 1, therefore we get 1 <z V x = x, hence
. L psbl—cg ps BLs

Thus (c®a) ~ (c®b) < (c®a)~ (c®(aAb)) (cOa)®[(c®a)~
(coOb)] <c®(anbd).

By psbl—cs, anb < a,bimplies c®(aAb) < cOa, cOb, s0 c®(aAb) < (cOa)A(cODb).

Thus the first equality holds.

The second equality, (a Ab) ©c= (a®c) A (b® ¢), has a similar proof.
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(psbl — ca5). The inequalities a ® (a ~» b) ©® (a/ ~ V) <a® (a~b) =anb<
bvd,and  ® (a ~ b) O (@ ~ V) <d o ~V)=dAb <bVv imply
(@~b)®(a~V)<a~ (bVV)and (a~b)©® (a' ~b)<d ~ (bVV) therefore

(@~ b) O (a ~b) < [a~ OV AL ~ bVE)]PTED (ava) ~ (bV ).

(psbl — c96). The inequalities (a A a’) ® (a ~ b) © (@ ~b) <a® (a~b) <b
and (aANd')® (a~b)© (af ~b)<d o ~b)<Vimply (a~b)o (a ~V) <
(ana')~band (a~b)©® (a ~b)<(aNd)~ b therefore

(@~ b) O (a ~ V)< [(@and) ~ b Al(aAd)~b]""ED (@Ad) ~ bAY).
(psbl — ca7). Has a similar proof with psbl — cas.

(psbl — c98). Has a similar proof with psbl — cag.

( ).

We have [(b ~ a) ~ ] ® [(a ~ b) ~ ¢] < [(b~ a) ~ ] A[(a~

psbl — ca9
c psEL5 psbl—csg

b) ~ | peblcss [(b~a)V(a~b)] ~ 1~ ¢ =" c SobypsBL3 we deduce
(@~ b) ~ ¢ < ((b~ a) ~ ¢) ~ c¢. The second inequality has a similar proof.

(psbl — c3p). Have a similar proof with psbl — cag.
(psbl — ¢31). We have a © (@~ b) @ (b~ ¢) = (aAD) O (b~ ¢c) <bO (b~ ¢) =

bAc<e, s0a® (a~b)® (b~ c) < PE (@~b)® (b~ c) <~ PES

a~b< (b~ c)— (a~ c);since (b — ¢)®(a — b)Oa = (b — ¢)©(anb) < (b —
c)Ob=bAc<c, then (b —c)®(a—b) <a— chencea —b<(b—c)~ (a— c)

psBL3

(psbl — c32). a~>b<(c~a)~ (c~b) &  (c~a)®(a~0b) <(c~b)and
the right side of the equivalence is true by psbl — cig;

a—b<(c—a)— (c—>b)pSBL3 (a = b)® (c — a) < c— b and the right side
of the equivalence is true by psbl — ci3.

(psbl — cs3). By psbl — cop, aV b= ((a ~b) — b) A ((b~ a) — a) =1, therefore

(@wb) =b=1"5%gwb<b ThusaAb=a0® (a~b) <a®b
By psbl — c1g we also have a ©b < aAb,soa®b=aAb.

(psbl —cg4). If aVb=1then,a=a®1l=a®(aVDb) pebl_cao (i) (a®a)V(a®b) <
a? Vv b. Hence a® Vb > a. Then (a>Vb) Vb >aVb=1,s0a?Vb=1. Similarly,

b=10b=(a? \/b)@bpsm:ﬁ036 (a®>®b) V (b®b) < a?Vb% Thus, a® V b*> > b; hence
a’?Vv(@®Vvb?)>a’Vvb=1,s0a> Vb =1,

It follows that 1 = a Vb = a? Vv b? = (a®)? Vv (b?)? = ... . We obtain a®" v b*" =1,
for each integer n > 1. Since n < 2" it follows that a™ Vv b" > a®" v bv*" =1, which
implies a”™ V b" = 1.

(psbl — c35). Follows by psbl — ¢34 and psBLs.

(psbl—cs). (i7). We prove that a®(\/ b;) = V (a®b;) and (\/ b;)©a = \/ (bi®a).

i€l i€l i€l i€l

Obviously, a @ b; < a ® (\/ b;) for each i € I. Let a ® b; < ¢,i € I. Then by

i€l
psBLs we have b; < a~ c,i € I,s0 \/b; <a~ e e L3 ©® (V b;) < c. Therefore
el i€l
we get that a © (\/ b;) = \/ (a ® b;). Analogous the second equality.
i€l el

(7). We prove that a A (\/ b)) = V (a A b;).
el iel
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We have a A (V) P2 (V) © [(V ;) ~ a] = V(b @ [(V b)) ~ a]). But,
iel iel jel iel jeI
for any i € I, b; < \/ b;, then by psbl — c5, (\/ b;) ~» a < b; ~» a, so by psbl — c3,
jel jel
OV b;) ~ a] < b;® (b ~ a) "B by Aas it follows that \/ (b; @ [(\/ b)) ~ a]) <
jel el jel
V (a A b;). We deduce that a A (\/ b;) < \ (a Aby);
el el el

the converse inequality is obvious.
By this rule of calculus we immediately get that: If (A,V,A,®,—,~,0,1) is a
pseudo BL-algebra, then L(A) = (A,V,A,0,1) is a bounded distributive lattice.
(i7%). To prove that (\/ b;) ©a = \/ (b; ®a), remark first that b; ©a < (\/ b;) ©a,
iel iel iel
for every i € I, by psbl — c3. Let x such that b; ©a < z,7 € I, then b; < a — z,1 € [;

hence \/b; < a — z " Lg(\/b) ®a<z. Thus (\/b;)©a=V(b©a).

i€l i€l i€l i€l
The rules (iv). : a ~ ('/e\Ibi) = '/e\I(a ~ b)), (V) ra — (‘é\lbi) = é\l(a — b;), (vi) :
('\e/lbi) ~a = '/e\I(bi ~ a), (vid) : ('\e/lbi) —a= '/e\l(bi —a)

has a similar proof.

For example we proof (vi): (\/b;)) ~a= A\ (b~ a):
i€l icl

We have the following equivalences for any x € A :

S psbl—c3q i
2 < (Vb)) ~a"E (Voyor<a” & V(o) <asbor<afor
el i€l el
anyi €l ex<b ~aforanyiecl <z < A\ (b~ a).
i€l

psbl — cs7). Obviously by psbl — cg and psbl — c7.

(

(psbl —c38). a®a® _(IL@((LWO)pBL4 /\Oannda‘@a:(a—>0)®apS£L4
aN0=0. BL

(psbl—039).bgas@bgaw0p8®3a®b<0®a®b—0

(psbl —cq0). b<a~ &b<a— 0p<:>Lgb®a<O<:>b®a—O

bl BL
WS 0<band a < aS — b 7S

(psbl — cq1). a < a™ ~ bpsgL a” Oa<
a®asS < bprgC% 0<hb.

(psbl — c12). a < (@~ b) — b" B 4o (a~b) <b
for b = 0 we obtain a < (a®)~.

The other inequality , a < (a — b) ~» b has a similar proof; for b = 0 we obtain
a<(a")S.

(psbl — c43). By psbl — cs1,a ~» b < (b ~» 0) — (a ~ 0) = b° — a® and
a—b<(b—=0)~(a—0)=b"~a".

(psbl — caq). By psbl — c43, we have a — b= < (b%)™ ~» a~ < b~ a~,by psbl —cq2
and psbl — c5; similarly, a ~» b~ < (b7)% — a® < b — .

By using these inequalities, we get b~ a~ < a — b5 and b — a® < a ~ b™.
Thus, the equalities hold.

(psbl — c45). By psbl — ¢5, a < b implies b5 = b ~~ 0 < a ~ 0 = ¢® and
b =b—-0<a—0=a".

(psbl — c46). a < (a®)~ (by psbl — c42) implies by psbl — cy5 that (( a®)7)= < a®
and a < (a7)% implies (( a7)%)~ < a~; the converse inequalities follows by psbl—cys.

BL .
P2t anh < b, obviously;
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(psbl — c47). We have the following equivalences for any = € A :

r<a—ad®e20a<a®<a0(z0a)=0& (a@z)0a=0&a0z <
a szrx<a~a .

(psbl — cag). (a® b)” = (a®b) — 0

(@@ b)S = (a@b) ~ 07"= b (@~ 0) = b~ aS.
sbl—c
(psbl — cag). We get that a ~» b = a ~» (a A b) g < v (a ANb)® — a® and

pblcen o, (b - 0) =a — b and

psbl—c.
ba=bw (bAa) < (aAb)S —bS.
By psBL3, (a ~ b) ® (a Ab)® < a® and (b ~ a) ® (a Ab)S < bS. Tt follows

that (@ AD)S =16 (@A b)S PE [(a ~ b)V (b~ a)] ® (aAb)S PPED [(g ~
b) ® (aAD)S]V (b~ a)® (aAb)®] <a®VbS.

The converse inequality follows since a=,b% < (a A b)S.

The second equality: (aVb)S = a® Ab=, follows by psbl —cs6, (aVb)= = (aVb) ~»
0=(a~0)V (b~ 0)=a%AbS.

(psbl — ¢50). Has a similar proof with psbl — cyg.

(psbl —c51).(a AD)E = ((anb)D)S PP (45 v pS)S PP € 8 T - e second
equality follows similary.

(psbl — c52). Has a similar proof with psbl — c5;.

(psbl — c53) and (psbl — c54) has a similar proof.

(psbl — c54) Let u = (b® a) V¢ and v = u V a; hence u < v.

v—>uz(uVa)—>uprl£036 (u—u)AN(a—u)=1A(a—u)=a—u.

Thenu =vAu=(v—>u) Ov=(a— u)©®(uVa). But b©® a < u implies
b<a—u.

Also, we have a~ < a — u since 0 < u. It follows that bV a~ < a — wu. Since
u<a—uthenuVbVa <a—u,sobypsbl—cs [uVbVa |®(uVa)<(a—
u)©®wVa)=u=((boa)Ve.

Since uVb=[(b@a)Ve]Vb<bVeVb=bVcand bVe < [(bOa)Ve]Vb=uVb,
we obtain u Vb= bV ¢; similarly, uVa=aVc.

Replacing in the previous inequality, we obtain that (bV ¢V a™) ® (aVe) <
(boa)Ve.

(psbl — ¢55). (aVb)® (aVe) aVvb)©@alViaVb)ocd=(a®a)V (e
a)V(iao®c)V(boc)>aVavaV((boc)=aV(boc). R

prl;C36 [(

LEMMA 5.4. For every a,b,c € A, we have:
(psbl —cs6) aN(bOc) >b® (aAc);
(psbl —c57) aN(b®c) > (aNb) O
(psbl —cs8) aAN(b@c) > (aNb)® (aAc).

Proof. (psbl — cs56). From psbl — c¢15 we have a — (b ®¢) > b® (a — ¢). We
deduce that [a — (0O ¢)]©a>bO[(a—c)Oal,soaN(bOc)>bO (aAc).

(psbl — c57). As in the case of psbl — csg.

(psbl — ¢5g). From aA b < a,b and aA ¢ < a,c we deduce (aA b) ® (aA ¢) <bGc
and (aA b) ® (aA ¢) < a? < a, hence (aA b) © (aA¢) <aA(b®c). B

LEMMA 5.5. For every a,b,c € A, we have:

(psbl — ¢59) a — (b~ ¢) < b~ (a— c),
(psbl — o) a ~~ (b—¢) <b— (a~ c).
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S

Proof. (psbl —csg). We have b® [a — (b~ ¢)]@a” By [aN (b~ c)] pobl_cze

(b@a)ABO D ~ ¢)] "E (b@a)A(bAc) = (boa)Ac < ¢, 50 bo[a — (b~ ¢)] < a — ¢,
hence a — (b~ ¢) < b~ (a — ¢).

(psbl — cgp). We have a ® [a ~» (b — ¢)] © b psBla [aN(b— c)]Ob
(a®b)A[(b — ¢)®b] poBla (@®b)A(bAC) = (a®b)Ac < ¢, 50 [a ~ (b — ¢)]|Ob < a ~ ¢,
hence a ~ (b —¢) <b— (a~ c). R

psbl—caa

COROLLARY 5.6. For every a,b,c € A, we have:
(psbl —cg1) a — (b~ c¢)=b~ (a — c);
(psbl — c2) a — (a~ ¢) =a~ (a — c).

Proof. (psbl — cg1). From psbl — cs9 we deduce that a — (b~ ¢) < b~ (a — ¢).
If in psbl — cgo we change a with b we obtain b ~ (a — ¢) < a — (b ~ ¢), that is,
a— (b~c)=b~ (a—c).

(psl — cp2). Follow from psbl — ¢ if consider a = 0.1

REMARK 5.1. In particular for ¢ = 0, from psbl — cg1 and psbl — cga we deduce
psbl — cy4.
LEMMA 5.7. For every a,b € A, we have:
(psbl — cg3) a= © b= < (a®b)~,
(psbl — cg4) a®©PE < (a®b)E.
Proof. (psbl — cg3). By psbl — cys, (a® b)” =a — b, s0 (a® b)” ©®a < b".
By psbl — c45 we deduce that b= < [(a® b)” ©®a]” = (a® b))~ — a~, so b= © (a®
b)” < a~. Then
a” <p"0@ob) " =b" = (a0b)”,
that is, a= © b~ < (a ©® b)~.
(psbl — ceq). By psbl — cag, (a® b)S = b ~ a®, 50 b ® (a® b)® < a=. Then
at <[b® (a® b)S]® = (a® b)S ~ b5, s0 (a® b)S © a® < bS. Then
bVE<[(aob)0dY®=a%~ (a®b)T,
that is, a®* © bt < (a® b)t. W

COROLLARY 5.8. For every a € A and n > 1 we have:
(psbl — cg5) (a™)™ < (a™)™ and (a®)" < (a™)*.

LEMMA 5.9. For every a,b,c € A we have:
psbl — cg6) a — (b—¢) > (a —b) — (a — ¢),
psbl — cg7) a~> (b~ ¢) > (a~>b)~ (a~ c),
psbl — cgg) a — (b~ ¢) > (a—b) ~ (a— c),
psbl — cg9) a~ (b—¢) > (a~b) — (a~ c).

NN N

Proof. (psbl — cg6). By psbl — caa we have a — (b — ¢) = (a ® b) — ¢ and
(a—b) —(a—c)=[la—boa] —-c=(aNb) — c. Since a ®b < a A b we deduce
that (a ®b) — ¢ > (a Ab) — ¢, that is, a — (b — ¢) > (a — b) — (a — ¢).

(psbl — cg7). As in the case of psbl — cgp.

(psbl — ces). By psbl — cg1 we have a — (b~ ¢) =b~» (a — ¢). Since b < a — b
we deduce that b ~» (a — ¢) > (a — b) ~ (a — ¢), that isa — (b~ ¢) > (a —
b) ~ (a — ¢).
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(psbl — cg9). As in the case of psbl — cgs. B
For any pseudo BL - algebra A, let us denote
GA) ={reA:z0x =z},
MA) ={xeA:x=(2%)" =(x7)%}
and let B(A) be the Boolean algebra ([120]) of all complemented elements in the

distributive lattice L(A) = (A, V,A,0,1) of a pseudo BL-algebra A (hence B(A) =
B(L(A)))-

PROPOSITION 5.10. ([54]) If A is a pseudo BL— algebra and a € G(A),b € A,
then
a@b—aAb-b@a
aNa®=0=aANa",
a ~ b =a—b,

(i
i1

)
)
/i)
) a

Proof. (i). aAb=a®(a~b) =a®a®(a~b =a® (aAb)
(a@a)A(a®b)=aA(a®b)=a®b.

(73). Follows by (i) and psbl — css.

(7i7). We have the following equivalences for any = € A :

r<a~wbsar<bsesroa<bsesxr<a—b

(iv). Follows taking b = 0 in (¢7¢). W

LEMMA 5.11. If A is a pseudo BL—algebra, then
B(A)=M(A)NG(A).

Proof. Consider x € B(A); then for some y € A we have xVy =1 and zAy = 0.
ThenyOz=x2Ay=0,s0x<yS.

We also have y> =10y = (zVy) Oy
(x ®yS) V0 =1x06yS, hence y= < z. Thus = = yS.

Similarly, x = y~. But a7 Ay~ =0and 2= Vy~ = 1,ie. 2~ Aax = 0 and
z-Vxz=1,and also x5 ANyS =0and z5VvVyS =1,1ie. z5Az=0and z5Vz =1.
Then = = z= is the unique complement of x, since the lattice L(A) is distributive;
hence = = 2% € B(A) and (%)~ is the complement of z=. But z also is the
complement of x5.

It follows that x = (=)~ and thus x € M(A) and 2= is the complement of .

Then zVaS =1, hencez =201 =20 (zV %) peblzcss (x©z)V(z0x%) psblcss
(x ®2)V0=1x0®wx, and thus z € G(A).
Conversely, consider x € M(A) N G(A). By Proposition 5.10, (ii), z A 25 = 0,

hence 1 = (x A 25)~ pobloes0 (%)” =2~ Vo =25 Vuz,since x € M(A) and by
Proposition 5.10, (iv). It follows that x € B(A). B

ProprosITION 5.12. ([53], [54]) If A is a pseudo BL— algebra, then for e € A,
the following are equivalent:
(1) e € B(A);
(i) e@e=e and e = (%) = (e7)5;
(ii1) e©@e=e ande” — e =g
(1it") e©e=e and €% ~ e = ¢;

S prI;CSG ( S) prI;CSS

rOYS)V(yoy
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(iv) eVe =1;
(iv') eVeS =1.

Proof. The equivalence (i) < (i7) follows by Lemma 5.11.
The equivalence (i) < (iv) and (i) < (#v’) has a similar proof.
We prove the second equivalence.

The implication (i) = (iv') is obvious.

Conversely,e\/eS:1:>€®(e\/eS):e®1:ep8b§>636 (e@e)V(e@e®) =

e=>eOe=ce.
By Proposition 5.10, (iv), we deduce e~ = €%.

On other hand, eV e =1 implies e Ae® =0 and eVe~ =1 implies e Ae” = 0.

Indeed, eVeS =1= (eVe®)” =0 P50 o= (e%)" =0=¢ Ae=0. Thus

e € B(A).

The equivalence (iii) < (iv) and (i7') < (iv’) has a similar proof.

We prove the second equivalence.

(i) = (iv'). eV eS PPE® [(e v €5) — eS| A (€5 ~ €) — €.

eVeS=1&[e~e®) —eS=1and (e we)—e=1]

SleweS<eSand e we<e] s e~ eS=¢€%and e~ e=el.

But e ~ ¢S PP (e ® €)%, hence e ~ €5 = e & (e ®e)® = €% (indeed,
e® e = e implies (e ® €)% = €%).

(') = (iii'). We have eVeS =1=e® (eVeS)=e0 1= e P50 (e®e)V
(e@eS)=e=e0e=c.

Also,eVeS =1= (eSwe)—e=1aeSwe<ese®we=cll

REMARK 5.2. Ifa€ A, and e € B(A), thene®a=eNa=a®e and e =e".

PROPOSITION 5.13. Ifa € A, and e € B(A), then
(psbl —c70) a —e=(a®@e®)” =a~ Ve
(psbl —c71) a~e=(e” ®a)® =eVaS.

Proof. We have
a—e=a— (e%)” peblzcas (a®e®)” =(ane®)” pobloes0 o=y (eS5)" =a Ve
and
a~e=a~ ()% pobless (e”®a)®= (e Na)® pobleas (e7)®Va®=eVa®.1

PROPOSITION 5.14. Let A be a pseudo BL— algebra. For e € A, the following
are equivalent:
(1) e € B(A),
(ii) (e = x) > e= (e~ x)~e=e, for every x € A,

Proof.(i) = (ii). If x € A, then from 0 < z we deduce e — 0 < e — z and
e~0<e~x,s0e” <e—zande® <e~ zhence (¢ —>z) —me<e —e=c¢e
and (e ~ z) e < eSS ~we=ce Sincee < (e —>x) »e e< (e~ x)~e (by
psbl — ¢g) we obtain (e — x) — e = (e~ x) ~e=e.

(ii) = (i). If x € A, then from (e — z) — e = e we deduce [(e — ) — €] ® (e —
) =e® (e — x), hence (e - x) Ne = (e - x)©@eso (e — x)ANe=eAx For
x = 0 we obtain that e~ A e = 0. Analogously, from (e ~» z) ~» e = e we deduce
(e ~ x)O (e~ x) ~ e = (e~ z)Oe, hence (e ~ z) Ne = (e ~» x) ® e so
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(e~ x)Ne=eAz. For x =0 we obtain that e Ae® =0,s0 e~ ANe=0=-¢eAeS.
From hypothesis (for x = 0) we obtain by Proposition 5.10, e~ — e = ¢~ ~» e =
eSwwe=eS se=cande =e5.
From psbl — co; we obtain
e Ve = [(e —e)we|lAlle—e)we]

= (ewe)Afle—e) e

= 1Afle—er) e

= (e—e )~e :(e—>es)wes

= [e® (e — e%)]® (by psbl — ca8)

= [(e—e)oe®=(ene)®=0%=1,

hence e € B(A).1

)-
LEMMA 5.15. ([37]) Let A be a pseudo BL— algebra. If e, f € B(A) and z,y €
A, then:
psbl —c72) eV (z Oy (eVy);
psbl —cr3) eN(z O y) = (e ANx)© (e ANy);
)~
) ~

E (eVz)®
Epsbl —c7) eO(x ~ y) =e@[(eGx (e@y)] and (x — y)©e = [(zOe) — (yOe)|Oe;
(

) =
) =

psbl — c75) zO(e ~ f) = z0[(zGe (zOf)] and (e — f)oOx = [(e®x) — (fOx)]Ow;
psbl —cy) e = (x —y)=(e > x) = (e > y) and e ~ (x ~ y) = (e ~ x) ~ (e ~ y).

Proof. (psbl — c72). We have

(eVa)©(evy) ™= [(eva) @V (eVa) Oy = [(eVa) e V[([eOy) V (rOy)]

=lleva)he]V[(eoy) V(zoy)=eV(eoy V(zoy) =cV(zOy).
(psbl — ¢73). We have
(enz)O(eny)=(e02)0(e@y) =(e0e)0(x0y) =e0 (z0y)=eA(z0y).
(psbl — c74). By psbl — ¢13 we have x — y < (z ® e) — (y ® e), hence by psbl — ca,
(:c—>y Oe<[(roe) — (yoe)] ®e. Conversely, [(r ®e) — (y©e)] ®e < e and
[(z0e)— (yoe)|o(zoe)<ycve<yso[zOe)— (yoe)]®e <z — y. Hence
[(zoe) = (yoe|oe<(z—yhe=(r—y)Oe

By psbl — c12 we have z ~» y < (e ® ) ~» (e ® y), hence by c3, e ® (x ~ y) <
e®[(e®z) ~ (e®y)]. Conversely, e®[(e®x) ~ (e@y)] <eand (eOx)O[(e®x) ~
Oy <eOy<ysoco o) w (cOy)] <z y.

Hence e ® [(e@x) » (e@y)]| <eN(z~y) =e® (x ~y).

(psbl — ¢75). We have

[(eor) = (for)]or=[ecoz)—(fAr)Ox

psbl—csg [((e@z)— fin(e@z) = x)] Oz

=[((coz) = fHinlJoz=[coz) = flor=[z0e) = flO

P s (e flloz=aA(e— f)=a0(e— f).
We have
10[z0e)w (@0 f)l=z0[(z0e) » (@A f)

20[((z0e) =) A(x0e)w =20 [LA((z0e) ~ f)]
—20[(z0e)w fl=z0 (o)~ f]™ER 20 [z (e~ f)]

psbl—cse
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—u (e f) =z (e f).
(psbl — c76).We have

p3b1;022 [( p5b1;622

(e —z)— (e > y) e = x)0e] —y = (eAr) >y = (eOx) -y e—(z—y)

and
) prl;C22 [ prl;CZQ € ~ (Jf ~ y).

(e~ z)~(e~y eO(e v )]~y = (eNx) vy = (20€) ~ y

LEMMA 5.16. If a,b,z are elements of a pseudo BL— algebra A and a,b < z,
then
(psbl — c77) a® (x ~>b) = (x — a) ©b.
Proof. We have
a®(xz~b)=(@Na)O(x~b)=[(r—a)ox]O(x~Db)
=x—a)0xze(x~b)]=@—a)O(@Ab)=(r—a) bl
PROPOSITION 5.17. For a pseudo BL— algebra (A,V,\,®,—,~,0,1) the fol-
lowing are equivalent:
(1) (A,—,1) and (A, ~,1) are Hilbert algebras;
(i) (A,V,A,—,0,1) and (A,V,A,~,0,1) are relative Stone lattices.
Proof. (i) = (ii). Suppose that (A, —,1) and (A,~»,1) are Hilbert algebras,
then for every z,y, z € A we have
= (y—z)=@—y —(r—2)
and
T~ (Y~ z) = (T~ y) ~ (7~ 2).
From psbl — cos we have
r—=(y—z2)=(x0y)—zandx ~ (y~2)=(yOx) ~ 2.
But for every x,y,z € A

5 prlz—sz (

(xAy) = z=[z—y Or]— z—y) = (r—2)

and

2P (5 ) o (3 2),

(@Ay) ~z=[20(@~»y)]~
so we obtain
(oY) —mz=(Ny) —=
(oY) ~z=(xAy)~ 2
hence x ®y = z Ay, that is (A,V,A,—,0,1) and (A, V, A, ~,0, 1) are relative Stone
lattices.
(ii) = (i). If (A,V,A,—,0,1) and (A, V,A,~>,0,1) are relative Stone lattices,
then (A,V,A,—,0,1) and (A, V,A,~,0,1) are Heyting algebras, so (4,—,1) and
(A,~>,1) are Hilbert algebras. B

DEFINITION 5.3. Let A and B be a pseudo BL— algebras. A function f : A — B
is a morphism of pseudo BL— algebras iff it satisfies the following conditions, for
every r,y € A:

(psBLg) f(0) = 0;
(psBL7) f(z ©y) = f(z) © f(y);
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(psBLg) f(x —y) = f(x) — f(y);
(psBLg) f(x ~y) = f(x)~ f(y).

REMARK 5.3. It follows that:

f1) =1,
f@7) =1f@)]", f(®) =[f()]%,
flaevy) = f(z)V fy), f(eAy) = flz) A fy),

for every x,y € A.

REMARK 5.4. If f is a homomorphism beteewn the pseudo BL— algebras A and
B, then f is a homomorphism beteewn the lattices L(A) and L(B), see Remark 5.3.

2. The lattice of filters of a pseudo BL-algebra

We begin the investigation of filters and congruences. We define the filters of a pseudo
BL-algebra A and we denote by F(A)(Fp(A)) the lattice of all filters (normal filters) of A;
we put in evidence some results about the lattice F(A)(Fn(A)). By using the two distance
functions we define two binary relations on , =p () and =pg(p), related to a filter F of A;
these two relations are equivalence relations, but they are not congruences. The quotient
set A/L(F) and A/R(F) are bounded distributive lattices. We give characterizations for
the maximal and prime elements on F(A)(Fp(A)) and we prove the prime filter theorem.
We characterize the pseudo BL-algebras for which the lattice of filters (normal filters) is a
Boolean lattice and the archimedean and hyperarchimedean pseudo BL-algebras. In the end
we prove a theorem of Nachbin type for pseudo BL-algebras.

2.1. The lattice of filters (normal filters) of a pseudo BL-algebra. We
denote by A a pseudo - BL algebra.

DEFINITION 5.4. A non empty subset F' C A is called a fillter of A, if the
following conditions are satisfied:

(Fy) If z, y € F,thenx ©y € F;

(Fy) Ifx e Fye A,z <y, then y € F.

Clearly {1} and A are filters; a filter F' of A is called proper if F # A.

REMARK 5.5. Any filter of the pseudo BL— algebra A is a filter of the lattice
L(A).

REMARK 5.6. For a nonempty subset F' of A the following are equivalent:
(1) F is a filter;

(2) 1€ Fand ifv,x -y € F, theny € F,

(2Y 1€ F and if v,z ~y € F, then y € F.

Proof. (1):>(2’).z,xwaFix/\ypS]iL‘lx@(xwy)GF; but z Ay <,
so by F5 we obtain y € F.

(2") = (1). We verify the condition of Definition 5.4:

Fy :If 2, y € F then y~ (x ~ x ®Qy) psblc22 (rOy) ~ (xOy)=1€F, so
zOyeF.

F:IfreFandye Ajx <y,thenz~y=1€ F soy € F.

Similarly, (1) < (2). B

We denote by F(A) the set of all filters of A.
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For a nonempty subset X C A, the smallest filter of A which contains X, i.e.
N{F € F(A) : X C F}, is said to be the filter of A generated by X and will be
denoted by [X).

If X = {a}, with a € A, we denote by [a) the filter generated by {a} ([a) is called
principal).
For F € F(A) and a € A\F, we denote by F(a) = [F U {a}).
PROPOSITION 5.18. ([53])
(1) If X is a filter, then [X) = X;
(73) If X C A is a nonempty subset of A, then
X)={z€cAd:210..0z, <z, for somen>1 and x1,....,0p, € X};
(7i1) In particular, for a € A,
[a) ={z € A:x>a", for somen > 1}
(let F,(A) be the set of all principal filters of A);
(i) If F € F(A) and a € A\F, then
Fla) = {z€A:z2>(/1i©oad) .0 (fmoa"™m),
for somem > 1,n1,...,nm >0 and f1,..., fm € F};
(v) Ifx,y € A, and z <y , then [y) C [z);
(vi) If z,y € A, then [z Vy),= [z Vy);
(vii) If x € A, then [x) = {1} iff e = 1.
Proof. (i) — (iv), (vi), (vii). Is obviously (see also the proofs of Proposition 1.29
and Lemma 1.32).
(vi). Clearly, z € [x) and y € [y); since x,y < x Vy we get x Vy € [z) and
xVy € [y); then x Vy € [z) N [y), which is s filter. So, [z Vy) C [z) N [y).
Conversely, suppose that z € [x) N [y) there exist n,m > 1, such that z > 2"
and z > y™. It follows that z > 2" Vy™ > (" Vy)™ > ((x Vy)")™ = (xz V y)"™,
thus z € [z Vy).H

REMARK 5.7. If F € F(A) and a € A\F, then F(a) = F V [a).

Proof. Clearly, F, [a) C F(a). Let H € F(A) such that F, [a) C H and x € F(a).
By Proposition 5.18, (ii), x > (f1©0a™)®...0(fm®a™™), for some m > 1,11, ...,y >
0 and fi,..., fm € F. Clearly, (f1i ©a™) ©® ...® (fm ©® a™™) € H, hence x € H, so
F(a) C H, that is, F(a) = F V (a]. B

PROPOSITION 5.19. If Fy, F5 are nonempty sets of A such that 1 € Fy N Fs, then
[FIUF) = {2€A:2>(i0f1)0..0(fndf),
for somen > 1,f1,....fn € Fy and f1,..., fi € F»}.
Proof. Let
H = {zed:z2>(hofi)o0.o (o)
for somen > 1,f1,...fn € Fyand f],..., . € Fb}.

We prove that H € F(A).
Let z,y € Ayz <y and € H. Since x > (f1 © f]) © ... ® (fn © f}), for some

n>1,fi,...fn€ Frand f|,...,fl, € Fo we have y > (f1 ® f{) © ... ® (fn ® f}), s0
y €€ H.
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For z,y € H thereexist n,m > 1, f1, ..., fn, g1, .-s gm € Frand f1, ..., f1, g1y oy Gy €
Fysuch that 2 > (f1© f1) © ... © (fn © fp,) and y > (91 © 1) © ... © (gm © gp,). We
deduce 2©y > (1O f) ©.. O ([nO©f) ©(1©g1) O ... O (gm O gp,), S0 T Oy € H.

Since 1 € F1 N Fy, we deduce that Fy, F» C H (since for everya € A,a=a®1 =
1®a), hence Fy U Fy C H, so we deduce that [F} U Fy) C H.

Let now F € F(A) such that F1UFy C F. Then H C F,so H CNF = [[1UF,),
hence [F1UF,;)=H. &

COROLLARY 5.20. If Fy, Fy € F(A), since 1 € Fy N Fy, we deduce that

[FlUFR) = {2€d:2>(i0fi)©...0(fnOfp)
for somen > 1,f1,....fn € Fy and f1,..., f} € F»}.

LEMMA 5.21. If x,y € A, then [x) V[y) =[x Ay) = [z Oy).

Proof. Since x ®y < x Ay < z,y, then [z),[y) C [x Ay) C [z ® y), hence
[)Vy) ClzAy) Clzoy).

If z € [ ®y), then for some natural number n > 1, z > (x ©® y)" € [x) V [y
(since z € [z),y € [y)), hence z € [x) V [y), that is, [r ©y) C [x) V [y), so [z) V [y) =
[zAy)=[z0y). N

~—

COROLLARY 5.22. For every x,y € A, [t ®y) = [y © z).

COROLLARY 5.23. For every x,y € A, we have [x — y)V [z) = [z ~ y) V [x).

Proof. From Lemma 5.21 we deduce [z — y)V[z) =[(z - y)Oz) = [z O (z ~
y)=lz~y Vi) B

COROLLARY 5.24. Fp(A) is a bounded sublattice of F(A).

Proof. Apply Proposition 5.18, (vi), Lemma 5.21, the fact that 0 = {1} = [1) €
Fp(A)and 1 =A=10) € Fp(A). R

As in the case of BL—algebras (Proposition 3.16) we have:

PROPOSITION 5.25. The lattice (F(A),V, A ) is a complete Brouwerian algebraic
lattice, the compacts elements being exactly the principal filters of A.

REMARK 5.8. The Proposition 5.25 is a generalization of Proposition 2.11 from
[68] (the results of this proposition are mentioned in [94] without proof).

For Fy, F» € F(A) we put
Flﬁng{aeA:Flﬁ[a)gFg}.
LEMMA 5.26. If F1, F» € F(A) then

(l) Fy — Fy € f(A),
(Zl) If F € f(A), then F1 N F C Fy iff F C Fy — Fy, that is,

F, — Fy :sup{FEf(A) : FlﬂFgFQ}.
Proof. See the case BL— algebras, Lemma 3.18. B

In [95], for FY, Fy € F(A), the relative pseudocomplement of Fjwith respect to
F5 is defined by

FixFy={xe€A:xVyecF,, forally € Fi}.
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PROPOSITION 5.27. For all Fy, Fy € F(A), Fy x Fy = F1 — F>.

Proof. Let x € F} x Fy; then x Vy € Fb, for all y € Fi. To prove x € F} — Fj,
that is, [x) N F} C Fy, let z € [z) N Fy. Thus z € F; and 2" < z for some n > 1.
Since z < z — z we deduce that © — z € Fy, hence x V (x — z) € F,. By psbl — ¢91

we deduce that [z — (z — 2)] ~ (z — 2) € Fy, that is, (2% — 2) ~ (v — 2) €

(1).

Analogously from z < x — z and z € F| we deduce that 2"~! — z € F}, so
zV (2" 1 — 2) € Fy, hence (z" — 2) ~ (2" ! — 2) € F3. Since 2" < z we deduce
that 2" ! — z € F.

More generally if £k > 1 we deduce that if k= 2 e F5, then 2l - 2 e R
(because we obtain that (zF — 2) ~ (2F~! — 2) € F3). Recursively we obtain that
2?2 — z € Fy. By (1) we deduce that z — z € F,. Since z € F; we deduce that
xV z € Fy, hence (x — z) ~ z € Fy. Thus z € Fj, hence [z) N F} C Fy, that is,
x € F1 — Fs.

Thus F1 * F2 g F1 — FQ.

Let now x € Fy — Fy. Thus [x) N F} C Fy, so if y € F} then z Vy € [z) N F,
hence x Vy € F>. We deduce that © € Fy x Fy, so I} — Fy C Fy x Fy. Since
F1 * F2 g F1 — FQ we deduce that F1 * F2 = F1 — FQ. |

n—1

1

COROLLARY 5.28. (F(A),V,A,—,{1}) is a Heyting algebra, where for F €
F(A),
F*=F—-0=F—>{l}={z€ A:[zx)NF ={1}},
hence for every x € F and y € F*,x vV y = 1. In particular, for every a € A,
[a)={x € A:xVa=1}

Proof. By Lemma 5.26 we deduce that (F(A),V,A,—,{1}, A) is a Heyting
algebra. For every F' € F(A) and y € F*, then [y)NF = {1}. Since for every = € F,
xVy€[y)NF ={1} we deduce that  Vy = 1. For every a € A,

@) ={zeA:[r)nfa) ={1}} ={recA:zVva)={1}}
={r € A:2Va=1}, (by Proposition 5.18, (vii)).l
COROLLARY 5.29. Ifa € A, F = [a)*, then
Fla)={ze€A:x> foa", for somen>1 and f € F}.
Proof. By Proposition 5.18, (iv),
Fla)={z€A:2>(f/10d")©®...0 (fm©a™™),

for some fi,..., fm € F and m > 1,n1,...,n,, > 0}.

But for every f € F we have a V f = 1. By psbl — ¢34 we obtain a™ V f™ = 1, for all
n>1. Wehave a"V f>a”V ffand a"V f" =1,s0a™ VvV f =1, for all n > 1.
By psbl — c33 we deduce that f©a™ = fAd" =a" AN f=d" O f, for every f € F
and n > 1.
Then (fi ©a™)©® .0 (fm®a™)=(f10...0 fm) © (@™ ©...0a") = fOa",
where f = f1 ® ... ® f, € F (since F is a filter) and n = n; + ... + ny, > 1, s0
Fla)={z€A:2> foa", forsomen>1and f € F}. N

PROPOSITION 5.30. If x,y € A, then [z ©®y)* = [z)* N [y)*.
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Proof. See the proof of Proposition 3.19. B

Let A be a pseudo BL—algebra. We define two distance function on A by:
di(z,y) = (x —y) © (y — z) and da(z,y) = (x ~> y) © (y ~ ).

The two distance functions fulfil some properties (see [53]).

PROPOSITION 5.31. ([53]) Let us consider a filter F' of A. Define two binary
relations on A by:

=pr)y T =pr) Y iffdi(r,y) =(x —y) Oy —z) €F,

=rr): T =grr) Y ff d2(z,y) = (x ~ y) © (y ~ z) € F.
For a given filter F, the relations =p,r) and =p(p) are equivalence relations on A;
moreover we have F'={x € A:x =gy 1} = {z € A: 2 =) 1}.

We shall denote by A/L(F') (A/R(F), respectively) the quotient set associated
with =1y ( =gr(r), respectively); x/L(F') (z/R(F'), respectively) will denote the
equivalence class of z € A with respect to =1,y ( =p(r),respectively).

Let us define the binary relation <;g on A/L(F) by: x/L(F) <p) y/L(F)
Sr—oyeF.

It is straightforward to prove that <y is an order on A/L(F).

Similarly, we define an order <ppy on A/R(F) by: z/R(F) <pgr) y/R(F)
Sx~~yeF.

We have the following result (see [53]):

PROPOSITION 5.32. (A/L(F),V,N,0/L(F),1/L(F)) ((A/R(F),V,N,0/R(F),1/R(F))
respectively) is a bounded distributive lattice, such that <ppy (Sg(r), respectively)
18 the induced order relation.

In [54], A. Di Nola, G. Georgescu and A. Iorgulescu introduce the normal filters
in order to characterize the congruence of a pseudo BL—algebra.
DEFINITION 5.5. A filter H of A will be called a normal filter iff
(N) for every z,y € A,z —ye€ Hiff x ~~y € H.

REMARK 5.9. Clearly, {1} and A are normal filters. If f : A — B is a morphism
of pseudo BL— algebras, then that f~*(1p) is a normal filter of A.

We denote by F,,(A) the set of all normal filters of A.
PROPOSITION 5.33. Ifa € G(A), then [a) ={z € A:a <z} € F,(A) .

Proof. If z,y € A such that x — y € [a), thena <2 — y & a ©® x < y (since
a®r=r0a) S r0a<ysSa<zr~ysSx~yEla),that is, [a) € Fr(A). B

REMARK 5.10. Let H € F,(A). Then

(1) x~ € H iff 2= € H,

(ii) x € H implies x=,2% € H.

Proof. (i). Take y =0 in (N).

(ii). Indeed, if z € H, then (z5)~ € H, because z < (x5)7, then by (i), 2% € H.
Similarly, x € H implies 2= € H.1

For a filter H of A and x € Adenote t O H ={r ®h:he€ H}and H Oz =
{h®z:heH}.
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PROPOSITION 5.34. For a filter H of A the following are equivalent:
(1) H € Fp(A);
(ti) xt© H=H ©x, for all x € A.

Proof. (i) = (7). Let x € A and h € H. Consider y =z ® h.

Then x ©h=y=xAy = (r — y) ®x. If we denote x — y = h/, we obtain
xOh=h 0oz

We prove that i =2 — y € H.

Since h < x ~» (x ® h) = x ~» h and h € H, we deduce that x ~» h € H and,
therefore, v — y = h’ € H, by (N).

(43) = (7). Assume x ~» y € H. Thus, s Ay =2 ©® (x ~ y) = h ® z, for some
he H Wehavex —y=2 — (zAy) =2 — (h®©x). But h <z — (h® z), hence
r—yec HM

If H is a normal filter in a pseudo BL— algebra A, then di(z,y) = (z —
y)© (y — x) € H iff da(x,y) = (x ~ y) © (y ~ z) € H, for any x,y € A; hence
=) and =gy coincide. Denote by =y this equivalence relation and by x/H be
the equivalence class of x € A. Hence z =g vy iff di(z,y) € H iff do(z,y) € H

Remark that x =gy iff e - y,y Dx € Hiff x ~ y,y ~z € H.

We have the following results:

PROPOSITION 5.35. ([54]) =g is a congruence on A and H = {x € A: x =g
Conversely,

PROPOSITION 5.36. ([54]) Let = be a congruence on A and let H = {z € A :
x = 1}. Then
(1) H is a normal filter of A;
(1) x =y iff di(z,y) =1 or, equivalently, iff da(x,y) = 1.
PROPOSITION 5.37. ([54]) The congruence relations =g of A and normal filters
H are in one-to-one correspondence.

Starting from a normal filter H, the quotient algebra A/H becomes a pseudo -
BL algebra with the natural operations induced from those of A.

Then the function py : A — A/H defined by pr(z) = x/H, for all z € A is
a homomorphism from the pseudo BL— algebra A, onto the pseudo BL— algebra
A/H.

Forz,ye A,z/H <y/H iffe —ye Hift ~y€ H and z/H =1=1/H iff
x€ H. If x € B(A), then x/H € B(A/H).

PROPOSITION 5.38. Let H be a normal filter of A and a € A\H. Then
[HU{a})={x€A:hoa" <z, for somen >0 and h € H}
={xeA:a"Oh<zx, for somen>0andhe H}
={recA:a" -z € H, for somen>1}
={xeA:a" ~x € H, for somen > 1}.

Proof. For the first two equalities, see the proof of Lemma 4.23, for the case of
pseudo MV -algebras.

If x € [HU{a}) then a" ® h < z, for some n > 0 and h € H. Thus, h < a" — x
so a” — x € H. Conversely, assume that h = ™ — x € H. for some n > 1. We
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have (a" ®©h) -z =h — (a" — ) = h — h = 1, hence a" ® h < x. Therefore
z€[HU{a}). N
COROLLARY 5.39. ([94]) If Fyor Fy € F,,(A), then
[FLUF) ={z€A:x> fi1 O fa, for some f1 € F| and fo € Fy}.
Proof. Obviously by Proposition 5.19 and Proposition 5.34. B
Open problem: Characterize the normal filter generated by a non-empty set.
PROPOSITION 5.40. If Fy, F» € F,,(A), then

(l) FIANFy e fn(A),
(Zl) Fi VI e fn(A)

Proof. (i). Let x,y € A such that x -y € Fy AFy, = F1 N Fy. Then x — y €
Fi, Fs.

Since Fy, F» € F,,(A) we deduce that z ~~ y € Fy, F5, hence z ~ y € F} N F.

Analogous z ~ y € F1 N Fy implies © — y € F} N Fy, hence F1 N Fy € F,(A).

(ii). Let x,y € A such that x — y € F} V F,. By Corollary 5.39 there exist
fieFi,fa€ Fasuchthat fiofa<z—ye (i0f2)0z<ye 1O(f202) <y.

Since fo € Fy € Fp,(A) there exists f) € Fy such that z ® f) = fo © 2. We obtain

fio@@of)sye (horof <y
Since f1 € Fy € F,(A) there exists f| € F} such that 2 ® f] = fi ©x. It follows that
@ofMfofh<syezo(flof)<ye fiofs<zy,

sox ~y € V.
Analogous x ~» y € Fy V Fy implies x — y € Fy V Fy, hence Fy V F» € F,,(A). R

PROPOSITION 5.41. If (F})icr is a family of normal filters of A, then
() 7 F € Fald),
(11) ié/IFi € Fn(A).

Proof. (i). Clearly, '/\IFi = OIFZ- € Fn(4).
(S 1S
(73). We have ‘\/IFi = [‘UIFi)’ so, to prove that ‘vIFi € Fn(A), let z,y € A such
1€ 1€ 1€
that * — y € ['UIFi)' By Proposition 5.18, (ii), there exist {ii,...,imn} € I and
1€

rjeF; (1<j<m)suchthat 21 ©..0xn <z —y& (110 ...07,)O0r <y &
(710 . O 1) © (T O ) < Y.
Since F;, € F,(A) and x,, € F;
x ® x,,. So, we obtain that
(21 ® . O Typ—1) © (O ay,) <y

Successively we obtain a:; € Fi;,1 <j <m—1 such that

there exists z], € F;,, such that z,, ®x =

m

rO@o.or)<yero.. 0, <x~y,
hence z ~ y € [UF;) = V F;.
icl iel
Analogous x ~ y € V F; implies ¢ — y € V F;, thatis V F; € F,(A). &
icl i€l icl

COROLLARY 5.42. F,(A) is a complete sublattice of (F(A),V,NA).
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DEFINITION 5.6. For a nonempty subset X C A, the smallest normal filter of A
which contains X, i.e. N{F € F,(A4) : X C F'}, is said to be the normal filter of A
generated by X and will be denoted by < X > . Obviously

[X) C< X >,
so, if F'is a filter, then FF C< F > .
PROPOSITION 5.43. If H € F,,(A) and a € G(A), then H(a) € F,(A).

Proof. Since a € G(A),a ® a = a, so, by Proposition 5.38,
H(a)=[HU{a})={x € A:hoa<wz, forhec H}
={r€eA:a0h<uz, for he H}.

By Proposition 5.10, since a € G(A), we deduce that a ©b =0 ® a, for all b € A.
To prove H(a) € F,(A) let z,y € A such that ©+ — y € H(a). There exists
h € H such that
hoa<zr—ys (hGa)or<ys
Sho(@or)<yeho(z0a)<ye (hOoz)0a<y.
Since h € H € F,(A) there exists b’ € H such that  ® i’ = h ® 2. We obtain

(zoh)oa<yeszo(Woa)<yshoa<z~y,

sox ~y € H(a).
Analogous x ~» y € H(a) implies x — y € H(a), hence H(a) € F,,(A). R

PROPOSITION 5.44. Fora € A andn > 1, the following assertions are equivalent:
(1) a™ € B(A);

(7)) aV(a™)” =1,

(i7i) aV (a™)® = 1.

Proof. (i) = (i7). Since a" € B(A), by Proposition 5.12 we deduce that
a*V(a")” = 1. But a" < a,s01 = a"V (a")T < aV (a")”. We obtain that
aV(a")” =1

(i3) = (i). Since aV (a®)~ = 1 ""5% gn v [(@™)~]" = 1. Since [(a”)~]" < (a™)",
we obtain 1 = a” V [(a")7]" < a™V (a™)7, s0 a” V (a")” = 1. By Proposition 5.12

we deduce that a” € B(A).
(i) < (iii). Analogously. B

THEOREM 5.45. The following assertions are equivalent:
(1) (F(A),V,N*, {1}, A) is a Boolean algebra;
(ii) BEwvery filter of A is principal and for every a € A there exists n > 1 such
that a™ € B(A).

Proof. (i) = (i7). Let F' € F(A) ; since F(A) is Boolean algebra, then F'V F* =
A. Since 0 € A, by Corollary 5.20, there exist m > 1, fi,..., fm € F, f], ..., f}, € F*
such that (f1 ©® f{) © ... © (fm © f},) = 0. We consider f = f1 ® ... ® fi, € F,
f=flo..of eFada=f"eF b= (f)"¢c F*

Clearly, f < f; and f' < f/, for every 1 < ¢ < m, hence f ® f' < f; ® fI, for
every 1 <1 < m.

We deduce that (fO )" < (/1O f])©...0(fm® f,) =0, hence (f© f/)™ = 0.
But for f € F and f' € F* we deduce by Corollary 5.28 that fV f/ = 1, hence, by ¢33,
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AN = fof = f'©f. Then we obtain that fmO(f)" =0 a®b=0<aAb=0
(by psbl — c33 , since a € F and b € F*, impliesaVb=1,s0a®b=aAb). So
aVb=1and aAb=0, hence we deduce that b is the complement of a in L(A).

If x € F, since b € F* we have bV x = 1. Since a = aANl =a A (bVz) =
(aNb)V(aNz) =0V (aAzx)=aAx, we deduce that a < z, so x € [a), hence
F C [a).

Since a € F we deduce that [a) C F, that is, F' = [a). Hence every filter of A is
principal.

Let now a € A; since F(A) is Boolean algebra, then [a) V [a)* = A < [a)*(a) =
Acs{zeAd: 2> (f10a)O...0 (fm ®a™), for some m > 1,n1,...,ny, > 0 and
fiyeer, fm € [a)*} = A. For 0 € A we deduce that there exist m > 1,n1,...,ny, > 0
and f1, ..., fm € [a)* such that (fi1 ©a™) ©® ....® (fi ©@a™) = 0. By Corollary 5.28,
fiva=1,forevery 1 <i<m,so fi©a=a® f; = fi Na, for every 1 <i < m.

Then we obtain that (f1 ®...® f,) @a™ T Tm = gm+-Fm o (f10...O f,) = 0.
If consider f = f1®...0 fp, € [a)* and n =n; + ...+ ny, then fOa" =a"© f =0.

Sof<a”"—=0=(a")"=aVf<aV(a")".ButaV f=1 (since f € [a)*), so
we obtain that a V (a)” = 1 and by Proposition 5.44 we deduce that a” € B(A).

(ii) = (i). By Corollary 5.28, F(A) is a Heyting algebra. To prove that F(A)
is a Boolean algebra, we must show that for F' € F(A) , F* = {1} only for F' = A
([2], p. 175). By hypothesis, every filter of A is principal, so we have a € A such
that F' = [a).

Also, by hypothesis, for a € A, there is n > 1 such that a™ € B(A), equivalent
by Proposition 5.44 with a V (a™)” = 1.

By Corollary 5.28, (a™)~ € [a)* = {1}, hence (a")” =
Since a™ < [(a™)7]® = 0 (by psbl — ¢42) we deduce that a
F=A.1

= [(a™)”"]®=1%=0.
" =10, s00 € F, hence

THEOREM 5.46. The following assertions are equivalent:

(1) (Fn(A),V,N\,*,{1}, A) is a Boolean algebra;
(ii) Bvery normal filter of A is principal and for every a € A there isn > 1
such that a™ € B(A).

Proof. (i) = (iui). Let F € F,(A) ; since F(A) is Boolean algebra, then
F v F* = A. So, by Corollary 5.39, for 0 € A, there exist a € F, b € F* such that
a®b=0.

Since b € F* | by Corollary 5.28, it follow that a Vb = 1. By psbl — ¢33 we deduce
that a Ab = a ® b = 0, that is, b is the complement of a in L(A). If z € F, since
b e F* wehave bVx = 1. Since a = aA (bVz) = (aAb)V(aAz) =0V (aAx) =aAz,
we deduce that a < x, that is F' = [a). Hence every normal filter of A is principal.

For the last assertions see the proof of Theorem 5.45.

(73) = (i). See the proof of Theorem 5.45. W

COROLLARY 5.47. If pseudo - BL algebra A is a BL algebra, then the following
assertions are equivalent:

(1) (F(A),V,N*, {1}, A) is a Boolean algebra,
(ii) Every filter of A is principal and for every x € A, there is n € w such that
zV(z")” =1
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3. The spectrum of a pseudo - BL algebra

This section contains characterization for prime and completely inf-irreducible filters
(normal filters) of a pseudo BL-algebra.

For the lattice F(A) (which is distributive) we denote by Spec(A) the set of all
meet-irreducible elements (see Definition 1.10) (Spec(A) is called the spectrum of
A) and by Irc(A) the set of all completely meet-irreducible elements of the lattice
F(A).

DEFINITION 5.7. A proper filter P of A is called prime if, for any z,y € A, the
condition x Vy € P implies x € P or y € P.

PROPOSITION 5.48. If P is a proper filter, then the following are equivalent:
(i) P is prime filter;

(it) For allz,y€ A, x -y € P ory—x € P;

(7i1) Forallz,y € A, x~y € P ory~>x € P;

(iv) A/ =r(p) is a chain;

(v) A/ =gpy is a chain.

Proof. (i) = (ii). Obviously, since (z — y) V (y — z) = 1.

(14) = (i). Assume that  Vy € P and, for example, x — y € P . But
zVy=[z—-y)~yAN[(ly—z)~z]ePso(x—y)~ye P;thenyec P.

The rest of the proof is straightforward.

PROPOSITION 5.49. Let H be a normal filter of A. Then H is a prime filter iff
A/H is a pseudo - BL chain.

Proof. Similarly with the proof of Theorem 3.23 for the case of BL-algebras.
|

REMARK 5.11. If A is a pseudo - BL chain, then the set of normal filters of
A is totally ordered by inclusion. Indeed, if Hi, Ho were normal filters of A such
that Hy ¢ Hy and Hy ¢ Hi, then there would be elements hi,hy € A such that
hi € Hi\Hs and hy € Hy\Hy. Whence hi £ ho and hy £ hy, which is impossible.

COROLLARY 5.50. If P is a prime filter and Q is a proper filter such that P C Q,
then @Q is a prime filter.

Proof. Follows by Proposition 5.48. B
REMARK 5.12. If P is a prime filter of A, then A\P is an ideal in L(A).

Proof. Since P is proper, 0 ¢ P, hence we have 0 € A\P. If a < b and b € A\P,
then a € A\P, since P is a filter of A. If a,b € A\P, then a Vb € A\P, since P is a
prime filter. W

THEOREM 5.51. (Prime filter theorem ) If F' € F(A) and I is an ideal of the
lattice L(A) such that FNI = @, then there is a prime filter P of A such that F C P
and PNI = .

Proof. ([53]) Let H = {H € F(A) : F C H and HNI = @}. A routine
application of Zorn’s Lemma shows that H has a maximal element, P. Suppose that
P is not a prime filter of A. Then there are a,b € A such that a ~» b ¢ P and
b~ a ¢ P. It follows that the filters [P U {a ~~ b}) and [P U {b ~» a}) are not in H
. Hence, there are c€ IN[PU{a ~ b}) and d € IN[PU{b~> a}). By Proposition
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5.18, (iv), ¢ > (s1©(a ~ b)P1 ) ®...O (s;m ©@ (a ~> b)P™) for some m > 1,p1,...,pm >0
and s1,...,8m € Pand d > (t1 © (b ~ a)?) ® ... © (tn, ©® (b ~» a)?),for some
n>1,q,..q9, >0and ty,...,t, € P.Let s=510...0 s, and t =t ®... ® ty,; then
s, t e P.

Let p = max {pi} and ¢ = mzllx{qi}; then ¢ > [[(s®(a ~ b)P) = [s® (a ~ b)P]™
i=1n i=1

and d > H(t@ (b~ a)?)=[t® (b~ a)?™. Let now u=s®t and r = max{p, q};

thenuGPandc> [u® (a~b)"mand d > [u® (b~ a)"]™ .
By ...... weget z =cVd>[u®(@a~>d"""Vuoe(b~a)]>([uc(a~
D) TVI[u©@ (b~ a)])™)" = ([u®(a~ b)[V[uo (b~ a)])"" = (uO[(a ~ b)"V (b~
Thus, x € P, but x € I also, since [ is an ideal. We have that PN I # &, a
contradiction.

COROLLARY 5.52. If F € F(A) is proper and a € A\F, then there is a prime
filter P of A such that FF C P and a ¢ P. In particular, for F = {1} we deduce that
for any a € A,a # 1, there is a prime filter P, such that a ¢ P,.

PROPOSITION 5.53. The set of proper filters including a prime filter P of A is a
chain.

Proof. Let P, P, be to proper filters of A such that P C P, and P C Ps.
Assume there exist x € P)\ P, and y € P\ Py; then x Vy € Py N P,. Hence Py N Py
is a prime filter of A. So, x € P; N P, or y € P; N P,. This contradiction shows that
P1§P20rP2§P1.I

COROLLARY 5.54. Fvery proper filter F' is the intersection of those filters which
contain F. In particular, NSpec(A) = {1}.

PROPOSITION 5.55. For a proper filter P € F(A) the following are equivalent:
(i) P is prime;

(17) P € Spec(A);

(131) If a,b€ A and aVb=1, thena € P orbe P.

Proof. (i) = (ii). Let I, Fy € F(A) such that Fy; N Fy = P.

Since P C Fy, P C F5, by Proposition 5.53, F; C F5 or F» C Fi, hence P = F}
or P=Fs.

(1) = (7). Let a,b € A, such that a Vb € P.

Since P(a)NP(b) = (PV]a))N(PV[b) =PV ([a)N[b)) = PV]aVb) =P, then
P = P(a) or P = P(b), hence a € P or b € P, that is, P is prime.

(1) = (7i7). Clearly, since 1 € P.

(7it) = (7). Clearly by Proposition 5.48, (ii) (since (a — b) V (b — a) = 1 for
every a,bc A).l

PROPOSITION 5.56. For a proper filter P € F(A) the following are equivalent:

(i) P € Spec(A);
(ii) For every x,y € A\P there is z € A\P such that x < z and y < z.

Proof. (i) = (ii). Let P € Spec(A) and x,y € A\P. If by contrary, for every
a € A with z < a and y < a then a € P, since z,y < x Vy we deduce that = V y
€ P, hence, z € P or y € P, a contradiction.
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(i4) = (). I suppose by contrary that there exist Fy, F € F(A) such that
FiNFy, =P and P # Fi, P # F5. So, we have x € F1\P and y € F»\P. By
hypothesis there is z € A\ P such that z < z and y < z.

We deduce z € Fy N F5, = P, a contradiction. H

COROLLARY 5.57. For a proper filter P € F(A) the following are equivalent:
(i) P € Spec(A);
(i) If x,y € A and [z)N[y) C P, thenx € P ory € P.

Proof. (i) = (ii). Let z,y € A such that [x) N]y) C P and suppose by contrary
that =, y ¢ P. Then by Proposition 5.56 there is z € A\P such that z < z and
y < z.Hence z € [zr)N[y) C P,so z € P, a contradiction.

(ii) = (7). Let z,y € A such that xt Vy € P. Then [zVy ) C P .

Since [z Vy) = [x) N [y) (by Proposition 5.18, (v)) we deduce that [z) N [y) C P,
hence, by hypothesis, x € P or y € P, that is, P € Spec(A4). &

We make the following notation:
Specy(A) = {F : F is a normal prime filter of A}.

REMARK 5.13. Spec,(A) C Spec(A); if A is a BL algebra, then Spec,(A) =
Spec(A).

COROLLARY 5.58. For a proper normal filter P € F,,(A) the following are equiv-
alent:
(i) P € Speca(A);
(i) For everyxz,y € A/P,x # 1,y # 1 thereis z € A/P,z # 1 such that z < z,
y < z.

Proof. (i) = (ii). Clearly, by Proposition 5.56, since if = a/P, with a € A,
then the condition x # 1 is equivalent with a ¢ P.

(ii) = (7). Let x,y € A/P. Then in A/P, x = a/P # 1 and y = b/P # 1. By
hypothesis there is z = ¢/P # 1 (that is, ¢ ¢ P) such that z,y < z equivalent with
a — ¢,b — ¢ € P. If consider d = (b — ¢) ~ ((a — ¢) ~ ¢), then by psbl — ¢y,
(a — ¢) ~c<dand a < (a — ¢) ~ ¢ (because it is equivalent with,(a —

sbl—c
c)®a=aNc<c).Soa<d By psbl— CQQ,d:((a—>c)®(b—>c))wcp > ’

(b — ¢) ~ ¢ > b (because it is equivalent with (b — ¢) ©b=bAc <b).
We deduce that a,b < d. Since ¢ ¢ P, by Remark 5.6 we deduce that d ¢ P,
hence by Proposition 5.56, we deduce that P € Specy,(A). B

REMARK 5.14. From Corollary 5.5} we deduce that for every F € F(A),
F =n{P € Spec(A) : F C P} and N{P € Spec(A)} = {1}.

Relative to the uniqueness of filters as intersection of primes we have as in the
case of BL—algebras:

THEOREM 5.59. If every F € F(A) has a unique representation as an intersec-
tion of elements of Spec(A), then (F(A),V,N\,*,{1}, A) is a Boolean algebra.

Also, as in the case of BL—algebras, for pseudo BL—algebras we have the fol-
lowing results:

LEMMA 5.60. If FF € F(A), F # A and a ¢ F, then there exists F, € F(A)
mazximal with the property that F C F, and a ¢ F,.
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COROLLARY 5.61. For any a € A,a # 1, there is a filter F, mazximal relative to

THEOREM 5.62. For F € F(A),F # A the following are equivalent:
(1) F € Irc(A);
(i) There is a € A such that F is maximal relative to a.

THEOREM 5.63. Let F' € F,(A) be a normal filter, FF # A and a € A\F. Then
the following are equivalent:

(i) F is maximal relative to a,

(ii) For every x € A\F there isn > 1 such that 2™ — a € F,
221) For every x € ere 1isn = 1 suc at T’ ~a e r.
111) Fi A\F th ) >1 h that " F.

Proof. Since F € F,(A), it is sufficient to prove (i) < (7).

(i) = (ii). Let z € A\F. If a ¢ F(z) = F V [x), since F C F(x) then F(x) = A
(by the maximality of F') hence a € F'(x), a contradiction. We deduce that a € F(x),
hence a > f ® 2", with f € F and n > 1. Then f < 2™ — a, hence 2" — a € F.

(i1) = (i). We suppose by contrary that there is F' € F(A), F' # A such that
a ¢ F" and F C F'. Then there is xy € F’ such that z¢ ¢ F, hence by hypothesis
there is n > 1 such that 2 — a € F C F’. Thus from z} — a € F’ and zj € F', we
deduce that a € F’ |, by Remark 5.6, a contradiction. H

COROLLARY 5.64. For a normal filter F € F,(A),F # A the following are
equivalent:
(1) F € Irc(A),
(7i) In the set A/F\{1} we have an element p # 1 with the property that for
every x € A/F\{1} there is n > 1 such that z™ < p.

Proof.(i) = (ii). By Theorem 5.62, F' is maximal relative to an element a ¢ F;
then, if denote p = a/F € A/F, p # 1 (since a ¢ F' ) and for every z = b/F, x # 1
(that is b ¢ F ) by Theorem 5.63 there is n > 1 such that b” — a € F, that is,
" < p.

(1i) = (i). Let p=a/F € A/F\{1}, (that is, a ¢ F' ) and x = b/F € A/F\{1},
(that is, b ¢ F'). By hypothesis there is n > 1 such that 2" < p equivalent with
b" — a € F. Then, by Theorem 5.63, we deduce that F' € Irc(A). R

We recall that a filter P of A is a minimal prime filter if P € Spec(A) and,
whenever @) € Spec(A) and Q C P, we have P = Q.

PROPOSITION 5.65. If P is a minimal prime filter, then for any a € P there is
b€ A\P such that aV b= 1.

Proof. See the proof of Proposition 1.56. B

REMARK 5.15. For the case of BL-algebras we have an analogous result (more
general; see [99], p.54).

4. Maximal filters. Archimedean and hyperarchimedean pseudo

BL-algebras

In this section we introduce the notions of archimedean and hyperarchimedean
pseudo - BL algebra and we will prove a theorem of Nachbin type for pseudo - BL
algebras.
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DEFINITION 5.8. A filter of A is maximal (ultrafilter) if it is proper and it is
not contained in any other proper filter.

We shall denote by Maxz(A) the set of all maximal filters of A and by Maz,(A)
the set of all maximal normal filters of A; it is obvious that Max,(A) C Max(A) C
Spec(A) and Max,(A) C Specy(A) C Spec(A).

Indeed, let M € Max(A)(Max,(A)); because M is a proper filter of A, then by
Corollary 5.54, there is a prime filter P of A such that M C P. Since P is proper, it
follows that M = P. Hence, M is prime (normal prime).

We have:

THEOREM 5.66. If F' is a proper filter of A, then the following are equivalent:

(i) F is a maximal filter;
(it) For any x ¢ F there exist f € F,n,m > 1 such that (f © z™)™ = 0.

Proof. (i) = (ii). If ¢ F, then [F U {x}) = A, hence 0 € [FFU {z}). By
Proposition 5.18, (iv), there exists m,ni,...,n, € w and fi,..., fn € F such that
(fio2™)®...0 (fm ©a™) < 0. Thus (fi ®©2™) © ... (fm @ 2™™) = 0 and if
consider f = f1 ®...® fi,, € F (since F is a filter) and n = max{ni,...,ny,}, then
foz™ < fi©a™ for every 1 < i < m, hence

(foz")"<(ioz™)O .0 (frnoz")=0,
that is, (f @ ™)™ = 0.
(i4) = (i). Assume there is a proper filter F’ such that F' C F’. Then there

exists x € F’ such that x ¢ F. By hypothesis there exist f € F,n,m € w such that
(f®2z™™ =0. But z, f € F' hence we obtain 0 € F’, a contradiction. B

COROLLARY 5.67. If H is a normal proper filter of A, then the following are
equivalent:
(1) H is a mazimal filter;
(ii) For any x € A,x ¢ H iff (z™)~ € H, for some n > 1;
(1i1) For any x € A,x ¢ H iff (™) € H, for somen > 1.

Proof. From Theorem 5.66, for any = € A,z ¢ H iff there exist f € H and
n,m > 1 such that (f ® ™)™ = 0. Since H is normal, from (f ©® z")™ = 0 we
deduce that there exist f/, f” € H such that f/ ® 2" =0 and 2" © f” = 0. Thus,
(™)~ (™))% € H.

THEOREM 5.68. If H € F,,(A), H # A, then the following are equivalent:

(1) H € Max,(A);

(ii) For any x € A,x ¢ H iff (z™)~ € H, for some n > 1;

(i4i) For any x € A,z ¢ H iff (z™)% € H, for somen > 1;

(iv) A/H is locally finite.

Proof. (i) < (éii). Follows by Corollary 5.67.

(i) & (iv). It follows by observing that the condition (i77) in Corollary 5.67 can
be reformulated in the following way: for any x € A,z/H # 1/H iff («")S/H = 1/H,
for some n > 1 iff (x/H)" = 0/H,for somen >1. R

PROPOSITION 5.69. Let H be a normal proper filter of A. For an element x € A,
the following properties are equivalent:

(i) There exists h € H such that x < hS;
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(ii) There exists h € H such that h ©® x = 0;
(i) There exists h € H such that x < h~;
(i7") There exists h € H such that x ® h = 0.

Proof. (i) < (ii) and (i) < (it’) follows by psBLs.
(i1) < (i) follows by Proposition 5.34. W
For a pseudo - BL algebra A we make the following notations:

UA)={ac A:(a")® <a, for every n € N}
V(A)={a€ A:(a")” <a, for every n € N}.

REMARK 5.16. If A is a BL algebra, then Max,(A) = Max(A) and U(A) =
V(A).

DEFINITION 5.9. The intersection of the maximal filters (normal filters) of A is
called the radical (normal radical ) of A and will be denoted by Rad(A) (Rad,(A)).
It is obvious that Rad(A) and Rad,(A) are filters of A and Rad(A) C Rad,(A).

PROPOSITION 5.70. Rad(A) CU(A)NV(A) CU(A)UV(A) C Rad,(A).

Proof.([54]) Let a ¢ U(A); there exists n € N such that (a")% £ a; it follows
that (a™)® ~» a # 1. Hence, there exists a prime filter P such that (a")% ~~ a ¢ P.
But P is prime, hence a ~» (a™)® € P. By Zorn Lemma, there exists a maximal
filter M such that P C M, hence a ~ (a™)® € M. If a € M, then a" € M; it follows
that (a™)® € M, too, since a,a ~» (a™)® € M imply (a™)® € M; we thus obtain a
contradiction: 0 = a"® (a™)® € M. It follows that a ¢ M, hence a ¢ NMax(A).
Thus we have proved that NMax(A) C U(A). Analogously, NMaxz(A) C V(A).
Hence we have proved the first inclusion.

Let now a ¢ NMax,(A), hence, there exists a normal maximal filter M such that
a ¢ M. Then (a™)® € M, by Theorem 5.68. If (a™)® < a, then a € M contradiction.
Hence (a")S £ a, so a ¢ U(A), hence U(A) C NMax,(A). Analogously, we have
V(A) CNMaz,(A). B

REMARK 5.17. (1) If M € Max,(A), then < M >= M,
(4i) If M € Max(A)\ Max,(A), then < M >= A.

PROPOSITION 5.71. For any a,b € Rad(A), a~ ©b~ =a® ©b° = 0.

Proof. Let a,b € Rad(A); to prove that a= ® b~ = 0 is equivalent with (¢~ ®
b~)% = 1. Suppose that (a~ ® b~)= # 1. By Corollary 5.52, there is a prime filter
P such that (a= ©b7)= ¢ P. By ¢4 we have (a= ©@b7)° =b" — (a7)% ¢ P, so by
Proposition 5.48, (a7)% — b~ € P, that is, [(a7)S © b~ € P.

There is a maximal filter M such that P C M. Then (a™)®®b ¢ M. By Theorem
5.68, there is n > 1 such that [((a7)® ® b)"]” € M; so, if denote ¢ = ((a™)% © b)",
we have ¢ € M. Since a,b € Rad(A) then we deduce that a,b € M, hence
(@™)®,be M,soc=((a”)®®b)" € M. Hence ¢ and ¢~ are in M which contradicts
the fact that M is a proper filter of A.

Analogous we deduce that ¢ © 0= =0. R

We recall that a pseudo - BL algebra A is called semisimple if the intersection
of all congruences of A is the congruence Ay (where for all z,y € A, zA,y iff
x = y) and a pseudo - BL algebra is representable if it can be represented as a
subdirect product of pseudo - BL chains.
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REMARK 5.18. A is semisimple iff Rad,(A) = {1}.

Indeed, since in a pseudo BL-algebra A, the congruences are in bijective core-
spondence with the normal filters, it follows that A is semisimple iff "\Max,(A) =

{1} (see [54]).
PROPOSITION 5.72. If A is semisimple, then A is representable.

Proof. Since A is semisimple, we have that N\Maz,(A) = {1}. But any normal
maximal filter H is a normal prime filter and, hence by Proposition 5.49, A/H is
a pseudo BL-chain. Then, by standard techniques of universal algebra, we obtain
that A is representable. H

PROPOSITION 5.73. If A is semisimple, then for every a,b € A,
(psbl —c73) (a —=b) ©b=0b0O (a ~ b).

Proof. By Proposition 5.72, it is sufficient to consider the case in which A is a
pseudo - BL chain. If a < b, thena - b=a~b=1,s0 (a—=b)©b=10b=>b=
bO1=00 (a~b).If b <a, the equality (a — b) ©b=b® (a ~ b) follows from
psbl — c77. W

COROLLARY 5.74. If A is semisimple, then for every a,b € A,
[a —b)V [b) =[a~ b)V[b).

DEFINITION 5.10. An element a of A is called infinitesimal if a # 1 and a”™ >
a~ V a® for any n € N.

We denote by In(A) the set of all infinitesimals of A.

PROPOSITION 5.75. For every nonunit element a of A, a is infinitesimal implies
a € Rad,(A).

Proof. Let a # 1 be an infinitesimal and suppose a ¢ Rad,,(A). Thus, there is
a maximal normal filter M of A such that a ¢ M. By Theorem 5.68, there is n > 1
such that (a™)~ € M. By hypothesis a” > a~ V a® > a~ hence (a™)” < a™, so
a= € M. By psbl — cg4 we deduce that (=)™ < (a™)=, hence (a™)= € M. If denote
b= (a™)~ we conclude that b,b~ € M, hence 0 = b~ ©®b € M, that is, M = A, which
contradicts the fact that M is a proper filter. l

PROPOSITION 5.76. For every nonunit element a € A, a € Rad(A) implies a is
infinitesimal.

Proof. Let a € Rad(A) CU(A)NV(A),a # 1; then (a")” < aand (a™)® < a for
any n € N. For n = 1 we obtain that a—,a® < a. Since for any n € w,a”™ € Rad(A)
we deduce that (a™)~,(a™)® < a”. Since a~ ©® a"™ = a™ ® a® = 0 for any n > 1,
then by psbl — c39 and psbl — c49 we obtain that a™ < (a7)% and a™ < (a®)~ for
any n > 1. So, for any n > 1, a= = [(a7)%]” < (a™)7,a® = [(¢®)7]® < (a™)® and
(a™)7,(a™)® < a”", hence a—,a® < a”, which implies a” > a~ V a%, that is, a is an
infinitesimal. For n = 0 the inequalities are trivial.

COROLLARY 5.77. Rad(A)\{1} C In(A) C Rad,(A).

COROLLARY 5.78. ([70]) If A is a BL algebra, then Rad(A)\{1} = In(A).

LEMMA 5.79. Ifa € A and n € N,n > 1 then the following hold: a™ € B(A)
and a™ > a~ V a=, implies a = 1.
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Proof. By Proposition 5.44, a™ € B(A) < aV (a")” =1 & aV (a™)% = 1.
By hypothesis, a™ > a~ V a® implies " > a~ and a" > a5. By psbl — ¢5 we
obtain (a™)” < (¢®)” and (a™)® < (a”)%sol=aV (a")” V (a®)” = (a®)7,
1=aV(a™)® <aV(a™)® = (a")% hence (a%)” = (a7)% at is, a”— = a® = 0.

Then (a®a) = 0=a—(a—0)=a—0=a" =0,(a®a)~0=a~ (a~
0) =a~ 0=a® =0, so we deduce that (a?)~ = (a?)S = 0. Recursively we obtain
that (a™)” = (a")®* =0. Thena V (a")” =aV0=1,aV (a")® =aV0 =1, hence
a=101

e
-+
S

LEMMA 5.80. In any pseudo - BL algebra A the following are equivalent:
(i) For everya € A,a™ > a~ V a® for anyn € N implies a = 1;

(i) For every a,be A,a™ > b~ Vb= for any n € N implies aV b= 1.

Proof. (i) = (ii). Let a,b € A such that a™ > b~ V b= for any n € w. We get
(aVb)~=a Ab-<b <a"<(aVb)" (aVb)S=aSAbS<bS <a"<(aVb)",
hence (a VvV b)™ > (aVb)~V (aVb)%, for any n € w. By hypothesis, a Vb = 1.

(73) = (7). Let a € A such that a™ > a~ Va® for any n € w. If consider b = a we
obtainaVb=1<aVa=1<a=11

DEFINITION 5.11. A pseudo - BL algebra A is called archimedean if the equiv-
alent conditions from Lemma 5.80 are satisfied.

One can easily remark that a pseudo - BL algebra is archimedean iff it has no
infinitesimals.

DEFINITION 5.12. Let A be a pseudo - BL algebra. An element a € A is called
archimedean if it satisfy the condition:

there is n € N, n > 1, such that a" € B(A),

equivalent by Proposition 5.44 with a V ()™ =1 and a V (a")® = 1. A pseudo -
BL algebra A is called hyperarchimedean if all its elements are archimedean.

From Lemma 5.79 we deduce:
COROLLARY 5.81. Every hyperarchimedean pseudo - BL algebra is archimedean.
We recall a theorem of Nachbin type for lattices (see [2], p.73):

THEOREM 5.82. A distributive lattice is relatively complemented iff every prime
ideal is mazximal.

Now, we present a theorem of Nachbin type for pseudo - BL algebras:

THEOREM 5.83. For a pseudo - BL algebra A, the following are equivalent:

(i) A is hyperarchimedean;
(ii) For any mormal filter F, the quotient pseudo - BL algebra A/F is an
archimedean pseudo - BL algebra;
(131) Specn(A) = Maz,(A);

(iv) Any prime normal filter is minimal prime.

Proof. (i) = (i7). To prove A/F is archimedean, let x = a/F € A/F such
that 2™ > x~ V 2% for any n € N. By hypothesis, there is m € N,m > 1 such that
a™ € B(A). It follows that 2™ € B(A/F). In particular we have ™ > 2~ V 2% so
by Lemma 5.79 we deduce that x = 1. It follows that A/F is archimedean.
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(#4) = (i7i). Since Max,(A) C Spec,(A), we only have to prove that any prime
normal filter of A is maximal. If P € Specy,(A), then A/P is a chain (see Proposition
5.49). By hypothesis A/P is archimedean. By Theorem 5.68 to prove P € Max,(A)
is suffice to prove that A/P is locally finite.

Let z =a/P € A/P, x # 1. Then there is n € N,n > 1, such that 2™ % z~ V2
. Since A/P is chain we have 2" < 2~ V2S. Thus 2" <2 ® (z" Vvz2S) 0 x =
(rer”0z)V(rerSez) =0V0 =0, hence 2”2 = 0, that is, o(z) < oo. It follows
that A/P is locally finite.

(7i1) = (iv). Let P, @ prime normal filter such that P C @Q. By hypothesis, P is
maximal, so P = ). Thus @ is minimal prime.

(iv) = (i). Let a be a nonunit element from A. We shall prove that a is an
archimedean element.

If we denote

F=la)={x € A:aVz=1} (by Corollary 5.28),
then F' € F(A). Since a # 1, then a ¢ F and we consider
F'=F)={reA:2>f®a", forsomen >1and f € F},
(see Corollary 5.29).

If we suppose that F’ is a proper filter of A, then by Corollary 5.52, there is a
prime filter P such that ' C P, so a € P. But P C< P >, and by Corollary 5.50,
< P > is prime; by hypothesis, < P > is a minimal (normal) prime filter. Since
a €< P >, by Proposition 5.65, we infer that there is x € A\ < P > such that
aVx = 1.1t follows that z € [a)* = F C F/ C P C< P >, hence x €< P >, a
contradiction.

Thus F’ is not proper, so 0 € F’, hence (by Corollary 5.29) there exist n > 1
and f € F such that f ®a™ = 0.

Thus f < (a™)". Weget aV f <aV(a")".ButaV f =1 (since f € F), so we
obtain that a V (a™)~ = 1, that is a is an archimedean element, by Proposition 5.44.
|

As in the case of above implication (iv) = (i) we have:

COROLLARY 5.84. Let A be a pseudo - BL algebra. If any prime filter of A is
minimal prime, then A is hyperarchimedean.

THEOREM 5.85. If pseudo - BL algebra A is a BL algebra, the following are
equivalent:
(1) A is hyperarchimedean;
(i) For any filter F, the quotient BL algebra A/F is an archimedean BL al-
gebra;
(1i1) Spec(A) = Maz(A);
(iv) Any prime filter is minimal prime.

REMARK 5.19. In this case we obtain the Theorem 3.56.






CHAPTER 6

Localization of BL(MYV)-algebras

In the first part of this Chapter we introduce the notions of BL(MV)-algebra of fractions
relative to A-closed system ( Section 1), BL(MV)-algebra of fractions and maximal BL(MV)-
algebra of quotients for a BL(MV)-algebra (Section 3). In Section 2 we define the notion of
strong multiplier for a BL(MV)-algebra.

In Section 3 it is proved the existence of a maximal BL(MV)-algebra of quotients for a
BL(MV)-algebra (Theorem 6.19). We study a maximal BL-algebra of quotients and we give
an explicit descriptions of this BL-algebra for some classes of BL-algebras.

In the next Sections (4 and 5) we define the localization (strong localization) BL(MV)
- algebra of a BL(MV)- algebra A with respect to a topology F on A. In Section 6 we
prove that the maximal BL(MV) - algebra of quotients Q(A) (defined in Section 3) and the
BL(MV) - algebra of fractions relative to an A— closed system (defined in Section 1) are
strong BL(MV) - algebra of localization (see Proposition 6.33 and Proposition 6.34).

In Section 7 we define and prove analogous results for lu-groups.

In particular, we take on the task of translating the theory of localization of MV-
algebras defined in Sections 5 into the language of localization of abelian lu-groups. Thus,
this Section is very much in the spirit of [3], in which Ball, Georgescu and Leustean translate
the theory of convergence and Cauchy completion of lu-groups into the language of MV-
algebras.

Historical remarks: The concept of maximal lattice of quotients for a distributive lattice
was defined by J.Schmid in [121], [122] taking as a guide-line the construction of complete
ring of quotients by partial morphisms introduced by G. Findlay and J. Lambek (see [96],
p-36). The central role in this constructions is played by the concept of multiplier (defined for
a distributive lattice by W. H. Cornish in [47], [48]). J. Schmid used the multipliers in order
to give a non-standard construction of the maximal lattice of quotients for a distributive
lattice (see [121]). A direct treatment of the lattices of quotients can be found in [122].
In [64], G. Georgescu exhibited the localization lattice Lz of a distributive lattice L with
respect to a topology F on L in a similar way as for rings (see [113]) or monoids (see [124]).

For the case of Hilbert and Heyting algebras see [20], [21] and respectively [49].

1. BL(MV)-algebra of fractions relative to an A—closed system

DEFINITION 6.1. As in the case of residuated lattices, a nonempty subset S of
a BL— algebra A is called an A—closed system in A if 1 € § and x,y € S implies
xAyeS.

We denote by S(A) the set of all A—closed systems of A (clearly {1}, A € S(A4)).
For S € S(A), on the BL-algebra A we consider the relation g defined by

(x,y) € Og iff there exists e € SN B(A) such that z Ae =y Ae.

LEMMA 6.1. fg is a congruence on A.

139
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Proof. The reflexivity (since 1 € S N B(A)) and the symmetry of fg are
immediate. To prove the transitivity of fg, let (x,y), (y,2) € 05. Thus there exists
e,f € SNB(A)such that tAe=yAeand y A f=2zA f.

If denote g =e A f € SN B(A), then

ghz=(eANfihz=(eANx)Nf=yANe)ANf=(yANf)Nhe=
=@ANf)he=zA(fNe)=2zANg,
hence (z,2) € 0g .
To prove the compatibility of g with the operations A, V,® and — , let z,y, z,t €
A such that (z,y) € g and (z,t) € 0g. Thus there exists e, f € SN B(A) such that

xANe=yANeand zA f=tA f; we denote g=eA f €SN B(A).
We obtain:

(@AN2)ANg=(xA2)AN(eNf)=(zNe)AN(zAf)=
=WAe)ANEN)=WAD)Ag,
hence (z A z,y At) € g and
(xVz)ANg=(xV2)A(eNf)=[eNf)Nz]V]eNf)Az]=
=[lena) A fIVIen(F A2l =[eny) ANfIVIen(fFAD)] =
=lenHAyIVIen) A=V A(lenf)=(yVi)Ag,

hence (zV z,y Vt) € fg.
By Remark 3.8 we obtain:

(xO)ANg=(x02)0g=(x0e)® (20 f) =
=yoe)otof)=(yot)og=(yot)Ay,
hence (z ® z,y ® t) € g and by bl — c42:
(—=2)Ng=(x—2)0g=90[(goO) > (902)] =
=90[goy) = (@ot))=FH—-1)o0g=Hy—t) Ay,

hence (z — z,y — t) € s .1
For = we denote by z/S the equivalence class of = relative to g and by

A[S] = A/bg.

By ps : A — A[S] we denote the canonical map defined by pgs(x) = z/S, for every
x € A. Clearly, in A[S],0=0/5,1=1/S and for every x,y € A,

z/SNy/S = (xAy)/S,
z/SVy/S=(zVy)/S,
z/S©y/S = (x©y)/S,
z/S —y/S=(z—y)/S
So, pg is an onto morphism of BL-algebras.

REMARK 6.1. Since for every s € SN B(A), s\Ns = s A1 we deduce that
s/S=1/S =1, hence ps(SN B(A)) = {1}.

PROPOSITION 6.2. If a € A, then a/S € B(A[S]) iff there exists e € SN B(A)
such that e Na € B(A). So, if e € B(A), then e/S € B(A[S]).
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Proof. For a € A, we have a/S € B(A[S]) < a/S®a/S =a/S and (a/S)" =
a/s .
From a/S ® a/S = a/S we deduce that (a ® a)/S = a/S < there exists g €
SN B(A) such that

(a@a)Ng=aNge (a@a)Og=alg<e
Sa@0g)o(adg) =angs(ang)®(aNg)=alg.
From (a/S)** = a/S we deduce that exists f € SNB(A) such that a™* A f = aAf.
If denote e = g A f € SN B(A), then
(@he)o(ane)=(angAf)O(@ngAf) =
=@0g)ofo@ogof=a0gof=alrgNf=ale
and
a*Ne=a"NgNf=(@*"Nf)ANg=(aNf)Ng=aAle,
hence a A e € B(A).

If e € B(A), since 1 € SN B(A) and 1 Ae = e € B(A) we deduce that e/S €
B(A[S]). m

THEOREM 6.3. If A" is a BL-algebra and f : A — A’ is a morphism of BL-
algebras such that f(S N B(A)) = {1}, then there exists an unique morphism of
BL-algebras f': A[S] — A’ such that the diagram

A P AlS]

N /

f I
A/

is commutative (i.e. f'ops = f).

Proof. If z,y € A and pg(x) = ps(y), then (z,y) € Og, hence there exists
e € SN B(A) such that x A e = y A e. Since f is a morphism of BL-algebras, we
obtain that

flxne)=Fflyne) = flx)nfle) = fly) A fle) &
f@) A1 = fy) A1 = fz) = f(y).
From this observation we deduce that the map f’: A[S] — A’ defined for z € A

by f'(z/S) = f(z) is correctly defined. Clearly, f’ is a morphism of BL-algebras.
The unicity of f’ follows from the fact that pg is an onto map.H

REMARK 6.2. Theorem 6.3 allows us to call A[S] the BL-algebra of fractions
relative to the N—closed system S.

REMARK 6.3. If BL— algebra A is an MV — algebra (i.e. x** = z, for all
x € A), then (x/S)* = a**/S =x/S, so A[S] is an MV — algebra. Called A[S] the
MV -algebra of fractions relative to the A—closed system S.

EXAMPLE 6.1. If A is a BL— algebra and S = {1} or S is such that 1 € S and
SN (B(A)\{1}) = @, then for x,y € A, (x,y) €E0s <= N1 =yANl <=z =y,
hence in this case A[S] = A.

EXAMPLE 6.2. If A is a BL— algebra and S is an AN—closed system such that
0€ S (for example S = A or S = B(A)), then for every x,y € A, (z,y) € g (since
xAN0O=y A0 and 0 € SN B(A)), hence in this case A[S] = 0.
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EXAMPLE 6.3. We consider BL— algebra A = {0,a,b,c,1} from Ezample 3.11:
i). The N—closed systems of A which contain 0 are:

S = A’ B(A) = L27 {07 C? 1}7 {07 C? a7 1}7 {07 C7 b’ 1}7 {07 a’ 1} and {07 b? 1}'

In all these cases A[S] =0 (see Example 6.2).
i1). The N—closed systems of A which do not contain 0 are:

S ={1},{a,1},{b,1},{c, 1},{a,c, 1},{b,c, 1} and {a,b,c,1}.
In all these cases A[S] = A (because S N B(A) = {1}, hence 0Og is the
identity; see Example 6.1).
EXAMPLE 6.4. We consider MV — algebra Lsxo = {0,a,b,c,d, 1} from Example
3.12:
i). The N—closed systems of Lsgxa which contain O are:
S = L3x2,{0,1},{0,a,1},{0,6,1},{0,¢, 1},
{0,d,1},{0,a,b,1},{0,a,¢,1},{0,a,d, 1} = B(L3sx2),
{0,b,¢,1},{0,b,d,1},{0,a,b,¢c,1},{0,a,b,d,1},{0,b,¢,d,1}.

In all these cases Lzx2[S] = 0 (see Example 6.2).
i1). The N—closed systems of Lsx2 which do not contain 0 are:

S = {1}) {a7 1}7 {b’ 1}7 {C7 1}? {dv 1}7 {a7 G 1}7 {b’ ¢, 1} and {b7 ¢, d, 1}'

In the cases S = {1},{b,1},{c,1},{b,c,1}, L3x2[S] = L3xa (because S N
B(Lsx2) = {1}, hence g is the identity; see Example 6.1). In the cases
S ={a,1},{a,c,1} we obtain

0/S=0b/S=4d/S=1{0,b,d},
1/S=a/S=c¢/S={a,c1},
so L3x2[S] = Lo, and for S = {d,1},{b,d,1},{b,c,d,1} we obtain
0/S=a/S=1{0,a},
b/S =c/S ={b,c},
d/S=1/S={1,d}.
L3y2[S] is not a Boolean algebra because b/ S®b/S = (bdb)/S = d/S # b/S.

EXAMPLE 6.5. Suppose that A is a boolean algebra. Clearly, A is an MV -
algebra. Then every ideal of the underlying lattice L(A) is an ideal of A (every
ideal of an MV -algebra A is also an ideal of the underlying lattice L(A) - see [45],
p. 112). If P is a prime ideal of A (that is P # A and if x Ny € P implies
x € P oryeP), then S = A\P is an A—closed system. We denote A[S] by Ap.
The set M = {x/S : © € P} is a maximal ideal of Ap. Indeed, if x,y € P, then
z/S@®y/S=(xdy)/S € M (sincexdy € P). If x,y € A such that x € P and
y/S < x/S then there exists e € SN B(A) such that y Ne < x Ne. Since x € P, then
yNe € P, hencey € P (sincee & P), soy/S € M. To prove the maximality of M let
I an ideal of Ap such that M C I and M # I. Then there exists x/S € I such that
x/S ¢ M, (that isx ¢ P <= x € S), hence /S =1 (see Remark 6.1) so I = Ap.
Moreover, M s the only maximal ideal of Ap (since if we have another mazximal
ideal M" of Ap, then M’ ¢ M hence there exists x/S € M’ such that x/S ¢ M,
sox/S =1 and M' = Ap, a contradiction!). In other words Ap is a local MV
-algebra. The process of passing from A to Ap is called localization at P.
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2. Strong multipliers on a BL(MYV)-algebra

DEFINITION 6.2. Let (P, <) be an ordered set and I C P a non-empty set. [
is an order ideal (alternative terms include down-set or decreasing set) if, whenever
x € I,y € Pand y < x, we have y € I. We denote by Z(P) the set of all order
ideals of P; clearly, Z(P) is closed under arbitrary intersections. For a nonempty set
M C P we denote by < M >p the order ideal of P generated by M.

REMARK 6.4. It is eassy to prove that for a nonempty set M C P,
< M >p={x € P : there exists a € M such that x < a}.

Let A be a BL— algebra. We denote by Z(A) the set of all order ideals of A
(see Definition 6.2):

Z(A)={ICA:ifzr,ye Ajx <yand y € I,then x € I},
and by I4(A) the set of all ideals of the lattice L(A).

REMARK 6.5. Clearly, Z(A) C I;(A) and if I, 1o € Z(A), then I NIy € IT(A).
Also, if I € Z(A), then 0 € I.

DEFINITION 6.3. By partial strong multiplier of A we mean a map f: 1 — A,
where I € Z(A), which verifies the next conditions:
BLy) f(e®x)=e® f(x), for every e € B(A) and x € [;
BLj) f(z) <z, for every x € I;
BL3) If e € IN B(A), then f(e) € B(A);
) x A f(e) =eA f(x), for every e € N B(A) and = € I (note thate ® x € 1
sincee®x < ez <x).

REMARK 6.6. If A is an MV — algebra the definition of strong multiplier on A
is the same as Definition 6.3 for the case of BL— algebras (we recall that in this
case, for x,y € A, x ©y = (z* ® y*)*).

Clearly, f(0) = 0.

By dom(f) € Z(A) we denote the domain of f; if dom(f) = A, we called f total.

To simplify the language, we will use strong multiplier instead of partial strong
multiplier, using total to indicate that the domain of a certain multiplier is A.

EXAMPLE 6.6. The map 0 : A — A defined by 0(x) = 0, for every x € A is a total
strong multiplier of A; indeed if v € A and e € B(A), then0(e®z) =0=e®0 =
e®0(x) and 0(x) < z. Clearly, ife € ANB(A) = B(A), then 0(e) =0 € B(A) and
forze A, x ANO(e) =eNO(z) =0.

EXAMPLE 6.7. The map 1: A — A defined by 1(x) = x, for every x € A is also
a total strong multiplier of A; indeed if v € A and e € B(A), then 1(e®x) =e®x =
e ® 1(x) and 1(z) = x < x. The conditions sm — BLs — sm — BLy4 are obviously
verified.

EXAMPLE 6.8. For a € B(A) and I € I(A), the map f, : I — A defined
by fo(x) = a Az, for every x € I is a strong multiplier of A (called principal).
Indeed, for x € I and e € B(A), we have f,(e ®@x) =aA(e@z) =aA(eNz) =
eNlanz)=e@ (aNz)=e0® fo(x) and clearly fo(x) < . Also, if e € I N B(A),
fale)=eANa€ B(A) andxz A (aNe) =eA (aAx), for every x € I.
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REMARK 6.7. The condition sm— BLy is not a consequence of sm— BLj —sm—
BLs. As example, f : I — A, f(x) =z Ax* for every x € I, verify sm — BL; —sm —
BL3, but ife € IN B(A) and x € I, then

xAfle)=xAN0#£eA(zNz*)=eA f(x).

REMARK 6.8. In general, if we consider a € A, then f, : I — A wverifies only
sm — BLy,sm — BLo and sm — BLy4 but does not verify sm — BLs.

If dom(f,) = A, we denote f, by fa ; clearly, fo = 0.
For I € Z(A), we denote

M(I,A)={f:1— A| f is a strong multiplier on A}

and

M(A) = M(1,A).
()=, u M4

If necessary, we denote M (A) by Mpr(A) to indicate that we work in BL—
algebras; for the case of MV — algebras we denote M (A) by My (A).

REMARK 6.9. From Propositions 3.8 and 3.9 we deduce that for every I € Z(A)
the algebra of multipliers Mpr (I, A) for a BL— algebras is in fact a generalization
of the algebra of multipliers Mgy (I, A) for MV — algebras, defined in [26]. Also,
we deduce that if BL— algebra A is an MV — algebra (that is A = MV (A)), then
Mpr(I,A) = My (I, A) for every I € Z(A).

DEFINITION 6.4. If I1,I2 € Z(A) and f; € M(I;, A),i = 1,2, we define fi A fa,
fiVvife, fillfa, fi—= fo:inla — A by

(fi A f2)(@) = fi(x) A fa(z),
(fiV fo)(x) = fi(2) V fo(m),

(A D)) = @) 0 — f)] "= f@)o - fi@),
(fr = fo)(@) =2 O [fi(z) — fo()],
for every x € 1N Is.
LEMMA 6.4. fi A fo € M(I1 N1y, A).

Proof. If z € 1N Iy and e € B(A), then (fiA f2)(e®z) = fi(e®x)A fo(e@x) =
(e® fi(@))A(e®@ f2(x)) = (eAfr(@)) AleA fa(x)) = eAlfi(z) A fa(2)] = e@ (fiA f2) (@).

Since f; € M(I;, A),i = 1,2, we have (f1 A fo)(z) = fi(x) A fo(z) <z ANz =z,
for every x € I1N Iy and if e € Iy N [ N B(A), then

(fi A fa)(e) = fi(e) A fa(e) € B(A).
Fore € 1 N I[a N B(A) and z € I1N Iy we have:
rA(fiNf2)(e) =z A file) A fale) = [z A fi(e)] Az A fale)] =

=[eA filz)] Aen fo(@)] = e A (fi A f2) (o),
that is f1 A fo € M(Il N IQ,A). |

LEMMA 6.5. f1V fo € M(I1 N1y, A).
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Proof. If z € I1N Iy and e € B(A), then (f1V f2)(e®x) = fi(e®z)V faleOx) =

(c® (@) V(€O fo(x)) "= e @ [fi(a) V o(2)] = e ® (fi V fo) ().
Since f; € M(1;,A),i = 1,2, we have (f1V fa)(z) = fi(z) V fo(x) <z Va =z,
for every x € I1N Iy and if e € Iy N [ N B(A), then

(fiV f2)(e) = fi(e) V fa(e) € B(A).
Fore e I1 N Ia N B(A) and z € I1N Iy we have:
zA(f1Vf2)(e) = xA[fi(e)V fa(e)] = [z A fi(e)]VIzA fa(e)] = [en fr(x)] Ve fa(x)] =

=eN[filz)V fa(@)] = e (f1V f2)(2),
that is f1 V fo € M(Il N IQ,A). |

LEMMA 6.6. f1E fo € M(I1 NIy, A).
Proof. If z € I1N I and e € B(A), then
(f1Bf2)(e@z) = fi(eOz)O[(e@z) — fo(e@z)] = @ fi(2)|O[(eOx) — (e fo())] =
= fi@) 0o (e0n) = (e® L)) "= ilx) @l (@ — fz)] =
=e@[fi(z) © (x = fo(2))] =e® (f1 B fo)(2).

Clearly, (f1 & fo)(z) = fi(z) © [z — fa(x)] < fi(z) < z, for every x € 1N I
and if e € I) N Iy N B(A), then by Remark 3.8 we have

(13 f2)(e) = file) O e — fale)] = fi(e) @ (€° V fale)) € B(A).
For e € 1 N Is N B(A) and x € I1N Iz we have:
eA(F1Bf2)(e) = zA[f1(e)(e — fale)] = 2@[f1(e)O(e — fale)] = fi(e)OlzG(e — fale))]
T f)0fro (toe) - (20 ()] = (fil) 02) O[O e) = (2 fale))] =
= (e® fi(2)) O [(c@ ) = (e ® fo(x))] = filx) O e (e @ ) — (€® fal)))]
"2 (2)elea(r — fo@)] = co[fi(@)0(z — fo(x))] = eO(HEf2)(x) = eA(LiEf2) (),

hence

z A (fil fo)(e) =en(f1 8 f2)(2),
that is f1 [ fo € M(Il ﬂIQ,A). [ |

LEMMA 6.7. fi — fo € M(I; NIy, A).
Proof. If z € I1N I and e € B(A), then
(f1 = f2)(€0) = (e0n)O[f1(e0z) — fale®r)] = (c0r)O|(eOfi(x)) — (e fa())] =
=200 ((e0 i) = (e© L) "= 200 (filr) — fa)] =
=e0[r0 (filx) — @) =0 (fi — f2)(@).

Clearly, (fi — f2)(z) = 2 © [fi(z) — fa2(x)] < z, for every z € 1N Iy and if
e € 1 NI N B(A), then by Remark 3.8 we have

(f1 = f2)(e) = e O [fi(e) = fale)] = e @ [(fi(e))" V fale)] € B(A).
For e € 1 N Io N B(A) and x € I1N Iz we have:
eN(f1 = fo)(@) =enz o (filz) — fa(2))] =
=(e0z)0[filz) = folz)] =z 0 e© (fi(z) — f2(x))] =
zOeo((eo fi(z) = (€0 f2(2))] =20 [e0 ((z© file)) — (z O f2(e)))] =

bl—c42
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=00 (@0 file) — (z0 fa(e)] "= e [ <f1< ) = fa(e)] =
=200 (file) = fale))] =2 © (fi = f2)(e) =2 A (f1 — f2)(e)
hence

z A (fi = f2)(e) = e (fr = f2)(2),
that is f1 — fo € M(Il ﬂ[Q,A). |

PROPOSITION 6.8. (M(A),A,V,[,—,0,1) is a BL-algebra.

Proof. We verify the axioms of BL-algebras.

(BLq). Obviously (M(A),A,V,0,1) is a bounded lattice.
(BL3). Let f; € M(1;,A) where I; € IT(A),i=1,2,3.
Clearly, fi [0 fo € M(A) (see Lemma 6.6).

Thus, for z € I; N I, N I3 we have

[AB (O f)l(@) = (/20 f3)(@) © (z — fi(z)) =
= [f2(2) © (z = f3(2))] © (x = f1(2)) = fa(z) O [(z — f3(2)) © (z — fi(2))] =
= falz) Oz = fi(2) © (z = f3(z))] = [folz) © (z — fi(x)] © (z — f3(2)) =
= (1B f2)(@)) © (z — f3(x)) = [(f1 T f2) T f3] (),

that is the operation [ is associative.
By definition

(1B f2)(@) = fi(2) @[z — fol@)] "= fo(x) © [z — fil2)] = (2 B fi) (@),
that is the operation [ is commutative.
Let f € M(I,A) with I € Z(A). If z € I, then

(fEL)(z) = fl2) © (r = L(z) = f(z) © (z = 2) = f(z) © 1 = f(2),

O]
O]

and

1B f)(z) =12) O (z = f(z)) =20 (z = f(z)) =z A f(z) = f(2),
hence
fO1=107f=f,
that is (M (A),[, 1) is a commutative monoid.
(BLs). Let f; € M(1;, A) where I; € T(A),i=1,2,3.
Since f1 < fo — f3 for x € I; N I3 N I3 we have

fi(@) < (f2 = f3)(@) & fi(z) Sz O [fao(z) — fa(a)]-
So, by bl — co,
Ni@) Oz = f2(@)] Sz 0 (2 = fo2)) © (fa(z) — f3(2)) &
fil@) Oz — f2(z)] < (= /\f2( ) © (falz) = f3(z)) &
i) © [z — fo(x)] < fo(z) © (fa(z) — f3(2)) <
(@) Oz — fa(z)] < falz) A f3(z) < f3(2) <
(f20 fi)(z) < fs(z),
for every x € I1 N Is N I3, that is
Lo i < fs.
Conversely if (f2 & f1)(z) < f3(z) we have

(@) Oz — fo(@)] < f3(z),
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for every x € Iy N Is N I3.
Obviously,

fo(z) © [z = fi(z)] < filz) © [z — fa(z)]
(see Lemma 3.6)
s @) < fole) - (L) 6 (@ — L)) < fole) - fil)
'S 20 (@ fAi(2) <20 (falr) - f3(2)
Sz fi(z) <z (f2(z) — fi(2))
< fi(z) < (f2 = f3)(2).
So f1 < fo — f3iff o f1 < f3 for all f1, fo, f3 € M(A).
(BL4). Let f; € M(1;,A) where I; € T(A),i=1,2.
Thus, for x € I1 N Iy we have
[AB (A= R)(z)=[(fi = f)@)] 0z — fi(z)
=20 [fi(z) = fo(@)] Oz — filz)] = (zO[z — filz )]) [f1(z)
= [zAfi(@)]Olf1(2) — fo(2)] = fi(@)O[fi(z) — fo()] = fi(z)Afo(w)
So,

— fa(2)] =
= (finf2)(z).

finfo=f1E(f1 = f).
(BLs). We have
[(fr = f2) vV (fa = f)l(z) = [(fr = f2)(@)] V[(f2 = fi)(@)] =
= [z O (fi(z) — fa(z)] V [r © (fo(z) — fi(z))] =
)

bl—c BL
=" 20 [(filz) = f2(2) V (f2(2) = fi(2))] = 20 1=12=1(z),
hence
(fi=f)V(fa— fi)=11
REMARK 6.10. To prove that (M(A),A,V,[,—,0,1) is a BL-algebra it is suf-
ficient to ask for multipliers to verify only the azioms sm — BLy and sm — BLs.
PROPOSITION 6.9. If BL— algebra (A,\,V,®,—,0,1) is an MV — algebra (A, ®,*,0)
(i.e. x* = z, for all x € A), then BL— algebra (M(A),A,V,[,—,0,1) is an
MV — algebra (M(A),8B,*,0). If I,Iy € Z(A) and f; € M(I;, A),i = 1,2, we have
fiBfo:hinl— A,
(/18 f2)(z) = (fi(z) © fo(z)) A,
for every x € LN Iy; for I € Z(A) and f € M(I,A) we have f*: 1 — A

(@) =(f = 0)(x) =20 (f(x) = 0(z)) =20 (f(z) = 0) =z (f(z)),

for every x € I.

Proof. To prove that BL— algebra M (A) is an MV — algebra let f € M (I, A)
with I € Z(A).
Then

[ @) =[(f = 0) = 0)(x) =z O [(f = 0)(@)]" =z O [z (f(=)T

bl—cg

=20[(xo (f(2)") =0 "="z0z— (f(2)"] =2 A (f(2)" =2 A f(x) = f(z),
(since f(z) € A which is an MV — algebra), for all z € I.
So, f** = f and BL— algebra M(A) is an MV -algebra.
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We have fi B fo = (ff & f5)" and f*=f — 0.
Clearly,
(LB f2)(@) =20 [fi(z) ©(z — f3(2))]"

=20 ® (fi(2))* 6 (@ — 20 (f(@))]) =20 [(fil2) 0z (z — z® (f2(2))*)]*
i o[(fi@) 0 @reo (@) =20 (i) 0z (f(z)]
=20 [z0 (@) 0 (f@)T "= 2o & - (@) © (f(x))"]

BL
=t A (filz) @ fa(2)),
for all x € I; N I5. Then (M(A),H,*,0) is an MV-algebra.ll

LEMMA 6.10. The map va : B(A) — M(A) defined by va(a) = f, for every
a € B(A), is a monomorphism of BL-algebras.

Proof. Clearly, v4(0) = fo = 0. Let a,b € B(A) and z € A. We have:
(va(a) Dva(b))(z) = vala)(z) © (. — va(b)(2)) = (a A x) © (2 — (bA D))

=@oz)0(x—=(bAr)=a0z0(r— (bAZ))]=aO [z A (bAx)]
=alN[zAbAZ))=aN(bAz)=(aANb) ANz = (valaAD))(x) = (vala ®D))(z),
hence
va(a ®b) =va(a) Dva(d).
Also,

(va(a) = va(0))(2) = 2 © [vala)(z) = va(b)(2)] = 2 © [(a A x) — (b A )]

—20[(z0a) = (20b)]"=® 0 @—b =xA(a—b)
(since a — b € B(A))
=vala —b)(z),
hence
va(a) = va(b) = vala —b),
that is v4 is a morphism of BL-algebras.

To prove the injectivity of v4 let a,b € B(A) such that va(a) = va(b). Then
aAx =bAx, for every x € A, hence for x = 1 we obtain that aA1l =bA1 = a =b.1

DEFINITION 6.5. A nonempty set I C A is called regular if for every x,y € A
such that z Ae =y Ae for every e € I N B(A), then z = y.

For example A is a regular subset of A (since if z,y € A and x Ae = y A e for
every e € ANB(A) = B(A), then for e =1 we obtain zt Al=y Al ez =y).
More generally, every subset of A which contains 1 is regular, hence all the filters
of A are regular sets.
We denote
R(A) ={I C A:1is a regular subset of A}.

REMARK 6.11. The condition I € R(A) is equivalent with the condition: for
every x,y € A, if frinB(a) = fylinB(a), then z = y.

LEMMA 6.11. If Iy, I, € T(A) N R(A), then I, N Iz € T(A) N R(A).
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Proof. By Remark 6.5, I; N Io € Z(A). To prove I} NIy € R(A) let z,y € A
such that t Ae =y Ae forevery e € (1 NI;)NB(A). Ife; € ;N B(A),i=1,2 are
arbitrary, then e; A eg € I1 N 1o N B(A) so, we have

(erNex) ANz = (et Nea) ANy e A(ea Ax) =e1 A(ea Ay).

Since e; € I1 N B(A) are arbitrary and I; € Z(A) N R(A), then we obtain es Az =
ea Ny.

Since ey € IoN B(A) are arbitrary and Io € Z(A)NR(A), we obtain z = y, hence
LNLeI(ANRA).NA

REMARK 6.12. By Lemma 6.11, we deduce that
My (A) = {f € M(A) : dom(f) € T(4) N R(A)}
is a BL-subalgebra of M(A).
PROPOSITION 6.12. M,.(A) is a Boolean subalgebra of M(A).
Proof. Let f: I — A be a strong multiplier on A with I € Z(A) NR(A). Then
eN[fV [@) =enlf(z) vz (f(@))] =[eAf@)]VeAlzo (f())

I o fOVIEoeo (f(2)] "= 2o f@)] Vi oeo (e® f(2))]

T o fle]ViEoeo @o f(e)]=[ro fle)] Voo (@A f(e)]

" 20 fO)Vr0eo @V (f(e)))] "= [pe f(e)]VIed (zoa*)V (26 (f(€))]
"o fEIVEe OV (o (f(@))] =20 @] Vieoro (f(e)]

=z o fE)VEo (o (f(e)) "= 20 [f(e) V(o (f(e))]
=20 [fe)V(eA(f())] =z o [(fle)Ve)A(fe)V (f(e))]

sm—BLg

rOeNl)=z0e=xzNe=1(z) e,

hence (f V f*)(z) = 1(z), since I € R(A), hence fV f* = 1, that is M,(A) is a
Boolean algebra. l

REMARK 6.13. The axioms smBLs, smBLy is necessary in the proof of Propo-
sition 6.12.

DEFINITION 6.6. Given two strong multipliers fi, fo on A, we say that fo extends
f1if dom(f1) C dom(fa2) and fo\gom(s) = f1; we write f1 < fo if fo extends f1. A
strong multiplier f is called maximal if f can not be extended to a strictly larger
domain.

LEMMA 6.13. (i) If f1, fa € M(A), f € M,(A) and f < f1,f < fa, then fi
and fa coincide on the dom(f1) Ndom(f2);

(ii) Ewvery strong multiplier f € M,(A) can be extended to a mazximal strong
multiplier. More precisely, each principal strong multiplier f, with a €
B(A) and dom(f,) € Z(A)NR(A) can be uniquely extended to a total strong
multiplier f, and each non-principal strong multiplier can be extended to a
mazximal non-principal one.



150 6. LOCALIZATION OF BL(MV)-ALGEBRAS

Proof. (i). Assume, to the contrary that there exists x € dom(f1) N dom(f2)
such that fi(x) # fa(x). Since dom(f) € R(A), thereis e € dom(f)NB(A) such that
eNfi(x) # eA fa(z). But e fi(z) = fi(e®z) for i = 1,2, thus fi(e®x) # fa(e®x).
Since e ® x < e, we have e ® x € dom(f), contradicting f < fi, f < fo.

(73).We first prove that f, with a € B(A) can not be extended to a non-principal
strong multiplier. Let I = dom(f,) € Z(A) N R(A), fo : I — A and suppose by
absurdum hypothesis that there exists I’ € Z(A),I C I’ (hence I' € Z(A) NR(A))
and a non-principal strong multiplier f € M(I’, A) which extends f,. Since f is
non-principal, there exists zg € I',z9 ¢ I such that f(zo9) # 2o A a (see Remark
6.11). Since I € R(A), there exists e € INB(A) such that eA f(x0) # eA(aAxy) <
fle@xp) #eN(aNzg) < fle®xp) #a(ed ).

Denoting z; = e ® zg € I (since 1 < e), we obtain that f(x1) # a A x1, which
is contradiction (since f, < f).

Hence f, is uniquely extended by f,.

Now, let f € M,(A) be non-principal and

Mf:{(lag)IEI(A)7ge M(IaA)adom(f) C I and 9\dom(f) :f}

(clearly, if (I,g) € My, then I € Z(A) NR(A)).
The set My is ordered by (I1,g1) < (Ia,g2) iff 1 C Iz and gy, = g1. Let

{(k, g) : k € K}
be a chain in My. Then I' = kUKIk € Z(A) and dom(f) CI' . So, ¢ : I' — A
€

defined by ¢'(z) = gx(x) if @ € Iy is correctly defined (since if x € Iy N I; with
k,t € K, then by (i), gr(z) = g:(x)).

Clearly, ¢’ € M(I', A) and g"dom(f) = f (since if x € dom(f) C I' , then z € I
and so there exists k € K such that « € Ij, hence ¢'(z) = gr(z) = f(z)).

So, (I’,¢') is an upper bound for the family {(Ix, gx) : kK € K}, hence by Zorn’s
lemma, M/ contains at least one maximal strong multiplier ~ which extends f. Since
f is non-principal and h extends f, h is also non-principal. B

On the Boolean algebra M, (A) we consider the relation p, defined by

(f1, f2) € p4 iff f1 and fy coincide on the intersection of their domains.
LEMMA 6.14. p, is a congruence on Boolean algebra M,(A).

Proof. The reflexivity and the symmetry of p, are immediately; to prove

the transitivity of py let (f1, f2), (f2, f3) € ps. Therefore fi, fo and respectively
f2, f3 coincide on the intersection of their domains. If by contrary, there exists
xo € dom(f1) N dom(fs3) such that fi(xo) # f3(zo), since dom(f2) € R(A), there
exists e € dom(f2) NB(A) such that eA fi(x0) # eA f3(xo) & fi(e@xo) # f3(eOxp)
which is contradictory, since e ® zg = e A xg € dom(f1) N dom(f2) N dom(fs).

To prove the compatibility of p, with the operations A,V and * on M, (A4), let
(f1, f2), (91,92) € pa. So, we have fi, fo and respectively g1, g2 coincide on the
intersection of their domains.

Let = € dom(f1) N dom(f2) N dom(g1) N dom(gz2). Then fi(x) = fo(x) and
g91(z) = ga2(x), hence

(fing)(z) = fi(x) A gi(z) = fa(z) A g2(x) = (f2 A g2)(2),
(fiva)(z) = fi( f2(2) V g2(z) = (f2 V g2)(2),

8
~
<

)
=
—~~
8
~—
I
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and

fi(@) = (fi = 0)(z) = zO[f1(z) — 0(2)] = zO[f2(x) — O(x)] = (f2 = 0)(z) = f3(x),
that is the pairs (fiAg1, faAg2), (fiVar, f2Vg2), (ff, f5) coincide on the intersection
of their domains, hence p, is compatible with the operations A,V and *. B

For f € M,(A) with I = dom(f) € Z(A) N R(A), we denote by [f,I] the
congruence class of f modulo p, and Q(A) = M, (A)/py4 -

REMARK 6.14. From Proposition 6.12 we deduce that Q(A) is a Boolean algebra.

REMARK 6.15. If we denote by F = Z(A) N R(A) and consider the partially
ordered systems {01 j}1er,1cy (where for I,J € F , I C J 615 : M(J,A) —
M(1, A) is defined by 675(f) = fi1), then by above construction of Q(A) we deduce
that Q(A) is the inductive limit

Q(A) = limM ([, A).
IeF
LEMMA 6.15. Let the map va : B(A) — Q(A) defined by va(a) = [fa, A] for
every a € B(A). Then

(i) U4 is an injective morphism of Boolean algebras,

(i) va(B(A4)) € R(Q(A)).

Proof. (i). Follows from Lemma 6.10.

(73). To prove Tz(B(A)) € R(Q(A)), if by contrary there exist fi, fo € M,(A)
such that [f1,dom(f1)] # [f2, dom(f2)] (that is there exists zg € dom(f1) N dom(f2)
such that fi(zo) # f2(z0)) and [f1,dom(f1)] A [fa, A] = [f2,dom(f2)] A [fa, A] for
every [fa,A] € va(B(A)) N B(Q(A)) (that is for every [fq, A] € va(B(A)) with
a € B(A)), then (f1 A fa)(x) = (f2 A fa)(z) for every z € dom(f1) N dom(fz) and
every a € B(A) & fi(z)NaNx = fa(z) NaAx for every x € dom(f1)Ndom(f2) and
every a € B(A). For a = 1 and = = ¢ we obtain that fi(z¢) A zo = fa(z0) Az &
fi(xo) = fa(xo) which is contradictory. W

REMARK 6.16. Since for every a € B(A), f, is the unique mazimal strong mul-
tiplier on [fa, A] (by Lemma 6.13) we can identify [fa, A] with f,. So, since U1 is
injective map, the elements of B(A) can be identified with the elements of the set {
fa:a € B(A)}.

LEMMA 6.16. In view of the identifications made above, if [f,dom(f)] € Q(A)
(with f € M,(A) and I = dom(f) € Z(A) NR(A)), then
INB(A) C{a € B(A): fo N[f,dom(f)] € B(A)}.
Proof. Let a € I N B(A). Then for every x € I,(fu A f)(x) = fa(z) A f(z) =
aNzAflz)=aANf(x)=a0 f(z) = fla®x) =206 f(a) (by BLig) = = A f(a),

that is f, A f is principal. B
REMARK 6.17. The axiom smBLy is necessary in the proof of Lemma 6.16.
3. Maximal BL(MYV)-algebra of quotients

DEFINITION 6.7. Let A be a BL(MV)-algebra. A BL(MYV)-algebra F is called
BL(MV)-algebra of fractions of A if:

(BLfr1) B(A) is a BL(MYV)-subalgebra of F;
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(BLfry) For every a/,b',c € F,a’ # 1V, there exists e € B(A) such that e Aa’ # e A
and e A ¢ € B(A).

So, BL(MYV)-algebra B(A) is a BL(MV)-algebra of fractions of itself (since
1€ B(A)).

As a notational convenience, we write A < F' to indicate that F'is a BL(MV)-
algebra of fractions of A.

DEFINITION 6.8. A BL(MV)— algebra Ay is a mazimal BL(MV)-algebra of
quotients of A if A < Ay and for every BL(MYV)-algebra F' with A < F' there exists
a monomorphism of BL(MV)-algebras i : F' — Ajpy.

REMARK 6.18. Let A be a BL— algebra. If A = F, then F is a Boolean algebra,
hence App is a Boolean algebra. Indeed, if by contrary, then there exists a’ € F such
that o' # o' ©® d' or (d')* # d. Ifd # d ©d, since A <X F, then there exists
e € B(A) such that e Na' € B(A) and

eNd #£en(d od)=(eNd)o(end),

which is contradictory!.
If (') # d/, since A <X F, then there exists f € B(A) such that f Na' € B(A)
and

fad#fad)”=(fnrd)™

which is contradictory!.

REMARK 6.19. If A is a Boolean algebra, then B(A) = A. By Remark 6.18, Ayy
is a Boolean algebra and the azioms (sm — BL1) — (sm — BLy) are equivalent with
(sm — BL1), hence Ay is in this case just the classical Dedekind-MacNeille com-
pletion of A (see [122], p.687). In contrast to the general situation, the Dedekind-
MacNeille completion of a Boolean algebra is again distributive and, in fact, is a
Boolean algebra 2], p.239.

LEMMA 6.17. Let A be a BL— algebra, A <X F ; then for every a’,V/ € F,a’ # 1V,
and any finite sequence ¢, ..., c,, € F, there exists e € B(A) such that e Na' # e NV
and e N, € B(A) fori=1,2,..,n (n>2).

Proof. Assume lemma holds true for n — 1. So we may find f € B(A) such that
fAd # fAY and fAC, € B(A) fori=1,2,...,n—1. Since A < F, we find g € B(A)
such that g A (fAad') £ gA(fAY) and gA¢e, € B(A). The element e = fAg € B(A)
has the required properties. l

LEMMA 6.18. Let A be a BL— algebra, A X F and o' € F. Then
Iy, ={ee B(A):eNd € B(A)} € Z(B(A)) NR(A).

Proof. Clearly, I, € Z(B(A)).

To prove I, € R(A), let z,y € A such that eAz = eAy for every e € I,;NB(A).
If by contrary, z # y, since A < F, there exists ey € B(A) such that eg A a’ € B(A)
(that is ey € I) and ey A x # eg Ay, which is contradictory. B

THEOREM 6.19. Let A be a BL— algebra. Q(A) is a mazimal BL-algebra of
quotients of A. If BL— algebra A is an MV — algebra, then Q(A) is a mazimal
MV -algebra of quotients of A.
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Proof. Let A be a BL— algebra. The facts that B(A) is a BL-subalgebra of
Q(A) follows from Lemma 6.15, (¢). To prove BLfra, let [f,dom(f)], [g,dom(g)],
[h,dom(h)] € Q(A) with f,g,h € M,(A) such that [g,dom(g)] # [h,dom(h)] (that
is there exists z¢ € dom(g) N dom(h) such that g(zo) # h(zo)).

Put I =dom(f) € Z(A) NR(A) and

Ijdom(p) = {a € B(A) : fa A[f,dom(f)] € B(A)}
(by Lemma 6.15, f, € B(M(A)) if a € B(A)). Then by Lemma 6.16,
INB(A) C Iit dom(p))-
If suppose that for every a € I N B(A), fo Alg,dom(g)] = fa A [h,dom(h)], then

[fa N g,dom(g)] = [fa N h,dom(h)], hence for every = € dom(g) N dom(h) we have
(Fu 7 9)(&) = (fa A 1)(@) ie. ang(z) = aAh(z).

Since I € R(A) we deduce that g(x) = h(z) for every x € dom(g) N dom(h) so
[g,dom(g)] = [h, dom(h)], which is contradictory.

Hence, if [g,dom(g)] # [h,dom(h)], then there exists a € I N B(A), such that
fa Ng,dom(g)] # fa A [h, dom(h)]. But for this a € I N B(A) we have

Ja N[f, dom(f)] € B(A)

(since by Lemma 6.16, I N B(A) C I gom(f)))-

To prove the mazimality of Q(A), let F' be a BL-algebra such that A < F; thus
B(A) € B(F)

A = F
i
Q(A)

For o' € F,I,, = {e € B(A) : eNd € B(A)} € Z(B(A)) N R(A) (by Lemma
6.18).

Thus fu : I, — A defined by fu(x) =z Ad is a strong multiplier. Indeed, if
e € B(A) and = € I, then

foleoz)=(cox)Nd =(ehx)Nd =en(zhd)=cO(xNd)=e® fu(x),
and
fa/(l‘) <uz,

hence sm — BLq and sm — BL9y are verified.

To verify sm — BLg, let e € [ N B(A) = I. Thus, fo(e) = eAd’ € B(A) (since
e c Ia/).

The condition sm — BLy is obviously verified, hence [fy/, I/] € Q(A).

We define i : F' — Q(A) by i(a') = [fu, o], for every o’ € F. Clearly i(0) = 0.

For o/,0/ € F and = € I, N Iy, we have
(i(a")i(0"))(z) = (d'Az)Olzr — (V' Az)] = (dOx)0lz — (VAz)] = dolze(z — (V'AD)))
=dolzAWAr)] =d O Az) = d O Ox) = (dOb)ox = (d/ OV )Nz = i(d oY) (),
hence i(a’) [i(V) = i(a’ ©®¥') and

(i(a") —i(t))(z) = 2 @ [i(d') () — i(V')(z)] =
—20[(@Az) - W AD) =20 [@od) = (oY) =
B oo (d = V) =2 A(d — V) =i(d — b)(2),

hence i(a’) — i(b') = i(a" — V'), that is 7 is a morphism of BL-algebras.
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If BL— algebra A is an MV — algebra, then for o/,b' € F and x € I, N Iy, we
have

((a)YBi))(z)=[(d Az)® O A Ax™="" (d @) Az =i(d ®V)(z),

hence i(a’) Bi(V) =i(a’ D).
Also, for z € I,/ we have

(i(d)) (@)=z0fi(d) ) =20 (@A) =20 (d ®2)" =

=20 " @ )] =2 () = fa) (@) =i((d))(2),
hence
i((a')") = (i(a’))",
that is ¢ is a morphism of MV -algebras.

To prove the injectivity of 4, let a’, b’ € F such that i(a’) = i('). It follows that
[fars L) = [fory Iyy] sO fo(x) = fy(x) for every x € I,y N 1Iy. We get a ANz =V ANz for
every € Iy N Iy. If ' # b/, by Lemma 6.17 (since A < F), there exists e € B(A)
such that e Aa';e ANV € B(A) and e Ad’ # e AV which is contradictory (since
eNd,eNl € B(A) impliese € Iy N1Iy). A

PROPOSITION 6.20. Let A be a BL - algebra. Then the following statements are
equivalent:

(i) Every mazximal strong multiplier on A has domain A;
(ii) For every strong multiplier f € M (I, A) there is a € B(A) such that f = f,
(that is f(x) = a A x for every x € I);
(i11) Q(A) ~ B(A).

Proof. (i) = (). Assume (i) and for f € M(I,A) let f’ its the maximal
extension (by Lemma 6.13). By (i), we have f': A — A. Put a = f/(1) € B(A) (by

sm — BL3), then for every x € I , f(z) = f(z) A1 smBla zAf(l)=azNa= fu(x),
that is f = f,.

(#4) = (i7i). Follow from Lemma 6.15.

(797) = (7). Follow from Lemma 6.13 and Lemma 6.15.1

DEFINITION 6.9. If A verify one of conditions of Proposition 6.20, we call A
rationnaly complete.

REMARK 6.20. 1. If A is a BL(MV)— algebra with B(A) = {0,1} = Lo
and A X F then F = {0,1}, hence Q(A) = La. Indeed, if a,b,c € F with
a # b, then by BL fry there exists e € B(A) such e ANa # eAb (hence e # 0)
and e A ¢ € B(A). Clearly, e = 1, hence ¢ € B(A), that is F = B(A). As
examples of BL— algebras with this property we have local BL— algebras
and BL— chains (see [99], p.33).

2. More general, if A is a BL(MV)— algebra such that B(A) is finite, if A < F
then F' = B(A), hence Q(A) = B(A). Indeed, consider a € F. B(A) being
finite, there exists a largest element e, € B(A) such eqNa € B(A). Suppose
eqV a # eq, then there would exists e € B(A) such that e A (eqV a) # eNeg
and e/Na € B(A). But e Na € B(A) implies e < e, and thus we obtain e =
en (ea Va) #eNe, = e, a contradiction. Hence e, V a = eq, 50 a < eq,
consequently a = a AN e, € B(A), that is F C B(A). Then F = B(A), hence
Q(A) = B(A).
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EXAMPLE 6.9. 1. We consider BL— algebra A = {0,a,b,¢,1} from Eu-
ample 3.11, then B(A) ={0,1} = Lo, FF = {0, 1}, hence Q(A) = Ls.
2. If Lgxo is MV — algebra from Ezxample 3.12, then B(A) = {0,a,d,1} is
finite, so F' = B(A) and Q(A) = B(A) ={0,a,d,1}.

REMARK 6.21. B(A) is a BL - subalgebra of A and a BL— subalgebra B of A
is a Boolean algebra iff B C B(A). So, in Sections 2 and 3 of this chapter, we can
replace the Boolean algebra B(A) with a Boolean subalgebra B C B(A) and finally
we obtain that Q(A) is just Q(B) = the MacNeille completion of B. In particular
for B = B(A) we obtain the results of this chapter. This idea will be used in a new

paper.
4. Topologies on a BL(MV)-algebra

Let A be a BL— algebra.

DEFINITION 6.10. A non-empty set F of elements I € Z(A) will be called a
topology on A if the following properties hold:
(top1) It I € F, Iy € Z(A) and I) C I then Iy € F (hence A € F );
(topg) If1,Iob € F,then 1 NIy € F.

REMARK 6.22. 1. F s a topology on A iff F is a filter of the lattice of
power set of A; for this reason a topology on A is usually called a Gabriel
filter on Z(A).

2. Clearly, if F is a topology on A, then (A, F U{(}) is a topological space.

Any intersection of topologies on A is a topology; hence the set T(A) of all
topologies of A is a complete lattice with respect to inclusion.

EXAMPLE 6.10. If I € Z(A), then the set
FI)y={I'eZ(A):I1CT'}
s clearly a topology on A.

REMARK 6.23. If in particular, A is the BL -algebra from Example 3.11 (A =
{0,¢,a,b,1}), then Z(A) = {I C A :ifz,y € Ajx <y andy € I, then x €
I} = {11,127[3714,15,16} where Il = {0}, I2 = {O,C} I3 = {0, C,CL} I4 = {O,C7 b},
Is = {0,c,a,b} and Is¢ = A. So, F(I1) = I(A), F(l2) = {I> I3 14, 15,1}, F(I3) =
{I315, I}, F(1s) = {14, 15,16}, F(I5) = {I5,I6} and F(ls) = {Is}.

REMARK 6.24. In particular, if Lsxo is the MV -algebra from Ezample 3.12
(Lsxo = {0,a,b,¢,d,1}), then Z(A) = {I C A:ifx,y € A,x <y and y € I, then
S I} = {Ila—[2,]3,—[47]57]67[77[87]9} where Il = {O}, [2 = {0,0,} 13 = {O,b} I4 =
{0,a,b}, I5 = {0,b,d}, I = {0,a,b,c},Ir = {0,a,b,d},Is = {0,a,b,c,d} and Iy =
L3yo. So, F(I1) = Z(Lax2), F(I2) = {12 1s 16, I7, Is, Io}, F(I3) = {13 14, I5, Is, I7, I3, Iy},
F(ly) = {1y, Is, I7,1s, 1o}, F(I5) = {I5,I7,Is, 1o}, F(l) = {I¢,1s,Io}, F(I7) =
{I7,Ig,[9},f([8) = {Ig,]g} and f([g) = {Ig}

EXAMPLE 6.11. If we denote R(A) ={I C A: I is a regular subset of A}, then
Z(A)NR(A) is a topology on A.

REMARK 6.25. Clearly, if A is the BL -algebra from Example 3.11, since B(A) =
{0,1} = Ly then Is = A is the only reqular subset of A (11,15 I3 14, I5 are non reqular
because contain 0 and for example we have 0 ANc = 0Aa and a # c). So, in this case

F =T(A) NR(A) = {A}.
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REMARK 6.26. If Lyxo is the MV -algebra from Example 3.12 then Ig = L3xo is
the only regular subset of Lsxo (11,1213 14,15, 16 I7 Is are non regular; for example
I is non regular because 0 Na = 0Ac,aNa =aAc and a # c). So, in this case

F =TI(Lsx2) NR(L3x2) = {Lsxa}-

EXAMPLE 6.12. A nonempty set I C A will be called dense (see [64]) if for every
x € A such that e Nz =0 for every e € I N B(A), then x = 0. If we denote by D(A)
the set of all dense subsets of A, then R(A) C D(A) and F = Z(A) N D(A) is a
topology on A.

REMARK 6.27. As above, for BL— algebra A = {0, ¢, a,b, 1}, from Example 3.11,
D(A) = {A} (because I € D(A) if 1 € I).

EXAMPLE 6.13. For any A— closed subset S of A we set Fs = {I € Z(A) :
INSNB(A) # ©}. Then Fg is a topology on A . Clearly, if I € Fg and I C J
(with J € Z(A)), then IN SN B(A) # @, hence J N SN B(A) # ©, that is J € Fg.
If I, I € Fg then there exist s; € ; N SN B(A),i = 1,2. If we set s = s1 A\ sa, then
se(iNnlh)NSNB(A), hence 1 NIy € Fg .

REMARK 6.28. In the case A ={0,c,a,b, 1}, from Example 3.11, since B(A) =
{0,1} = Lo then for S C A an N— closed system, Fs ={I € Z(A) : INSN{0,1} #
o}

1. If S is an N—closed system of A such that 0 € S (that is S = A, B(A) =
Ly,{0,¢,1},{0,¢,a,1},{0,¢,b,1},{0,a,1} and {0,b,1} then: for S = A, Fg =
I(A); for S = B(A) = Lo, Fs = Z(A); Also, for S = {0,¢,1},{0,¢,a,1},
{0,¢,b,1}, {0,a,1} and {0,b,1} we have INSNB(A) = {0} # © for every
I €Z(A), so Fs =1(A).

2. If0 ¢ S (thatis S = {1},{a,1},{b,1},{c,1}},{a, ¢, 1},{b,c, 1} and {a,b,c,1}),
then Fs = {A} (because, if I € Z(A) and 1 € I implies I = A).

REMARK 6.29. If L3y is the MV -algebra from Example 3.12, since B(L3x2) =
{0,a,d,1} then for S C L3yxo an A— closed system, Fg = {I € I(L3x2) : INSN
{0,a,d,1} # @}.

1. If S is an A—closed system of Lsxo such that 0 € S':
S = L3><Za {07 1}’ {03 a, 1}7 {O, ba 1}7 {0, ¢, 1}3 {07 d’ 1}a
{07 a, b7 1}7 {07 a, c, ]-}7 {07 a, d7 1} == B(L3><2)7
{0,b,¢,1},{0,b,d,1},{0,a,b,c,1},{0,a,b,d,1},{0,b,c,d, 1}.
then Fs = I(L3x2).
2. If0 ¢ S buta € S (that is S = {a,1},{a,c,1}) we have INSN{0,a,d,1} =
{CL} 7é © so fS = {127-[4’-[67-[77-[87-[9}’
3. If0 ¢ S butd € S (that is S = {d,1},{b,c,d,1}) we have INSN{0,a,d, 1} =
{d} # @ so Fg = {157177[8719}‘
4. If 0,a,d ¢ S (that is S = {1},{b,1},{c,1},{b,c,1}) then Fg = {Iy =
L3><2}-

5. Localization BL(MYV)-algebras

5.1. F-multipliers and localization BL(MYV)-algebras. Let A be a BL—
algebra and let F a topology on A. Let us consider the relation 67 of A defined in
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the following way:

(x,y) € OF < there exists [ € F such that e Ax =e Ay for any e € I N B(A).
LEMMA 6.21. 0 is a congruence on A.

Proof. The reflexivity and the symmetry of 8 are immediately; to prove the
transitivity of 0x let (z,y),(y,z) € O0x. Then there exists I;,Io € F such that
eNx =eAy for every e € [N B(A), and fAy = fAzfor every f € Iy;NB(A). If the
set I =11 NIy € F , then for every g € IN B(A), g Ax =gA z, hence (z,z) € 0.

To prove the compatibility of 67 with the operations A,V,® and —, let (x,y),
(z,t) € O£, that is there exists I, J € F such that eAx = ey for every e € INB(A)
and f Az = f At for every f € JN B(A). If denote K = I NJ, then K € F and for
every g€ KNB(A),gANx=gAyand gAz=gAt.

We obtain

gAN(@N2)=(gAT)N(gNz)=(gANy) AN(gAt)=gA(yAt),

gN(xVz)=(ghz)V(gNz)=(gNy)V(gNt)=gN(yVi),
hence (z A z,y At),(zV z,y Vt) € O, that is O is compatible with the operations
A and V.
By bl — c41 we deduce that for every g € K N B(A) :

gA(@®2) "= (gra) o (ghz) =

bl—cq1

=AYy ognt) =" gn(yot),
hence (z ® z,y ®t) € O, that is 0 is compatible with the operation ©.
Also, by bl — c42 we deduce that for every g € K N B(A) :

l—cy

gA(@E—2)=g0(x—2) "= g0[(gor) - (g0 2)] =
=g0lghz) = (gN2)] =90 [(gNhy) = (gNt)] =

bl—ca2

=90[goy) = (o) " ="goy—t)=gA(y—1),
hence (z — z,y — t) € O, that is O is compatible with the operation —, so 0 is
a congruence on A. W

We shall denote by 2/60 £ the congruence class of an element z € A and
Al0r ={x/0F 2z € A}
Then, A/6r is a BL— algebra with the natural defined operations and
priA— Al0r
is the canonical onto morphism of BL-algebras.

PROPOSITION 6.22. Fora € A, a/0r € B(A/0F) iff there exists I € F such that
a/Ne€ B(A) for every e € I N B(A). So, if a € B(A), then a/0x € B(A/0F).

Proof. For a € A, we have a/0r € B(A/0r) & a/0r ©® a/0F = a/0F and
(a/0F)* =a/0r < (a®a)/0F = a/0F and a™* /0 = a/0F < there exists J, K € F
such that (a ®@a) A f =aA f, for every f € JN B(A) and a** A g = a A g, for every
g€ KNDB(A).

From bl — c41, we deduce that (a A f) ® (a A f) =aA f, for every f € JN B(A).

If denote I = J N K, then I € F and for every e € I N B(A),

(ane)® (ane)=aAle,
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and
(ane)* UGt g N e =g Ae=aA e,
so, a A e € B(A) for every e € I N B(A).
So, if a € B(A), then for every I € F, aNe € B(A) for every e € I N B(A),
hence a/0r € B(A/0r).1

COROLLARY 6.23. If F =Z(A)NR(A), then a € B(A) iff a/0r € B(A/0F).

DEFINITION 6.11. Let F be a topology on A. An F— partial multiplier is a
mapping f : I — A/0F, where I € F and for every z € I and e € B(A) the
following axioms are fulfilled:

(m—BLy1) fle©x) =e/0F A f(x) =e/0F © f(z);
(m — BLo) f(z) <z/0f.

By dom(f) € F we denote the domain of f; if dom(f) = A, we called f total.

To simplify language, we will use F— multiplier instead partial F— multiplier,
using total to indicate that the domain of a certain F— multiplier is A.

The maps 0,1 : A — A/0r defined by 0(x) = 0/07 and 1(x) = z/0F for every
r € A are F— multipliers in the sense of Definition 6.11.

Also for a € B(A) and I € F, f, : I — A/OF defined by fu(x) = a/0r Nx/0Ff
for every x € I, is an F— multiplier. If dom(f,) = A, we denote f, by f, ; clearly,
fo=0.

We shall denote by M (I, A/6r) the set of all F— multipliers having the domain
I eF and

M(A/0F)= U M(I,A/0F).
IeF
If 1,1, € F, I} C I, we have a canonical mapping
On: M(Iy,A)0F) — M(I1,A/0F)
defined by
on.1,(f) = fir, for f € M(I2,A/0F).

Let us consider the directed system of sets

({M(1,A)05)} ier A er 1} beFncn)
and denote by Az the inductive limit (in the category of sets):

Ay = imM(I, A/0F).
IeF

For any F— multiplier f : I — A/0z we shall denote by m the equivalence
class of f in Ag.

—

REMARK 6.30. If f; : I, — AJ0F , i = 1,2, are F—multipliers, then (I, f1) =

—

(I2, f2) (in Ag) iff there exists I € F , I C Iy N Iy such that fi; = fyr.

Let fi: I; = A/0F , (with I; € F, i = 1,2), F—multipliers. Let us consider the
mappings
ANfo:Iinly — Af0F
VLNl — Al0F
B f:hinl,— Al0F
fi—fo:hinly — Al0F
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defined by
(fi A fo)(x) = fi(2) A fo(m),
(f1V fo)(z) = fi(z) V fo(2),
(A0 L) (@) = fi(2) © [1/0F — fa(z)] "= folz) © [1/0F — fi(x)),
(fi = f2)(@) =2/0F © [fi(z) — fa(z)]
for any x € I; N I, and let
(11/,71) A (12/772) = (I ﬂﬂ/\ f2),
(h/,\h) Y (12/,\fz) = (L ﬂﬁ\/ f2),
(I, f1) - (I f2) = (N Ty, fL B fo),
I, 1) — (I f2) = (L0 I, fi = fa).

Clearly the definitions of the operations A, Y,- and — on Ar are correct.
LEMMA 6.24. fi A foe M(I1 N1y, A/OF).
Proof. If z € I1N I and e € B(A), then
(finfo)leon)=fileOz)A faleOx
= (e/0r © fi(x)) A (e/0F © fo(z))
= (e/0r A f1(z)) A (e/0F A fa(x))
=e/0F N [1(z) A fa(2)] = /07 © (f1 A f2)(2).
(z

Since f; € M(I;,A/0F),i = 1,2, we have (f1 A f2)(x) = fi(x) A fa(x ) <z/0r A
x/0F = x/0F, for every x € I1N Iy, that is f1 A fo € M(I1 N 15, A/07). B

LEMMA 6.25. fiV fo € M(I1 N 13, A/0F).

Proof. If z € I1N I and e € B(A), then
(iVfo)leox)=file®z)V fale®x) =
= (e/0F ® f1(2)) V (/05 © folx)) "=

"I e J0r @ [fi(2) V fo(@)] = ef0F © (1 V f2) ().

Since f; € M(L;, AJ05),i = 1,2, we have (fi V fo)(z) = f1(2) V fo(x) < /05 V
x/0F = x/0F, for every x € I1N Io, that is f1 V fo € M(I; N 13, A/07). B

LEMMA 6.26. f1 [ fo € M(Il N IQ,A/@]:).
Proof. If z € I1N I and e € B(A), then
(fillfo)eoa) = fileOz)O[(e®z)/0F — fole ®x)] =
=[e/0r© filx)] ©[(e®x)/0F — (e/0F © faz))] =
= fi(z) ©[e/0r O (e©z)/0F — (e/0F © fo(z)))] =
" fi(2) © le/0F © (2/0F — fo(w))] =
=e/0r O [fi(x) © (x/0F — fo(x))] = e/0F © (f1 T f2) ().

Clearly, (f1lJf2)(x) = fi(z)©[z/0F — f2(2)] < fi(x) < 2/0F, for every € 1N
Iy, that is f1 [ fo € M(Il ﬂIQ,A/G]:). |

LEMMA 6.27. fi — fo€ M(I; N1y, A/0F).

~—

S~
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Proof. If z € I1N I and e € B(A), then

(i = f)leor)=(e0)/0rO[fileOr) = fale® )]

=(e0z)/0r O [(e/0F © fi(z)) — (e/0F © fa(x))] =
— 2/07 0 ()07 © (/07 © fi(x)) — (/05 © fo(a)))] =
" 2)05 © [e/0F © (fila) = folw))] =
=e/0r ©z/0r © (fi(z) — fo(2))] =€/0F © (f1 = f2)(2).
Clearly, (f1 — f2)(z) = 2/0F © [fi(z) — f2(x)] < x/0F, for every x € I1N I,
that is fi — fo € M(Il N IQ,A/@]:). |

PROPOSITION 6.28. (M(A/0F),N,V,d,—,0,1) is a BL-algebra.

Proof. We verify the axioms of BL-algebras.

BL;). Obviously (M(A/0F£),A,V,,—,0,1) is a bounded lattice.
BLs). Let f; € M(I;, AJ0F) where I, € F,i=1,2,3.

Clearly, fi1 [ fo € M(A/0x) (see Lemma 6.26) and

(I1, f1) - (I2, f2) = (LN Iz, f1 B f2) € AF.
Thus, for x € I N I, N I3 we have

B0 B)(x) =(07)(2) o (x/0r — filz) =
= [fo(z) © (2/0F — f3(2))] © (x/0F — fi(z)) =
= fa(z) O [(z/0F — f3(2)) © (z/0F — fi(2))] =
= fa(z) © [(x/0F — fi(z)) © (x/0F — f3(x))] =
= [fo(2) © (x/0F — fi(2))] © (2/0F — f3(z)) =

= (LB f2)(@) © (x/0F — f3(x)) = [(/1 T f2) O f3](=),

HB(REf)=(HER)Ef
and

T 1) - (T o) - (T, 3)] = [T 1) - (T, f2)) - (T, ),

that is the operation [ is associative on M (A/0r) and the operation - is associative
on Aj-‘.
By definition

(L0 fo)(x) = fi(2) © [2/0F — folx)] "=
bl—cas fo(x) © [2/0F — fi(x)] = (f2 O f1)(z),

S0
LB fL=LEA
and o o
(11, f1) - (T2, f2) = (T2, f2) - (11, f1),
that is the operation [ is commutative on M(A/0r) and the operation - is commu-

tative on Ar.
Let fe M(I,A/0F) with I € F. If x € I, then

(fEL)(z) = f(z) © (z/0F — 1(z)) =
= f(2) © (z/0F — x/0F) = f(x) ©1/0F = f(z),
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and
(1 f)(@) =1(=z) © (z/0F — f(z)) =
=z/0F5 © (x/0F — f(x)) =x/0F A f(x) = f(2),
hence
fO1=10f=/,
that is

(5 (A1) =(41)- 1,5 =T f),
and (M(A/0r),[1,1) is a commutative monoid. Clearly, (Af,-,1 = (71,\1)) is a
commutative monoid.
BL3). Let f; € M(I;, AJ0F) where I, € F,i=1,2,3.
Since f1 < fo — f3 for x € I1 N Is N I3 we have
fil@) < (f2 = f3)(z) & fi(x) < 2/0F O [fo(z) — f3(2)].
So, by bl — co,
filz) ©[2/0F — fo(x)] S z/0F © (z/0F — f2(2)) © (f2(2) — f3(2)) &
fi@) ©[2/0F — fo(z)] < (x/0F A fo(2)) © (folz) — f3(2)) &
filz) ©[2/0F — fo(2)] < foz) © (falz) — f3(2)) &
filz) ©[z/0F — fa(x)] < falx) A f3(2) < f3(z) &
(2B fi)(z) < f3(w),
for every = € Iy N Is N I3, that is
folf1 < fs.
Conversely if (f2 [ f1)(z) < f3(x) we have
fi(z) © [z/0F — fo(x)] < f3(2),
for every x € Iy N Is N I3.
Obviously,
fo(z) ©[z/0F — fi(2)] < fi(z) © [2/0F — fa(2)] <
e a/fr — fi(z) < fo(x) — [fi(z) © (z/0F — fa(2))].
So,
2/br — Fi(2) < fale) = [}i(2) © (@/07 — o@)] < fola) — fale)
S 2/07 0 (2/05 — fi@) < 2/05 © (foz) = f3(2))
=z/0r A fi(z) <x/0F O (f2(z) — f3(2))
= fi(z) < (f2 — f3)(@).
So, fi < fo— f3 iff 200 fi < f3 for all fi, f2, f3 € M(A/0x) and so
(I, f1) < (B, fo) — s, f3) iff (B, fo) - (T, 1) < (s, fo).
BLy). Let f; € M(I;, A/0F) where I, € F,i=1,2.
Thus, for z € I; N I, we have
B (i — L)) =i = L)) ex/0r — fi(z)]
=z/0r © [fi(z) = fo(2)] © [x/0F — f1(z)] =
= (z/0F ©[z/0F — fi(z)]) © [fi(z) = fo(x)] =
=[z/07 A f1(2)] © [fi(z) = fal2)] = fi(2) © [fi(z) — fo(z)] =
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= fi(z) A fo(z) = (fi A fo)(2).
So,
AN fa= 01 = f2)

and

—_—

(I1, f1) A (I2, fo) = (11, f1) - (11, f1) — (L2, f2)].
BLs5). We have

[(f1 = f2) V (fo = fO)l(z) = [(f1 = fo)(@)] V[(f2 = fr)()] =
= [¢/0F © (fi(z) — f2(@))] V [2/0F O (folz) — fi(2))] =
T 05 O [(fi(w) = f2(2)) V (folx) — fi(@))] =

BLo 2 10r ©1/0F = 2/0F = 1(2),

hence
(fi—=fo)V(fa— fi)=1

and

(11, /1) — (o, )] ¥ (T2, o) — (1, /1)) = (A, 1).8

—

COROLLARY 6.29. (Az, A, Y, ,—,0=(A,0),1 = (A,1)) is a BL-algebra (see
the proof of Proposition 6.28).

DEFINITION 6.12. The BL-algebra Ax will be called the localization BL-algebra
of A with respect to the topology F .

PROPOSITION 6.30. If BL— algebra (A,A,V,®,—,0,1) is an MV — algebra
(A, ®,*,0) (i.e. 2™ =z, for all x € A), then BL— algebra (M(A/0£),N,V,, —
,0,1) is an MV — algebra (M (A/0F), B,*,0) , where for f; : I; — A/0Fr , (with
I € F,i=1,2), F—multipliers we have the mapping

fBfo:LNnly— Al0F,

(18 fo)(z) = (fi(z) ® folz)) Na/0F
for any x € Iy N Iz, and for any F—multiplier f : I — A/0x (with I € F ) we have
the mapping
ff=f—0:1— A/,
(@) = (f = 0)(z) = z/07 © (f(z))"

foranyx el .

Proof. To prove that BL— algebra M(A/0f) is an MV — algebra let f €
M(I,A/0F), where I € F.
Then

f7 (@) =[(f = 0) = 0](z) = /07 © [(f = 0)(@)]" = /07 O [z/0F © (f(2))"]"

= 2/05 ©[a/05 © (f(2))" = 0/05)] "=" /65 © [¢/65 — (f(2))™] =
=x/0r A (f(@)" =x/0F A f(z) = f(z),

(since A is an MV — algebra then A/0r is an MV — algebra and f(x) € A/0F, for
all x € I).

So, f)** = f and BL— algebra M(A/0F) is an MV -algebra.

We have f, 8 f; = (f{ B f5)".

Clearly,

(LB f)() =2/0r O [f{(2) © (z/0F — f3(2))]"
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=z/0Fr ©z/0r © (fi(z)" © (2/0F — 2/0F © (f2(z))")]" =
=z/0r O [(f1i(z)* ©z/0r © (x/0F — x/0F O (fo(x))")]*
BLy

L 210 70[(f1(2) (/05N 07O (fo(2)))] = 2/070[(fi(2)) Cx/0F0(fa(x))]
= 2/0r 0 [2/07 0 (fi(2))* O (fo(@) T "= 2/07 0 [2/0F — ((fi(2))* © (fa(2))")]

BLy4

= z/0r A (f1(z) ® f2(2)),
forallz e 1 N 1>,.A
COROLLARY 6.31. If BL—- algebm A is an MV — algebra then BL— algebm

(Ar, A, Y, —,0 = (A 0),1 (A 1)) is an MV — algebra (Ar,+,*,0 = (A4, O))
where

(Il/a\fl) + (12, f2) = (I1 N Iy, f1 B f2).

and - .
(L, f)" =, f*).
LEMMA 6.32. If A be a BL— algebra, the map vy : B(A) — Agx defined by

vr(a) = (A, f,) for every a € B(A). Then:
(i) vr is a morphism of BL-algebras;

(ii) For a € B(A), (A, f.) € B(Af);
(iii) vr(B(A)) € R(ArF).
Proof. (i). We have vr(0) = (ﬁ) = m =
For a,b € B(A) and x € A we have
(anNz)O(x— (bAZ)=(a0x)®(z— (bAZ)) =
=a@zO(x—bAx))=a0[zA(DAz)]
=aAN[zA(bAZ)=aNn(bAz)=(aANb)ANz=(a@®b) Az

and
zO[(anz) = (bAZ)=2z0(x®a) = (xOb)] =
bl;c43:c®(a—>b) =z A (a—b),
hence o
ur(a) - or(b) = (A, Ta) - (A Ts) =
= (A, fa O fo) = (4, facp) = vr(a © D)
and

—_—

Uf(a) — Uf(b) = (Avfa) — (Avﬁ) =

— (A e = Fo) = (A fap) = vpa — b)
hence vz is a morphism of BL-algebras.
(7i). For a € B(A) we have a ® a = a and a™* = a, hence
(anz)O[z—(anz)=(a0x)O[r— (aANx)] =
=a0z0(x—(ahx))=a0zA(aNx)] =
=a®(anz)=aAN(aNz)=(aNz),
and
O[O (aNz) 0 [z ©® (a® Va")]* =
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"o red) V(o)) =
" o (zea) VO =20 (z@ad) =
=z0O(xANa)* bljgsa:@(x*\/a):
bl;csl(xQx*)v(xQ )bl =50V (r0a)—zGa=zAa

for every x € A.
Since A € F we deduce that

(aAhz)/0F ©lx/0F — (aNz)/0F] = (anx)/0F
and

2/0r©[x/0r© ((aAx)/0£) " = (anx)/0F,
hence f, & f, = f, and (f,)** = f, , that is

(4, fa) € B(AF).
(¢it). To prove that v]:(B(A)) is a regular subset of Ar, let @,\fz) cAr, I, € F,
i = 1,2, such that (A fo) A (I, f1) = (A, fo) A (IQ/E) for every a € B(A). By

(i1). (A, ) € B(AF). _

Then (fi1 A fo)(z) = (fa A fa)(x) for every z € I} N I3 and a € B(A) < fi(x) A
x/0r Na/0r = fa(x) Nx/0r Na/OF for every z € 1 NIz and a € B(A) & fi(z) A
a/0r = fa(xz) Na/OF for every x € Iy NIy and a € B(A) .

In particular for a = 1, a/07 =1 € B(A/0r) we obtain that fi(x) = fa(z) for

every x € I N Iy, hence (11, f1) = (I2, f2), that is vr(B(A)) € R(Ar). B

5.2. Strong F-multipliers and strong localization BL(MYV)-algebras.
To obtain the maximal BL(MV') -algebra of quotients Q(A) as a localization relative
to a topology F we will develope another theory of F— multipliers (meaning we add
new axioms for F-multipliers).

Let A be a BL— algebra.

DEFINITION 6.13. Let F be a topology on A. A strong - F— multiplier is a
mapping f : I — A/0r (where I € F) which verifies the axioms m — BL; and
m — BLy (see Definition 6.11) and

(m — BL3) If e€ INB(A), then f(e) € B(A/0r);
(m — BLy) (x/0F) N f(e) = (e/0F) A f(z), for every e € IN B(A) and x € I.

If F = {A}, then 6£ is the identity congruence of A so an strong F— multiplier
is a strong total multiplier.

REMARK 6.31. If (A,A,V,®,—,0,1) is a BL— algebra, the maps 0,1 : A —
A0 defined by O(x) = 0/0F and 1(x) = x/0Fx for every x € A are strong -
F— multipliers. We recall that if f; : I; — A/0F , (with I; € F, i = 1,2) are
F—multipliers we consider the mappings fi A fo, fiV fo, ild fo, fi = fo: 1 NIy —
A/OF defined by

(fi A fo)(@) = fi(z) A fo(m),
(f1V f2)(@) = fi(z) V fa(2),

(1B fo)(@) = fi(2) © [2/85 — fo(2)] "= fola) © [2/07 — fi(2)],
(fi = fo)(@) = /07 © [fi(z) — fol2)]
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for any x € I N Ix. If f1, fo are strong - F— multipliers, then the multipliers fi A
fo, fiV fo, fid fo, f1 — fo are also strong - F— multipliers. Indeed, if e € Iy N 1o N
B(A), then
(1 A f2)(e) = fi(e) A fae) € B(A/0F),
(f1V f2)(e) = fi(e) V fa(e) € B(A/0F).
By Remark 3.8 we have
(frEf2)(e) = file) © [e/O0F — fale)] =
= f1(e) © ((e/07)" V fa(e)) € B(A/0F)
and
(f1 = f2)le) = e/0Fr O [fi(e) = fale)] = e/0F © [(f1(e))" V fa(e)] € B(A/0F).
Fore e 1 N Io N B(A) and x € I1N Is we have:
z/0F N (fL A fa)(e) =x/0F A fi(e) A fa(e) =
= [z/0F N fi(e)] Na/0F A fale)] =
=[e/0r A fr(@)] N e/O0F A fa(x)] = /07 A (fL A f2)(2),

and
z/0F N (f1V f2)(e) = z/0F N[fi(e) V fa(e)] =
= [z/0r A fr(e)] V [z/0F N fa(e)] =
= le/0r A fr(2)] V [e/0F A f2(x)] =
=e/0r AN[fi(z) V fa(x)] =e/0F A (f1V f2)(@),
and

2/0F A (f1 8 f2)(€) = 2/05 A [fi(e) © (e/07 — fale))]
= 2/07 © [f1(e) © (/87 — fa(e))] = f1(e) © [2/6F & (e/0F — fa(e))]
M8 () @ [2/05 © (z 0 €)/0r — (/07 © fale)))]
= (file) ©2/0F) O (z © €)/0F — (¢/0F © fale)))
= (/87 ® f1(2)) © (e ©2) /87 — (e/07 © falx)))
= f1(2) © [e/0F © ((e/0F ® 2/8F) — (e/0F O fo(z))
" f () © /07 © (2/0F — fo(x))] =
=e/0r O [fi(2) © (¢/8F — fa(2))]
=e/0r© (il fo)(x) =e/0F A (f1 O fo)(z),

)]

hence
z/0F A (fLE fa)(e) =e/0F A (f1 B fa)(x).
Also:

e/0F A (f1 — f2)(x) = e/0r Az/0F © (fi(z) — faz))]

=(e®x)/0r o [fi(x) = fo(x)] =2/0F ©[e/0r O (fi(x) — fa(z))]
"2 1105 © [e/0F © ((e/0F ® fi(z)) — (/05 ® fola)))]
=2/0r O le/0r O ((z/0F @ fi(e)) — (z/0F © fa(e)))]
=e/0r®x/0r© (z/0F ® fi(e)) — (x/0F © fa(e)))]

8 10 O [2/0F © (file) = fale))] =
=2/0r ©e/0r © (fi(e) — fa(e))] =
=x/0r O (fi — fo)le) =x/0F A (f1 — f2)(e)
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hence
/05 N (f1 — f2)(€) = e/0F N (f1 = f2)(2).

If BL—algebra (A, A,V,®,—,0,1) is an MV — algebra (A, ®,*,0) we recall that
if fi : I; - A/0F , (with I; € F, i = 1,2), are F— multipliers, we consider the
mapping fi1 B fo : [1 NI — A/0x defined by

(LB f)(z) = (fi(z) & folz)) Nx/0F
for any = € I N Iy, and for any F— multiplier f : [ — A/0r (with I € F ) we
consider the mapping f*: I — A/0r defined by
[r@)=z/0F 0 (f(z))"
for any x € I. If fi, fo and f are strong - F— multipliers, then the multipliers
f1 8 fo, f* are also strong - F— multipliers. Indeed, if e € I; NIy N B(A), then

(f1 B f2)(e) = [fi(e) ® fae)] Ae/b8r € B(A/0F),
and if e € I N B(A), then
fr(e)=e/0r O [f(e)]" € B(A/0F).
Foree 1 N Io N B(A) and x € I; N I we have:

z/0F N fLEB f2)(e) = 2/0F N(f1(e) B fa(e)) Ne/0F] = (fi(e) & fale)) Ax/0F Ne/OF
=20 (fie) @ fale)) Ax/Or,

and
e/0r N (f18 f2)(x) = e/0F N(f1(z) & fa(z)) Nz/0F] =
=e/0r O [(i(z) ® fa(x)) N z/0F]
M= e/0F © (fi(2) @ fol2)] A (e@a) /6 =
M= (/05 © fi(2) @ (e/0F © fo(2))] A (e @) 07
— [2/67 ® file) ® 2/07 ® fale)] A (e © 3) /65 =
= [(file) Az /0F) & (fale) Ax/O0F)] A (enx)/0F
= [[(fr(e) Na/0F)  (f2(e) Na/OF)] Nx/0F] Ne/bF
=T ((file) @ fale) Na/bF) Nefbr =0 (fi(e) @ fale)) A /Or
hence
z/0F N (LB f2)(e) = e/0F A (fL B f2)(x).
Since f € M(I,A/0F), for e € INB(A) and = € I we have:
x/0F N f(e) =e/0r N f(x) = (x/0F)"V (f(€)" = (e/0F)"V (f(2))"
= (z/0F)" @ (f(e))" = (e/0F)" & (f(2))"
= ¢/0r © /05 © [(0/05) & (F(0))] = 2/05 © /05 © [(¢/05)" & (f(a))] =
= e/0r © [2/05 A (F())] = 2/05 © [e/0 A (f(x))"]
=e/0rOx/0r o (f(e) =x/0F©e/0r© (f(x))
= x/0F O le/0r © (f(e)] =e/0r ©[z/0F © (f(z))"]
= 2/0FNe/0F©(f(e))] =e/0rNz/0rO(f(2)"] = x/0rNf (e) =e/0F N[ (2).
REMARK 6.32. Analogous as in the case of F— multipliers if we work with strong-

F— multipliers we obtain a BL— subalgebra of Ar denoted by s — Axr which will be
called the strong-localization BL— algebra of A with respect to the topology F.
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6. Applications

If A is a BL -algebra, in the following we describe the localization BL-algebra
Az in some special instances.
1. If I € Z(A) and F is the topology

F(I)={I' e T(A) : I C I'}

(see Example 6.10), then Ar is isomorphic with M (I, A/8r) and vr : B(A) — Ar
is defined by vr(a) = EII for every a € B(A).

If I is a regular subset of A, then 8 is the identity, hence A r is isomorphic with
M(I,A).

If, for example, I = A = [0,1] (see Example 3.1) then Az is not a Boolean
algebra. We recall that B(A) = {0,1}. Indeed if consider f : [0,1] — [0,1], f(z) =
z A z* for every x € [0,1], then f is not a Boolean element in M (I, A)(For z = 3,
then (fOA)(H =fDolf - fD=EGrDoli—GApl=10[1— 1=
103=0#3A1=1=Ff(2), hence f is not a Boolean element in M (I, A)). Also,
f is not a principal multiplier. Indeed, if by contrary then there exist a € [0, 1] such
that x A x* = a A x for every z € [0, 1] then:
ifa:O,thenforJ::%,x*:%andx/\az*:%#()/\%:(),
ifa=1,thenforz =1, 1AN1*"=1A0=0#1A1=1,
ifae (0,%),thenforx:%,a:*:%andx/\a:*:%;éa/\%:a,
4.ifae[i,1), thenforz =2 2* =2 andaAa* =2 A3 #aN?.

REMARK 6.33. If consider BL—algebra A = {0,c,a,b,1} from Example 3.11,
then

1. If I = {0}, then F({0}) = Z(A) (see Remark 6.23 ), so Ar =~ M(I, A/0F) =
M({0},A/0F) = 0.

2. If I = A, then F(A) = {A} and Of is the identity, so Ax = M(A, A).
Since B(A) = Ly = {0,1}, then f € M(A,A) iff f(x) < x for every
x € A (because the condition sm — BLy is verifyed for e = 0,1). So, f(0) =
0, f(a) < a implies f(a) € {0,c,a}, f(b) < b implies f(b) € {0,c,b}, f(c) <
¢ implies f(c) € {0,¢c} and f(1) < 1 implies f(1) € {0,¢,a,b,1}. So, if
consider f € Ar = M(A, A) such that f(a) = ¢, then f**(a) = a®la®*]* =
a@ae0*=a00"=a01=a+#c= f(a), hence f is not an boolean
element in Ax (hence in this case A is not a Boolean algebra). Also, f is
not a principal multiplier (because B(A) = {0,1} hence the only principal
multipliers are fo =0 and f; = 1).

3. If for example I = I3 = {0,c,a}, F(I) = {I3,1I5,1s}. Since 0 € I3, I5, I
and ONx = 0 Ay, then (z,y) € 0F for every x,y € A, hence in this case
Ar = M(I,0) =0. Analogously for I = I, 14 I5.

Badiaa

REMARK 6.34. We obtain analogous results if we consider MV — algebra L3xo
from Example 3.12.

2. If F =Z(A) N R(A) is the topology of regular ordered ideals (see Example
6.11), then 0 is the identity congruence of A and we obtain the Definition 6.3 for
strong multipliers on A, so

S—A]:: hi}nM([,A),
IeF
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where M (I, A) is the set of multipliers of A having the domain I (in the sense of
Definition 6.3).
In this situation we obtain:

PROPOSITION 6.33. In the case F = Z(A)NR(A), s— Ar is exactly the mazimal
BL-algebra Q(A) of quotients of A introduced in [33] and which is a Boolean algebra.

REMARK 6.35. If BL— algebra A is an MV — algebra, s — Ar is exactly the
mazimal MV -algebra Q(A) of quotients of A introduced in [26].

REMARK 6.36. If consider in particular BL- algebra A = {0,¢,a,b,1} from
Ezample 3.11, then F = {A} (see Remark 6.25 ), hence s—Ax = M(A, A). Consider
[ € M(A,A). Clearly, f(0) =0 and by sm — BL3 we obtain that f(1) € {0,1}. If
f(1) =0, then by sm — BL4 we deduce that for everyz € A, x AN f(1) =1A f(z) &
xANfQl)=f(z) e f(x) =0« f=0.If f(1) =1, f(z) = x = 1(z), hence f = 1.
So, in this case s — Ar = M(A, A) = Lo.

3. Denoting by D the topology of dense ordered ideals of A (that is D =Z(A)N
D(A) - see Example 6.12), then (since R(A) C D(A)) there exists a morphism of
BL -algebras o : Q(A) — s — Ap such that the diagrame

B(A) & Q4A)
N\ /

vp «
S—AD

is commutative (i.e. aovx = vp). Indeed, if [f,I] € Q(A) (with I € Z(A) N R(A)
and f : I — A is a strong multiplier in the sense of Definition 6.3) we denote by
fp the strong - D—multiplier fp : I — A/0p defined by fp(xz) = f(x)/0p for every
x € I. Thus, a is defined by a([f,I]) = [fp, I].

4. Let S C A an A—closed system of BL(MV')—algebra A.

PROPOSITION 6.34. If Fg is the topology associated with an NA—closed system
S C A (see Example 6.13), then the BL(MV)-algebra s — Ar, is isomorphic with
B(A[S]).

Proof. Let A be a BL(MV)-algebra. For xz,y € A we have (z,y) € 07, &
there exists I € Fg (hence I NS N B(A) # @) such that x A e = y A e for any
e € INB(A). Since I N SN B(A) # @ there exists eg € I NS N B(A) such that
x Aeyg =1y A eg, hence (z,y) € 0g. So, O, C 0g.

If (z,y) € Og, there exists eg € SN B(A) such that x A ey = y A eg. If we
set I = (eg] = {a € A:a < ep}, then I € Z(A); since eg € I NS N B(A), then
INSNB(A) # @, that is I € Fg. For every e € I N B(A), e < e, hence e = e A eg
and zANe=xA(egNe)=(xANey) Ne= (yANey) Ne=1yA (eg ANe) =y Ae, hence
(x,y) € Of, that is 07, = 0s.

Then A[S] = A/0g; therefore a strong Fg—multiplier can be considered in this
case (see m— BLy,m—BLy,m—BL3,m— BLy4) as amapping f : [ — A[S] (I € Fg)
having the properties f(e ® x) = e/S ® f(x) and f(x) < z/S, for every z € I, and
if ee INB(A), then f(e) € B(A[S]) and for every e € I N B(A) and = € I,

(e/S) A f(z) = (x/S) A fle)

(x/S denotes the congruence class of z relative to fg).
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We recall that for x € A, /S € B(A[S]) iff there is eg € S N B(A) such that
eo ANz € B(A). In particular if e € B(A), then e/S € B(A[S]).
If (Il, fl), (IQ,fQ) € S*A]:S = h_H)l M(I,A{S]), and (Ilafl) = (Ig,fg) then there

IeFg
exists I € Fg such that I C I; NIz and fi; = fo7. Since I, 11, I3 € Fg, there exist

ecINSNB(A),eg € [ NSNB(A) and ey € 5N S N B(A). We shall prove that
fi(e1) = fa(ez). If denote f = e Aejg Aeg, then f € INSNB(A), and f < eq,es.
Since e1 A f = ea A f then fi(ex A f) = filea A f) = fa(ea A f) < filer) AN f/S =
f2(€2) VAN f/S = fl(el) ANl = f2(€2) A1 (since fes= f/S = 1) & fl(el) = f2(€2).
In a similar way can show that fi(s1) = fa(s2) for any s1,s0 € INS N B(A).

In accordance with these considerations we can define the mapping:

a:s—Ar, = lim M (I, A[S]) — B(A[S])
IeFgs
by putting
a((1, f)) = f(s) € B(A[S])

where s € INSNB(A).

This mapping is a morphism of BL-algebras, if A is a BL—algebra.

Indeed, a(0) = a((A,0)) = 0(e) = 0/S = 0 for every e € SN B(A). For every
(I;, fi) € s — Arg,1 = 1,2 we have:

oI, f1) - (I, o)l = al(h N Iz, f1 B fo).] =
= (LB f2)(e) = file) @ [e/S — fale)] =
= fi(e) O [1 — fa(e)] = fi(e) © fale) =
= o|(T1, /1)) © a[(T2, f2)]

and

of (1. 1) = (I, f2)) = al(1y N o fr — f2)] =
= (f1 = f2)(e) = ¢/S O [f1(e) — fale)] =
=10[fi(e) — fale)]l = file) — fale) =
= a[(l, f1)] — of(T2. f2)]
(With eclinNnlhbnNsSnN B(A))
Clearly, if A is an M V algebra this mapping is a morphism of M V—alg@@.
Indeed, a(0) = a((A, 0)) =0(e) =0/S =0 for every e € SNB(A). If (I,f) €
s = Apy, we have o((L, ) = o((T 7)) = £(e) = (¢/8) @ [F(Q)]" =10 (£(e))" =
(fle)) = (a((L, f)))* (withe e INSNB(A)). Also, for every (I, fi) € s — Arg,i =
1,2 we have: «[(I1, f1) + (I2, f2)] =/Oé\[(f1 ﬂf2,/fli|3f2)~] = (il f2)(e) = (file) ®
f2(e)) A(e/S) = fi(e) ® fae) = al(L1, i)l ® a[(l2, f2)] (with e € LN ;NS N B(A)).
Weﬁhitll prove that « is injective and surj/eclive. To prove the injectivity of
a let (11, f1), (I2, f2) € s — Ary such that a((11, f1)) = a((I2, f2)). Then for any
el € [ NSNB(A), ea € I SN B(A) we have fi(er) = fa(e2). If fi(e1) =
x/8, fa(e2) = y/S with z,y € A, since /S = y/S, there exists e € SN B(A) such
that t ANe=y Ae.
If we consider ¢ =eAej Aea € [ NI, NSNB(A), we have z A e/ =y A e’ and
e/ <ejy,eq. It follows that fi(e/) = fi(e' Ae1) = fi(er) AN(€/S)=a/SN1=1x/S =
y/S = fale2) = fa(ea) A (€'/S) = falea AN e') = fa(€)). If denote I = (¢'] then we
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obtained that I € Fg , I C I; NIz and fy; = fyr, hence (Il/ﬁ) = (_IZ/E), that is
« is injective.

To prove the surjectivity of «, let a/S € B(A[S]) (hence there exists ey €
S N B(A) such that a A eg € B(A)). We consider Iy = (eg] = {z € A: z < ey}
(since eg € In N SN B(A), then Iy € Fg) and define f, : Iy — A[S] by putting
fa(x) =2/SNa/S = (zNa)/S for every x € I.

We shall prove that f, is an strong Fg—multiplier. Indeed, if e € B(A) and
x € Iy, since e/S € B(A[S]), then

fale ©x) = fale Nx) = (¢/S) N (2/S) A (a/S)
(

= (e/S) A ((x/S) N (a/S)) = (e/S) N fa(z) = (¢/5) © fal);
Clearly, fq(x) < z/S. Also, if e € IyN B(A), then f,(e) =¢e/SANa/S € B(A[S)).
Clearly if for every e € Iy N B(A) and z € Iy,

(e/S) A falz) = (x/S) A fale),
hence f, is a strong-Fs—multiplier and we shall prove that a(m)) =a/S.
Indeed, since ey € S we have a((Io, fa)) = faleo) = (eoNa)/S = (eo/S)A\(a/S) =

1A (a/S)=a/S.
So, we proved that a is an isomorphism of BL(MV')-algebras. B

REMARK 6.37. In the proof of Proposition 6.34 the axiom m — BLy is not nec-
essarily.

REMARK 6.38. If A is BL— algebra A = {0, ¢, a,b,1}, since B(A) = {0,1} = Ly
then for S C A an N— closed system, Fs ={I € Z(A) : INSN{0,1} # @} and
s — Arg is isomorphic with B(A[S]).

1. If S is an A—closed systems of A such that 0 € S , then Fg = Z(A) (see
Remark 6.28 ) and s — Arg = A4y = B(A[S]) = B(0) = 0.

2.If0 ¢ S, Fs = A (see Remark 6.28) and s — Ar, = Ay = B(A[S]) =
B(A) ={0,1} = Lo.

REMARK 6.39. If L3xo is MV — algebra from Ezample 3.12, since B(Lsx2) =
{0,a,d,1} then for S C A an A— closed system, Fs = {I € Z(Lzx2) : IN SN
{0,a,d,1} # @} and s — (Lsx2)ry is isomorphic with B(Lsx2[S]).

1. If S is an N—closed system of Lsxo such that 0 € S, then Fg = Z(L3x2)
(see Remark 6.29 ) and s — (L3x2)rs = (L3x2)7(Lyys) = B(L3x2[S]) =
B(0) = 0.

2. If0,a,d ¢ S, Fs = Laxa (see Remark 6.29) and s—(L3x2)rs = B(L3zx2[S]) =
B(Lgxg) = {O,a,d, 1}

3. If0¢ S but a € S then Fs = {Ia, 14, Is,I7,1g, Iy} (see Remark 6.29) and
S — (Lgxg)]:s =~ B<L3X2[S]) ~ B(LQ) = Lg.

4. If 0 ¢ S but d € S then Fg = {I5,I7,1g, 1y} (see Remark 6.29) and s —
(L3><2)]-'S =~ B(LgXQ[S]) = {O/S, 1/5} =~ L2.

7. Localization of abelian lu-groups

MV- algebras can be studied within the context of abelian lattice-ordered groups with
strong units (abelian lu-groups), and this viewpoint plays a crucial role in this section. This
viewpoint is made possible by the fundamental result of Mundici (Theorem 2.60) [105] that
the category of MV-algebras is equivalent to the category of abelian lu-groups ([3], [45],



7. LOCALIZATION OF ABELIAN LU-GROUPS 171

[105]). The starting point of the above mentioned categorical equivalence is the remark
that any interval in the positive cone of an abelian l-group can be endowed with a structure
of MV- algebra.

In particular, we take on the task of translating the theory of localization of MV —
algebras defined in Sections 5 and 6 into the language of abelian lu-groups. This Section is
very much in the spirit of [3], in which Ball, Georgescu and Leustean translate the theory
of convergence and Cauchy completion of abelian lu-groups into the language of MV —
algebras.

PROPOSITION 6.35. (i) If H € Z(G), then H = H N A € Z(A),

(13) If H € Z(A), then Hr = {g € G : mi(g) € I for all k > 0} is the order ideal
of G generated by I in G ( that is Hr € Z(G) and Hr =< I >¢g). Moreover,
E =H/NA=1,

(131) For every K € T(G), K = Hy where = KN A€ Z(A),

(7i1) There is a bijective correspondence between Z(G) and Z(A).

Proof. (i). Let x,y € A such that + <y and y € H. Thus y € H, hence z € H.
Since x € A we deduce that z € H N A= H, hence H=H N A € Z(A).

(73). Let I € Z(A); to prove Hy € Z(G) let z,y € G such that x <y and y € Hy.
By mv — ¢34 we deduce that for every k > 0, mi(z) < mi(y), hence m(x) € I for
every k > 0, that is © € Hy. We recall that

<I>g= N H'
H'€Z(G),ICH'

For x € I and k > 0, by mv—cgs we deduce that 7 (z) < mo(x) = x, hence my(x) € I,
that is I C Hj. Since H; € Z(G) and I C H; we deduce that < I >cC Hj. Let
now z € Hr,k > 0 and H' € Z(G) such that I C H'. Thus mi(xz) € I C H', hence
7 (z) € H'. In particular for £ = 0 we deduce that x = mo(z) € H', hence Hy C H'.
We deduce that Hy C NH' =< I >¢, that is Hy =< I >¢ . To prove the equality
Hy =1 (where Hr = HiNA)let # € H N A. Then x € Hy, hence in particular for
k=0,z=mg(x) €I, thatis HHNACI . If x € I and k > 0, then by mv — ¢33 we
deduce that mi(x) < mo(z) = =, hence mi(x) € I, so x € Hy, hence I C HyN A that
isHHNA=1.

(#i7). Follow from (i7).

(iv). Is straightforward by (z) — (i7i). B

DEFINITION 6.14. Let (G,u) be an abelian lu-group. A nonempty set F of
elements I € Z(G) will be called a topology on G (or a Gabriel filter on Z(G)) if
the following properties hold:

(top}) If I € F, I € Z(G) and I; C I then I, € F (hence G € F ),
(tOplz) If1,Ib e F,then 1 NIy e F.

For an abelian lu-group (G, u) we define the boolean center B(G,u) of G by
B(G,u) = B(A)
(where A =T'(G,u)). Hence
B(G,u) ={z € [0,u]: (z +x) ANu=x}.

Clearly, 0,u € B(G) and by [45], Corollary 7.1.6, we deduce that B(G,u) =
B(Ga,uas) = B(E(A)).
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Clearly, in an lu-group G is possible to have more strong units. So, is necessary
to write for example (G,u) to mention that v € G is a strong unit. Although, if
theare is no confusion, to simplify the language, we will use B(G) instead B(G,u)
(for example G instead (G, u), B(G) instead B(G,u))

We recall that for every MV — algebra A, B(A) is a subalgebra of A, see Corollary
2.10.

REMARK 6.40. If A, B are MV — algebras, ¢ : A — B is an isomorphism of
MYV — algebras and F isa topology on A, then o(F) = {p(I): I € F} is a topology
on B and Ar = By F).

EXAMPLE 6.14. If H € Z(G), then the set
F(H)={H €I(G): HC H'}
is a topology on G.

EXAMPLE 6.15. A non-empty set H C G will be called regular if for every x,y €
G such that e Nx = e Ny for every e € H N B(G), we have x = y. If we denote
R(G) ={H C G : H is a regular subset of G}, then Z(G) N R(G) is a topology on
G.

EXAMPLE 6.16. A subset S C G is called N\— closed if uw € S and if x,y € S
implies x Ny € S. For any N— closed subset S of G we set Fs = {H € I(G) :
HNSNB(G) # @}. Then Fgs is a topology on G . Clearly, if H € Fs and H C H’
(with H € Z(G)), then HNSNB(G) # @, hence HNSNB(G) # @, that is H' € Fg.
If Hy,Hy € Fg then there exist s; € H;NS N B(G),i = 1,2. If we set s = s1 A s,
then s € (Hy N H2) N SN B(G), hence HHN Hy € Fg .

PROPOSITION 6.36. Let (G,u) be an abelian lu-group and A = T'(G,u) = [0, u].
(i) If F is a topology on G, then Fo={HNA:H € F} is a topology on A,
(i) If F is a topology on A, then Fg = {Hy : I € F} is a topology on G (where
Hy is defined by Proposition 6.35, (ii)); if denote FgNA={HNA:H €
Fg}, then Fg N A= Fyu,

(7i1) There is a bijective correspondence between the topologies on G and the
topologies on A.

Proof. (i). Let F be a topology on G, H € F and K € Z(A) such that H = HN
A C K. By Proposition 6.35, (ii) , there is Hx € Z(G) such that K = Hx = HxNA,
hence H N A C Hig N A. We want to prove the inclusion H C Hg. Indeed, if x € H
and k > 0, then by mv — cz3, mi(x) < mo(x) = x, hence 7 (x) € H. We deduce that
mk(x) € HN A C K, hence 7i(x) € K, that is x € Hg. So, H C Hg. Since H € F
and F is a topology on G we deduce that Hx € F, hence K € F4.

Clearly, if H1, Hy, € F , then EQFQ = (Hl ﬂA) N (HQ ﬁA) = (Hl ﬂHg) NAe
Fa (since HHN Hy € F ).

(ii). Let F a topology on A, I € F and K € Z(G) such that Hy C K. Then
I=ANH; CANK, hence ANK € F . Since K = Hyng (by Proposition 6.35,
(7i1) ) and AN K € F we deduce that K € Fg. Let now I; € F ,i=1,2.

Then Hy, NA=1, (Z = 1,2), hence (H[l ﬂH]2)ﬂA = I1 N1y, that is HyNHp, =
Hinr, € Fg (since Hi N Hy € F ).

(#i7). Is straightforward by (i) — (7). B

In the sequel (G,u) is an abelian lu-group, A = I'(G,u) = [0,u] and F is a
topology on G.
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Now we are in the situation to define the notion of abelian lu-group of localization
of G with respect to the topology F .

By Proposition 6.36, (i), Fa = {HNA: H € F} is a topology on A. As in
Section 5 we can construct the MV — algebra of localization of A with respect to
the topology F 4, denoted by Ar,.

DEFINITION 6.15. We denote the abelian lu-group Z(Af,) by G and will be
called the localization abelian lu-group of G with respect to the topology F.

Let now A be an MV — algebra and F a topology on A. We consider Z(A) =
(G4, u4) and the isomorphism of MV — algebras v 4 : A — B = [0,ua] = '(Ga,ua).
By Remark 6.40, ¢ o(F) = {p4(I) : I € F} is a topology on B and Ar = B, (r)-
Then Z(AF) = E(B, ,(r)) = E(A4),,(F) (see Definition 6.15).

So, we obtain:

THEOREM 6.37. Let A be an MV — algebra and F a topology on A. Then
E(A)p,(F) = E(AF).

If Ais an MV — algebra and S C A is a A— closed system, then in Section 1
we have defined the notion of MV — algebra of fraction relative to S (denoted by
A[S] ). Also in Section 3 we have defined for an MV — algebra A, a mazimal MV —
algebra of quotients of A (denoted by Aps) and we construct the mazimal MV —
algebra of quotients of A, denoted by Q(A).

We shall now define the analogous notions for abelian lu-groups using the functor

We continue the running assumption that (G, u) is an abelian [u-group with unit
interval A = [0, u].

If S C Gis an A— closed system in G (that is v € S and z,y € S implies
xAy €S ), then S = SNAis an A— closed system in A. So, we consider the MV —
algebra of fractions relative to S (denoted by A[S] ).

DEFINITION 6.16. We denote the abelian lu-group Z(A[S]) by G[S] and will be
called the abelian lu-group of fraction of G relative to the A— closed system S. Also,
we denote the abelian lu-group =Z(Q(A)) by Q(G) and will be called the mazimal
abelian lu-group of quotients of G.

EXAMPLE 6.17. For the case of G[S] :
1. For G = (Z,+) with w = 1, and S = Z, then A = T'(Z, )—{01}

S = Zn{0,1} = {0,1} hence A[S] = 0 (since 0 € S), so G[S] =
Analogous for the case of (Q,+), (R, +) with u =1 and (Z,+) with u = n,
and for the case S = B(G).

2. For G = (R, +) withu =1, and S = {1}, then A =[0,1], S=SNA =
{1}, hence A[S] = A (see Ezample 6.1). So G[S] = Z(A[S]) = Z(A) =
=([0,1]) = Z x [0, 1] (because [0,1] is chain - see Example 2.21). Analogous
for the case of (Q,+),G[S] = Z(A[S]) = Z(4) = Z(QN[0,1]) = Z % ([0,1]N
Q) and for the case of (Z,+) with u =1 we obtain G[S| = (Z,+).

EXAMPLE 6.18. For the case of Q(G) :
1. For G = (Z,+) with w =1, then A = L2, Q(G) = E(L2) = (Z,+). Analo-
gous for the case of (Q,+), (R, +) with u=1 and (Z,4+) with u = n.
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2. If consider the abelian lu-group G = Z X Z withu = (1,0), then I'(G,u) =
C (see Example 2.6). Since C is a chain, then B(C) = Lo, so Q(G) =
E(B(C)) =E(L2) = (Z,+) withu=1.

3. If G is an abelian lu-group and A = |0,
(1B(A)] = 2%), then Q(G) = S(Q(A)) =
2.20).

As in the case of MV — algebras in the following we describe for an abelian
lu-group (G, u) the localization abelian lu-group G in some special instances.

u] is such that B(A) is finite
E(B(A)) = Z™ (see Example

We recall that for the next two examples we work with strong-F— multipliers
(see Definition 6.13).

1. f F =Z(G) N R(G), then F4 =Z(A) NR(A) (where we recall that A is the
MYV — algebra [0,u]) and Fq =FNA={HNA:H e F}. Thens—Ar, = Q(A) so

Gr =E(s — Ar,) = E(Q(4)) = Q(G)
(that is G is the maximal abelian lu-group of quotients of G).

Since Q(A) is a Boolean algebra, to describe Q(G) = E(Q(A)) we can use
Example 2.20.

2. If S C G is an A— closed system of G and Fs is a topology Fs = {H €
I(G) : HN SN B(G) # @}, then S = SN A is an A— closed system of A and
Fg={1€Z(A): INnSNB(A) # &} (since B(G) = B(A)).

Thus by Proposition 6.34, s — Ar. =~ B(A[S]), hence
Giry = E(s — Axy) ~ E(B(AS) ~ Z(B(E(A[S)) = B(GIS).



CHAPTER 7

Localization of Pseudo MV - algebras

In this chapter, by A we denote a pseudo MV-algebra. We define the localization (strong
localization) pseudo MV - algebra of a pseudo MV- algebra A with respect to a topology F
on A. If pseudo MV-algebra A is an MV- algebra we deduce in particular the localization
of MV - algebras obtained in Chapter 6.

We introduce the notions of pseudo MV-algebra of fractions relative to an A-closed
system, pseudo MV-algebra of fractions and maximal pseudo MV-algebra of quotients for a
pseudo MV-algebra, taking as a guide-line the case of MV-algebras.

We prove the existence of a maximal pseudo MV- algebra of quotients for a pseudo
MV-algebra (Theorem 7.26) and we give explicit descriptions of this pseudo MV-algebra for
some classes of pseudo MV-algebras. Also, we prove that the maximal pseudo MV - algebra
of quotients Q(A) and the pseudo MV - algebra of fractions relative to an A— closed system
are strong pseudo MV - algebra of localization (see Proposition 7.27 and Proposition 7.31).

Following the categorical equivalence between the category of unital l-groups with a
strong unit u (lu—groups) and the category of pseudo MV- algebras, we define and prove
the analogous notions and results for lu-groups. Using this categorical equivalence we take
on the task of translating the theory of localization pseudo MV- algebras into the language
of localization lu—groups.

1. F-multipliers and localization of pseudo MYV - algebras
We recall that by I;(A) we denote the set of all ideals of the lattice L(A) and
by Z(A) the set of all order ideals of a pseudo MV-algebra A (see Definition 6.2) :
Z(A)={ICA:ifz,yc A;jx <yandy € I,then z € I}.

REMARK 7.1. Clearly, Io(A) C T(A) and if Iy, I» € T(A), then I N I € T(A).
Also, if I € Z(A), then 0 € 1.

Let A be a pseudo MV — algebra. A non-empty set F of elements I € Z(A)
will be called a topology on A if verifies the properties of Definition 6.10. F is a
topology on A iff F is a filter of the lattice of power set of A; for this reason a
topology on A is usually called a Gabriel filter on Z(A).

EXAMPLE 7.1. If I € Z(A), then the set
FI)y={I'eZ(A):I1CT'}
is clearly a topology on A.

EXAMPLE 7.2. If we denote R(A) = {I C A : I is a reqular subset (see Definition
6.5) of A} then Z(A) N'R(A) is a topology on A.

EXAMPLE 7.3. For any A— closed subset S of A (see Definition 6.1) we set
Fs={I€I(A): INSNB(A) # ©}. Then Fg is a topology on A.

175
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Let F be a topology on a pseudo MV -algebra A. Let us consider the relation
0 of A defined in the following way:

(z,y) € 0f < there exists [ € F such that e Ax =e Ay for any e € I N B(A).
LEMMA 7.1. 0 is a congruence on A.

Proof. The reflexivity and the symmetry of 6 are immediate; in order to prove
the transitivity of 0 let (z,y), (y,2) € 0. Then there exists I, Io € F such that
eNx =eAy forevery e € [NB(A),and fAy = fAzforevery f € LNB(A). If we
set I =11 NIy € F , then for every g € INB(A), g ANz =gA z, hence (z,2) € 0r.

To prove the compatibility of 6 with the operations @, and =, let (x,y), (2,t) €
07, that is there exists I, J € F such that e Ax = e Ay for every e € I N B(A), and
fAz=fAtforevery f € JNB(A). If we denote K = INJ, then K € F and for
every g€ KNB(A),gANx=gAyand gAz=gAt.

By psmv — c43 we deduce that for every g € K N B(A) :

gAN(x@2)=(gNA2)D(gN2)=(gNy) ®(gNt)=gA(yD1),

hence (z @ z,y ®t) € O, that is 0 is compatible with the operation &.
Also, since e Ax = ey for every e € INB(A) we deduce that z~ Ve~ =y~ Ve,
hence

ez Ve )=e®(y Ve )oed(e- da )=ed (e dy )
(since e= € B(A))& eNx™ = eAy for every e € I N B(A), and 25 V €S =
yYSVeS & (25VeS)0e= (Y3 VeS)Oes (2P e) e = (y° ®e®)®e (since
€S € B(A))e x5 ANe =y= Ne for every e € INB(A), hence (z7,y™), (25,9%),€ 0F
that is £ is compatible with the operations ~ and =, so 6 is a congruence on A.l

We shall denote by /60 £ the congruence class of an element z € A and by
Al ={x/0F :x € A}
Then, A/fr is a pseudo MV — algebra with the natural defined operations and
pr:A— A/0F
is the canonical onto morphism of pseudo M V-algebras.

PROPOSITION 7.2. For a € A,a/0F € B(A/0Fx) iff there exists I € F such that
aNeec B(A) for every e € I N B(A). So, if a € B(A), then a/0r € B(A/0F).

Proof. For a € A, we have a/0r € B(A/0r) < a/0r & a/0r = a/0r <
(a ®a)/0Fr = a/0F < there exists I € F such that (a ® a) Ae = a A e for every

PSMUV—C43

ecINB(A)"7& 7 (ahe)®(ane) =aANeforevery e € INB(A) & ale € B(A)
for every e € INB(A). So, if a € B(A), then for every I € F, aNe € B(A) for every
e€INB(A), hence a/0r € B(A/0r). R

COROLLARY 7.3. If F=Z(A)NR(A), then a € B(A) iff a/0r € B(A/0F).

DEFINITION 7.1. Let A be a pseudo MV — algebra and F be a topology on A.
An partial F— multiplier is a mapping f : I — A/0r, where I € F and for every
x € I and e € B(A) the following axioms are fulfilled:
(m —psMV1) fleOx) =e/0Fr N f(z)=e/0r© [(z);
(m —psMVa) f(z) <x/0F.
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By dom(f) € F we denote the domain of f; if dom(f) = A, we called f total.

To simplify language, we will use F— multiplier instead partial F— multiplier,
using total to indicate that the domain of a certain multiplier is A.

The maps 0,1 : A — A/0r defined by 0(z) = 0/0r and 1(x) = x/0F for every
x € A are F-multipliers in the sense of Definition 7.1.

Also, for a € B(A) and I € F, f, : I — A/0x defined by f,(x) =a/0r Nz/0F
for every x € I, is an F— multiplier. If dom(f,) = A, we denote f, by f, ; clearly,

fo=0.
We shall denote by M(I,A/0F) the set of all the F— multipliers having the
domain I € F and

M(A/0F) = IUfM(I,A/G}-).
€
If 1,1, € F, I C I, we have a canonical mapping
Pr,Io ¢ M(I%A/H}-) - M(IlvA/97:>

defined by
o1, (f) = fir, for f e M(Iz,A/0F).
Let us consider the directed system of sets

({M(1,A)05)} ier A en 1} beFnCn)
and denote by Az the inductive limit (in the category of sets):

Az = imM(I, A/0F).
IeF

—

For any F— multiplier f : I — A/0x we shall denote by (I, f) the equivalence
class of f in Ag.

—

REMARK 7.2. If fi : I; — A/0F , i = 1,2, are F— multipliers, then (I, f1) =

(Ig/,\fg) (in Ax) iff there exists I € F , I C Iy N Iz such that fy; = far.
Let fi: I; — A/Of , (with I; € F ,i=1,2), F—multipliers. Let us consider the
mappings
AEf: LNl — Alfr
defined by
(LB fR)(x) = (filz)® folz)) Nz/0F
for any o € I; N I, and let (Iy, f1) + (T2, f2) = (I1 (\ I, f1 B f).
Also, for any F— multiplier f : I — A/0r (with I € F ) let us consider the
mapping
FTfS T Ao
defined by
@) =2/0r0 (f(z))”
and

- f2@) = (f(=)° o z/0F

for any x € I and let (I, f)~ = (I, f~) respectively (I, f)S = (I, fS) .
Clearly the definitions of the operations +, ~ and © on Az are correct.

LEMMA 7.4. f1H fo € M(Il ﬂ]g,A/@]:).
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Proof. If z € I1N I and e € B(A), then
(BR)eor)=[filcox)® faleOz)]|A(eOx)/0F =
= [(e/0F © fi(x)) @ (e/0F © fa(x))] A (e/0F ©x/0F) =
= [(e/0F A f1(2)) @ (/05 A f2(2))] A (e/0F N /0F) "=
TS e/0F A (fi(x) @ fa(@)] A (e/0F Naf0F) =
= e/0F N[(fi(x) @ fa(x)) Nx/0F] = e/0F © (/LB f2)(z).
Clearly, (f1 B f2)(z) < z/0F for every x € I1N I, that is, fi B fo € M([1 N
I,Al07). R
LEMMA 7.5. f~,fS e M(I,A/0F).
Proof. If z € I and e € B(A), then
fTleor)=(e0x)/lro(fleox)” =¢/fr0x/0r©(c/0F O f(x))” =
=e/lrox/0r©[(e/0r)” & (f(x)]=z/0F©(e/0r ©((e/0F)” & (f(z))7)) =
=x/0F © (e/0r A(f(2))7) =2/0F © (e/0F O (f(z))7) =
= /07 © (2/05 © (f(2))) = e/65 © ()
and
fPleor)=(fleon)o(c0r)/r = (/07 © [(2))° O (cOw)/0F =
= ((f(2))® ® (e/0F)%) @ e/0F ©x/0F = ((f(2))° Ne/O0F) O x/0F =
(f(@)Z 0e/0F) ©x/0F = ((f(2))° ©Ox/0F) ©e/0F =
= [5(z) O e/0Fr =¢/0r © [5(x)
Clearly, f~(z) < z/0x and fS(z) < x/0F for every x € I, that is [, fS €
M(I,A/0F).1
LEMMA 7.6. Let f,g € M(A/0F) with f € M(I,A/0F) and g € M(J, A/0F),
1,J € F. Then for everyx € INJ:
(f D)) = (f(z) & (2/07)%) © g(z) = f(z) © ((x/0F)" & g(x)).
Proof. For z € I NJ we denote a = f(z),b = g(z); clearly a,b < z/0r. So:
(fBg)(x)= (g Bf)Z(@) =g (@) ® f (2)) N2/0F]° Ox/0F =
=[(z/0r© (9(x))” @/0r© (f(2))") N/0F]% ©x/0F =
=[(x/0r0b” ®x/0rOa )ANx/0F]° O x/0F =
=[(x/0r 00" ©x/0r©a” )%V (2/0F)%] O x/0F =
PSS (2/0r 0 b @x/0F 0 a)S 0x/br] v (2/0F)° © z/0F) =
=[(z/0r0b” ®z/0r©a”)®Ox/0F]V0/0F =
=(/0rob @2/0r0a )*02/0r=(2/0Fr0a )0 (x/0rob )°0x/0r =

= ((a7) & (x/67)%) © ((07)° @ (2/05)%) O 2/0F =
=(a® (2/07)%)© (0@ (z/07)%) ©2/0F = (a @ (x/05)%) © (bNx/0F) =
=(a® (2/07)%) © b= (f(z) & (2/05)%) © g(x).
Now we shall prove that (f(z) @ (z/0£)%) © g(z) = f(z) © ((z/0F)” & g(x)).
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Indeed,
(f(z) @ (z/07)%) © g(z) = (f(z) & (/05)%) © (9(z) Nz/0F) =
= (f(z) & (2/05)%) © [2/0F © ((2/0F)” & g(x))] =
= [(f(z) ® (2/07)%) © 2/0F] © (z/0F)” @ g(2)) =
= (@) Nz/0F) © (/0F)” ®g(z)) = f(z) © (/0F)” S g(z)).B

—

REMARK 7.3. For two elements (I, f1), (I, f2) in Ax we have

(I, 1) - (I, f2) = (LN T, [ B0 f)

where f1 U fo are characterized as in Lemma 7.6.
PROPOSITION 7.7. (M(A/0F),B,[,7,5,0,1) is a pseudo MV — algebra.

Proof. We verify the axioms of pseudo MV — algebras.

(psMV7). Let f; € M(I;,A/0F) where I; € F, i = 1,2,3 and denote I =
LhNnbnlilseF.

Also, denote f = f1B (f2B f3), g = (/1B f2) B fs and for x € I, a = fi(z),b =
fa(x),c = fs().

Clearly a,b,c < z/0r. Thus, for x € I :

F@) = (7(&) © (/28 () A /6 =
= (fi(x) @ ((f2(2) @ f3(x)) Nx/0F)) Na/0F =
=(ad((bdc)Nz/0r)Nz/0r = ((aNx/0F) D ((bDc)ANz/0F)) Nz/0F
IS e (b o) Az /oF.
Analogously, g(x) = ((a ®b) & ¢) Ax/0F, hence f = g, so

—_—

(11, f1) + (L2, f2) + (I3, f3)] = [(11, f1) + (L2, f2)] + (I3, f3),

that is the operation + is associative on Ar.
(psMVs). Let f € M(I,A/0F) with I € F. If x € I, then

(fBO)(z) = (f(x) ©0(x)) Nx/0F = f(x) Nx/0F = f(x),

(08 f)(z) = (0(z) & f(x)) Nx/b0F = f(x) Nx/0F = [(z),
hence fHHO=0H f = f, so

— —— ——— -~ -

(I, f) + (A,0) = (A,0) + (I, f) = (L, f).
(psMV3). For f € M(I,A/0F) (with I € F) and x € I, we have:
(fBL)(z) = (f(z) ® 1) Ax/0r = (f(x) ©x/0F) Nz/0F = 2/0F = 1(z),
(LB f)(z) = (Uz) @ f(2)) Nx/0F = (x/0F © f(x) Na/0F = x/0F = 1(z),
hence fH1=1Hf =1, so
.0 +A1) = (AD+(Tf) = (A1),
(psMVy). For z € A, we have
17(z) =2/0r © (1(z))” =2/07 © (x/0F)” =0/0Fr = 0(z),
15(z) = (1(2))® 0 z/0F = (2/05)° © 2/0F7 = 0/0F = 0().
So, 1° =0, and 1~ = 0, that is
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(4.1)" = (4,0).
(psMVs). Let fe M(I,A/0F),g € M(J,A/0F) (with I,J € F) and x € I N J.
If denote a = f(x),b = g(z), then a,b < 2/0 and from Lemma 7.6,

%/7‘ }Elﬂ [ =)@ (2/05)%) © g(x) = f(z) © ((z/0F)” & g(x)).
(g5 Bf3) (2) =2/07 0 [((9(2))° @ 2/0F & (f(2))° © x/0F) N /0F]” =
=z/0rO[(b°Ox/0r®a®Ox/0F) Nx/0F]” =
=2/0r 0[5 0x/0r®a®0a/0r)” V (x/0F)7 "=
=[z/0r© b°0x/0r®a®0x/0r)7 |V (x/0F© (2/0F)7) =
=[2/0F© (b° Ox/0r®a®0x/0F)7]V0/0F =
=z/0r® (a®0x/0r)” © (% ©x/lr)” =
=z/0r © (z/0F)” ®a)© ((z/0F)” @) =
= (2/07 Aa) © ((2/05) B b) = a® ((2/05)” B b) =
— [(2) © ((¢/85)" @ g(x)),
and by Lemma 7.6, we deduce that
(" Bf)®=(g8F3),

(,9)” + L )72 =((J9)°+ T )®).
(psMVg). Let fe M(I,A/)0F),g € M(J,A/0F) (with I,J € F) and x € I N J.
We have:

(fBfEOg() =f@) e ((f(2)°0z/0r& (z/0F)%) © g(@)] Az/0F =
=[f(@) & (f(2)° @ ((/07)%)” & (x/0F)%) © g(x)] Nz /0F =
)V (2/0F)%) 0 g(@)| Nx/0F =
9@ Nx/0F = [f(z) ® (f(2))° ©g(@)] Aa/0F =

f(x) 9@ Nz/0F = f(x)V g(z);
9= f)(x) = g(@) v f(2);
2/05)” ® /07 © (9(x))")
(x/07)7)% @ (9(=))")
= [f(l‘) © ((w/Hf)_ Vi(g(x))") & g(x)]

>
=
&
—
(]
OS]
e}
o
w0
—
=
—~
s
H
=
@
s
—
&
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>
8
~
>
9
|

—~

So,
fBfSOg=gBg O f=fHg Bg=gOf B,
that is - - . . . .
E0)+ T % Tg) = Tg) + Tg)® 0 9) =
(psMV7). Let f € M(I,A/0F),g € M(J,A/0x) where I,J € F. Thus, for
zelnd:

(fE Bg)(x) = flx) © [(x/07) @ (x/0F © (f(x))” @ g(x)) Ax/0r] =
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= f(@) o ([(z/0F)” ® (z/0F © (f()” ® g(@)]| A [(2/0F) S x/0F]) =
f@) o ((z/07)” @ (x/0F © (f(x))” @ g(x)] A1/0F) =
f@)o(z/07)” @z/0r© (f(x)7) @ g(x)] =
= f(z) 0 [((z/0F)” & ((z/0F) )% © (f(2))7) ® g(z)] =
= @) o[((z/0F)" v (f(2)7) ®g(@)] = f(x) © [(x/0F A f(2))” @ g(z)] =
- f@) 0 [(f@))” & 9(@)] = /(@) A gla),
and
(fBg) o) () =[(f(x) ® (9(2))° ©x/0F) Nx/0F © (x/05)] © g(x) =
= [((f(z) & (9(2))° ©z/0F) ® (2/07)%) A (2/0F & (2/0F)%)] © g(z) =
= [((f(z) @ (9(2))® 0 x/0F) & (2/05)%) N1/0F] © g(z) =
= [f(z) & ((9(2))® ©z/0F & (2/07)%)] © g(z) =
= [f(z) & ((9(2))® © ((z/0£)%)” & (z/05)%)] © g(z) =
= [£(2) © (9(=))® V (2/65)°)] @ g(x) = [£(x) © (9(a) Ax/05)%] @ g(x) =
=[f(z) @ (9(2))] © g(x) = f(z) A g(x),
fE(fTBg) = (fBg%) Oy,
that is
@05+ (L) =I5+ (793 (19).
(psMVg). For f € M(I,A/0F) (with I € F) and = € I, we have:
(f)2(@) = (/07 © (f(2))7)% 0 z/0F = [((f(2)) ) & (x/05)%] O x/0F =
= (f(2) ® (2/07)%) ©x/0F = f(x) Nx/0F = f(z).
So, (f7)S = f, that is
(15715 =T,

—_—

f)-m
COROLLARY 7.8. (Ar,+,-,7,%,0 = (A4,0),1 =(A,1)) is a pseudo MV — alge-
bra.

REMARK 7.4. If pseudo MV -algebra (A, ®,®,” ,%,0,1) is an MV -algebra (i.e
x®y =ydx for all x,y € A), then pseudo MV -algebra (M(A/0£),B,H,7,,0,1)
is an MV -algebra (M(A/0£),B,~ ot *,0). Indeed if Iy, Io € F and f; € M(1;, A/0F),
1 =1,2 we have

(1B f2)(2) =[fi(x) ® fa(x)| Aa/0F = [fo(x) ® fr(@)| Ax/0F = (f2 B f1)(@),

forallx € [1NIy, then f1Bfys = folf1, so pseudo MV -algebra (M (A/0F),8,E0,”,5,0,1)
18 commutative, so is an MV -algebra.

LEMMA 7.9. Let fi1, fo € M(A/@]:) with f; € M(Ii,A/Q]:), (IZ S f), 1= 1,2.
Then for every x € 11 N Iy:

() (i A f2)(2) = fi(z) A fo(x);
(i) (frV fo)(z) = fi(z)V fo().
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Proof. We recall that in pseudo MV — algebra M (A/0r) we have:
fAg=[fB(f"Bg) =90 Bf)=(FBg)BDg= (9B,
and
fvg=fBfFUg=gBg>0f=fHg BHg=gLf Bf
So: (). Follow immediately from Proposition 7.7, psM V7).
(73). Follow immediately from Proposition 7.7, psM V).l

COROLLARY 7.10. (Ag,+,-,7,%,0 = (7&7)), 1= (A/,\l)) is a pseudo MV — a al-
gebra, where 0 = m and1=0" = (Z,T) Also, for two elements (Il, f1), (Ig, f2)
i Ar we have - . .

(11, f1) A (T2, f2) = (I N Iz, f1 A f2),

(I, 1) Y (I, f2) = (LN To, f1 V o),
where f1 A fo, f1V fo are characterized as in Lemma 7.9. If pseudo MV — algebra A
is an MV — algebm then (Ag,+,-,7,%,0 = (71,\0), 1= (A/,\l)) is an MV — algebra
A+ " " 0= (4,0)).

DEFINITION 7.2. The pseudo MV — algebra Az will be called the localization
pseudo MV — algebra of A with respect to the topology F .

Clearly, the localization pseudo MV — algebra is a non-commutative generaliza-
tion of localization MV — algebra obtained in Chapter 6.

We also have for pseudo MV — algebras the next analogous result as for MV —
algebras:

o —

LEMMA 7.11. Let the map vr : B(A) — Az defined by vr(a) = (A, fi) for every
a € B(A). Then:

(i) vr is a morphiswpseudo MYV — algebras;
(i) For a € B(A), (A, T2) € B(As);
(iid) vr(B(A)) € R(A7).
Proof. (i). We have vx(0) = (ﬁ) = m =0
__Fora,be B(A), we have vr(a) +vr(b) = (A, To)+ (A o) = (A, a8 fy) "
(A, famp) = vr(a ®b) and for x € A, since
(fa) (z) =2/0F © [(aN2)/0F]" =2/0F © ((z/0F)" V (a/0F)")

=x/0F O ((x/0F)” ©(a/0F)7) = 2/0F N (a/0F)" = fo(2),
that is (f,)~ = f,- we deduce that

— — =

vr(a”) = (A, fo-) =(A, fa) = (vF(a)),

and
(fa)S(x) = [(a Nz) /07 O x/0F = ((a/0F)° V (2/0F)%) ©x/0F
= ((a/0F)° @ (2/05)%) © x/0F = (a/0£)° N (x/0F) = fas(2),
that is (f,)S = fus we deduce that

—

vr(aS) = (A, um) =(A, Ta) | = (u7(a))®,
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hence vr is a morphism of pseudo MV — algebras.

(74). For a € B(A) we have a®a = a, hence by psmv —cy3, ((aAx)® (aNz))ANx =
a N x for every x € A.

Since A € F we deduce that ((a Az)/0r & (a ANx)/0F) Nx/0Fr = (a Nx)/0F
hence f, B f, = fa, that is

(Aaﬁ) € B(A]")

(#i7). To prove that ve(B(A)) is a regular subset of Ax, let m) € Ar, I, € F,
i = 1,2, such that (4, f,) A (Il/,\fl) = (A, f.) A (IQ/E) for every a € B(A). By
(ii), (A, fa) € B(Ag). Then (f1 A fa)(z) = (fa A fa)(x) for every x € I} N I and
a € B(A) & filx) Nz/0r Na/OF = fo(x) Nx/0F N a/bF for every x € I1 N I and
a € B(A) & fi(x) ANa/Or = fa(x) Na/OF for every x € [; NIy and a € B(A) .

In particular for a = 1, a/0F = 1 € B(A/0F) we obtain that f(z) = fo(z) for
every x € I} N I, hence (Il, fl) = (IQ,fQ), that is Uf(B(A)) € ’R(A]:) [ |

2. Applications

In the following we describe the localization pseudo MV — algebra Ax in some
special instances.

2.1. Application 1. If I € Z(A) and F is the topology
FI)y={I'eZ(A):ICT'}

(see Example 7.1), then Az is isomorphic with M (I, A/0x) and vr : B(A) — AF is
defined by vgr(a) = fq); for every a € B(A).

2.2. Application 2: Maximal pseudo MV-algebra of quotients. As for
MYV — algebras we have:

DEFINITION 7.3. By a partial strong multiplier of a pseudo MV -algebra A we
mean a map f: I — A, where I € Z(A), which verify the following conditions:

(sm —psMVy) fle®z)=e® f(x), for every e € B(A) and = € [;

( ) f(z) <z, for every x € I;

(sm —psMV3) If e € I N B(A), then f(e) € B(A);

( ) x A f(e) =eA f(x), for every e € IN B(A) and x € I (note that e @ x € I
ase@x<eAzx<z).

REMARK 7.5. The condition sm — psMVy is not a consequence of sm — psM V7,
sm—psMVy and sm—psMVs. As ezample, f: I — A, where I € Z(A), f(x) = zAz~
for every x € I, verify sm — psMVy, sm — psMV1 and sm — psM V3. Indeed, for
x €1 and e € B(A), we have

fleeox)=(eco0z)AN(e®z) =(eANz)AN(ehz)” =zANeN(enz) | =
=zANleN(e" Ve )]=xAle@(e Va)]=zAled(e ®az )=
=zA(eNzT)=eA(z Az )=eA f(z)=e® ()
Clearly, f(z) < x for every x € I and fore € IN B(A), f(e) =eNe” =0¢€ B(A).

But if e € INB(A) and x € I, then
xAfle)=xAN0=0#eA(xzAzx7).
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By dom(f) € Z(A) we denote the domain of f; if dom(f) = A, we called f total.
To simplify language, we will use strong multiplier instead partial strong multi-
plier using total to indicate that the domain of a certain multiplier is A.

We also have for strong multipliers on a pseudo M V-algebra the next analogous
examples as for MV -algebras:

EXAMPLE 7.4. The map 0 : A — A defined by 0(x) = 0, for every x € A is a total
strong multiplier of A; indeed if v € A and e € B(A), then0(e®z) =0=e®0 =
e®0(x) and 0(x) < z. Clearly, ife € ANB(A) = B(A), then 0(e) =0 € B(A) and
forz e A,z NO(e) =eNO(x) =0.

EXAMPLE 7.5. The map 1 : A — A defined by 1(x) = x, for every x € A is
also a total strong multiplier of A; indeed if x € A and e € B(A), then 1(e ® x) =
e®xr =e®1(z) and 1(z) =z < z. The condition sm — psMV3 and sm — psMVy
1s obviously verified.

EXAMPLE 7.6. For a € B(A) and I € I(A), the map f, : I — A defined
by fa(z) = a Az, for every x € I is a strong multiplier of A (called principal).
Indeed, for x € I and e € B(A), we have fo(e ®x) =aN(e®@z)=aA(eNx)=
eN(aNz)=e® (anz) =e® fo(z) and clearly fo(x) < z. Also, if e € I N B(A),
fale)=eNa€ B(A) andz A (aNe) =eA (aNzx), for every x € I.

REMARK 7.6. In general, if we consider any a € A, then f, : I — A wverifies
only sm — psMVy, sm — psMVs and sm — psMV, but does not verify sm — psMVs.

If dom(f,) = A, we denote f, by f, ; clearly, fo = 0.
For I € Z(A), we denote

M(I,A)={f:1— A| f is a strong multiplier on A}
and

M(A) = M(I,A).
()=, u M4

If 1,1, € Z(A) and f; € M(I;, A),i = 1,2, we define fi B fo: 1 N[5 — A by
(18 f2)(x) = (filz) D fa(z)) N2,

for every x € I1N Is.

LEMMA 7.12. fiH fo € M(Il N IQ,A).

Proof. If z € 1N I and e € B(A), then

(fiBf)leor)=[filcor)® fole@)|A(eOz)=

=[e® fi(z)) ® (e © fo(z))] A (e Ax) = [(eA fi(z)) & (e A falz))] A (e A )
PTE e A (fi(z) @ f@)] A e Ax) = e A(fulz) @ fa(x) Az] = e O (f1 B f2)(x).

Clearly, (f1 B f2)(x) < x for every x € I1N Iy and if e € I} N [y N B(A) then

(f1 B f2)(e) = [file) & fa(e)] Ae € B(A).
For e € I1 NI N B(A) and x € I1NI; we have:
A (fiB f2)(e) =z A[(fi(e) ® fale)) Ne] = (file) @ fale)) Az Ae,

and

eN (LB f2)(x) =en[(f1(z) @ fa(2)) Aa] = e © [(fi(z) @ fa(x)) A 2]

pPSMU—C43
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= o (fi@) @ @) Ale0r) =T (e fi(2) @ (e O fo(2)] A (e O x)
=[rofile) 0z fale)] Ale®x) = [(file) Ax) ® (fale) Ax)] A (e Ax)

=[[(fie) A2) ® (fale) Az)] Aa] Ae""=" ((fale) ® fale)) A) Ae
= (fi(e) @ fale)) Az Ae,

hence

A (fiE f2)(e) = e A (fi B f2)(z),
that is f1 B fo € M(I; N1z, A).R
For I € Z(A) and f € M(I, A) we define f~, fS:1 — A by
fT@)=z0(f(z),
and
f2@) = (f(2)® o,

for every x € I.
LEMMA 7.13. f~, fS € M(I, A).
Proof. If z € I and e € B(A), then
ffleox)=(0r)0(fleOx) =e0x0(e® f(x))”

=e0ro(e ®(f(v)7)=r0(co(c” @ (f(2)7)) =
=20 (A (f(@) ) =200 (f(z))=e0@o(f(z))=e0 [ ()

and
f2eo ) (fleow))® ®(6®x) (e® f(z)Z O (e
=((f@)@e)oeor=((f(z)%Ae)oz=((f(2)°
=((f( NS 0r)0e=f3(z)Oe=ec0 f5(2).

Clearly, f~(z) < x and f=(x) < x for every x € I.
Clearly, if e € I N B(A), then

f(e)=ea[f(e)]” € B(A)

)
)

3

Cb

@ =
©e)Ox =

and

[2(e) = [f(e)]® ©e € B(A)
Since f € M(I,A), fore € INB(A) and = € I we have:

e fle)=enflx) =z V(fle)) =e V(f(z)” =z 0 (f(e))” =e & (f(x))”
= e0ro[zTa(f(e) ] = 20e0le” 0 (f(z))"] = eOlzA(f(e)) ] = zOlen(f(x))]
=e0r0(fle)” =20e0 (f(x)” =z0eo(fle) =0 zo (f(x)]
=azN[eo(fle) l=erfzo(f(@)]=zAf () =enf (),

and
A fle)=eN f(x) =25V (f(e)® =eSV (f(2)S = (f(e)S®a® = (f(2))° ®e®
= [(f(e))S@2®]oz0e = [(f(2)S@e|0eoz = [(f(e)SAz]Oe = [(f(z))SNe]Ox
= (f(e)®0z0e=(fz)S0eoz=[(fe)*0eoz=[f(x)0r]0e

= [(f(e)Toe]Az=[(f(z)° O] Ae=zAf3(e) =eA f3(z),
hence f~ and fS verify sm — psMVy, that is f~, fS € M(I,A).R
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For f € M(I;,A) and g € M(I2, A) with I, s € Z(A) we define f[gon I1 NI,
by
fBg=(g Bf).
LEMMA 7.14. For every x € I1 N Is:
(fOg)(x) = (f(z) @2%°) O g(z) = f(x) © (2~ ® g(x)).
)

Proof. For z € I N I, we denote a = f(x),b = g(x
So:

(fB9)@) =g @ e f @) A2]?or=[z0 (k) o0 (f(z)7)Arz°0r=

pPSMUV—Ca1

; clearly a,b < .

(
:[(:c@b_EBx(Da_)/\x]S@x—[(:c@b_EB:U@a_)S 5] ©
=[20b ®r0a)%0z]V(E°0r)=[(z0b @x®a")® @x]vo—
= (z0b”@®zea” )0z = (z0a7)%O(z0b7 )0z = ((a7)®z%)0((b7)S®z®)or =
=(@®2%)0(b®2°)0r=(a®2%)0 (bAz)=(a®2%)0b= (f(z)® ) 9(x).
Now we shall prove that (f(z) ® 2%) ® g(z) = f(z) © (z~ ® g(x)).
Indeed,
(f(2) 8 25) @ g(x) = (f(z) ©2%) © (9(x) A 2) = (f(2) 82%) © [1.© (2~ & g(2))] =
=[(f(z) ®2%) 02]© (z” ®g(z)) = (f(z) A2) O (2~ @ g(z)) = f(z) ©(z~ @ g(z)).M
PROPOSITION 7.15. (M(A),H,0,7,%,0,1) is a pseudo MV — algebra.
Proof. We verify the axioms of pseudo MV — algebras.
(psMV7). Let f; € M(1;, A) where I; € Z(A), i =1,2,3 and denote I = I} NIyN
I3 € I(A).
Also, denote f = f1B (foB f3), 9= (fiB fo) B fs and for x € I, a = f1(z),b =

fa(z),c = f3(x).
Clearly a,b,c < x. Thus, for z € I :

f(x) = (fi(z) & (f28 f3)(x) Aw = (fi(z) & ((fa(z) © f3(x)) Nx)) A =

pPSMU—C40

=a®((bdc)rhz)ANex=((ahNz)d(bdc)ANz))Ax" = " (a®d(bde) Az
Analogously, g(x) = ((a ® b) @ ¢) A z, hence f = g, that is the operation H is

associative.
(psMV3). Let f e M(I,A) with I € Z(A). If z € I, then

(fBO0)(z) = (f(x) ©0(z)) Nz = f(z) Ae = f(z),
and
(08 f)(z) = (0(x) & f(x)) Nz = f(z) Ao = f(z),
hence fEHO=0H f = f.
(psMV3). For f e M(I,A) (with I € Z(A)) and z € I, we have:
(fBY() = (f@)e1@) Ae = (flz)Dr) Ne = =1(z),
and
LB f)(z)=1@) & f(x) Ao = (20 f(z) Nz =z = 1(z),
hence fH1=1Hf = 1.
(psMVy). For x € A, we have

1 (z) =20 1(z))” =20z =0=0(z),
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and
1°(z) = (1(2))° 0z =202 =0=0(x).
So,15=0,and 1~ = 0.
(psMVs). Let fe M(I,A),g € M(J,A) (with I,J € Z(A)) and z € I N J.
If denote a = f(x),b = g(z), then a,b < z and from Lemma 7.14,

(- Bf)®=(flz)@2%) O g(x) = f(z) © (2~ & g(x)).
We have:
(gSBf) (@) =20 ((9@)°0zs (f(2)°0x)Aa]” =
=z0[0°0zda0r)Az] =20 [°0rda®Ox)” VaT]
P o (1P 0 ©a® ) |V (o) =ko (S ored® o) V0=
=20@0r)  0b%0r) =20 (" ®a)®(z” ®b) =
=@Aa)O (@ @b)=a0 (" @b) = f(x) © (z~ @ g(x)),
and by Lemma 7.14, we deduce that
(- Bf)Z=(8f%)".
(psMVg). Let fe M(I,A),g € M(J,A) (with I,J € Z(A)) and z € I N J.
We have:
(fBfEH@) =[f@)e (f@)°cres®)og@) e =
=[f(@) & ((f(2)°© (%) @2®)0g@)] Ax=
=[f@) @ ((f(z)®Va®)og@)] Anr=
=[f@) e (f@)r2)og@]re=I[fz)® (f(2)°0g@)]Az=
=[f@)Vg@)]Ax = f(z)Vg(z);
Analogously, (B ¢= O f)(z) = g(x) V f(z);

=[f(z)©(9(z)” ®glx)]| Az =[f(z)Vg(z)

Analogously, (¢ f~ B f)(z) =g

So,
fEfFOg=gBg>0f=f0g Bg=gOf Bf

(psMVz). Let f € M(I,A),g € M(J,A) where I,J € Z(A). Thus, forx € INJ :

(fEG B)@) = fl@) o™ o= (f(z)” ®g) Nl =
=f@)o(z"a@o (f(@)” @g@) Al o)) =
=f@o(z” oo (f(»)” ag@)Al) =
=f@)ol"ozo (f(z)7) ®g()] =
=f@) ol ® (=)o (f(z)) ®gl@)] =

=)ol Vv(f(@))e ()] f(z) [(

vV
= f(z) o [(f(z))” @ g(z)] =
And

(fBg%) Hg)(z) =[(f(z) ® (9(x))° ©x) Nz @ 2Z] © g(z) =
=[((f(x) & (9(x))° O 2) 2Z) A (z @ 2Z)] O g(a) =
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=[((f() ® (9(2))° ©2) ®2Z) A1] © g(x) =
)2z a®)ogr) =[f(z) @ ((9(2)° @ (%) @2%)] @ g(z) =
[f(z) & ((9(2))® vaZ)] © g(z) = [f(z) & (9(z) N 2)%] © g(x) =
= [f(z) ® (9(2))%] © g(z) = f(z) A g(2).
So,
fE(f By =(fBg®)Dg.
psMVg). For f € M(I,A) (with I € Z(A)) and x € I, we have:
(f)2@) =(zo(fl@))oz=[(f))°es®]or=
= (f(z) ®2%) 0z = f(x) N = f(2).
So, (f7)®=/M
REMARK 7.7. To prove that (M (A),HB,,” ,%,0,1) is a pseudo MV -algebra is
suffice to ask for multipliers only the azioms sm — psMVy and sm — psM V5.
REMARK 7.8. If pseudo MV -algebra (A, ®,®,” ,=,0,1) is an MV -algebra (i.e
r®y=ydx for all z,y € A), then pseudo MV -algebra (M(A),H,H,~,5,0,1)
is an MV -algebra (M(A),H,~ gt *,0). Indeed if 11,15 € T(A) and f; € M(I;, A),
1 =1,2 we have
(B f2)(z) = [fi(z) ® fa(z)] Az = [fo(2) © fr(z)] Ao = (f2 B fi)(=),
forallx € [1NIy, then f1lBfs = foff1, so pseudo MV -algebra (M (A),HB,H,” ,%,0,1)
is commutative, so s an MV -algebra.
LEMMA 7.16. Let f,g € M(A). Then for every x € dom(f) N dom(g):
(@) (f Ag)(@) = f(x) Ag(x);
(@) (f Vg)(@) = f(x)Vg(z).
Proof. We recall that in pseudo MV — algebra M (A) we have:
fAg=fE(f Bg) =g0(g Bf)=(fBg%)BDg=(¢Bf)If,

fvg=fBfeUg=gBg>0f=f0g Bg=gLf Bf
So: (i). Follow immediately from Proposition 7.15, psM V7).
(74). Follow immediately from Proposition 7.15, psM V).l

LEMMA 7.17. Let the map va : B(A) — M(A) defined by va(a) = f, for every
a € B(A). Then vy is an injective morphism of pseudo MV — algebras.

Proof. Clearly, v4(0) = fo = 0. Let a,b € B(A). We have:

(va(a) Boa(0))(z) = (vala)(z) ®va(d)(@)) ANz = ((a Az)© (bAz)) Az
PTE (awb) Ar = (vala @ b)(@),

hence
va(a ®b) =va(a) Bog(b).
Also,
(04(@)~(2) = 2® (va(@)(x))” = 3@ (aAz)” =26 (0 Vi) =20 (=" Ba~) =

(since a~ € B(A))
=z Na =v4(a)(z),
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hence

vala™) = (va(a))™,
and
(va(a))®(z) = (va(a)(2))® @z = (aNz)ZO2 = (a®Va®) Oz = (a®®2%) Oz =
(since a® € B(A))

=a® Nz =v4(a®)(2),

hence

va(a®) = (va(a))®,
that is v4 is a morphism of pseudo-MV algebras.

To prove the injectivity of v4 let a,b € B(A) such that va(a) = va(b). Then

aANx = bAx, for every x € A, hence for x = 1 we obtain that aAl =bA1l = a =b.1

We denote R(A) = {I C A : I is a regular subset of pseudo MV —algebra A}
(see Definition 6.5).

REMARK 7.9. The condition I € R(A) is equivalent with the condition: for every
T,y € A7 Zf fa:|IﬂB(A) = fy|[mB(A), then ©x = Y.

LEMMA 7.18. If I, Io € Z(A) N R(A), then I) N 1o € T(A) N R(A).
REMARK 7.10. By Lemma 7.18, we deduce that
M,(A) = {f € M(A) : dom(f) € T(4) N R(4)}
is a pseudo-MV subalgebra of M(A).
PROPOSITION 7.19. M,.(A) is a Boolean subalgebra of M(A).
Proof. Let f: I — A be a strong multiplier on A with I € Z(A) NR(A). Then
eN[fBfl(x)=en([flz)o f@)] e =

pPSMUV—Cq0

=len(f@)@f@)Inz™"="[eAf(z))®(eAf(x)] Az

sm—psMVy
=

sm—psMVy

zAfle))@(@Afle)he=[zdz)Afle) Na=
=(@dx) Nz A fle)=xA fle)=eA f(z),

so (f(z)® f(z)) Nx = f(x) (since I € R(A)), hence fH f = f, that is M,(A) is a
Boolean subalgebra of M(A). B

DEFINITION 7.4. Given two strong multipliers f1, fo on A, we say that fo extends
f1 if dom(f1) € dom(f2) and fojaom(s,) = f1; we write fi < fo if fo extended fi.
A strong multiplier f is called maximal if f can not be extended to a strictly larger
domain.

LEMMA 7.20. (i) If f1, fo € M(A), f € M,(A) and f < f1,f < fa, then fi
and fa coincide on dom(f1) N dom(f2);

(ii) BEvery strong multiplier f € M,(A) can be extended to a mazximal strong
multiplier. Moreover, each principal strong multiplier f, with a € B(A)
and dom(fq) € Z(A) N R(A) can be uniquely extended to a total strong
multiplier f, and each non-principal strong multiplier can be extended to a
mazximal non-principal one.
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Proof. See the proof of Lemma 6.13. B
On the boolean algebra M, (A) we consider the relation p, defined by
(f1, f2) € p4 iff f1 and fy coincide on the intersection of their domains.

LEMMA 7.21. p, is a congruence on M,(A).

Proof. The reflexivity and the symmetry of p, are immediately; to prove
the transitivity of py let (f1, f2), (f2, f3) € pa. Therefore fi, fo and respectively
f2, f3 coincide on the intersection of their domains. If by contrary, there exists
xo € dom(f1) N dom(fs) such that fi(zg) # f3(xo), since dom(f2) € R(A), there
exists e € dom(fz) N B(A) such that e A fi(zg) # e A fs(xo) & e ® fi(zg) #
e® fa(xo) & file®xo) # fa(e ®xp) which is contradictory, since e ®xg € dom(f1)N
dom(f2) N dom(fs3).

To prove the compatibility of p, with the operations H,” and = on M,(A),
let (f1, f2),(91,92) € p4. So, we have fi, fo and respectively g1, g2 coincide on the
intersection of their domains.

To prove (fiB g1, f2Bg2) € py let x € dom(f1) Ndom(f2) Ndom(g1) Ndom(gz).
Then fi(z) = f2(x) and gi(z) = g2(x), hence (f1 B g1)(x) = [fi(z) @ g1(z)] A w =
[fo(x) ®g2(x)| ANz = (f2B g2)(z), that is fi B g1, fo B g2 coincide on the intersection
of their domains, hence p, is compatible with the operation H.

If x € dom(f1) Ndom(fz) then fi(x) = fo(x) and f] (z) = z © (fi(x))” =
O (f2(2)” = fy (x), and f2(z) = (f1(2))® Oz = (f2(2))® ©x = fF(x), hence [,
f5 and f7>, f5 coincide on the intersection of their domains, hence p 4 is compatible
with the operations ~ and . W

REMARK 7.11. We denote by Q(A) the quotient pseudo MV — algebra M, (A)/p;
this algebra will have a very important role for this paper (see Theorem 7.26).

For f € M,(A) with I = dom(f) € Z(A) N R(A), we denote by [f,I] the
congruence class of f modulo p 4.

LEMMA 7.22. Let the map v4 : B(A) — Q(A) defined by va(a) = [fa, A] for
every a € B(A). Then

(i) U4 is an injective morphism of Boolean algebras,
(i7) va(B(A)) € R(Q(A)).

Proof. (i). Follow from Lemma 7.17.

(7i1). To prove T4(B(A)) € R(Q(A)), if by contrary there exist fi, fo € M,(A)
such that [f1,dom(f1)] # [f2, dom(f2)] (that is there exists zg € dom(f1) N dom(f2)
such that fi(zo) # f2(xo)) and [f1,dom(f1)] A [fa, A] = [f2, dom(f2)] A [fa, A] for
every [fa, A] € 1a(B(A)) N B(Q(A)) (that is by (i7) for every [fa, A] € 1a(B(A))
with a € B(A)), then (fi A f,)(x) = (faAfa)(z) for every x € dom(fi)Ndom(fz) and
every a € B(A) & fi(z)NaNx = fa(z) NaAx for every x € dom(f1)Ndom(fz) and
every a € B(A). For a = 1 and = = ¢ we obtain that fi(z¢) A zo = fa(x0) A zo &
fi(xo) = fa(xo) which is contradictory. W

REMARK 7.12. Since for every a € B(A), f, is the unique mazimal strong mul-
tiplier on [fa, A] (by Lemma 7.20) we can identify [fa, A] with f,. So, since vx is
injective map, the elements of B(A) can be identified with the elements of the set {

Fa:a € B(A)).
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LEMMA 7.23. In view of the identifications made above, if [f,dom(f)] € Q(A)
(with f € M,(A) and I = dom(f) € Z(A) NR(A)), then

INB(A) C{a € B(A): fo N[f,dom(f)] € B(A)}.

Proof. Let a € I N B(A). Since for every x € I, (fu A f)(z) = fa(z) A f(2) =
aNz A f(z)=aNf(x)=a0 f(z) = fla®z) =20 f(a) (by psMVig) =z A f(a),
we deduce that f, A f is principal. Bl

DEFINITION 7.5. Let A be a pseudo MV — algebra. A pseudo MV — algebra F'
is called pseudo MV — algebra of fractions of A if:
(psMV fr1) B(A) is a pseudo MV — subalgebra of F' (that is B(A) < F);
(psMYV frg) For every o/, b/, € F,a' #1U, there exists e € B(A) such that e Aa’ # e AV
and e A ¢ € B(A).

So, pseudo MV — algebra B(A) is a pseudo MV — algebra of fractions of itself
(since 1 € B(A)).

As a notational convenience, we write A < F to indicate that F' is a pseudo
MYV — algebra of fractions for A.

DEFINITION 7.6. A pseudo MV —algebra Ay is a mazimal pseudo MV — algebra
of quotients of A if A < Aps and for every pseudo MV — algebra F with A < F
there exists an injective morphism of pseudo MV — algebras i : F — Ayy.

REMARK 7.13. If A <X F, then F is a Boolean algebra hence Apr is a Boolean
algebra. Indeed, if ' € F such that o’ # o' & d', then there exists e € B(A) such
that e Aa' € B(A) and e Nd' # e (d @a) "= (end) @ (e nd), which is
contradictory!

LEMMA 7.24. Let A <X F ; then for every a’,b' € F,a' # V', and any finite
sequence ¢y, ..., c,, € F, there exists e € B(A) such that eNa' # eNV and eNc, € B(A)
fori=1,2,...n (n>2).

LEMMA 7.25. Let A< F and o' € F. Then
Iy, ={e€ B(A):eNd € B(A)} € Z(B(A)) N R(A).
THEOREM 7.26. Q(A) is a mazimal pseudo MV — algebra of quotients of A.

Proof. The fact that B(A) is a pseudo MV — subalgebra of Q(A) follows from
Lemma 7.22, (i). To prove psMV fry see the proof of Theorem 6.19).

To prove the maximality of Q(A), let F' be a pseudo MV —algebra such that
A = F; thus B(A) C B(F)

A = F
i
Q(A)

For ' € F,I,, = {e € B(A) : eANd € B(A)} € Z(B(A)) N R(A) (by Lemma
7.25).

Thus fo : I,y — A defined by fu/(z) = z Ad' is a strong multiplier (see the proof
of Theorem 6.19).

We define i : F' — Q(A) , by i(a') = [fu, L], for every o’ € F. Clearly i(0) = 0.
For a’,b' € F and x € I, N Iy, we have

(i(a)Bi(b))(z) =[(d' Ax)B (W AN2)| AT

pPSMU—Ca0
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=(d o) Nz =ild bt (z),
hence i(a’) Bi(V) =i(a’ D V).
Also, for z € I, we have

(i(a) " (@) =z @ [i(a)(z)]” =20 (d N2)” =

and
(i(d)%(z) = [i(d) (@) 0z = (d Aa)S Oz =
=@zod)®or=[d)®es°]|0r=(d)SAz=
= f(ans (@) = i((d')%)(2),
hence
i((a")7) = (i(a)) ™,
and

i((a")®) = (i(a")®,
that is ¢ is a morphism of pseudo MV — algebras.

To prove the injectivity of 7, let a’, b’ € F such that i(a’) = i(d'). It follow that
[far, L] = [fors Iy] so for(x) = fy(x) for every x € I,y NIy We get o’ Az = b Ax for
every € Iy N Iy. If ' # b, by Lemma 7.24 (since A < F), there exists e € B(A)
such that e Aa';e AW € B(A) and e A d’ # e AV which is contradictory (since
eNa,e NV € B(A) implies e € I,y N Iy). A

REMARK 7.14. 1. If A is a pseudo MV — algebra with B(A) = {0,1} = Lo
and A < F then F = {0,1}, hence Q(A) = Lo. Indeed, if a,b,c € F
with a # b, then by psMV fry there exists e € B(A) such e Na # e Ab
(hence e # 0) and e A ¢ € B(A). Clearly, e = 1, hence ¢ € B(A), that is
F = B(A). As examples of pseudo MV — algebras with this property we
have local pseudo MV — algebras and pseudo MV — chain.

2. If A is an MV -algebra, then Q(A) is the maximal MV-algebra of quotients
obtained in Section 8 for MV — algebras.
3. If A is an Boolean algebra, then B(A) = A and Q(A) is the classical
Dedekind-MacNeille completion of A (see [122], p.687).
4. In [58] is proved that:
(i) Any archimedean pseudo MV — algebra is commutative i.e. an MV
algebra.
(i) A pseudo MV — algebra has the Dedekind-MacNeille completion as
a pseudo MV — algebra iff A is archimedean.

As in the case of MV and BL— algebras, to obtain the maximal pseudo MV
-algebra of quotients Q(A) as a localization relative to a topology F we develope
another theory of multipliers (meaning we add new axioms for F-multipliers).

DEFINITION 7.7. Let F be a topology on a pseudo MV-algebra A. A strong -
F— multiplier is a mapping f : I — A/0x (where I € F) which verifies the axioms
m — psMV; and m — psM Vs (see Definition 7.1) and
(m —psMV3) If e € IN B(A), then f(e) € B(A/0r);
(m —psMVy) (z/0F) A f(e) = (e/0x) A f(x), for every e € IN B(A) and = € I.
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REMARK 7.15. If F = {A}, then Ox is the identity congruence of A so an strong
F— multiplier is a strong total multiplier.

REMARK 7.16. The maps 0,1 : A — A/0Ff defined by 0(x) = 0/0x and 1(z) =
x/0F for every x € A are strong - F— multipliers. We recall that if f; : I; — A/0F,
(with I; € F, i =1,2) are F— multipliers, we consider the mapping f1B fo : [[NIy —
A/OF defined by

(18 fo)(z) = (fi(z) & falz)) Na/0F
for any x € Iy N I, and for any F— multiplier f : I — A/Of (with I € F ) we
consider the mappings
I — Abx
defined by
[ (@) =2/07 © (f(x))”
and
f2(@) = (f(2))° 0 z/0F
for any x € 1. If f1, fo and f are strong - F— multipliers, then the multipliers
f1 8 fa, =, fZ are also strong - F— multipliers. Clearly, if e € I N B(A), then
(fiB f2)(e) = [fi(e) @ fale)] Ne/O0F € B(A/0F)
f7(e)=e/0r©[f(e)]” € B(A/0F)
f2(e) = [f(e)]® @ e/bF € B(A/0r).
Foree I1NI,N B(A) and x € I; N I we have:
z/0F A(fLB f2)(e) = /07 N[(fi(e) @ fa(e)) Ne/Or] = (fi(e) & fa(e)) Ax/0F Ne/OF

=T (file) @ fale) A /b,

and

e/0r N(f1H f2)(x) = e/0r A[(f1(2)® fa(2)) Az /0F] = e/0F O[(f1(2) @ fa(x)) Az /0F]
P 002 @ (fi(x) @ fo(a))] A (e @ 3) [0 7T
P (0 /05 © fi(2)) B (/05 © fo(@))] A (e @ 2) /05

= [z/07r0fi(e)@x/0F0 f2(e) |\ (€0z)/0F = [(fi(e)Ax/0F)B(fa(e)Nz/0F)|N(eNT)/0F

= [[(fi(e) Nx/b0F) ® (fale) Nx/0F)] Na/0F] Ne/bF
P ((fule) @ fale)) A /0F) Aefbr = ((file) ® fale) Ae/bF) Ax/0r
P (fu(e) @ fa(e) A /bF

hence
z/0F A (fr B f2)(e

Since f € M(I,A/0F), fore € IN B(A
z/0F A fle) =e/0Fr A flz) = (

= (z/0F)” @ (f(

)

) =¢/0Fr A (fLH f2)(z).

) and x € I we have:

= (x/07)" V (f(e))” = (e/0)" vV (f(z))~

) = (¢/0r)" & (f(x))"

S /07 © 1/05 © [(2/97)” ® (f(e)) ] = 2/05 © ¢/05 O [(c/0r)” & (f(2))7] =

S /07 [2/07 A (f(€))] = /07 © [e/05 A (F(2))]
=el0rox/0ro (fle) =x/0r0e/lr o (f(x))”
= z/0F ©le/0F © (f(e))"] = €/0r © [2/0F © (f(x))]

= x/0rNe/0rO(f(e)"] =e/0rNa/0rO(f(x))"] = x/0rNf"(e) =e/0rNf (),
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and
z/0F A f(e) =e/0F A f(x) = (x/0F) V (f(e)® = (e/0£)° V (f(2))®
= (J(0)° ® (@/05)% = (/)% © (c/65)°
= [(f(e)® @ (x/0F)°] 0 x/0Fr ©e/0F = [(f(2))° @ (e/0F)%] O e/0r O x/0Fr =
= [(f(e)ZAx/0r]©e/0r =[(f(2) Ne/0r] O x/0F
= (f(e)®0z/0rOe/0r = (f(2)°Oe/0r ©a/0F
= [(f(e))® @e/0r] ©x/0F = [(f(2))° O z/0F] ©e/0F
= [(f(e))® @e/0r] Na/0r = [(f(x) ©x/0F] Ne/0F
=x/0F A f3(e) =¢/0F A f3(2).
REMARK 7.17. Analogous as in the case of F— multipliers if we work with strong
-F— multipliers we obtain a pseudo MV — subalgebra of Ar denoted by s— Ax which

will be called the strong -localization pseudo MV — algebra of A with respect to the
topology F.

REMARK 7.18. If F = Z(A)NR(A) is the topology of reqular ordered ideals (see
Ezxzample 7.2), then O is the identity congruence of A and
s— Ay = limM(I, A),
IeF

where M (I, A) is the set of multipliers of A having the domain I (in the sense of
Definitions 7.3).

In these situations we obtain:

PROPOSITION 7.27. In the case F = I(A)NR(A), s — Ar is exactly a mazimal
pseudo MV — algebra Q(A) of quotients of A.

2.3. Application 3: Pseudo MV algebra of frations relative to a A—closed
system. Let A be a pseudo MV -algebra. We denote by S(A) the set of all A—closed
system of A (see Definition 6.1). Clearly {1}, A € S(A).

For S € S(A), on the pseudo MV — algebra A we consider the relation 6 defined
by

(x,y) € Og iff there exists e € SN B(A) such that z Ae =y Ae.

LEMMA 7.28. Og is a congruence on A.

Proof. The reflexivity (since 1 € S N B(A)) and the symmetry of fg are
immediately. To prove the transitivity of 8¢, let (z,y), (y, z) € 8. Thus there exists
e, f € SNB(A) such that zAe = yAe and yAf = zAf. If denote g = eAf € SNB(A),
then gAz = (eANf)hxz = (eAN)ANf=(yAhe)Nf=wyANf)ANe=(zNf)A
e=2zA(fNe)=2zAg, hence (z,z2) € 0g .

To prove the compatibility of #g with the operations @, and =, let z,y, z,t € A
such that (z,y) € 0g and (z,t) € 6. Thus there exists e, f € SN B(A) such that
xANe=yAeand zA f=tA f; we denote g =e A f € SN B(A).

By psmv — c¢43 we obtain:

(x®2)Ng=(ghz)®(gN2)=(eNfAz)D(eNfA2)=

=WwAenf)d(entAf)=(gAy)®(gAt)=(ydt) Ny,
hence (z @ z,y ®t) € Og
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From x A e = yA e we deduce
rOe=y0e=(x0e) =(yOe) =>e Gz =e Dy,

soe@(e”@dzx )=e® (e Dy ), hence x~ ANe=y~ Ae, thatis (z7,y") € Og.

From z A e = yA e we deduce e @ z° = €= @ yS. Since e € B(A) it follows that
25 ®eS =yS DeS. So, (25D e®) e = (y° D e®)Oe, hence 25 Ne = y= Ae, that
is (2%,y%) € 5.1

For = we denote by z/S the equivalence class of = relative to g and by
A[S] = A/0bg.
By ps : A — A[S] we denote the canonical map defined by pg(z) = x/S, for every
x € A. Clearly, in A[S],0=0/S, 1 =1/S and for every z,y € A,
z/S@y/S = (xDy)/S,

(/9)" =~ /S,

(x/8)% = a%/8,
So, ps is an onto morphism of pseudo MV — algebras.

REMARK 7.19. Since for every s € SN B(A), sANs = s A1 we deduce that
s/S=1/S =1, hence ps(SN B(A)) = {1}.

PROPOSITION 7.29. If a € A, then a/S € B(A[S]) iff there ezists e € S N B(A)
such that e N a € B(A). So, if e € B(A), then e/S € B(A[S]).

Proof. For a € A, we have a/S € B(A[S]) © a/S®a/S=a/S < (a®a)/S =

pPSMUV—C43

a/S < there exists e € SNB(A) such that (a®a)Ae =ane & 7 (aNhe)®(aNe) =
aNe<alee B(A).

If e € B(A), since 1 € SN B(A) and 1 Ae = e € B(A) we deduce that e/S €
B(A[S]). m

THEOREM 7.30. If A’ is a pseudo MV — algebra and f : A — A’ is a morphism
of pseudo MV — algebras such that f(S N B(A)) = {1}, then there ezists a unique
morphism of pseudo MV — algebras f': A[S] — A’ such that the diagram

A 25 Al

N\ /

! i
A/

is commutative (i.e. f'ops = f).

Proof. If z,y € A and pg(x) = ps(y), then (z,y) € Og, hence there exists
e € SNB(A) such that z Ae = y Ae. Since f is morphism of pseudo MV — algebras,
we obtain that f(z Ae) = f(yAe) < f(x)A fle) = f(y) A fle) & flz) A1 =
fy) AL & f(z) = f(y).

From this observation we deduce that the map f': A[S] — A’ defined for x € A
by f'(x/S) = f(x) is correctly defined. Clearly, f’ is a morphism of pseudo MV —
algebras. The unicity of f’ follows from the fact that pg is a onto map.H

REMARK 7.20. Theorem 7.30 allows us to call A[S] the pseudo MV — algebra of
fractions relative to the AN—closed system S .
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REMARK 7.21. If pseudo MV — algebra (A,®,®,”,%,0,1) is an MV — algebra
(i.e. xDy = ydx, for allz,y € A), thenx/Sdy/S = (zdy)/S = (ydx)/S =y/S®
x/8S, for all x,y € A. So, in this case, pseudo MV — algebra (A[S],®,®,” ,%,0,1)
is an MV — algebra. In Chapter 2 us to call A[S] the MV — algebra of fractions
relative to the A—closed system S.

EXAMPLE 7.7. If S = {1} or S is such that 1 € S and SN(B(A)\{1}) = @, then
forz,y € A, (z,y) €0s <= x N1 =y A1l<= x =y, hence in this case A[S] = A.

EXAMPLE 7.8. If S is an A—closed system such that 0 € S (for example S = A
or S = B(A)), then for every z,y € A, (xz,y) € 0g (since x N0 = y A0 and
0 € SN B(A)), hence in this case A[S] = 0.

If Fg is the topology associated with an A—closed system S C A (see Example
7.3), then:

PROPOSITION 7.31. The pseudo MV — algebra s—Ax, is isomorphic with B(A[S]).

Proof. For z,y € A we have (z,y) € 05, < there exists I € Fg (hence
INSNB(A) # @) such that z Ae =y Ae for any e € I N B(A). Since §r, = 05 we
have A[S] = A/8g; therefore an strong Fg—multiplier can be considered in this case
as a mapping f : I — A[S] (I € Fg) having the properties f(e ® ) = ¢/S © f(x),
f(z) <x/S, for every x € I, and if e € IN B(A), then f(e) € B(A[S]) and for every
ecINB(A)and x € 1,

(e/S) A fx) = (x/S) A f(e)
(/S denotes the congruence class of z relative to fg).
We can define the mapping injective and surjective (see the proof of Proposition
6.34):
a:s—Ar, = lim M(I, A[S]) — B(A[S])
IeFgs
by putting

a((, f)) = f(s) € B(A[S])
where s € INSNB(A).
This mapping is a morphism of pseudo MV — algebras.

Indeed, a(0) = a((A,0)) = 0(e) =0/S = 0 for every e € SNB(A). If (I, f) €
s — Ary, we have
y=a((T,[7) = f(e) = (¢/S) O [f(e)]” =
—10(f(e)” = ()™ = (T, )"

a((T,17%) = al(T, 1)) = £5(e) = [f(e)}* © (¢/8) = (F(e)® o1
= (f(e))® = (a((1,))®
(with e € INSNB(A)). Also, for every @) €s—Ar,,i=1,2 we have:
o1, 1) + (I, f2)) = ol(h N I, i 8 J2)] =
= (18 f)(e) = (f1(e)  fal€)) A (¢/F) = file) & fale) =

= a[([l,fl ]EB [ I27f2)]
(with e € I1 NI, NS N B(A)).

and
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So, « is an isomorphism of pseudo MV — algebras.ll

REMARK 7.22. In the proof of Proposition 7.31 the axiom m — psMVy is not
necessarily.

2.4. Application 4: Localization of lu-groups. Pseudo MV — algebras can
be studied within the context of lattice-ordered groups with strong units (lu-groups).
This viewpoint is made possible by the fundamental result of Dvurecenskij [58].

We shall often write (G, u) to indicate that G is an [u-group (with strong unit
u). If (G, u) is an lu-group then the unit interval of G is
0,ulg={9€G:0<g<u}.
It has a canonical pseudo MV — algebra structure given by the Example 4.2. Dvurecenskij’s
result says that for any pseudo MV — algebra A there is an lu-group (G 4,u) such
that A and [0,u]g, are isomorphic. The categorical equivalence means that the
entire theory of lu-groups applies to pseudo MV — algebras. The main work in-
volved has the flavor of translation. We take on the task of translating the theory
of localization pseudo MV — algebras into the language of localization lu-groups .
If (G,u) and (H,v) are lu-groups, then an lu-groups morphism is an [-groups
morphism f : G — H such that f(u) = v.
We denote by PMYV the category of pseudo MV — algebras and by LUG the
category of lu-groups. The definition of the Dvurecenskij functor
r:Lug — PmMy
is strainghtforward (see [58]):
I'(G,u) :=1[0,u]g,
L(h) := hyjo.u,
if h: (G,u) — (H,v) is an lu-groups morphism.
EXAMPLE 7.9. [58] Let G = (Z x Z X Z,+,(0,0,0), <) be the Scrimger 2-group:
the group operation + is defined by
_ | (i +ze,y2 4+ x1,m 4+ n2), if ng is odd
(1, 91,m) + (72,42,m2) := { (w1 + 22,91 + Y2, 11 + n2), if ng is even,
the order relation is (x1,y1,n1) < (x2,y2,n2) iff (n1 < n2) or (n1 = na,x1 < x9,y1 <
y2). We remark that G is a non-abelian I-group which is not linearly ordered and that
u = (1,1,1) is a strong unit of G. The corresponding interval pseudo MV -algebra
has the form
M =T(G,u) = (Zy x Z; x {O}) U (ZS1 X Z<1 X {1})1

where Z<y :={x € Z : © < 1}. The pseudo MV - algebra operations are defined as
follows:

(2,9,00" =1 -2,1-y,1),(2,9,0%=(1-y,1-2,1),
(z,9,1)" = (1—-y,1-2,0),(2,9,1) = (1 — 2,1 - y,0),
(z1,91,0) & (2, 92,0) = (z1 + 22,41 + ¥2,0),
(21,91,0) ® (v2,92,1) = ((y1 + 22) AL, (21 +y2) A 1, 1),
(z1,91,1) & (22,92,0) = ((x1 + 22) AL, (y1 +y2) AL 1),
(r1,y1,1) @ (w2,92,1) = (1,1,1),
One can see [58] for more details on G and M.
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For the definition of the functor
=2:PMY — LUG

(the inverse of the functor I" which together with T' determine a categorical equiva-
lence) see [58], (where for the pseudo MV — algebra A, =(A) is denoted by (G4, uA)).
With the notations of [58] we have:

THEOREM 7.32. ([58])For every pseudo MV — algebra A there exists an lu-group
G 4 with strong unit ua and an isomorphism of pseudo MV — algebras p4 : A —
I'(Ga,ua) =[0,u4].

In the sequel G will designate an lu-group with strong unit u and A will designate

[O, U]G.
As in abelian case (see Definition 2.15) we define:

DEFINITION 7.8. For any integer k, let 7, : G — A be defined by
m(9) = ((g — ku) Au) v 0.
From Remark 2.22 we deduce:

PROPOSITION 7.33. The maps 7 have the following properties for all f,g € G :
(psmv — cy5) Toja = La;
(psmv — cap) Tk(9) > Tt1(9), for all k € Z,;

(psmv — ca7) TR(fV g) = 7k (f) V 7r(g) and 7 (f A g) = mi(f) A 7k(g), for all k € Z,
(hence my is an increasing map for allk € Z ).

As for abelian lu-groups, we have for non-commutative case ({u- groups) the next
analogous definitions and results:

PROPOSITION 7.34. (i) If H € Z(G), then H = HN A € Z(A),
(i) If I € Z(A), then
Hr={9€G:mp(g) €1 forall k >0}
is the order ideal of G generated by I in G (that is Hy € Z(G) and Hy =<
I >¢). Moreover, Hr = HiNA=1,

(131) For every K € T(G), K = H; where = KN A€ Z(A),
(131) There is a bijective correspondence between I(G) and Z(A).

The proof of Proposition 7.34 is analogous to the proof of Proposition 6.35 for
commutative case.

Let (G,u) be an lu-group. A nonempty set F of elements I € Z(G) will be called
a topology on G (or a Gabriel filter on Z(Q)) if verify the properties from Definition
6.14.

For an lu-group (G, u) we define the boolean center B(G) of G by

B(G,u) = B(4)
(where A =T'(G,u)). Hence
B(G,u) ={z € [0,u] : (x + ) ANu=z}.

Clearly, 0,u € B(G,u) and we deduce that B(G,u) = B(Ga,ua) = B(Z(A)).
We recall ([68]) that for every pseudo MV — algebra A, B(A) is a subalgebra of
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REMARK 7.23. If A, B are pseudo MV — algebras, ¢ : A — B an isomorphism
of pseudo MV — algebras and F a topology on A, then ¢(F) = {p():1 € F} isa
topology on B and Ar = B(r).

ExAMPLE 7.10. If H € Z(G), then the set
FH)={H €I(G): HC H'}
is a topology on G.

EXAMPLE 7.11. A non-empty set H C G will be called regular if for every x,y €
G such that e N\x = e ANy for every e € HN B(G), we have x = y. If we denote
R(G) ={H C G : H is a regular subset of G}, then Z(G) N R(G) 1is a topology on
G .

EXAMPLE 7.12. A subset S C G is called N\— closed if w € S and if x,y € S
implies x Ny € S. For any AN— closed subset S of G we set Fs = {H € Z(G) :
HnNSNB(G) # ©}. Then Fg is a topology on G .

PROPOSITION 7.35. Let (G,u) an lu-group and A =T(G,u) = [0,u]g.
(1) If F is a topology on G, then Fo={HNA:H € F} is a topology on A,
(i3) If F is a topology on A, then Fg = {H : I € F} is a topology on G (where
Hy is defined by Proposition 7.34, (i1)); if denote FgNA={HNA:H¢€
Fg}, then Fg N A = Fu,
(7i1) There is a bijective correspondence betwen the topologies on G and the
topologies on A.

Proof. See the proof of Proposition 6.36.

In the sequel (G, u) is an lu-group, A = I'(G,u) = [0,u]g and F is a topology
on G.

Now we are in the situation to define the notion of lu-group of localization of G
with respect to the topology F .

By Proposition 7.35, (i), F4a = {HNA: H € F} is a topology on A. We can
construct the pseudo MV — algebra of localization of A with respect to the topology
F 4, denoted by Ar,.

DEFINITION 7.9. We denote the lu-group =Z(Ax,) by G and will be called the
localization lu-group of G with respect to the topology F.

Let now A be a pseudo MV — algebra and F a topology on A. We consider
Z(A) = (G4,u4) and the isomorphism of pseudo MV — algebras ¢, : A — B =
[0,u4] =T'(Ga,ua). By Remark 7.23, o o(F) = {p4(I) : I € F} is a topology on B
and Ar ~ B, (7). Then E(Ar) = E(B, () = =(A)y,(F) (see Definition 7.9).

So, we obtain:

THEOREM 7.36. Let A be a pseudo MV — algebra and F a topology on A. Then

If A is a pseudo MV — algebra and S C A is a A— closed system, then we define
the notion of pseudo MV — algebra of fraction relative to S (denoted by A[S]) and
the mazimal pseudo MV — algebra of quotients of A (denoted by Q(A)).

We shall now define the analogous notions for lu-groups using the functor =.

We continue the running assumption that (G, u) is an lu-group with unit interval
A=10,u.
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If S C G is an A— closed system in G, then S = SN A is an A— closed system in
A. So, we can consider the pseudo MV — algebra of fractions relative to S (denoted
by A[S] ).

DEFINITION 7.10. We denote the lu-group Z(A[S]) by G[S] and will be called
the lu-group of fraction of G relative to the A— closed system S. Also, we denote
the lu-group Z(Q(A)) by Q(G) and will be called a maximal lu-group of quotients
of G.

As in the case of pseudo MV — algebras in the following we describe for an
lu-group (G, u) the localization lu-group G in some special instances.

We recall that for the next two examples we work with strong-F— multipliers
(see Definitions 7.7).

1. If F = Z(G) N R(G), then F4 = I(A) N R(A) where we recall that A
is the pseudo MV — algebra [0,u] and F4 = FNA = {HN A : H € F}. Then
s —Ar, = Q(A),s0 Gr = E(s — Ar,) = 2(Q(4)) = Q(G) (that is Gr is the
maximal lu-group of quotients of G).

2. If S C G is an A— closed system of and Fg is the topology Fs = {H €
I(G) : HNSN B(G) # @}, then S = SN A is an A— closed system of A and
Fg={1€Z(A): INnSNB(A) # &} (since B(G,u) = B(A)).

Thus by Proposition 7.31, s — Ar_ = B(A]S]), hence
Gy = Z(s — Ar,) ~ E(B(AS)) ~ Z(BE(AR))) = BGIS)).



CHAPTER 8

Localization of pseudo BL-algebras

The aim of this chapter is to define the localization (strong localization) pseudo BL-
algebra of a pseudo BL -algebra A with respect to a topology F on A and to prove that the
maximal pseudo BL - algebra of quotients and the pseudo BL- algebra of fractions relative
to an A— closed system are strong pseudo BL -algebras of localization (see Proposition 8.39
and Proposition 8.40).

The concepts of pseudo BL -algebra of localization was defined in [39].

If the pseudo BL- algebra A is a pseudo MV- algebra or a BL- algebra then we obtain
the results from Chapter 7 and 6; so, the results of this chapter are generalizations of the
results for MV, pseudo MV and BL- algebras.

1. Pseudo-BL algebra of fractions relative to an A— closed system

As in the case of BL we denote by S(A) the set of all A—closed system of A,
(see Definition 6.1).
For S € S(A), on the pseudo - BL algebra A we consider the relation 8¢ defined
by
(x,y) € Og iff there exists e € SN B(A) such that z Ae =y Ae.

LEMMA 8.1. fg is a congruence on A.

Proof. The reflexivity, symmetry and transitivity of #g are immediately. To
prove the compatibility of fg with the operations A, V,® see the proof of Lemma
6.1.

To prove the compatibility of #g with the operations — and ~-, let z,y, z,t € A
such that (z,y) € 0g and (z,t) € 0g. Thus there exists e, f € SN B(A) such that
xANe=yANeand zA f=tA f; we denote g=eA f €SN B(A).

By psbl — cg1 we obtain :

(z—=2)Ng=(@—20g=[z0g) - (209)]0g

=lyog - (toglog=H—-1)0g=H—1Ag,
hence (z — z,y — t) € 05 and

(T~ 2)Ng=g0(@~2)=9g0[(gOz)~ (90 2)]
=g0l(goy) ~(got))=9g0([y~t)=(Hy~1t)Ag,
hence (x ~ z,y ~ t) € g .M

For x we denote by z/S the equivalence class of z relative to g and by
AlS]=A/0s.

By ps : A — A[S] we denote the canonical map defined by pgs(xz) = =/, for every
x € A. Clearly, in A[S],0=0/5,1=1/S and for every x,y € A,

z/SANy/S=(xNy)/S,x/SVy/S=(xVy)/S,z/SOy/S=(x0y)/S,
201
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z/S—y/S=(x—y)/Sz/S~y/S=(x~y)/S
So, pg is an onto morphism of pseudo-BL algebras.

REMARK 8.1. Since for every s € SN B(A), s\Ns = s A1 we deduce that
s/S=1/S =1, hence ps(SNB(A)) = {1}.

PROPOSITION 8.2. Ifa € A, then a/S € B(A[S]) iff there exists e € SN B(A)
such that e Na € B(A). So, if e € B(A), then e/S € B(A[S]).

Proof. Fora € A,wehavea/S € B(A[S]) & a/S®a/S =a/S and ((a/S)7)® =
((a/S)%)” =a/S .

From a/S ® a/S = a/S we deduce that (a ® a)/S = a/S < there exists g €
SNB(A) such that (a@a)ANg=aANge (a@a)Og=aNge (a®g)O(a®g) =
ahg<(ang)©(ang)=alg.

From ((a/S)7)® = ((a/S)®)” = a/S we deduce that exists f,h € SNB(A) such
that (a™)* A f=aA fand (a®)" Ah=aAh. If denotee=gA fAhe SN B(A),
then

(ane)®(ane)=(aNgNfAR)O(aNgNfAR)=
(@0g)OfOhe(a®g)OfOh=a0gofOh=aNgNfAh=ale
and

((ahe) )SPPED (a7 v er)SPPE™ (7)S A (e7)S = (a7)S Ae
=@ )SAgAfAR=[a)SAfIANgAh=(aNf)AgAh=aANe
and
((ane)®)~ PP= (a5 v eS)™ PPED (%) A (e3)” = (a3) Ae
=(@®) " AgAfAR=[a®)" AhAgAf=(aANR)AgAf=ale,
S0,
((ane)®)” =((ane)”)®=aNe,
hence a A e € B(A).
If e € B(A), since 1 € SN B(A) and 1 Ae = e € B(A) we deduce that e/S €
B(A[S]). &
As in the case of BL— algebras we have the following result :

THEOREM 8.3. If A’ is a pseudo-BL algebra and f : A — A’ is an morphism
of pseudo-BL algebras such that f(S N B(A)) = {1}, then there exists an unique
morphism of pseudo-BL algebras f': A[S] — A’ such that the diagram

A P50 ALS)

N e

f I
A/

is commutative (i.e. f'opg = f).

REMARK 8.2. Theorem 8.3 allows us to call A[S] the pseudo-BL algebra of
fractions relative to the A—closed system S.

REMARK 8.3. If pseudo BL— algebra A is a BL— algebra (i.e. x — y=x ~ vy,
forallz,y € A, see Remark 5.1), then (x/S) — (y/S) = (x = y)/S = (x ~y)/S =
(x/8S) ~ (y/S), so A[S] is a BL— algebra, called the BL-algebra of fractions relative
to the A—closed system S (see Chapter 6).
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REMARK 8.4. If pseudo BL— algebra A is a pseudo MV — algebra (i.e. (x7)% =
x = (2%)7, for all x € A, see Corollary 6.31), then [(xz/S)”]|® = (z7)%/S ==z/S =
(x2)7/S = [(x/S)%]~, so A[S] is a pseudo MV — algebra, called the pseudo MV-
algebra of fractions relative to the A—closed system S (see Chapter 7).

EXAMPLE 8.1. If A is a pseudo BL— algebra and S = {1} or S is such that 1 € S
and SN(B(A)\{1}) = @, then forx,y € A, (x,y) € s <= 2Nl =yAl <=z =y,
hence in this case A[S] = A.

ExXAMPLE 8.2. If A is a pseudo BL— algebra and S is an N—closed system such
that 0 € S (for example S = A or S = B(A)), then for every xz,y € A, (z,y) € g
(sincex ANO =y A0 and 0 € SN B(A)), hence in this case A[S] = 0.

2. Pseudo-BL algebra of fractions and maximal pseudo BL-algeba of
quotients

2.1. Strong multipliers on a pseudo-BL algebra. We denote by Z(A) the
set of all order ideals of A (see Definition 6.2) and by I;(A) the set of all ideals of
the lattice L(A).

DEFINITION 8.1. By partial strong multiplier of A we mean a map f: 1 — A,
where I € T(A), which verifies the next conditions:
(sm —psBLy) f(e®x)=e® f(x), for every e € B(A) and x € I,
(sm — psBL3y) f(z) < x, for every x € I
(sm —psBL3) If e € I N B(A), then f(e) € B(A);
(sm —psBLy4) x A f(e) =eA f(x), for everye € IN B(A) and z € I.

REMARK 8.5. If A is a BL— algebra or a pseudo MV — algebra the definition of
strong multiplier on A is the same as Definitions 6.3 for the case of BL— algebras
and Definition 7.3 for pseudo MV — algebras.

Clearly, f(0) = 0.

As in the case of BL— algebras, by dom(f) € Z(A) we denote the domain of f;
if dom(f) = A, we called f total.

To simplify the language, we will use strong multiplier instead partial strong
multiplier using total to indicate that the domain of a certain multiplier is A.

EXAMPLE 8.3. The map 0 : A — A defined by 0(x) = 0, for every x € A is a
total strong multiplier on A;

EXAMPLE 8.4. The map 1: A — A defined by 1(x) = x, for every x € A is also
a total strong multiplier on A

EXAMPLE 8.5. For a € B(A) and I € Z(A), the map fo : I — A defined by
fa(x) = a Az, for every x € I is a strong multiplier on A (called principal).

REMARK 8.6. The condition sm—psBLy is not a consequence of sm—psBL1, sm—
psBLy and sm — psBLs. As example, f : I — A, f(x) = x Az~ for every x € I,
verify sm — psBL1,sm — psBLo and sm — psBLs.

REMARK 8.7. In general, if consider a € A, then f, : I — A wverifies only
sm — psBLy,sm — psBLy and sm — psBL, but does not verify sm — psBLs.
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If dom(f,) = A, we denote f, by f, ; clearly, fo = 0.
For I € Z(A), we denote
M(I,A)={f:1— A: fis a strong multiplier on A}
and
M(A)= U M(I,A).
(A) =,y M4

DEFINITION 8.2. If I1,1s € Z(A) and f; € M(I;, A),i = 1,2, we define fi A fa,
fivife, Al fo, f = fas fi~ for NIy — A by

(fi A fo)(x) = fi(z) A fa(x),
(f1V fo) (@) = fi(@) V fol@),
(/1B f)(@) = [& = fi@)] © fo(z) "E fi(e) © [o ~ folx)],
(f1 — fo)(z) = [@Hﬁ)@%
(f1 ~ fo)(x) =2 © [fi(z) ~ fao(z)],

for every x € I1N Is.
LEMMA 8.4. f1 A fo € M(I; N Iz, A).
Proof. See the proof of Lemma 6.4. I
LEMMA 8.5. f1V fo € M(I1 NIy, A).
Proof. See the proof of Lemma 6.5. Il
LEMMA 8.6. f1 [0 fo € M(I; NIz, A).
Proof. If z € I1N I and e € B(A), then
(1lf2)(e0z) = [(eOx) — fi(eOx)|Of2(e0Or) = [(eOx) — (e® f1(2))|O[e® fo(z)] =
= [((e@2) = (e® f1i(2)) @ €] © fola) "= [(x — fi(2)) © €] © folz) =
=[x = f1i(2)) © fa(x)] © e = (LT fa)(z) ©e.

[
Clearly, (fi & f2)(z) = [z — fi(2)] © fo(z) < fa(x) < 2, for every x € 1N Iy
and if e € Iy N Is N B(A), then by Proposition 5.13, we have

(1B f2)(e) = [e = f1()] ® fale) = (7 V fi(e) © fale) € B(A).
Fore e 1 N Io N B(A) and x € I1N I, we have:
AL f)e) =2 Ale— fi(e) ® fale)] =
— (e — f1(€)) © fale)] @z = [(e = fi(€)) @ 2] ® fole) =
PP (e@a) — (file) @) 0] @ fale) = [(cOx) — (fi(e) ©2)] Oz © fale)] =
(c0z) = (@ fi(2)] @ e fol@)] = [(e@z) = (c® fi(z) @ €] ® folz) =
P (1 — fi(2) © €] © falz) = [(& — fi(2)) © fo(@)] @ e =

=[(ADf)(x)]oe=en(fiDf)(x),
hence, we have z A (f1 0 f2)(e) = e A (f1 D fo)(z), that is, /1 fo € M(I1N12, A). R

LEMMA 8.7. fi — fo € M(I; NIy, A).
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Proof. If z € I1N I and e € B(A), then
(fi = fo)(e0x) = [fi(eOz) = fale@r)]O(cOz) = [(O f1(2)) = (eOf2())]O(eOT) =

= [((e® fi(2)) = (e ® fo@) @] @z "= [(fi(x) — fo(z)) O Oa =
®

=[(fi(z) = folx)) O 2] ©e=[(f1 — fo)(@)] @e.

Clearly, (fi — f2)(x) = [fi(z) — fa(x)] ©x < z, for every x € 1N I3 and if
e € Iy NIy N B(A), then by Proposition 5.13 we have

(1 — f2)(e) = [file) — fale)] © e = [(f1(e))™ V fale)] ® e € B(A).
Fore € 1 NIa N B(A) and = € I1N I, we have:
e (fi = f2)(@) = [(file) = fal@) O a] Ae=
= [(fi(x) = fol2) @] G e = [(fi(z) = fa(x) O] Oz =
PR (fux) @) — (fa(2) @e) @d or = (26 fi(e) — (0 fa(e)) O Ou =
((z© fie) — (@ fa(e)) ©a] @ e ™= [(fale) — fole)) @ a] @ e =

=[(file) = fale) @] Oz =[(fi = fo)(e)] @z =z A (fi — f2)(e)

hence, we have z A (f1 — f2)(e) = eA(f1 — f2)(x), thatis, fi — fo € M(I1N1a, A).
]

LEMMA 8.8. f1 ~ fa € M (I NIy, A).
Proof. If z € I1N I and e € B(A), then
(fi =~ f2)(eoz) = (e0z)O[f1(e0z) ~ f2(e®r)] = (€OT)O[(e® f1(2)) ~ (€O fa(x))] =

— 200 ((e0 fi(x) ~ (0 fo(@)] =T 20 e (fi(x) ~ fox))] =

=eO [z o (filz) v f2(2)] = e © (fr ~ f2)(2).
Clearly, (fi ~ f2)(z) = 2 © [fi(z) ~ fa(x)] < z, for every z € 1N Iy and if
e € I1 NIy N B(A), then, by Proposition 5.13, we have

(f1~ f2)(e) = e @ [file) ~ fole)] = e O [(f1(e))3 V fale)] € B(A).
For e € I; N I, N B(A) and x € ;N I, we have:
N (fi~ fo)(@) = e A2 © (filx) ~ folw)] =
= (e02) 0 [fi(2) » fol@)] =2 O [e® (fi(z) ~ folx))] =
PP 0 le® (60 fi(x) ~ (€@ fo(2)] = 20[e® (1 ® fi(e)) ~ (z© fole))] =
=e0 0 (@0 fi(e) ~ (0 fae)] =T o [z o (fie) ~ fole))] =

=z 0 [e® (file) » f2(e))] =2 O (f1 ~ fa)(e) =2 A (f1~ f2)(e)

hence, we have = A (fi ~ f2)(e) = e A (fi ~ f2)(x), that is, f1 ~ fo €
M(IlﬁIQ,A). |

PROPOSITION 8.9. (M(A),A,V,[, —,~,0,1) is a pseudo - BL algebra.
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Proof. We now verify the axioms of pseudo BL-algebras.

(psBLq). It is obvious that (M (A), A, V,0,1) is a bounded lattice.

(psBL3). Let f; € M(1;,A) where I; € I(A), i = 1,2,3. Then, it is clear that
fi fo € M(A) (see Lemma 8.6).

Thus, for x € I1 N Iy N I3, we have

[(f1 B fo) B fs3](x) = ((f1 D fo) () © (z ~ f3(x)) =
=[(z = fi(2)) © fo(2)] © (z ~ f3(2) = (z = fi(z)) © [fo(z) © (z ~ f3(2))] =
=(z— fi(x)) O (O f3)(@)] = [T (f2E f3)](z),
that is, the operation [] is associative.
Let fe M(I,A) with I € I(A). If z € I, then
(fE1)(z) = f(2) © (2~ 1(x) = f(2) © (z ~ z) = f(z) © 1= f(z),
(1Ef)(@) =1(z) © (z~ f(z)) =20 (z~ f(z)) =z A f(z) = f(2),
hence, f11 =10 f = f, that is, (M(A),, 1) is a monoid.
(psBL3). Let f; € M(I;, A), where I; € I(A),i=1,2,3.
Since f1 < fo — f3 for x € I; N I3 N I3, we have

fi(@) < (f2 = f3)(z) & fi(2) < [f2(2) — f3(@)] © 2.
So, by psbl — c3,we derive that
Ni(@) Oz~ fa(@)] < [folz) = f3(@)] 02 O 2~ fo(2)] &
fi(@) © [z~ fo(x)] < (f2(2) — f3(2)) © (2 A fa(z)) &
fi(z) © [z~ fo(z)] < (fo(z) — f3(2)) © fo(z) &
fi(@) © [z~ fo(z)] < falz) A fi(z) < fi(z) &
(f1Of2)(z) < f3(z),
for every x € I1 N Is N I3, that is, fi [ fo < fs.
Conversely, if (f1 & f2)(x) < f3(x), then we have [x — f1(2)] ® fa(x) < f3(x),for
every x € I1 N Is N I3.
Obviously,
psbl—cs3

[z = A@)] < folz) = fa(2) "= (2= fi(2) O < (fz) — fs@2) O

=z A fi(z) < (fa(z) — f3(x)) Oz = fi(x) < (fo— f3)().

Hence, f1 < fQ — f3 iff f1 CJ f2 < f3, for all fl, fg f3 € M(A)
Since fo < f1 ~ f3 for x € I N Is N I3, we have

fo(@) < (fr ~ f3)(@) & fo(z) <z O [fi(z) ~ fs(z)].
So, by psbl — c3, we have
[z = fil@)] © fo(z) < [z — Ail@)] ©2 0 [fi(z) ~ f3(2)] <
(Hf2)(z) < (@A fi(z)O(fi(z) ~ f3(2) < (10f2)(@) < fi(2)O(fi(z) ~ f3(2)) <
(LB f2)(@) < filz) A fs(z) < fs(z) & (LT fo)() < fi(z),
for every x € Iy N Io N I3, that is, f1 [ fo < fs.
Conversely if (f1 [ f2)(x) < f3(x), then we have fi(x) ® [z ~ fa(x)] < f3(x),for
every x € I1 NI, N I5.
It is obvious that

(~ fo(2) < fi(@) ~ f3(@) "B 20 (3w fola) <20 (filw) ~ f()
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=z A fa(x) <20 (fi(z) ~ f3(2)) = fa(x) < (fi ~ f3)(2).

Hence, fo < f1 ~ f3 iff fi 1D fo < f3 for all fi, fa, f3 € M(A).
(psBL4). Let f; € M(I;, A) where I; € I(A), i =1, 2.
Then, for z € I N I3, we have

[(f1 = f2) O fil(@) = [(f1 = f2)(@)] © [z~ fi(=)]
= ([fi(@) = @) Or) Oz~ filz)] = [fi(z) = fa(2)] © (2 © [~ fi(2)]) =
= [filz) = fa@)]olAfi(z)] = [fi(z) = f2(2)]|Ofi(x) = filx)Afa(x) = (fiAf2)(2),

and

(18 (fr ~ f2)](@) = [z = fi(@)] © [(f1 ~ f2)(2)]
= [z = h@)] O (O [filz) » f2(2)]) = ([z = @) ©2) © [fi(x) ~ folz)] =
= [eAfi@)olfi(2) ~ fo(@)] = fi(z)Ofi(z) ~ f2(2)] = filx)Afo(z) = (17 fo) (@),

So, finfo=(fi— ) fi=FHE(f1~ f2)
(psBLs). We have

[(f1 = fo) V(fo— fO)l(x) = [(f1 = f2)(@)] V[(fa = f1)(z)] =
— [(fi(z) — fo(@)) @ 2]V [(fole) = fi(2)) @ 2] =
PREES ((fi(2) = fo@) V (falz) = fi@)] 0z =10z =2 = 1(x),

and

[(fr ~ f2) V (fa ~ fO)l(x) = [(f1 ~ f2)(@)] V[(f2 ~ fi)(@)] =
= [z O (fi(x) ~ fo(2)] V [z © (fo(z) ~ fi(2))] =

PR 2 0 [(fi(2) ~ fa@) V (@) = Ai@)] =20 1=z =1(x),
hence (fi — fo) V(fa— fi)=(fi~ fo)V(fe~ fi)=1. W
REMARK 8.8. To prove that (M(A),A,V,[, —,~,0,1) is a pseudo BL-algebra

it is sufficient to ask for multipliers only the axioms sm — psBL1 and sm — psBLo.

PROPOSITION 8.10. If pseudo BL— algebra (A,V,\,®,—,~+,0,1) is a pseudo
MV — algebra (A,©,®,”,%,0,1) (i.e. (x7)% = (2%)” = xz, for all z € A), then
pseudo BL— algebra (M (A), A, V,, —,~+,0,1) is a pseudo MV — algebra (M (A),,H,”,%,0,1).

Proof. To prove that pseudo BL— algebra M (A) is a pseudo MV — algebra let
feM(I,A) with I € Z(A).
Then

(f)3@) =20 [(f@)” 0> =" 2o [z~ ((f() )]
=20z~ f(@) =2 A f(z) = f(z)
and
(f3) (@) = [ © (f(@)3] 0z "= [z — (f(2))%) ] 0w
—(z— f@) 0z =z A f(z) = f(z)
(since f(z) € A which is a pseudo MV — algebra), for all = € I.

So, (f7)% =(f%)" = f, for all f € M(A) and pseudo BL— algebra M(A) is a
pseudo MV -algebra (see Proposition 7.15). B
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ProposITION 8.11. If pseudo BL -algebra (A,V,N,®,—,~>,0,1) is a BL -
algebra (i.e Oy = y © x for all x,y € A and in particular x — y = x ~> y
for all x,y € A), then pseudo BL -algebra (M(A),A\,V,,—,~,0,1) is a BL -
algebra (M (A),A,V,[0,—,0,1). Indeed if 11,1y € T(A) and f; € M(I;,A), i = 1,2
we have

(f1 = f)(2) = [fi(z) = fo(x)] Oz =z O [fi(z) ~ fa(z)] = (f1 ~ f2)(z),
forallx € I1NIy, then fi — fo = fi1 ~ fa, so pseudo BL -algebra (M(A), A, V,H, —
,~,0,1) is commutative (see Remark 5.1), so is a BL -algebra (see Proposition 6.8).

REMARK 8.9. For every I € I(A) the algebra of multipliers Myspc (I, A) for a
pseudo BL— algebra is in fact a generalization of the algebra of multipliers Mpsay (1, A)
for pseudo MV — algebras, defined in Chapter 7 and algebra of multipliers Mpr (1, A)
for BL— algebras, defined in Chapter 6.

LEMMA 8.12. The map va : B(A) — M(A) defined by va(a) = fa for every
a € B(A) is a monomorphism of pseudo BL-algebras.

Proof. Clearly, v4(0) = fo = 0. Let a,b € B(A) and = € A. We have:

(va(a) Dva(b))(z) = va(a)(z) © (2~ va(b)(2)) = (a Ax) © (2~ (bAT))
=)0 (@~ (bAz)=a@z0(x~ (bAZ)]=a®[zA(bAx)
=aNlzANbAz)=aN(bAz)=(aANb)ANx = (va(aAb))(z) = (vala®D))(x),

Ao ot A EAO)

(va(a) = va(®))(z) = [va(a)(z) = va(O)(¥)] Oz = [(a Nz) = (bAZ)] O

—(z®a) = (o) 0z’ = (a—=b) ez =1aA(a— b
(since a — b € B(A))
=vg(a — b)(x),
and
(va(a) ~va(b))(x) =z © [va(a)(z) ~ va(b)(x)] =2 © [(a Ax) ~ (bA )]

psbl—crs

=z0[(zoa) v (zOb) O (a~b)=xA(a~D)
(since a ~ b € B(A))
=vg(a ~ b)(x).

Consequently, we have
va(a) = va(b) =vala —b), vala) ~ va(b) =va(a ~b).

This proves that v4 is a morphism of pseudo BL-algebras.

The injectivity of v4 is obviously. B

As in the case of BL-algebras, we denote by R(A) = {I C A : I is a regular
subset of A}, see Definition 6.5.

REMARK 8.10. The condition I € R(A) is equivalent with the condition: for
every x,y € A, if foyinB(a) = fyiinp(a), then z = y.

LEMMA 8.13. If Iy, I, € T(A) N R(A), then I, N I, € T(A) NR(A).
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REMARK 8.11. By Lemma 8.13, we deduce that
M, (A)={f e M(A) :dom(f) e Z(A)NR(A)}
is a pseudo BL - subalgebra of M(A)

PROPOSITION 8.14. M,.(A) is a Boolean subalgebra of M(A)

Proof. Let f: I — A be a strong multiplier on A with I € Z(A) NR(A). Then
for all x € I,

enlfOf](z) =

prl;C74 [(

N =)o f@)]=eolr— fz)]o f(z)

)= (f(@)0e)]oeo fz) =[c0z) = (fz)0e)]0ed f(z) =
=[eoz) = (fle)or)]0r0o fle) =

— fle)] oz o fle) =[e— =lenfle]o flz) =
=e0 fle)O flx) =leo f)]© fle) =20 f(e) O fle) =2 O fle) =
=e0 f(z) =enf(z),
hence (x — f(x)) ® f(z) = f(z), (since I € R(A)), hence f O f = f.
We have

eN(fT)%@) =enzofe~ ((f(=))7]

prl__C75 [

(eoeo f(z)=

=e0z Oz~ ((f(z))%]
O ((f(x)7)%)] =

=r0edlle@x)~ (e
=z0e0[le0z)~ (e [(f(z)” ~0])]=
=z0e0[(c0z)w (e@[(e® (f(z))~0])] =
=r0e@[(e@a)w (e [(ed (f(2)7)]%)] =
=r0ed[e®@z)~ (e@e®|[f(z) — 0]]%)] =
=z0e@|[le®x)~

(e@ed(ed f(x)]7)%)] =
=20e0[(e0r) (O ([z© f(e)])%)] =

=r0e0 [z~ (20 f(e)] )] =r0e® [z~ ([z A f(e)]7)%]
=x0e@[z~[xz"V(fle) ®?]l=20e®[r~|

psbl_ca r@®e® ([z~

z ) A f(e)]] =
(@) Az~ fle)])

Qe (IA[x~ fle)])) =x0e® [z~ f(e)]
—coror (@) =co A )] =ernAfle) = A f(e)
and

psbl—caz

A f(z),

=[z = ((f(2))®) ]0eoz=
Toe)|o0edr =

== [@®)" Aflelloroe=
(e)oroe=

=z = fle))oroe=

= (x) Ne=eA f(x).
So, fEf=fand f =

(fs )_ that is, M, (A) is a Boolean algebra. B
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REMARK 8.12. The axioms sm — BLs,sm — BL4 are necessary in the proof of
Proposition 8.14.

We recall that for two strong multipliers f1, fo on A, we say that fo extends f;
if dom(f1) C dom(f2) and fagom(s,) = f1 and we write fi < fa if fo extends f1. A
strong multiplier f is called maximal if f can not be extended to a strictly larger
domain.

As in the case of BL— algebras we have the following results:

LEMMA 8.15. If f1, fo € M(A), f € My(A) and f < f1,f < fo, then fi and fo
coincide on the dom(f1) N dom(f2).

LEMMA 8.16. Every strong multiplier f € M,(A) can be extended to a maximal
strong multiplier.

LEMMA 8.17. Each principal strong multiplier f, with a € B(A) and dom(f,) €
Z(A)NR(A) can be uniquely extended to a total multiplier f, and each non-principal
strong multiplier can be extended to a maximal non-principal one.

On the Boolean algebra M, (A) we consider the relation p, defined by
(f1, f2) € py iff f1 and fo coincide on the intersection of their domains.

LEMMA 8.18. p4 is a congruence on Boolean algebra M, (A).

Proof. See the proof of Lemma 6.14. W

DEFINITION 8.3.  For f € M,(A) with I = dom(f) € Z(A) N R(A), we denote
by [f, I] the congruence class of f modulo p, and Q(A) = M,(A)/p4.

COROLLARY 8.19. By Proposition 6.12 and Lemma 8.18 we deduce that Q(A)
1s a Boolean algebra.

LEMMA 8.20. Let the map va : B(A) — Q(A) defined by va(a) = [fa, A] for
every a € B(A). Then

(1) U4 is an injective morphism of Boolean algebras,
(i1) va(B(A)) € R(A").

Proof. See the proof of Lemma 6.15. l

REMARK 8.13. Since for every a € B(A),E is the unique maximal strong mul-
tiplier on [fa, A] we can identify [fa, A] with fa. So, since v4 is injective map, the
elements of B(A) can be identified with the elements of the set { f, :a € B(A)}.

LEMMA 8.21. In view of the identifications made above, if [f,dom(f)] € Q(A)
(with f € M,(A) and I = dom(f) € Z(A) NR(A)), then

INB(A) C{ac B(A): foA\|f, dom(f)] € B(A)}.
REMARK 8.14. The axiom sm — BLy is necessary in the proof of Lemma ?7.
2.2. Maximal pseudo BL-algebra of quotients.

DEFINITION 8.4. A pseudo BL -algebra F' is called pseudo BL-algebra of frac-
tions of A if:

(psBLfr1) B(A) is a pseudo BL-subalgebra of F;
(psBLfrg) Forevery o’,b',c € F,a' # V', there exists e € B(A) such that eAa’ # eAV

and e A € B(A).
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So, pseudo - BL algebra B(A) is a pseudo BL - algebra of fractions of itself
(since 1 € B(A)).

As a notational convenience, we write A < F to indicate that F' is a pseudo
BL-algebra of fractions of A.

DEFINITION 8.5. A pseudo BL— algebra Ay is a maximal pseudo BL-algebra
of quotients of A if A < Ajs and for every pseudo BL-algebra F' with A < F there
exists a monomorphism of pseudo BL-algebras i : F' — Ajy.

REMARK 8.15. If A < F, then F is a Boolean algebra. Indeed, if a’ € F such
that o' # d' ©ad' or ((a')7)% # a or ((a')%)” # d then there exists e, f,g € B(A)
such that e Nd', f Nd', g Nd' € B(A) and

end #eN(d®d)=(end)®(end) or
fad #fA((a)7)®=((fAd)7)% or
gnd #gn((a)®)” =((gnd)®),
a contradiction !.

As in the case of BL— algebras we have:

LEMMA 8.22. Let A < F ; then for every a’,b' € F,a' # V', and any finite
sequence ¢y, ..., c,, € F, there exists e € B(A) such that eNa' # eNV and eNc; € B(A)
fori=1,2,...n (n>2).

LEMMA 8.23. Let A< F and ad € F. Then
Iy, ={ee B(A):eNd € B(A)} € Z(B(A)) NR(A).

THEOREM 8.24. For every pseudo BL— algebra A, Q(A) is the maximal pseudo
BL-algebra of quotients of A.

Proof. See the proof of Theorem 6.19. B

REMARK 8.16. If pseudo BL— algebra A is a BL— algebra, then Q(A) is the
mazximal BL— algebra of quotients of A; if pseudo BL— algebra A is a pseudo MV —
algebra, then Q(A) is the maximal pseudo MV — algebra of quotients of A.

REMARK 8.17. If A is a Boolean algebra, then B(A) = A. By Remark 8.15,
Q(A) is a Boolean algebra and the azioms sm — psBLy,sm — psBLg, sm — psBL3
and sm —psBLy are equivalent with sm—psBLi, hence Q(A) is in this case just the
classical Dedekind-MacNeille completion of A (see [122], p.687). In contrast to the
general situation, the Dedekind-MacNeille completion of a Boolean algebra is again
distributive and, in fact, is a Boolean algebra ([2], p.239).

PROPOSITION 8.25. Let A be a pseudo BL - algebra. Then the following state-
ments are equivalent:
(i) Every mazimal strong multiplier on A has domain A;
(ii) For every strong multiplier f € M(I,A) there is a € B such that f = f,
(that is f(x) = a AN x for every x € I);
(i1i) Q(A) ~ B(A).

DEFINITION 8.6. If A verify one of condition of Proposition 8.25, we call A
rationnaly complete.
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REMARK 8.18. 1. If A is a pseudo - BL algebra with B(A) ={0,1} = Lo
and A <X F then F = {0,1}, hence Q(A) = A” =~ Ly. Indeed, if a,b,c € F
with a # b, then by psBL fry there exists e € B(A) such eNa # e/\b (hence
e #0) and eNc € B(A). Clearly, e =1, hence c € B(A), that is F = B(A).
As examples of pseudo BL-algebras with this property we have local pseudo
BL-algebras and pseudo - BL chains.

2. More general, if A is a pseudo BL— algebra, B(A) is a finite and A < F,
then F = B(A), hence in this case Q(A) = A” = B(A). Indeed, since
A =< F we have B(A) C B(F) C F. If consider a € F, then there exists
e € B(A) such that e N x € B(A) (for example e = 0). B(A) being finite,
there exists a largest element eq € B(A) such eq N a € B(A). Suppose
eqV a # eq, then there would exists e € B(A) such that e A (eqV a) # eNeg
and eNa € B(A). But e Na € B(A) implies e < e, and thus we obtain e =
en (ea Va) #eNe, = e, a contradiction. Hence e, V a = eq, s0 a < eq,
consequently a = aNe, € B(A), that is, FF C B(A). Then F = B(A), hence
Q(A) = B(A).

3. Localization of pseudo BL-algebras

3.1. Topologies on a pseudo BL-algebra. We recall that, as in the case of
BL~— algebras, a non-empty set F of elements of I € Z(A) will be called a topology
on a pseudo BL— algebra A if verifies the conditions of Definition 6.10.

EXAMPLE 8.6. If I € Z(A), then the set F(I) = {I' € IZ(A) : I C I'} is a
topology on A.

EXAMPLE 8.7. If we denote R(A) = {I C A : I is a regular subset of A}, then
Z(A)NR(A) is a topology on A.

EXAMPLE 8.8. If we denote by D(A) the set of all dense subsets of A, then
R(A) C D(A) and F =Z(A) N D(A) is a topology on A.

EXAMPLE 8.9. For any A— closed subset S of A, we set Fg = {I € I(A) :
INSNB(A) # @} is a topology on A.

3.2. F-multipliers and localization pseudo BL-algebras. Let F a topol-
ogy on A. As in the case of BL— algebras, the relation 87 of A defined in the
following way:

(x,y) € 05 < there exists I € F such that e Ax =e Ay for any e € I N B(A),

is a congruence on A.
We denote by x/0 the congruence class of an element z € A and by pr: A —
A/0rthe canonical morphism of pseudo BL-algebras.

PROPOSITION 8.26. Fora € A, a/0r € B(A/0F) iff there exists I € F such that
a e € B(A) for every e € INB(A). So, if a € B(A), then a/0F € B(A/0F).

Proof. For a € A, we have a/0r € B(A/0r) < a/0r © a/0r = a/OF
and [(a/07)%]” = [(a/0F)7]° = a/0F & (a©a)/0r = a/fF and (a®)”/0F =
(a=)%/0F = a/0F < there exists J, K,G € F such that (a®a) Aj = aAj, for every
j€JNB(A), (a®)" Nk =aANk, forevery k € KNB(A) and (a”)SAg=aAy, for
every g € GN B(A).
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From psbl — c73, we deduce that (a A j) © (aAj) = (a®a)Aj=aAj, for every
j€JnNB(A).
If denote I = JN K NG, then I € F and for every e € I N B(A),

(ane)®(ane)=aAle,

[(aAe)S] PP (45 v eS)= PPE (4S)= A (e5)” = (aS) " Ae=ahe
and
[(@aAe) ]S PPE (0= ver)S PP (a7)SA(e)S = (a7 )SAe=aAe,

so, a A e € B(A) for every e € I N B(A).
So, if a € B(A), then for every I € F, a Ae € B(A) for every e € I N B(A),
hence a/0r € B(A/6r).R

COROLLARY 8.27. If F = Z(A) N R(A), then for a € A, a € B(A) iff a/0r €
B(A/0F).
DEFINITION 8.7. Let F be a topology on A. A partial F—multiplier is a mapping

f:I — A/Ox where I € F and for every x € I and e € B(A) the following azioms
are fulfilled:

(m —psBLy) fleox)=e/0r A f(x) =¢/0F © f(2);
(m —psBLy) f(z) < x/0f.

By dom(f) € F we denote the domain of f; if dom(f) = A, we called f total.

To simplify language, we will use F—multiplier instead partial F—multiplier,
using total to indicate that the domain of a certain F—multiplier is A.

The maps 0,1 : A — A/0f defined by 0(x) = 0/07 and 1(x) = z/0F for every
x € A are multipliers in the sense of Definition 8.7.

Also for a € B(A), fo: A — A/0r defined by fu(x) = a/0F N x/0F for every
x € A, is an F— multiplier. If dom(f,) = A, we denote f, by f, ; clearly, fo = 0.

We shall denote by M (I, A/6r) the set of all F— multipliers having the domain
I € F and

M(A/0F) = U M(I, A/0F).

If 1,1, € F, I} C I, we have a canonical mapping

Pr,I ¢ M(127 A/Of) - M(Ilv A/Hf)
defined by

or 1, (f) = fir, for f e M(Iz,A/0F).
Let us consider the directed system of sets

({M(1. A/0F)}rer A en 1} 0 neFncn)
and denote by Ax the inductive limit (in the category of sets):
Ar = limM(I, A/67).
IeF

For any F— multiplier f : I — A/0r we shall denote by ET) the equivalence
class of f in Af.
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REMARK 8.19. If f; : I; — A/0F , i = 1,2, are F— multipliers, then (Il/I) =
(I2, f2) (in Ag) iff there evists I € F , I C Iy N Iy such that fi; = for.

Let f;: I; — A/OF , (with I; € F, i = 1,2), F—multipliers. Let us consider the

mappings:

defined by

Ainfo:hinly — Af0F
fivfo: NIy — Al0f
B8 f:hinl,— Al0F
fi—fo:hinly — Al0F
fi~fo:hinly — AJOr

(fi A f2)(x) = fi(x) A fa(z),
(f1V L)) = fi(x)V f2(z)

(7D f)(@) = [1/07 — Hi(2)]© fole) ™= fi(2) © [/0F ~ fola)],

(fi = fo)(@) = [fi(z) = fo(2x)] © 2/0F,
(fi ~ fo)(@) = 2/0F © [fi(x) ~ fa(z)],

for any x € I1 N I, and let

(I f1) & (I, fo) = (LN T, fy A o),

(h/,\ﬁ) Y ([2/=\J02) = (I NTa fi V f2),

(T f1) - (o fo) = (LN o, f1 B o),
(I, f1) — (2. o) = (LN I, fi = fo).

(I1, 1) & (I, fo) = (LN Iy, f1 ~ f).

Clearly the definitions of the operations A, Y,:,+—— and «~ on Ax are correct.

LEMMA 8.28.

finfo € M(Il ﬂIQ,A/Q}-).

Proof. See the proof of Lemma 6.24. B

LEMMA 8.29.

fiVv fo € M(Il ﬂIQ,A/@}').

Proof. See the proof of Lemma 6.25. B

LEMMA 8.30.

il fo e M(Il ﬂIQ,A/Q}').

Proof. If z € I1N I and e € B(A), then
(il f2)(e@z) =[(e®x)/0Fr — file ©2)]| © fale © z)
=[(e®x)/0r — (e/0r © fi(x))] ©[e/0F © faz)] =

= [((e/0r0z/0F) —

(/050 f1(2))@e/0F]O fa(x) "= [(2/0F — fi(x)Oe/0£]0 fao(x) =

=[(z/0F — fi(z)) © fo(z)] O e/0Fr = (f1 T f2)(z) © e/OF.

Clearly, (f1E f2)(x) = [x/0F — f1(z)]© fa(z) < fa(x) < 2/0F, for every x € 11N
1o, that is fl ® f2 S M(Il ﬂIQ,A/H]:). [ |

LEMMA 8.31.

. fi— fo € M(Il ﬂIQ,A/@]:).
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Proof. If z € I1N I and e € B(A), then
(fi = fo)(eoz) =[filcOz) = faleOr)] O (cOT)/0F =
= [(e/0F © fi(x)) — (e/0F © fo(2))] © (e © 2)/0F =

= [((e/0r0h(2)) = (¢/050 L)) 0e/05)0a /05 "= [(fi(@) — folw))De/0x]0n/05 =
=[(i(@) = fo(z)) ©x/0F] © /07 = [(f1 — f2)(x)] © e/OF.
Clearly, (f1 — f2)(z) = [fi(z) — fo(x)] © /07 < x/0F, for every x € IiN I,
that is f1 — foe M(I1 NIy, A/0F). R
LEMMA 8.32. . fi1~ fo€ M(I1 N1y, A/OF).
Proof. If z € I1N I and e € B(A), then
(fi~ fo)le®z)=(e0z)/0r O [file®x) ~ fole ® )]
=(e®)/0r ©[(e/0F © fi(z)) ~ (e/0F © fo(z))] =
=z/0F ©le/0r © ((e/0F © fi(z)) ~ (e/0F © fo()))]

P 2 10F @ [e/0F © (fi(x) ~ fa(x))] =
=e/0r ©[z/0Fr © (fi(z) ~ fo(z))] =e/0F © (f1 ~ f2)(z).

Clearly, (fi1 ~ f2)(z) = 2/0F © [f1(x) ~ fa(2)] < z/0F, for every x € I1N Iy,
that is f1 ~ fo € M(Il ﬂ[Q,A/Q}'). |

PROPOSITION 8.33. (Ar, A, Y, —,ew 0 = (A,0),1 = (A,1)) is a pseudo -
BL algebra.

Proof. We will verify the axioms of/pﬁudo - B/_L\algebras.

(psBL1). Obviously (Ar, A,Y,0=(A4,0),1 = (A,1)) is a bounded lattice.

(psBL3). Let f; € M(I;,A/0r) where I; € F, 1 =1,2,3.

Clearly, f1 [ fo € M(A/0x) (see Lemma 8.30) and

I, 1) - (T fo) = (N T2, LB fo) € Ag.
Thus, for z € I1 N I, N I3 we have
[(f1 B f2) O f3](z) = ((fr T f2) (@) © (2/0F ~ f3(x)) =
=[(@/0F — f1(2)) © f2(2)] © (x/0F ~ f3(x)) =
= (z/0F — f1i(2)) © [fa(z) © (x/0F ~ f3(2))] =
= (z/0r — f1(2)) © [(foT f3)(x)] = [/1 T (f2 T f3)](=),

SO

(I 1) - (T, f2) - (T, fo)) = (1, 1) - (B, )] - (s, ),
that is the operation - is associative on Ar.
Let fe M(I,A/0F) with I € F. If x € I, then
(fUL)(z) = f(z)©(x/0F ~ L(z)) = f(x) ©(x/0F ~ x/0F) = f(x) ©1/0F = f(z),

and
A f) (@) = 1(2) ® (2/05 ~ f(@)) = 3/05 © (1/05 ~ f(2)) = 2/05 A f(z) = (),

hence

fUl1=1Lf=/,
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that is o o

and (Ar,-,1=(A,1)) is a monoid.
(psBLs3). Let f; € M(I;,A/0x) where I; € F, i =1,2,3.
Since f1 < fo — f3 for x € I1 N Is N I3 we have

filz) < (f2 = f3)(@) & fi(@) < [fa2(2) — f3(z)] © 2/0F.
So, by psbl — c3

fi(x) © [z/0F ~ fox)] < [falx) = f3(2)] © 2/0F © [2/0F ~ fo(z)] &
fi(@) © fx/0F ~ far(x)] < (falz) = f3(2)) © (2/0F A fo(2)) <
(@) O [z/0F ~ faa)] <

(fa(z) = f3(2)) © fa(z) &
fi(@) ©[z/0F ~ fo(x)] < fa(z) A f3(2) < f3(2) &
(frE fo)(z) < f3(x),
for every x € I1 N I» N I3, that is
Hlfa<fs.
Conversely if (f1 [ f2)(z) < f3(x) we have
[2/0F — f1(z)] © f2(z) < f3(z),

for every x € I1 N Is N I3.
Obviously,

[@/0F — f1(x)] < fala) — fa(x)
PES (2)0r — fi(2) © /08 < (folz) — f3(z)) O 2/0F
e z/0r A i) < (falz) — fa(x) © /07
& filz) < (f2 — f3)(@).

So f1 < fo— f3iff f1 0 fo < f3 for all fi, fo, f3 € M(A/0F).
Since fo < f1 ~ f3 for x € I1 N Is N I3 we have

fa(@) < (fi ~ f3)(@) & fa(@) < 2/0F © [fi(z) ~ f3(z)].
So, by psbl — c3

[2/0F7 — [1(@)] © fo(z) < [2/0F — [i(@)] ©2/0F © [f1(2) ~ f3(z)] <

(f1Ef2)(@) < (2/0F A f1(z)) © (fi(z) ~ f3(z)) &
(1O f2)(z) < fi(z) © (fi(z) ~ f3(z)) <
(il fo)(z) < filz) A f3(z) < fi(z) <
(LB L)) < fs(a)
for every x € I1 N I» N I3, that is
Al fa<fs.
Conversely if (f1 [ f2)(z) < f3(x) we have
fil@) ©[z/0F ~ fao(z)] < f3(2),

for every x € Iy N 1o N I3.
Obviously,

(@/0F ~ fa(x)) < fr(x) ~ f3(z)
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psbl—cs3

S x/0F O (x/0F ~ fox)) < z/0r © (fi(z) ~ f3(z))
S x/0r A fa(z) <x/0F O (fi(z) ~ f3(2))
& fo(x) < (fi~ f3)(@).
So, fo < f1 ~ fy iff f1 0 fo < f3 for all fi, fa, f3 € M(A/0F). So,

—_—

(11, f1) < (I2, fo) = (I3, f3) iff (11, f1) - (T2, f2) < (I3, f3)

and

—

(I2, f2) < (I1, f1) & (I3, f3) iff (11, f1) - (L2, f2) < (I3, f3)-
(psBLy). Let f; € M(1;,A/0F) where I; € F,i=1,2.
Thus, for x € I N I, we have

[(fr = f2) B fil(z) = [(fi = f)(@)] O [2/0F ~ fi(z)]
= ([fi(z) = fe(@)] ©2/0F) © [2/0F ~ f1(x)] =
= [fi(z) = fo(2)] © (2/0F © [x/0F ~ fi(z)]) =
= [fi(z) = fo(@)] © [z/0F A fi(z)] = [fr(z) — fo(z)] © fi(z) =
= fi(@) A fa(z) = (f1 A f2) (=),

and
[f1E(f1 ~ f)l(x) = [2/0F — fi(z)] © [(fi ~ f2)()]
=[z/0r — f1(@)] © (z/0F © [fi(z) ~ f2(2)]) =
=([z/0F — filx)] ©z/0F) © [fi(z) ~ fa(z)] =
= [2/0F A [1(2)] © [f1(z) ~ fa(z)] = fi(z) © [fi(z) ~ fa(z)] =
= fi(z) A fo(z) = (fi A fo)(2).
So,
finfo=(fi—=f)B =B~ f)

and

—
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(11, f1) A (L2, fo) = [(In, fr) — (T2, f2)] - (In, fr) = (D1, f1) - (T, f1) o (2, f2)]-

(psBLs). We have

[(f1 = f2)V (fa— fO)(z) =[(fr = f2)(@)]VI(f2 = fi)(@)] =
= [(fi(x) = fo(z)) © /0] V [(fo(z) — fi(z)) © 2/0F] =

PR [(fi(2) = fa(2) V (falz) = fi(@)] @ 2/0F = 1/0F O x/0F = 207 = 1(z),

and

[(f1 ~ f2) V (fa ~ fO)(z) = [(fr ~ f2)(@)] V [(f2 ~ f1)(2)] =
= [z/0F © (fi(z) ~ fo(2))] V[2/0F © (fo2(x) ~ fi(2))] =

P 105 @ [(file) = fo(@) V (fale) = fi(2))] = 2/0F © 1/0F = v/0F = 1(2),

hence
(i—=f)Via—=fi)=(f i~ f)V(fa~ fi)=1

and

—_—

[(Il7f1) — (127f2)] Y [(127f2) — (Ilvfl)] =

—_—

= (T, 1) & (Ts )] Y (T, o) ~ (I0, [1)] = (A, 1)

REMARK 8.20. (M(A/0%),N,V,[, —,~,0,1) is a pseudo - BL algebra.
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DEFINITION 8.8. The pseudo - BL algebra Ax will be called the localization
pseudo - BL algebra of A with respect to the topology F .

PROPOSITION 8.34. If pseudo BL— algebra (A,V,\,®,—,~,0,1) is a pseudo
MV — algebra (A,©,®,”,%,0,1) (i.e. (z7)% = (2%)” = z, for all x € A), then
pseudo BL— algebra (M(A/0F£), N\, V,[, —,~+,0,1) is a pseudo MV — algebra

(M(A/Gf)a LI, 8,7~ 7S ,0, 1)7
where for f; : I; — A/Or , (with I; € F, i = 1,2), F—multipliers we have the
mapping
f1 EfQ LNy — A/@]—',
(1B f)(z) = (filz) & folz)) Nx/0F
for any x € Iy N I, and for any F—multiplier f : I — A/OF (with I € F ) we have
the mappings
fT=f—=0:1—A/0F,
f7(@)=(f = 0)(z) = [f(z) = O(@)|ox/b0F = [f(2)]”©z/0F
for any x € I, and
fS=f~0:1—A/0F,
f2(z) = (f ~ 0)(2) = 2/0F © [f(x) ~ O(z)] =2/070[f (2)]°
for any x € I.

Proof. To prove that pseudo BL— algebra M(A/0r) is a pseudo MV — algebra
let fe M(I,A/0F), where I € F.
Then
(F7)5(@) = 2/07 © [(f(@)” ©2/05]5 "= 2/05 @ [2/05 ~ ((f(x))7)®]
=x/0F © (x/0F ~ f(x)) =2/0F A f(z) = f(z)
and
(F%)7(2) = [2/07 © (f(2)3]” @ 2/07 "= [1/05 — (f(2))%)7] @ 2/05

= (z/0r — f(z)) ©x/0F = 2/0F A f(zx) = f(z)

(since A is a pseudo MV — algebra then A/0f is a pseudo MV — algebra and f(x) €
A/OF, for all x € I).

So, (f7)® = (f%)” = f, for all f € M(A/0r) and pseudo BL— algebra
M(A/0x) is a pseudo MV -algebra.

We have f1 B fo = (fy [ f])®.

Clearly,

(18 fo)(x) = 2/0F O [fy (2) © (x/0F ~ fi (2))]°
=2/07 ©[(f2(2))” © 2/0F O (x/0F ~ (fi(z))” ©x/0F)]° =

= z/070[(f2(2))” O(x/0£N[(f1(2)” 0z /0F])]° = 2/0rO[(f2(z))” O(f1(z))” Oz/0F]%

PSR 07 © [1/0r > () © (file)) )]

=z/0F AN[(f2(2))” © (fi(2))"]% =2/0F A (fi(z)  fa(z)),
forallz €e 1 N 1>,.A
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COROLLARY 8.35. If pseudo BL— algebra A is a pseudo MV — algebra then

— T

pseudo BL— algebra (Ax, A, Y, —, e, 0= (A,0),1 = (A,1)) is a pseudo MV —
algebra (Ar,-,+,”,5,0=(A,0),1 = (A,1)), where

—

(I1, f1) - (2, f2) = (1L N E,ED f2),

T f) + (T fo) = (LN Do, f1 BB fo),
and - .
(L) =, ),

—_

(L, /)= = (I, f3).
In this case we obtain the results from Corollary 7.10.

PROPOSITION 8.36. If pseudo BL -algebra (A,V,N,®,—,~,0,1) is a BL -
algebra (i.e v @y = y© x for all x,y € A and in particular © — y = x ~ y
for all x,y € A), then pseudo BL -algebra (M(A/0F),\,V,[,—,~+,0,1) is a BL
-algebra (M(A/0F),N\,V,[0,—,0,1). Indeed if Iy,Io € F and f; € M(I;, A/0F),
1 =1,2 we have

(1 = fo)(2) = [fi(2) = fo(@)] ©2/0F = 2/0F O [f1(z) ~ f2(x)] = (f1 ~ f2)(2),
forallxz € [1NIs, then fi — fo = f1 ~ fa, so pseudo BL -algebra (M(A/0F£), A, V,, —
,~,0,1) is commutative (see Remark 5.1), so is a BL -algebra (see Proposition

6.28).

COROLLARY 8.37. If pseudo BL— algebra A is a BL— algebra then pseudo BL—
algebra (Ax, A, Y, —, e~ 0= (A,0),1 = (A,1)) is a BL— algebra (Ax, A, Y, -, —

,0=(4,0),1=(A,1)), where
(I, /1) A (2 o) = (I 0 T, fi A ),
(I, f1) Y (o o) = (LN To fi Vo),
(I, 1) - (T, fo) = (N I, f1 O fo),

—_—

(I, 1) — (I, fo) = (L N I, fi — fo).

In this case we obtain the results from Corollary 6.29.

—

LEMMA 8.38. Let the map vr : B(A) — Ax defined by vr(a) = (A, f,) for every
a € B(A). Then:

(i) vF is a morphism of pseudo - BL algebras;
(’L’L) For a € B(A)7 (Avﬁ) € B(A]:)7
(iii) vr(B(A)) € R(A7).

Proof. (i). We have vr(0) = (4, fo) = m =0.
For a,b € B(A) and x € A we have

(anNz)O(z~ (bAz)=(a®z)O(x~ (bAT)) =
=a®xzO (@~ (bAZ))]=a®[zA(bAT)]
=alN[zA(bAZ)=aN(bAz)=(aANb)ANz=(a®b) ANz



220 8. LOCALIZATION OF PSEUDO BL-ALGEBRAS

and
[(anz)— (bAZ)| Oz = [(a:@a)—>(x®b)]®90psw:_c75 (a—=b)ox=zA(a—0D),
and
x@[(a/\x)w(b/\a:)]zx@[(x@a)w(x@b)]psw:_cmw@(awb):a:/\(awb),
hence

vr(a) - vr(b) = (A7) - (A o) = (AT B ) = (A, Faop) = vr(a © b),

— _—

vr(a) — vre(b) = (A, fu) = (A, fo) = (A, fo = fo) = (A, fa—p) = vF(a — D),
and

—

0r(a) w7 (D) = (A, Fa) ~oo (A, o) = (A, Fa = Fo) = (A, Fa ) = vr(a ~ b),

hence vx is a morphism of pseudo - BL algebras.
(77). For a € B(A) we have a ©® a = a and (a%)~

(anNz) Oz~ (aNx)]=(a®z)O [~ (aA)]

(a=)® = a, hence

=a®zO(x~ (ahz))]=a@zA(aANz)]=aG(aNz)=aA(aNz)=(aAz),
and

psbl—cag psbl—c3e psbl—csg
e | A T

[r®(anx)®]” Ox r®(aSVz®)|" o r®a®)V(zox%)]”®

Psbl;038 [(33 o (IS) V. O]_ Ox= [(g; ® as)]_ Ox =

(since a € B(A))
=(x—a)Ozr=2Aa,

and

]S psbl;cw

]s prI;CSG x )]S psbl;038

zO[(anz)” O zO[(a”VaT)oOx Olla”ox)V(z~ Oz

psbl—css

rO(a”0z)VOT=20[(a” 0z)® =
(since a € B(A))
=zr0®(x~a)=zAa,

for every = € A.
Since A € F we deduce that

(a/0F Nx/0F)© [x/0F ~ (a/0F Nz /0F)] = (a/0F Nz/0F)

and

[2/0F © (a/0F N2/0F)%]” ©2/0F = a/0F Nz /0F,

2/0F ©[(a/0F Nx/0F)” ©z/0F]° = a/0F Nz/0F,
hence

foOfa=fa
and - - B
[(fa)Z]” = [(fa)7]® = fas

that is,

(Avﬁ) S B(A]:)
(7i7). See the proof of Lemma 6.32, (ii¢). B
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3.3. Strong F-multipliers and strong localization pseudo BL-algebras.
As in the case of BL -algebras, to obtain the maximal pseudo BL -algebra of quo-
tients Q(A) as a localization relative to a topology F we will develope another theory
of F— multipliers.

DEFINITION 8.9. Let F be a topology on A. A strong - F— multiplier is a
mapping f : I — A/0r (where I € F) which verifies the axioms m — psBLy,m —
psBLs (see Definition 8.7) and

(m —psBL3) If e € IN B(A), then f(e) € B(A/0x);
(m —psBLy) (z/0F) A f(e) = (e/0F) N f(x), for every e € I N B(A) and x € I.

If F = {A}, then 0f is the identity congruence of A so an strong F— multiplier
is a strong total multiplier.

REMARK 8.21. If (A,A,V,®,—,~,0,1) is a pseudo BL— algebra, the maps
0,1: A — A/0r defined by 0(x) = 0/0x and 1(x) = x/0F for every x € A are
strong - F— multipliers. We recall that if f; - I; — A/0F , (with I; € F,i=1,2)
are F—multipliers we consider the mappings f1 N fa, f1 V fo, f1 T fo, f1 — fo, f1 ~
fo: NIy — A/Of defined by

(1 A fo)(x) = fi(z) A fa(),
(1 V fo)(z) = fi(z) V fa(x),
(A B @) = [2/05 = Ai@)] © folw) =T fi(a) © [2/0 ~ fo(@),
(f1 = f2)(@) = [fi(z) — fa(@)] © 2/0F,
(f1~ fo)(@) = /07 © [fi(x) ~ fa(@)],
for any x € I N Is. If f1, fa are strong - F— multipliers, then the multipliers fi A

fo, iV fo, f1 B fo, fi — fo, f1 ~ fo are also strong - F— multipliers. Indeed, if
e€ l1NI,N B(A), then

(fu A fa)(e) = fi(e) A fa(e) € B(A/0F),
(f1V fo)(e) = fi(e) V fa(e) € B(A/0F).
By Proposition 5.13 we have
(frE f2)(e) = [e/0F — fi(e)] © fa(e) = [(e7)/0F V fi(e)] © fa(e) € B(A/0F),
(f1 = f2)(e) = [fi(e) = fale)] @ e/0F = [(f1(e))” V fa(e)] @ /07 € B(A/0F),
and
(fi ~ fa)le) = e/0F @ [fi(e) ~ fale)] = /07 © [(f1(e))® V fa(e)] € B(A/0F).
Foree I1NI,NB(A) and x € 1N Iy we have:
z/0F N (fi A f2)(e) = /07 A fi(e) A fa(e) =
= [z/0F N fi(e)] N /0F A fale)] =
=[e/0F N fr(@)] A [e/0F A fa(2)] = /07 A (f1 A f2)(2)

and

)V fa(e)] =
()]

[e/0F A fa(x)] =
) =e/0r N(fLV f2)(x)

z/0F A (f1V f2)(e) =z/0F \|fi(e
=[z/0r A fi(e)] V [z/0r A fo
=[e/0F A fi(z)] Vv

=e/0r N [fi(z) V folz
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and
x/0F N (fLE f2)(e) = 2/0F N(e/0F — fi(e)) © fa(e)]
= [(e/0F — fi(e)) © fa(e)] ©z/0F = [(e/0F — fi(e)) ©x/0F] © fa(e)

PR (e © @) /05 — (fi(e) © 2/05)) © 3/05) © fale)
=[eox)/0r — (file) 0 x/0F)] © [z/0F © fa(e)]
=[(e@x)/0Fr — (/05 O fi(x))] © [e/0F © fa(x)]

=[((e/0r ©x/0F) — (e/0F © fi())) ©e/0F] © fa(x)

PP (/05 — fi(2) @ e/05] © folx) = (/07 — fi(2)) © folw)] @ e/0F
— (1 O 2)(@)] @ e/0r = e/0x A (f1 B fo) (),

hence
1‘/0]: VAN (f1 ] fz)(e) = 6/9]: AN (fl ] fg)(x)
Also
e/0r N (f1 = f2)(@) = [(fi(z) — fo(x)) ©x/0F]| Ne/0F

= [(fi(x) = fo(@)) ©2/07] © ¢/0F = [(f1(x) — fo(2)) O /05| © x/0F

PYZ ((fi(2) © e/0F) — (fo(2) © e/07)) @ e/05] © 2/05
— (/67 © fi(e)) = (/07 © fa(e)) © e/0] © /05 =

[
= [((2/070f1(e) — (2/050 fa(e)))@x/05]0e/05 "= [(fi(e) — fa(e)Oz/0F]@e/05 =
= [(fi(e) = fale)) @ /05 @ /0r = [(fi — F)(e)] @ 2/05 = /05 A (f1 — f2)(e),

hence
z/0r N (f1 — f2)(e) = e/0F N (1 — f2)(2).
Also
e/0r N (fi~ fo)(@) =e/0F Nz/0F © (fi(z) ~ fa(2))]

=(e0)/0r O [fi(x) ~ fo(2)] = 2/0F © [e/0F O (f1(z) ~ f2(2))]

PEE 2107 @ /05 © (/05 © f1(x)) ~ (e/0F © fo(x)))]
=z/0r ©le/0r © (x/0r O fi(e)) ~ (x/0F © fa(e)))] =

— ¢/070[2/070((x/0r0fi(e) ~ (2/070 ()] "= ¢/070[x/050(fi(e) ~ fa(e))] =
=z/0F ©e/0r © (fi(e) ~ fale))] = x/0F © (f1 ~ f2)(e) =x/0F A (f1 ~ f2)(e),

hence

z/0F N (f1~ fa)(e) = e/0r A (f1~ f2)(@).

REMARK 8.22. Analogous as in the case of F— multipliers if we work with strong-
F— multipliers we obtain a pseudo BL— subalgebra of Ar denoted by s — Ax which
will be called the strong-localization pseudo BL— algebra of A with respect to the
topology F.
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3.4. Applications. In the following we describe the localization (strong local-
ization) pseudo - BL algebra Ar (s — Ax) in some special instances.

1. If I € Z(A) and F is the topology F(I) = {I' € IZ(A) : I C I'}, then Ar is
isomorphic with M (I, A/0r) and vy : B(A) — Ag is defined by vr(a) = ﬁ\f for
every a € B(A).

If I is a regular subset of A, then 0 is the identity, hence A r is isomorphic with
M(I, A).

2. If F=TZ(A)NR(A) is the topology of regular ideals, then 0 is the identity
congruence of A and we obtain the Definition 8.9 for strong multipliers of A, so

s—Ar = hLQM(IaA)a
IeF

where M (I, A) is the set of multipliers of A having the domain I in the sense of
Definition 8.9.

In this situation we obtain:

PROPOSITION 8.39. In the case F = Z(A)NR(A), s— Ar is exactly the mazimal
pseudo BL-algebra Q(A) of quotients of A, which is a Boolean algebra.

REMARK 8.23. If pseudo BL— algebra A is a pseudo MV — algebra, s — Ar
is exactly the mazimal pseudo MV -algebra Q(A) of quotients of A introduced in
Definition 7.6.

REMARK 8.24. If pseudo BL— algebra A is a BL— algebra, s — Ar is exactly
the mazimal BL-algebra Q(A) of quotients of A introduced in Definition 6.8.

3. Denoting by D the topology of dense ordered ideals of A (that is D =Z(A)N
D(A) - see Example 10 from Subsection 5.1), then (since R(A) C D(A)) there exists
a morphism of pseudo BL -algebras a: Q(A) — s — Ap such that the diagrame

B(A) & Q(A)
N /

vp «a
S — AD
is commutative (i.e. aovz = vp). Indeed, if [f,I] € Q(A) (with I € Z(A) NR(A)
and f : I — A is a strong multiplier in the sense of Definition 8.9) we denote by
fp the strong - D—multiplier fp: I — A/0p defined by fp(x) = f(x)/0p for every
x € I. Thus, « is defined by o([f,I]) = [fp, I].
4. Let S C A an A—closed system of A.

ProposITION 8.40. If Fg is the topology associated with an NA—closed system
S C A (see Example 11 from Subsection 5.1), then the pseudo BL-algebra s — Arg
is isomorphic with B(A[S]).

Proof. See the proof of Proposition 6.34. B
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