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Introduction

Residuation is a fundamental concept of ordered structures .In this survey we
consider the consequences of adding a residuated monoid operation to lattice. The
residuated lattices have been studied in several brances of mathematics, including
the areas of lattice -ordered groups, ideal lattices of rings, linear logic and multi-
valued logic.

The origin of residuated lattices is in Mathematical Logic without contraction.
They have been investigated by Krull ([93]), Dilworth ([52]), Ward and Dilworth
([136]), Ward ([135]), Balbes and Dwinger ([2]) and Pavelka ([111]).

In [80], Idziak prove that the class of residuated lattices is equational. These lat-
tices have been known under many names: BCK- latices in [79], full BCK- algebras
in [93], FLew- algebras in [107], and integral, residuated, commutative l-monoids in
[13].

Apart from their logical interest, residuated lattices have interesting algebraic
properties (see [12], [52], [92], [108], [135], [136]).

A residuated lattice is an algebra (A,∧,∨,¯,→, 0, 1)of type (2,2,2,2,0,0) equipped
with an order ≤ satisfying the following:

(A,∧,∨, 0, 1) is a bounded lattice;
(A,¯, 1) is a commutative ordered monoid;
¯ and → form an adjoint pair, i.e. c ≤ a → b iff a¯ c ≤ b for all a, b, c ∈ A.
Importante examples of residuated lattices structures are BL-algebras (corre-

sponding to Hajek’s basic fuzzy logics, see [75]) and MV -algebras (corresponding to
ÃLukasiewicz many-valued logic, see [45]). All these examples (with the exception of
residuated lattices are hoops, i.e. they satisfy the equation a¯(a → b) = b¯(b → a).

BL−algebras are exactly the residuated lattices satisfying a∧b = a¯(a → b) and
(a → b) ∨ (b → a) = 1, for all a, b ∈ A and MV− algebras, are exactly those
residuated lattices where a ∨ b and (a → b) → b coincide (which is a relativized
version of the law of double negation a∗∗ = a). Also, if in a BL− algebra, a∗∗ = a
for all a ∈ A, and for a, b ∈ A we denote a⊕ b = (a∗ ¯ b∗)∗, (where a∗ = a → 0), we
obtain an MV− algebra (A,⊕,∗ , 0). So, MV− algebras will turn to be particular
case of BL− algebras.

In this book we begin a sistematic algebraic investigation of some algebras
of fuzyy logics (residuated lattices and particulares cases: MV and BL-algebras,
pseudo MV and BL-algebras).

MV−algebras were originally introduced by Chang in [42] in order to give an
algebraic proof of the completeness theorem for the infinite - valued ÃLukasiewicz
calculus [127], but their theory was also developed from an algebraic point of view.
Just take a quick view over this domain.

The most popular example of MV -algebra is the interval [0, 1] of the abelian
l -group (R, max, min,+,−, 0) equiped with the continuous t-conorm ⊕ defined by
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iv INTRODUCTION

x ⊕ y = min(1, x + y) (as a model of disjunction), with the continuous t-norm ¯
defined by x¯ y = max(0, x + y− 1) (as a model of conjunction), with the negation
− defined by x− = 1−x and with the real numbers 0 and 1 as first and last element
of the lattice ([0, 1],max, min). The connection with fuzzy was made and today we
use to speak about the algebra of fuzzy logic.

In 1958, Chang defined the MV -algebras and in 1959 he proved the completeness
theorem which stated the real unit interval [0, 1] as a standard model of this logic.
The structures directly obtained from ÃLukasiewicz logic, in the sense that the basic
operations coincide with the basic logical connectives (implication and negation),
were defined by Font, Rodriguez and Torrens in [62] under the name of Wajsberg
algebras. One great event in the theory of MV -algebras was Mundici’s theorem from
1986: the category of MV -algebras is equivalent to the category of abelian lattice-
ordered groups with strong unit [105]. Through its consequences, this theorem can
be identified at the origins of a considerable number of results on MV -algebras.

In the last 15 years the number of papers devoted to Chang’s MV -algebras has
been increasing so rapidly that, since the year 2000 the AMS Classification Index
contains the special item 06D35 for MV -algebras. To quote just a handful of books,
the monograph [44] is entierly devoted to MV -algebras, Hajek’s monograph [75]
and Gottwald’s book [72] devote ample space to these algebras.

As shown in the book [59] and in the pioneering textbook [119], MV− algebras
also provide an important specimen of ,,quantum structures”. The second volume of
the Handbook of Measure Theory [110] includes several chapters on MV− algebraic
measure theory. As the algebras of ÃLukasiewicz infinite - valued logic, MV− algebras
are also considered in various surveys, e.g. [109] and [102].

Equivalents of MV -algebras are found in the literature under various names,
including bounded commutative BCK-algebras, [134], [88], [128], Bosbach’s bricks
[16], Buff’s s-algebras [17], Komori’s CN-algebras [90], Wajsberg algebras [62].

Also, in the last years, one can distinguish fruitful research directions, coexisting
and communicating with deeper and deeper researches on MV -algebras.

One direction is concerned with structures obtained by adding operations to
the MV -algebra structure, or even combining MV -algebras with other structures in
order to obtain more expressive models and powerful logical systems.

Another direction is centered on the non-commutative extensions of MV− al-
gebras,starting from arbitrary l -groups instead of abelian l -groups. In 1999, pseudo
MV−algebras (psMV -algebras, shortly) where introduced to extend the concept
of MV - algebra to the non-commutative case, see [66], [68]; they can be taken
as algebraic semantics for a non-commutative generalization of a multiple valued
reasoning.

Immediately, A. Dvurecenskij proved that the category of pseudo MV -algebras
is equivalent to the category of l -groups with strong unit, this result extending the
fundamental theorem of Mundici.

The third direction we want to emphasize began with Hájek’s book, where BL-
logic and BL-algebras were defined [74], [75].

A natural question was then to obtain a general fuzzy logical system arising from
the structure of [0, 1] introduced by a continuous t-norm and its associated residum.
In 1998, Hajek [75] introduced a very general many-valued logic, called Basic Logic
(or BL), with the idea to formalize the many-valued semantics introduced by a
continuous t-norm on the real unit interval [0, 1]. This Basic Logic turns to be a
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fragment common to three important many-valued logics: ℵ0− valued ÃLukasiewicz
logic, Gödel logic and Product logic.

The Lindenbaum-Tarski algebras for Basic Logic are called BL−algebras. Apart
from their logical interest, BL− algebras have important algebraic properties and
they have been intensively studied from an algebraic point of view. BL− algebras
form an equational class of residuated lattices.

Juste notice that ÃLukasiewicz logics is an axiomatic extension of BL-logic and,
consequently, MV -algebras are a particular class of BL-algebras; MV -algebras are
categorically equivalent to BL-algebras with the property x∗∗ = x.

The next step in the research was then immediately made by establishing the
connection between BL− algebras and pseudo MV - algebras. In 2000, G. Georgescu
and A. Iorgulescu defined the non-commutative extension of BL- algebras, called
pseudo BL-algebras (introduced in [53], [54]); the class of pseudo BL- algebras
contains the pseudo MV - algebras.

A remarkable construction in ring theory is the localization ring AF associated
with a Gabriel topology F on a ring A; for certain issues connected to the therm
localization we have in view Chapter IV : Localization in N. Popescu’ s book [112].

For some informal explanations of the notion of localization see [106], [113],
[114].

In Lambek’ s book [96] it is introduced the notion of complete ring of quotients
of a commutative ring, as a particular case of localization ring (relative to the dense
ideals).

Starting from the example of the ring, J. Schmid introduces in [121], [122] the
notion of maximal lattice of quotients for a distributive lattice. The central role in
this construction is played by the concept of multipliers, defined by W. H. Cornish
in [47].

Using the model of localization ring, in [64] is defined for a bounded distributive
lattice L the localization lattice LF of L with respect to a topology F on L and is
proved that the maximal lattice of quotients for a distributive lattice is a lattice of
localization (relative to the topology of regular ideals).

The same theory is also valid for the lattice of fractions of a distributive lattice
with 0 and 1 relative to an ∧-closed system.

The book is organized in two parts.
In the first part we review the basic definitions and results of this algebras with

more details and examples; we make connections between theses algebras; we study
the homomorphisms, the filters (ideals, prime and maximal).

The main aim of the last part is to develop a theory of localization for BL-
algebras and MV -algebras, to extend this theory to the non-commutative case
(pseudo MV -algebras) and to translate the theory of localization in categories of
abelian and nonabelian l-groups with strong unit (a subject which has never been
approached in the mathematical literature).

For the basic notions relative to these categories of algebras we followed the
monographies: [45], [75], [129] as well as the paper : [68].

I shall now give a chronological survey of this book.
Chapter 1 is dedicated to basic notions of residuated lattices, which turn out

to be fundamental in manny applications.
We recall the basic definition of residuated lattices with more details and ex-

amples and we put in evidence many rules of calculus. For a residuated lattice A
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we denote by Ds(A) the lattice of all deductive systems (implicative filters) of A;
we put in evidence characterisations for the maximal and prime elements on Ds(A)
and some properties of the lattice (Ds(A),⊆). Also, we characterize the residuated
lattices for which the lattice of deductive systems is a Boolean lattice.

Archimedean and hyperarchimedean residuated lattices are introduced and car-
acterized; we prove some theorems of Nachbin type for residuated lattices.

For more details we recommemd [113] and [129].
Chapter 2 contains all the necessary algebraic results we need to be able to

prove in details a the category of MV− algebras; also we study Wajsberg algebas
and show their mutual equivalence. MV− algebras are particular residuated lattices,
however, from application point of view they posses the best properties as we will see.
The result we study are due to J.M.Font, A.J. Rodriguez, A. Torrens, R. Cignolli, D.
Mundici, I.M.L. D’Ottaviano For further reading on MV− algebras we recommend
[45].

We recall some basic definitions and results.
For an MV-algebra, we denote by Id(A) the set of ideals of A and we present

some known basic definitions and results relative to the lattice of ideals of A. For
I1, I2 ∈ Id(A) we define I1 ∧ I2 = I1 ∩ I2, I1 ∨ I2= the ideal generated by I1 ∪ I2 and
for I ∈ Id(A), I∗ = {a ∈ A : a∧x = 0, for every x ∈ I}. Theorem 2.17 characterizes
the MV-algebras for which the lattice of ideals (Id(A),∧,∨,∗ , {0}, A) is a Boolean
algebra.

We study the prime spectrum Spec(A) and the maximal spectrum Max(A) of
an MV-algebra.

For any class of structures, the representation theorems have a special significace.
The Chang’s Subdirect Representation Theorem is a fundamental result.
The idea of associating a totally ordered abelian group to any MV- algebra

A is due to Chang, who in [42] and [43] gave first purely algebraic proof of the
completeness of the ÃLukasiewicz axioms for the infinite-valued calculus. In [45] is
proved the Chang completeness theorem starting that if an equation holds in the
unit real interval [0, 1], then the the equation holds in every MV- algebra. This proof
is elementary, and use the good sequences; good sequences and Γ functor were first
introduced in [105].

An applications is the equivalence between MV- algebras and lattice ordered
abelian groups with strong unit.

We also prove that there is one-to-one correspondence between MV- algebras
and Wajsberg algebras; each MV- algebra can be seen as Wajsberg algebra and
conversely. MV- algebras will turn out to be particular residuated lattices.

Chapter 3 contains results on BL− algebras.
For more details we recommemd [113] and [129].
We recall the basic definitions, examples and rules of calculus in BL− algebras;

we also prove some results about injective objects in the category BL of BL− al-
gebras; the principal role is played by the MV -center of a BL-algebra, defined by
Turunen and Sessa in [132]; this is a very useful construction, which associates an
MV -algebra with every BL-algebra. In this way, many properties can be transferred
from MV -algebras to BL-algebras and backwards.

So, we prove that :



INTRODUCTION vii

The category MV of MV-algebras is a reflective subcategory of the category BL of
BL-algebras and the reflector R : BL → MV preserves monomorphisms (Theorem
3.12).

As consequence, we obtain that if A is a complete and divisible MV-algebra,
then A is an injective object in the category BL (Theorem 3.14).

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems
of A. We put in evidence characterizations for the meet-irreducible elements of
Ds(A). For the lattice Ds(A) (which is distributive) we denote by Spec(A) the set
of all (finitely) meet-irreducible (hence meet-prime) elements (Spec(A) is called the
spectrum of A) and by Irc(A) the set of all (completely) meet-irreducible elements of
the lattice Ds(A) and we put in evidence characterizations for elements of Spec(A)
and Irc(A).

Relative to the uniqueness of deductive systems as intersection of primes we
prove that this is possible only in the case of Boolean algebras.

The notions of archimedean and hyperarchimedean BL− algebras are introduced
and characterized. A Nachbin type theorem is obtained: for a BL-algebra A, A is
hyperarchimedean iff any prime deductive system is minimal prime (Theorem 3.56).

Chapters 4 and 5 (Pseudo MV - algebras, respectively, Pseudo BL - algebras)
presents the general theory of Pseudo MV - algebras and Pseudo BL - algebras,
algebras which are generalization of MV (BL) -algebras.

In 1999, Georgescu and Iorgulescu (see [66], [68]) defined pseudo MV− alge-
bras as a non-commutative extensions of MV− algebras. Dvurečenskij extended
Mundici’s equivalence results. In [58], he proved that every pseudo MV− alge-
bra is isomorphic with an interval in an l-group and he established the categorical
equivalence between pseudo MV− algebras and l-groups with strong unit.

For a detailed study of pseudo MV− algebras one can see [68], [58].
For an exhaustive theory of l-groups we refer to [10].
In [67], [53], [54], A. Di Nola, G. Georgescu and A. Iorgulescu defined the pseudo

BL-algebras as a non-commutative extension of BL algebras (the class of pseudo
BL - algebras contains the pseudo MV -algebras, see [66], [68]).

We begin the investigation of filters and congruences. We define the filters
(ideals) of a pseudo BL(MV )-algebra; for a pseudo BL-algebra A we denote by
F (A)(Fn(A)) the lattice of all filters (normal filters) of A and we put in evidence
some results about the lattice F (A)(Fn(A)). By using the two distance functions
we define two binary relations on , ≡L(F ) and ≡R(F ), related to a filter F of A; these
two relations are equivalence relations, but they are not congruences. The quo-
tient set A/L(F ) and A/R(F ) are bounded distributive lattices. We characterize
the prime and maximal filters of A, we prove the prime filter theorem and we give
characterizations for the maximal and prime elements on F (A)(Fn(A)). We char-
acterize the pseudo BL-algebras for which the lattice of filters (normal filters) is a
Boolean lattice. Archimedean and hyperarchimedean pseudo BL(MV )-algebras are
characterized. In end we prove a theorem of Nachbin type for pseudo BL-algebras.

In Chapter 6 we develop the theory of localization for BL(MV ) -algebras. We
denote by A a BL -algebra and by B(A) the set of all boolean elements of L(A).

In Section 1, for an ∧−closed system S ⊆ A (1 ∈ S and x, y ∈ S implies x∧
y ∈ S) we consider the congruence θS on A defined by:

(x, y) ∈ θS iff there exists e ∈ S ∩B(A) such that x ∧ e = y ∧ e.
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Then A[S] = A/θS verifies the following property of universality: If A′ is a BL-
algebra and f : A → A′ is a morphism of BL-algebras such that f(S∩B(A)) = {1},
then there exists an unique morphism of BL-algebras f ′ : A[S] → A′ such that the
diagram

A
pS−→ A[S]

↘
f

↙
f ′

A′

is commutative (i.e. f ′ ◦ pS = f), where pS : A → A[S] is the canonical onto
morphism of BL− algebras.

This result suggests us to call A[S] the BL-algebra of fractions relative to the
∧−closed system S. If BL− algebra A is in particular an MV -algebra, then A[S]
is an MV− algebra.

In Section 2 we define the notion of strong multiplier on a BL− algebra A. We
denote by I(A) the set of all order ideals of A:

I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈ I}.
By a partial strong multiplier on A we mean a map f : I → A, where I ∈ I(A),

which verifies the following conditions:

(sm−BL1) f(e¯ x) = e¯ f(x), for every e ∈ B(A) and x ∈ I,
(sm−BL2) f(x) ≤ x, for every x ∈ I,
(sm−BL3) If e ∈ I ∩B(A), then f(e) ∈ B(A),
(sm−BL4) x ∧ f(e) = e ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I (note that e¯ x ∈ I

since e¯ x ≤ e ∧ x ≤ x).

For I ∈ I(A), we denote M(I, A) = {f : I → A | f is a strong multiplier on A}
and M(A) = ∪

I∈I(A)
M(I,A).

If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we define f1 ∧ f2, f1 ∨ f2, f1 ¡ f2,
f1 → f2 : I1 ∩ I2 → A by (f1 ∧ f2)(x) = f1(x) ∧ f2(x), (f1 ∨ f2)(x) = f1(x) ∨ f2(x),
(f1¡f2)(x) = f1(x)¯[x → f2(x)] = f2(x)¯[x → f1(x)], (f1 → f2)(x) = x¯[f1(x) →
f2(x)], for every x ∈ I1 ∩ I2 and we obtain a BL-algebra (M(A),∧,∨,¡,→,0,1).

If BL− algebra (A,∧,∨,¯,→, 0, 1) is an MV− algebra (A,⊕,∗ , 0) (i.e. x∗∗ =
x, for all x ∈ A), then BL− algebra (M(A),∧,∨, ¡,→,0,1) is an MV− algebra
(M(A), ¢,∗ ,0). If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we have f1 ¢ f2 :
I1∩I2 → A, (f1 ¢f2)(x) = (f1(x)⊕f2(x))∧x, for every x ∈ I1∩ I2 and for I ∈ I(A)
and f ∈ M(I, A) we have f∗ : I → A, f∗(x) = (f → 0)(x) = x ¯ (f(x) → 0(x)) =
x¯ (f(x) → 0) = x¯ (f(x))∗, for every x ∈ I.

We prove that the algebra of multipliers MBL(A) for BL− algebras (defined
in [33]) is in fact a generalization of the algebra of multipliers MMV(A) for MV−
algebras (defined in [26]) (although they are defined different because of the different
choice of the term language).

So, if BL− algebra A is an MV− algebra, then MBL(A) = MMV(A).
If we denote by R(A) = {I ⊆ A : I is a regular subset of A}, then Mr(A) = {f ∈

M(A) : dom(f) ∈ I(A) ∩ R(A)} is a BL-subalgebra of M(A). Moreover, Mr(A) is
a Boolean subalgebra of M(A).

On the Boolean algebra Mr(A) we consider the congruence ρA defined by (f1, f2) ∈
ρA iff f1 and f2 coincide on the intersection of their domains.
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For f ∈ Mr(A) with I = dom(f) ∈ I(A) ∩ R(A), we denote by [f, I] the
congruence class of f modulo ρA and by Q(A) the BL-algebra Mr(A)/ρA which is
a Boolean algebra.

Let A be a BL(MV )-algebra. A BL(MV )-algebra F is called BL(MV )-algebra
of fractions of A if:
(BLfr1) B(A) is a BL(MV )-subalgebra of F (that is B(A) ≤ F ),
(BLfr2) For every a′, b′, c′ ∈ F, a′ 6= b′, there exists e ∈ B(A) such that e∧a′ 6= e∧b′

and e ∧ c′ ∈ B(A).
As a notational convenience, we write A ¹ F to indicate that F is a BL(MV )-

algebra of fractions of A.
AM is said to be a maximal BL(MV )-algebra of quotients of A if A ¹ AM and

for every BL(MV )-algebra F with A ¹ F there exists an injective morphism of
BL(MV )-algebras i : F → AM . If A ¹ F , then F is a Boolean algebra, hence AM

is a Boolean algebra.
If BL(MV )- algebra A is a Boolean algebra, then B(A) = A and the axioms

sm−BL1, sm−BL2, sm−BL3 and sm−BL4 are equivalent with sm−BL1, hence
AM is in this case just the classical Dedekind-MacNeille completion of A (see [122],
p.687).

The main result of Section 3 asserts that Q(A) = Mr(A)/ρA is a maximal
BL(MV )-algebra of quotients of A.

An interesting remark is that we can replace the Boolean algebra B(A) with a
Boolean subalgebra B ⊆ B(A) and finally we obtain that Q(A) is just Q(B) = the
MacNeille completion of B. In particular for B = B(A) we obtain the results of this
chapter.

In Sections 4 and 5 we study the BL(MV )− algebra of localization of A with
respect to a topology F on A (denoted by AF ).

The notion of topology for BL(MV ) - algebras is introduced in a similar way
as for rings, monoids or bounded distributive lattices. We define the notion of F−
multiplier, where F is a topology on a BL(MV )− algebra A. The F -multipliers
will be used to construct the localization BL(MV )− algebra AF with respect to a
topology F . We define the congruence θF on A by

(x, y) ∈ θF ⇔ there exists I ∈ F such that e ∧ x = e ∧ y for any e ∈ I ∩B(A).

An F− multiplier is a mapping f : I → A/θF , where I ∈ F and for every x ∈ I and
e ∈ B(A) the following axioms are fulfilled:

(m−BL1) f(e¯ x) = e/θF ∧ f(x) = e/θF ¯ f(x),
(m−BL2) f(x) ≤ x/θF .

In order to obtain the maximal BL(MV ) -algebra of quotients Q(A) (defined in
Section 2 of this chapter) as a BL(MV ) -algebra of localization relative to a topology
F , we develope another theory of multipliers (meaning we add the two new axioms
for F-multipliers and will be so called strong F-multipliers). These two new axioms
are:

(m−BL3) If e ∈ I ∩B(A), then f(e) ∈ B(A/θF ),
(m−BL4) (x/θF ) ∧ f(e) = (e/θF ) ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.

Analogous as in the case of F−multipliers if we work with strong-F−multipliers
we obtain a BL(MV )− subalgebra of AF denoted by s − AF which will be called
the strong-localization BL(MV )− algebra of A with respect to the topology F .
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In Section 6 we describe the localization BL(MV )-algebra AF in some special
instances. Contrary with the case of maximal BL(MV ) -algebra of quotients, in
general AF is not a Boolean algebra.

For example, if we consider BL− algebra A = I = [0, 1] and F is the topology
F(I) = {I ′ ∈ I(A) : I ⊆ I ′} then AF is not a Boolean algebra.

For F = I(A) ∩ R(A), s − AF is exactly a maximal BL(MV )-algebra Q(A) of
quotients of A, which is a Boolean algebra.

If FS is the topology associated with an ∧−closed system S ⊆ A, then the
BL(MV )-algebra s−AFS

is isomorphic with B(A[S]).

MV− algebras can be studied within the context of abelian lattice-ordered
groups with strong units (abelian lu-groups) and this point of view plays a cru-
cial role in Section 7.

This point of view is possible by the fundamental result of Mundici (Theorem
2.60) [105] that the category of MV -algebras is equivalent with the category of
lu-groups ([3], [45], [105]).

In this section we translate the theory of localization MV -algebras defined in
Section 5 for BL− algebras and in particular for MV− algebras into the language
of localization of abelian lu-groups.

In Chapter 7 and 8, we develop - taking as a guide-line the case of BL(MV )
-algebras - the theory of localization for pseudo BL(MV ) - algebras (which are non-
commutative generalization of these). The main topic of this chapter is to generalize
to pseudo BL(MV )− algebras the notions of BL(MV )− algebras of multipliers,
BL(MV )− algebra of fractions and maximal BL(MV )− algebra of quotients. The
structure, methods and techniques in this chapter are analogous to the structure,
methods and techniques for MV (BL)− algebras exposed in Chapter 6.

Following the categorical equivalence between the category of l -groups with a
strong unit (lu-groups) and the category of pseudo MV -algebras ([58]) we translate
the theory of localization of pseudo MV -algebras into the language of localization
of lu-groups .

This was a short presentation of this book.
We hope that we convinced the reader that algebra of many-valued logic is a

mathematically interesting theory, with connections with other branches of mathe-
matics.

I think that this book is a base for future developments in the theory of local-
ization for other algebras of fuzzy logic.

It is a pleasure for me to thank Professor George Georgescu, from the Faculty
of Mathematical and Computer Science , University of Bucharest, for the discussions
which led to this book structure.

We also thank to Professor Dumitru Busneag for his careful and competent
reading and for suggesting several improvements.

Craiova, Aprils, 2, 2007



CHAPTER 1

Residuated lattices

The origin of residuated lattices is in Mathematical Logic without contraction. They
have been investigated by Krull ([93]), Dilworth ([52]), Ward and Dilworth ([136]), Ward
([135]), Balbes and Dwinger ([2]) and Pavelka ([111]).

In [80], Idziak prove that the class of residuated lattices is equational. These lattices
have been known under many names: BCK- latices in [79], full BCK- algebras in [93],
FLew- algebras in [107], and integral, residuated, commutative l-monoids in [13].

Apart from their logical interest, residuated lattices have interesting algebraic properties
(see [12], [52], [92], [108], [135], [136]).

In this chapter we recall the basic definition of residuated lattices with more details and
examples and we put in evidence many rules of calculus. For a residuated lattice A we denote
by Ds(A) the lattice of all deductive systems (implicative filters) of A; we put in evidence
characterisations for the maximal and prime elements on Ds(A) and some properties of the
lattice (Ds(A),⊆). Also, we characterize the residuated lattices for which the lattice of
deductive systems is a Boolean lattice.

Archimedean and hyperarchimedean residuated lattices are introduced and character-
ized; we prove some theorems of Nachbin type for residuated lattices.

For the preliminaries in general lattice theory we strongly recommend for reader the
very beautiful monograph Lattice theory of George Grätzer ([73]).

For further reading on residuated lattices we recommend [75] and [129].

1. Definitions and preliminaries

We review the basic definitions of residuated lattices, with more details and examples.
Also we put in evidence some rules of calculus and the connection between residuated lattices
and Hilbert algebras.

Definition 1.1. A residuated lattice is an algebra

(A,∧,∨,¯,→, 0, 1)

of type (2,2,2,2,0,0) equipped with an order ≤ satisfying the following:

(LR1) (A,∧,∨, 0, 1) is a bounded lattice;
(LR2) (A,¯, 1) is a commutative ordered monoid;
(LR3) ¯ and → form an adjoint pair, i.e., c ≤ a → b iff a¯c ≤ b, for all a, b, c ∈ A.

The relations between the pair of operations ¯ and → expressed by LR3, is a
particular case of the law of residuation, or Galois correspondence (see [12]) and for
every x, y ∈ A, x → y = sup{z ∈ A : x ¯ z ≤ y}. Namely, let A and B two posets,
and f : A → B a map. Then f is called residuated if there is a map g : B → A, such
that for any a ∈ A and b ∈ B, we have f(a) ≤ b iff b ≤ g(a) (this is, also expressed
by saying that the pair (f, g) is a residuated pair).

1
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Now setting A a residuated lattice, B = A, and defining, for any a ∈ A, two
maps fa, ga : A → A, fa(x) = x¯ a and ga(x) = a → x, for any x ∈ A, we see that
x¯ a = fa(x) ≤ y iff x ≤ ga(y) = a → y for every x, y ∈ A, that is, for every a ∈ A,
(fa, ga) is a pair of residuation .

The symbols ⇒ and ⇔ are used for logical implication and logical equivalence.
In [80] it is proved that the class RL of residuated lattices is equational; one of

the equational axiomatizations of RL can be:
(L) Equations axiomatizing the variety of bounded lattices;

(M) Equations axiomatizing the variety of commutative monoids;
(R1) (x¯ y) → z = x → (y → z);
(R2) [(x → y)¯ x] ∧ y = (x → y)¯ x (i.e., (x → y)¯ x ≤ y);
(R3) (x ∧ y) → y = 1.

Example 1.1. Let p be a fixed natural number and I = [0, 1] the real unit
interval. If for x, y ∈ I, we define x ¯ y = 1 −min{1, [(1 − x)p + (1 − y)p]1/p} and
x → y = sup{z ∈ [0, 1] : x ¯ z ≤ y}, then (I, max,min,¯,→, 0, 1) is a residuated
lattice.

Example 1.2. If we preserve the notation from Example 1, and we define for
x, y ∈ I, x¯y = (max{0, xp +yp−1})1/p and x → y = min{1, (1−xp +yp)1/p}, then
(I, max, min,¯,→, 0, 1) become a residuated lattice called generalized ÃLukasiewicz
structure. For p = 1 we obtain the notion of ÃLukasiewicz structure (x ¯ y =
max{0, x + y − 1}, x → y = min{1, 1− x + y}).

Example 1.3. If on I = [0, 1], for x, y ∈ I we define x ¯ y = min{x, y} and
x → y = 1 if x ≤ y and y otherwise, then (I, max,min,¯,→, 0, 1) is a residuated
lattice (called Gődel structure).

Example 1.4. If consider on I = [0, 1], ¯ to be the usual multiplication of
real numbers and for x, y ∈ I, x → y = 1 if x ≤ y and y/x otherwise, then
(I, max, min,¯,→, 0, 1) is a residuated lattice (called Products structure or Gaines
structure).

Example 1.5. If (A,∨,∧,′ , 0, 1) is a Boolean algebra, then if we define for every
x, y ∈ A, x ¯ y = x ∧ y and x → y = x′ ∨ y, then (A,∨,∧,¯,→, 0, 1) become a
residuated lattice.

Examples 1.2, 1.3 and 1.4 have some connections with the notion of t-norm.
We call continuous t-norm a continuous function ¯ : [0, 1] × [0, 1] → [0, 1] such

that ([0, 1],¯, 1) is an ordered commutative monoid.
So, there are three fundamental t-norms:
ÃLukasiewicz t-norm: x¯L y = max{0, x + y − 1};
Gődel t-norm: x¯G y = min{x, y};
Product ( or Gaines) t-norm: x¯P y = x¯ y.
Since relative to natural ordering on [0, 1], [0, 1] become a complete lattice, every

continuous t-norm introduce a natural residum (or implication) by

x → y = max{z ∈ [0, 1] : x¯ z ≤ y}.
So, the implications generated by the three norms mentioned before are
x →L y = min{1, y − x + 1};
x →G y = 1 if x ≤ y and y otherwise;
x →P y = 1 if x ≤ y and y/x otherwise.
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Definition 1.2. ([129]) A residuated lattice (A,∧,∨,¯,→, 0, 1) is called BL-
algebra, if the following two identities hold in A :

(BL4) x¯ (x → y) = x ∧ y;
(BL5) (x → y) ∨ (y → x) = 1.

For more details about BL-algebras, see Chapter 3.

Remark 1.1. 1. ÃLukasiewicz structure, Gődel structure and Product struc-
ture are BL− algebras;

2. Any boolean algebra can be regarded as a residuated lattice where the oper-
ations ¯ and ∧ coincide and x → y = x

′ ∨ y.

Remark 1.2. If in a BL− algebra A, x∗∗ = x for all x ∈ A,(where x∗ = x → 0),
and for x, y ∈ A we denote x⊕ y = (x∗¯ y∗)∗, then we obtain an algebra (A,⊕,∗ , 0)
of type (2, 1, 0) satisfying the following:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

x⊕ y = y ⊕ x,

x⊕ 0 = x,

x⊕ 0∗ = 0∗,

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, for all x, y ∈ A.

Then for all x, y ∈ A, (y → x) → x = x∨y = (x → y) → y. BL− algebras of this kind
will turn out to be so called MV− algebras (see [129] and Chapter 2). Conversely,
if (A,⊕,∗ , 0) is an MV -algebra, then (A,∧,∨,¯,→, 0, 1) is a BL-algebra, where for
x, y ∈ A :

x¯ y = (x∗ ⊕ y∗)∗,

x → y = x∗ ⊕ y, 1 = 0∗,

x ∨ y = (x → y) → y = (y → x) → x and x ∧ y = (x∗ ∨ y∗)∗.

Remark 1.3. ([129]) A residuated lattice (A,∧,∨,¯,→, 0, 1) is an MV -algebra
iff it satisfies the additional condition: (x → y) → y = (y → x) → x, for any
x, y ∈ A (see Theorem 2.70).

Example 1.6. ([84]) We give an another example of a finite residuated lattice,
which is not a BL-algebra. Let A = {0, a, b, c, 1} with 0 < a, b < c < 1, but a, b are
incomparable. A become a residuated lattice relative to the following operations:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

,

¯ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

.

The condition x∨y = [(x → y) → y]∧ [(y → x) → x], for all x, y ∈ A is not verified,
since c = a∨ b 6= [(a → b) → b]∧ [(b → a) → a] = (b → b)∧ (a → a) = 1, hence A is
not a BL-algebra.
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Example 1.7. ([92]) We consider the residuate lattice A with the universe
{0, a, b, c, d, e, f, 1}. Lattice ordering is such that 0 < d < c < b < a < 1, 0 <
d < e < f < a < 1 and elements {b, f} and {c, e} are pairwise incomparable. The
operations of implication and multiplication are given by the tables below :

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a d 1 a a f f f 1
b e 1 1 a f f f 1
c f 1 1 1 f f f 1
d a 1 1 1 1 1 1 1
e b 1 a a a 1 1 1
f c 1 a a a a 1 1
1 1 a b c d e f 1

,

¯ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 c c c 0 d d a
b 0 c c c 0 0 d b
c 0 c c c 0 0 0 c
d 0 0 0 0 0 0 0 d
e 0 d 0 0 0 d d e
f 0 d d 0 0 d d f
1 0 a b c d e f 1

Clearly, A contains {a, b, c, d, e, f} as a sublattice, and that is a copy of the so-called
benzene ring, which shows that A is not distributive, and even not modular (see
[22]). But it is easy to see that a∗ = d, b∗ = e, c∗ = f, d∗ = a, e∗ = b and f∗ = c.

Example 1.8. ([92]) Let A be the residuate lattice with the universe {0, a, b, c, d, 1}
such that 0 < b < a < 1, 0 < d < c < a < 1 and c and d are incomparable with b.
The operations of implication and multiplication are given by the tables below :

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b c c 1
b c a 1 c c 1
c b a b 1 a 1
d b a b a 1 1
1 0 a b c d 1

,

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a b d d a
b c b b 0 0 b
c b d 0 d d c
d b d 0 d d d
1 0 a b c d 1

Then A is obtained from the nonmodular lattice N5 (see [22]), called the pentagon,
by adding the new greatest element 1. Then A is another example of nondistributive
residuated lattice.

Example 1.9. ([84]) We give an example of a finite residuate lattice which is
an non-linearly MV -algebra. Let A = {0, a, b, c, d, 1}, with 0 < a, b < c < 1, 0 < b <
d < 1, but a, b and, respective c, d are incomparable. We define

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

,

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

and so A become a BL−algebra.We have in A the following operations:
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⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

,
∗ 0 a b c d 1

1 d c b a 0

It is easy to see that 0∗ = 1, a∗ = d, b∗ = c, c∗ = b, d∗ = a, 1∗ = 0 and x∗∗ = x, for
all x ∈ A, hence A is an MV− algebra which is not chain.

Example 1.10. ([84]) We give an another example of a finite residuate lattice
A = {0, a, b, c, d, e, f, g, 1}, which is non-linearly MV− algebra, with 0 < a < b <
e < 1, 0 < c < f < g < 1, a < d < g, c < d < e, but {a, c}, {b, d}, {d, f}, {b, f} and,
respective {e, g} are incomparable. We define

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a g 1 1 g 1 1 g 1 1
b f g 1 f g 1 f g 1
c e e e 1 1 1 1 1 1
d d e e g 1 1 g 1 1
e c d e f g 1 f g 1
f b b b e e e 1 1 1
g a b b d e e g 1 1
1 0 a b c d e f g 1

,

¯ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a
b 0 a b 0 a b 0 a b
c 0 0 0 0 0 0 c c c
d 0 0 a 0 0 a c c d
e 0 a b 0 a b c d e
f 0 0 0 c c c f f f
g 0 0 a c c d f f g
1 0 a b c d e f g 1

and so A become a residuated lattice.We have 0∗ = 1, a∗ = g, b∗ = f, c∗ = e, d∗ =
d, e∗ = c, f∗ = b, g∗ = a.

Example 1.11. ([84]) We give an example of a finite residuate lattice which is
an MV -algebra. Let A = {0, a, b, c, d, 1}, with 0 < a < b < 1, 0 < c < d < 1, but a, c
and, respective b, d are incomparable. We define

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 d 1 1
b c d 1 c d 1
c b b b 1 1 1
d a b b d 1 1
1 0 a b c d 1

,

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

It is easy to see that 0∗ = 1, a∗ = d, b∗ = c, c∗ = b, d∗ = a.

In what follows by A we denote a residuated lattice; for x ∈ A and a natural
number n, we define x∗ = x → 0, (x∗)∗ = x∗∗, x0 = 1 and xn = xn−1 ¯ x for n ≥ 1.

Definition 1.3. An element a in A is called idempotent iff a2 = a, and it is
called nilpotent iff there exists a natural number n such that an = 0. The minimum
n such that an = 0 is called nilpotence order of a and will be denoted by ord(a); if
there is no such n, then ord(a) = ∞. A residuated lattice A is called locally finite
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if every a ∈ A, a 6= 1, has finite order. An element a in A is called dense iff a∗ = 0,
and it is called a unity iff for all natural numbers n, (an)∗ is nilpotent. The set of
dense elements of A will be denoted by D(A).

Theorem 1.1. Let x, x1, x2, y, y1, y2, z ∈ A. Then we have the following rules of
calculus:
(lr − c1) 1 → x = x, x → x = 1;
(lr − c2) x¯ y ≤ x, y, hence x¯ y ≤ x ∧ y, y ≤ x → y and x¯ 0 = 0;
(lr − c3) x¯ y ≤ x → y;
(lr − c4) x ≤ y iff x → y = 1;
(lr − c5) x → y = y → x = 1 ⇔ x = y; x → 1 = 1, 0 → x = 1;
(lr − c6) x¯ (x → y) ≤ y, x ≤ (x → y) → y, ((x → y) → y) → y = x → y;
(lr − c7) x → y ≤ (x¯ z) → (y ¯ z);
(lr − c8) x ≤ y implies x¯ z ≤ y ¯ z;
(lr − c9) x → y ≤ (z → x) → (z → y);

(lr − c10) x → y ≤ (y → z) → (x → z);
(lr − c11) x ≤ y implies z → x ≤ z → y, y → z ≤ x → z and y∗ ≤ x∗;
(lr − c12) x¯ (y → z) ≤ y → (x¯ z) ≤ (x¯ y) → (x¯ z);
(lr − c13) x → (y → z) = (x¯ y) → z = y → (x → z);
(lr − c14) x1 → y1 ≤ (y2 → x2) → [(y1 → y2) → (x1 → x2)].

Proof. (lr− c1). Since x¯ 1 = x ≤ x ⇒ x ≤ 1 → x. If we have z ∈ A such that
1¯ z = x, then z ≤ x and so x = sup{z ∈ A : 1¯ z ≤ x} = 1 → x;

From 1¯ x = x ≤ x ⇒ 1 ≤ x → x; since x → x ≤ 1 ⇒ x → x = 1.
(lr − c2). Follows from lr − c1 and LR2. As x¯ y ≤ y ⇒ y ≤ x → y.
(lr − c3). Follows from lr − c1 and lr − c2: x ¯ y ≤ y and y ≤ x → y so

x¯ y ≤ x → y.
(lr − c4). We have x ≤ y ⇔ x¯ 1 ≤ y ⇔ 1 ≤ x → y ⇔ x → y = 1.
(lr − c5). Follows from lr − c4.
(lr − c6). Follows immediately from LR3.
(lr − c7). By LR3 we have x → y ≤ (x ¯ z) → (y ¯ z) ⇔ (x → y) ¯ x ¯ z ≤

y ¯ z ⇔ (x → y) ¯ x ≤ z → (y ¯ z). But by lr − c6, we have (x → y) ¯ x ≤ y and
y ≤ z → (y ¯ z), hence (x → y)¯ x ≤ z → (y ¯ z).

(lr − c8). Follows from lr − c7.
(lr − c9). By LR3 we have x → y ≤ (z → x) → (z → y) ⇔ (x → y)¯ (z → x) ≤

z → y ⇔ (x → y)¯ (z → x)¯ z ≤ y.
Indeed, by lr − c6 we have that (x → y)¯ (z → x)¯ z ≤ (x → y)¯ x ≤ y.
(lr − c10). As in the case of lr − c9.
(lr − c11). It follows from lr − c9 and lr − c10.
(lr− c12). The first equality follows from x¯y¯ (y → z) ≤ x¯ z and the second

from lr − c11.
(lr − c13). We have (x → (y → z)) ¯ (x ¯ y) ≤ (y → z) ¯ y ≤ z, hence

x → (y → z) ≤ (x¯ y) → z. On the another hand, from ((x¯ y) → z)¯ (x¯ y) ≤ z,
we deduce that ((x¯ y) → z)¯ x ≤ y → z , therefore (x¯ y) → z ≤ x → (y → z),
so we obtain the requested equality.

(lr − c14). We have to prove that (x1 → y1)¯ (y2 → x2)¯ (y1 → y2)¯ x1 ≤ x2;
this inequality is a consequence of applying several times lr − c6. ¥

Remark 1.4. From lr − c1 and lr − c4 we deduce that 1 is the greatest element
of A.
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Theorem 1.2. If x, y ∈ A, then :
(lr − c15) x¯ x∗ = 0 and x¯ y = 0 iff x ≤ y∗;
(lr − c16) x ≤ x∗∗, x∗∗ ≤ x∗ → x;
(lr − c17) 1∗ = 0 , 0∗ = 1;
(lr − c18) x → y ≤ y∗ → x∗;
(lr − c19) x∗∗∗ = x∗, (x¯ y)∗ = x → y∗ = y → x∗ = x∗∗ → y∗.

Proof. (lr − c15). We have, x∗ ≤ x → 0 ⇔ x¯ x∗ ≤ 0, so x¯ x∗ = 0.
(lr − c16). We have x → x∗∗ = x → (x∗ → 0) = x∗ → (x → 0) = x∗ → x∗ = 1

and x∗∗ → (x∗ → x) = (x∗∗ ¯ x∗) → x
lr−c15= 0 → x = 1.

(lr − c17). 1∗ ≤ 0 ⇔ 0 = 1 → 0 ⇔ 0¯ 1 ≤ 0, analogously, 0∗ = 1;
(lr − c18). It follows from lr − c10 for z = 0 : 1 = (x → y) → (y∗ → x∗) hence

x → y ≤ y∗ → x∗.
(lr − c19). From lr − c16 we deduce that x∗ ≤ x∗∗∗ and from x ≤ x∗∗ we deduce

that x∗∗ → 0 ≤ x → 0 ⇔ x∗∗∗ ≤ x∗, therefore x∗∗∗ = x∗. ¥
Theorem 1.3. If A is a complete residuated lattice, x ∈ A and (yi)i∈I a family

of elements of A, then :
(lr − c20) x¯ (

∨
i∈I

yi) =
∨
i∈I

(x¯ yi);

(lr − c21) x¯ (
∧
i∈I

yi) ≤
∧
i∈I

(x¯ yi);

(lr − c22) x → (
∧
i∈I

yi) =
∧
i∈I

(x → yi);

(lr − c23) (
∨
i∈I

yi) → x =
∧
i∈I

(yi → x);

(lr − c24)
∨
i∈I

(yi → x) ≤ (
∧
i∈I

yi) → x;

(lr − c25)
∨

(
i∈I

x → yi) ≤ x → (
∨
i∈I

yi);

(lr − c26) (
∨
i∈I

yi)∗ =
∧
i∈I

y∗i ;

(lr − c27) (
∧
i∈I

yi)∗ ≥
∨
i∈I

y∗i .

Proof. (lr−c20). Clearly, x¯yi ≤ x¯(
∨
i∈I

yi), for each i ∈ I, therefore
∨
i∈I

(x¯yi) ≤
x¯ (

∨
i∈I

yi) .

Conversely, since for every i ∈ I, x¯ yi ≤
∨
i∈I

(x¯ yi) ⇒ yi ≤ x → [
∨
i∈I

(x¯ yi)],

then
∨
i∈I

yi ≤ x → [
∨
i∈I

(x¯ yi)] , therefore x¯ (
∨
i∈I

yi) ≤
∨
i∈I

(x¯ yi), so we obtain the

requested equality.
(lr − c21). Clearly .
(lr − c22). Let y =

∧
i∈I

yi . Since for every i ∈ I, y ≤ yi, we deduce that

x → y ≤ x → yi, hence x → y ≤ ∧
i∈I

(x → yi); On the another hand, the inequality
∧
i∈I

(x → yi) ≤ x → y is equivalent with x ¯ [
∧
i∈I

(x → yi)] ≤ y. This is true because

by lr − c21 we have x¯ [
∧
i∈I

(x → yi)] ≤
∧
i∈I

[x¯ (x → yi)] ≤
∧
i∈I

yi = y.

(lr − c23). Let y =
∨
i∈I

yi; since for every i ∈ I, yi ≤ y ⇒ y → x ≤ yi → x ⇒ y →
x ≤ ∧

i∈I

(yi → x); Conversely,
∧
i∈I

(yi → x) ≤ y → x ⇔ y ¯ [
∧
i∈I

(yi → x)] ≤ x.
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By lr− c21 we have y¯ [
∧
i∈I

(yi → x)] ≤ ∧
i∈I

[y¯ (yi → x)] lr−c20=
∧
i∈I

[
∨
i∈I

(yi ¯ (yi →
x))] ≤ ∧

i∈I

x = x, so we obtain the requested equality.

(lr − c24). By lr − c11, for every i ∈ I, yi → x ≤ (
∧
i∈I

yi) → x thus
∨
i∈I

(yi → x) ≤
(
∧
i∈I

yi) → x.

(lr − c25). Similary with lr − c24.
(lr − c26). In particular by taking x = 0 in lr − c23 we obtain (

∨
i∈I

yi)∗ =
∧
i∈I

y∗i .

(lr− c27). In particular by taking x = 0 in lr− c24 we obtain (
∧
i∈I

yi)∗ ≥
∨
i∈I

y∗i . ¥

Corollary 1.4. If x, x′, y, y′, z ∈ A then:
(lr − c28) x ∨ y = 1 implies x¯ y = x ∧ y;
(lr − c29) x → (y → z) ≥ (x → y) → (x → z);
(lr − c30) x∨(y¯z) ≥ (x∨y)¯(x∨z), hence x∨yn ≥ (x∨y)nand xm∨yn ≥ (x∨y)mn,

for any m,n natural numbers;
(lr − c31) (x → y)¯ (x

′ → y
′
) ≤ (x ∨ x

′
) → (y ∨ y

′
);

(lr − c32) (x → y)¯ (x
′ → y

′
) ≤ (x ∧ x

′
) → (y ∧ y

′
).

Proof. (lr− c28). Suppose x∨ y = 1. Clearly x¯ y ≤ x and x¯ y ≤ y. Let now
t ∈ A such that t ≤ x and t ≤ y. By lr − c12 we have t → (x¯ y) ≥ x¯ (t → y) =
x¯ 1 = x and t → (x¯ y) ≥ y ¯ (t → x) = y ¯ 1 = y, so t → (x¯ y) ≥ x ∨ y = 1,
hence t → (x¯ y) = 1 ⇔ t ≤ x¯ y, that is, x¯ y = x ∧ y.

(lr − c29). We have by lr − c13 : x → (y → z) = (x ¯ y) → z and (x →
y) → (x → z) = [x ¯ (x → y)] → z. But x ¯ y ≤ x ¯ (x → y), so we obtain
(x¯ y) → z ≥ [x¯ (x → y)] → z ⇔ x → (y → z) ≥ (x → y) → (x → z).

(lr−c30). By lr−c20 we deduce (x∨y)¯(x∨z) = x2∨(x¯y)∨(x¯z)∨(y¯z) ≤
≤ x ∨ (x¯ y) ∨ (x¯ z) ∨ (y ¯ z) = x ∨ (y ¯ z).

(lr − c31). From the inequalities:
x¯ (x → y)¯ (x

′ → y
′
) ≤ x¯ (x → y) ≤ x ∧ y ≤ y ∨ y

′
and

x′ ¯ (x → y)¯ (x
′ → y

′
) ≤ x′ ¯ (x′ → y′) ≤ x′ ∧ y′ ≤ y ∨ y

′
we deduce that

(x → y)¯ (x
′ → y

′
) ≤ x → (y ∨ y

′
) and (x → y)¯ (x

′ → y
′
) ≤ x′ → (y ∨ y

′
).

So, (x → y)¯(x
′ → y

′
) ≤ [x → (y∨y

′
)]∧ [x′ → (y∨y

′
)] lr−c23= (x∨x

′
) → (y∨y

′
).

(lr − c32). From the inequalities:

(x ∧ x′)¯ (x → y)¯ (x
′ → y

′
) ≤ x¯ (x → y)

lr−c6≤ y and

(x ∧ x′)¯ (x → y)¯ (x
′ → y

′
) ≤ x′ ¯ (x′ → y′)

lr−c6≤ y′ we deduce that
(x → y)¯ (x

′ → y
′
) ≤ (x ∧ x′) → y and (x → y)¯ (x

′ → y
′
) ≤ (x ∧ x′) → y′.

So, (x → y)¯(x
′ → y

′
) ≤ [(x∧x′) → y]∧[(x∧x′) → y′] lr−c22= (x∧x

′
) → (y∧y

′
).¥

If B = {a1, a2, ..., an} is a finite subset of A we denote ΠB = a1 ¯ ...¯ an.

Proposition 1.5. Let A1, ..., An finite subsets of A.

(lr − c33) If a1 ∨ ... ∨ an = 1, for all ai ∈ Ai, i ∈ {1, ..., n}, then

(ΠA1) ∨ ... ∨ (ΠAn) = 1.

Proof. For n = 2 it is proved in [14] and for n = 2, A1 a singleton and A2 a
doubleton in [11] (Lemma 6.4). The proof for arbitrary n is a simple mathematical
induction argument. ¥
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Corollary 1.6. Let a1, ..., an ∈ A.

(lr − c34) If a1 ∨ ... ∨ an = 1, then ak
1 ∨ ... ∨ ak

n = 1, for every natural number k.

Proposition 1.7. Suppose A is a locally finite residuated lattice. Then for all
a, b ∈ A, a ∨ b = 1 iff a = 1 or b = 1.

Proof. Assume a ∨ b = 1. Then, since a ∨ b ≤ [(a → b) → b] ∧ [(b → a) → a]
we deduce that (a → b) → b = (b → a) → a = 1, hence a → b = b and b → a = a.
Let now a 6= 1. Since the residuated lattice A is locally finite (under consideration)
there is a natural number m such that am = 0. Now b = a → b = a → (a → b) =
a2 → b = ... = am → b = 0 → b = 1. ¥

Proposition 1.8. In any locally finite residuated lattice A, for all x ∈ A

(i) 0 < x < 1 iff 0 < x∗ < 1;
(ii) x∗ = 0 iff x = 1;

(iii) x∗ = 1 iff x = 0.

Proof. (i). Assume 0 < x < 1, ord(x) = m ≥ 2. Then, xm−1¯x = 0, xm−2¯x 6=
0, so by the definition of x∗, 0 < xm−1 ≤ x∗ < xm−2 ≤ 1. Conversely, let 0 < x∗ < 1,
ord(x∗) = n ≥ 2. Then by similar argument, 0 < (x∗)n−1 ≤ x∗∗ < (x∗)n−2 ≤ 1.

If now x = 0, then x∗ = 1, a contradiction. Therefore 0 < x ≤ x∗∗ < 1.
(ii). If x∗ = 0 but x 6= 1, then 0 < x < 1, which leads to a contradiction x∗ 6= 0.

Thus x = 1.
(iii). Analogously as (ii). ¥
By bi-residuum on a residuated lattice A we understand the derived operation

←→ defined for x, y ∈ A by x ←→ y = (x → y) ∧ (y → x). Bi-residumm will offer
us an elegant way to interpret fuzzy logic equivalence.

Theorem 1.9. If A is a residuated lattice and x, y, x1, y1, x2, y2 ∈ A, then
(birez1) x ←→ 1 = x;
(birez2) x ←→ y = 1 ⇔ x = y;
(birez3) x ←→ y = y ←→ x;
(birez4) (x ←→ y)¯ (y ←→ z) ≤ x ←→ z;
(birez5) (x1 ←→ y1) ∧ (x2 ←→ y2) ≤ (x1 ∧ x2) ←→ (y1 ∧ y2);
(birez6) (x1 ←→ y1) ∧ (x2 ←→ y2) ≤ (x1 ∨ x2) ←→ (y1 ∨ y2);
(birez7) (x1 ←→ y1)¯ (x2 ←→ y2) ≤ (x1 ¯ x2) ←→ (y1 ¯ y2);
(birez8) (x1 ←→ y1)¯ (x2 ←→ y2) ≤ (x1 ←→ x2) ←→ (y1 ←→ y2).

Proof. (birez1)− (birez3). Are immediate consequences of Theorem 1.1.
(birez4). By lr− c10, (x → y)¯ (y → z) ≤ x → z, therefore (x ←→ y)¯ (y ←→

z) ≤ (x → y) ¯ (y → z) ≤ x → z. Similarly, (x ←→ y) ¯ (y ←→ z) ≤ z → x. We
conclude that (x ←→ y)¯ (y ←→ z) ≤ x ←→ z.

(birez5). If we denote a = x1 ←→ y1 and b = x2 ←→ y2, using the above rules
of calculus we deduce (a ∧ b) ¯ (x1 ∧ x2) ≤ [(x1 → y1) ∧ (x2 → y2)] ¯ (x1 ∧ x2) ≤
[(x1 → y1)¯ x1] ∧ [(x2 → y2)¯ x2] ≤ y1 ∧ y2, hence a ∧ b ≤ (x1 ∧ x2) → (y1 ∧ y2).

Analogously we deduce a∧ b ≤ (y1∧y2) → (x1∧x2), hence a∧ b ≤ (x1∧x2) ←→
(y1 ∧ y2).

(birez6). With the notations from birez5 we have
(a ∧ b) ¯ (x1 ∨ x2) = [(a ∧ b) ¯ x1] ∨ [(a ∧ b) ¯ x2] ≤ [(x1 → y1) ¯ x1] ∨ [(x2 →

y2)¯ x2] ≤ y1 ∧ y2, hence a ∧ b ≤ (x1 ∨ x2) → (y1 ∨ y2).
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Analogously we deduce a∧ b ≤ (y1∨y2) → (x1∨x2), hence a∧ b ≤ (x1∨x2) ←→
(y1 ∨ y2).

(birez7). We have (a¯b)¯(x1¯x2) ≤ [(x1 → y1)¯x1]¯[(x2 → y2)¯x2] ≤ y1¯y2,
hence a¯ b ≤ (x1 ¯ x2) → (y1 ¯ y2).

Analogously we deduce that a¯b ≤ (y1¯y2) → (x1¯x2), so a¯b ≤ (x1¯x2) ←→
(y1 ¯ y2).

(birez8). We have (a¯ b)¯ (x1 → x2) ≤ (y1 → x1)¯ (x2 → y2)¯ (x1 → x2) ≤
(y1 → x2)¯ (x2 → y2) ≤ y1 ∧ y2, and from here the proof is similary with the proof
of birez5. ¥

Proposition 1.10. Let A be a residuated lattice and x, y1, y2, z1, z2 ∈ A. If
x ≤ y1 ←→ y2 and x ≤ z1 ←→ z2, then x2 ≤ (y1 ←→ z1) ←→ (y2 ←→ z2).

Proof. From x ≤ y1 ←→ y2 ⇒ x ≤ y2 → y1 ⇒ x¯ y2 ≤ y1 and analogously we
deduce that x¯ z1 ≤ z2.

Then x ¯ x ≤ (y1 → z1) → (y2 → z2) ⇔ x ¯ x ¯ (y1 → z1) ≤ (y2 → z2) ⇔
x¯ x¯ (y1 → z1)¯ y2 ≤ z2.

Indeed, x¯x¯(y1 → z1)¯y2 ≤ x¯(y1 → z1)¯y1 ≤ x¯z1 ≤ z2 and analogously
x¯ x ≤ (y2 → z2) → (y1 → z1), therefore we obtain the inequality requested . ¥

Proposition 1.11. Suppose A is complete and x, xi, yi ∈ L (i ∈ I). If x ≤
xi ←→ yi for every i ∈ I, then x ≤ (

∧
i∈I

xi) ←→ (
∧
i∈I

yi).

Proof. Since x ≤ xi ←→ yi for every i ∈ I, we deduce that x ¯ xi ≤ yi and
then x¯ (

∧
i∈I

xi) ≤
∧
i∈I

(x¯ xi) ≤
∧
i∈I

yi, hence x ≤ (
∧
i∈I

xi) → (
∧
i∈I

yi).

Analogously, x ≤ (
∧
i∈I

yi) → (
∧
i∈I

xi), therefore we obtain the requested inequality.

¥

2. Boolean center of a residuated lattice

Let (L,∨,∧, 0, 1) be a bounded lattice. Recall (see [73]) that an element a ∈ L
is called complemented if there is an element b ∈ L such that a∨ b = 1 and a∧ b = 0;
if such element b exists it is called a complement of a. We will denote b = a′ and
the set of all complemented elements in L by B(L). Complements are generally not
unique, unless the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be
distributive, the complements are unique.

Lemma 1.12. Suppose that a ∈ A have a complement b ∈ A. Then, the following
hold:

(i) If c is another complement of a in A, then c = b ;
(ii) a′ = b and b′ = a;

(iii) a2 = a.

Proof. See [92], Lema 1.3, p.14. ¥
Let B(A) the set of all complemented elements of the lattice L(A) = (A,∧,∨, 0, 1).

Lemma 1.13. If e ∈ B(A), then e′ = e∗ and e∗∗ = e.

Proof. If e ∈ B(A), and a = e′, then e ∨ a = 1 and e ∧ a = 0. Since e ¯
a ≤ e ∧ a = 0, then e ¯ a = 0, hence a ≤ e → 0 = e∗. On the another hand,
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e∗ = 1 ¯ e∗ = (e ∨ a) ¯ e∗ lr−c20= (e ¯ e∗) ∨ (a ¯ e∗) = 0 ∨ (a ¯ e∗) = a ¯ e∗, hence
e∗ ≤ a, that is e∗ = a. The equality e∗∗ = e follows from Lemma 1.12, (ii).¥

Remark 1.5. If e, f ∈ B(A), then e∧f, e∨f ∈ B(A). Moreover, (e∨f)′ = e′∧f ′
and (e ∧ f)′ = e′ ∨ f ′. So, e → f = e′ ∨ f ∈ B(A).

Proof. See [92], Lema 1.7, p.15. ¥

Lemma 1.14. If e ∈ B(A), then
(lr − c35) e¯ x = e ∧ x, for every x ∈ A.

Proof. See [92], Lema 1.6, p.15. ¥

Corollary 1.15. The set B(A) is the universe of a Boolean subalgebra of A
(called the Boolean center of A).

Proof. We prove that for any x, y, z ∈ B(A), the distributive law holds. By
lr−c35 and properties of residuated lattices, we ave the following series of identities:
x ∧ (y ∨ z) = x¯ (y ∨ z) = (x¯ y) ∨ (x¯ z) = (x ∧ y) ∨ (x ∧ z). ¥

Proposition 1.16. For e ∈ A the following are equivalent:
(i) e ∈ B(A);

(ii) e ∨ e∗ = 1.

Proof. (i) ⇒ (ii). If e ∈ B(A), by Lemma 1.13, e ∨ e′ = e ∨ e∗ = 1.

(ii) ⇒ (i). Suppose that e∨ e∗ = 1. We have: 0 = 1∗ = (e∨ e∗)∗ lr−c26= e∗ ∧ e∗∗ ≥
e∗ ∧ e, (by lr − c16), hence e∗ ∧ e = 0, that is, e ∈ B(A).¥

Definition 1.4. A totally ordered (linearly ordered) residuated lattice will be
called chain .

Remark 1.6. If A is a chain, then B(A) = {0, 1}.
Proposition 1.17. For e ∈ A we consider the following assertions:
(1) e ∈ B(A);
(2) e2 = e and e = e∗∗;
(3) e2 = e and e∗ → e = e;
(4) (e → x) → e = e, for every x ∈ A;
(5) e ∧ e∗ = 0.

Then:
(i) (1) ⇒ (2), (3), (4) and (5),

(ii) (2); (1), (3); (1), (4); (1), (5); (1),
(iii) If A is a BL−algebra then the conditios (1)− (5) are equivalent.

Proof. (i). (1) ⇒ (2). Follows from Lemma 1.12 (iii), and Lemma 1.13.
(1) ⇒ (3). If e ∈ B(A), then e ∨ e∗ = 1. Since 1 = e ∨ e∗ ≤ [(e → e∗) →

e∗] ∧ [(e∗ → e) → e], by lr − c6 and lr − c1.
We deduce that (e → e∗) → e∗ = (e∗ → e) → e = 1, hence e → e∗ ≤ e∗ and

e∗ → e ≤ e (by lr − c4), that is, e → e∗ = e∗ and e∗ → e = e (by lr − c2).
(1) ⇒ (4). If x ∈ A, then from 0 ≤ x we deduce e∗ ≤ e → x hence (e → x) →

e ≤ e∗ → e = e, by (1) ⇒ (3). Since e ≤ (e → x) → e we obtain (e → x) → e = e.
(1) ⇒ (5). Follows from Proposition 1.16 (since by Lemma 1.13, e′ = e∗).
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(ii). Consider the residuated lattice A = {0, a, b, c, 1} from the Example 1.6; it
is easy to verify that B(A) = {0, 1}.

(2); (1). We have a2 = a, a∗ = b, b∗ = a, hence a∗∗ = b∗ = a, but a /∈ B(A).
(3); (1). We have a2 = a and a∗ → a = b → a = a, but a /∈ B(A).
(4) ; (1). It is easy to verify that (a → x) → a = a for every x ∈ A, but

a /∈ B(A).
(5) ; (1). We have a ∧ a∗ = a ∧ b = 0, but a ∨ a∗ = a ∨ b = c 6= 1, hence

a /∈ B(A). ¥
Remark 1.7. 1. If A = {0, a, b, c, 1}, is the residuated lattice from Exam-

ple 1.6, then B(A) = {0, 1};
2. If A = {0, a, b, c, d, e, f, 1}, is the residuated lattice from Example 1.7, then

B(A) = {0, 1}; also B(A) = {0, 1}, where A is the residuated lattice from
Example 1.8;

3. If A = {0, a, b, c, d, 1}, is the residuated lattice from Example 1.9, then
B(A) = {0, a, d, 1};

4. If A = {0, a, b, c, d, e, f, g, 1}, is the residuated lattice from Example 1.10,
then B(A) = {0, b, f, 1};

5. If A = {0, a, b, c, d, 1}, is the residuated lattice from Example 1.11, then
B(A) = {0, b, c, 1}.

Lemma 1.18. If e, f ∈ B(A) and x, y ∈ A, then:
(lr − c36) x¯ (x → e) = e ∧ x, e¯ (e → x) = e ∧ x;
(lr − c37) e ∨ (x¯ y) = (e ∨ x)¯ (e ∨ y);
(lr − c38) e ∧ (x¯ y) = (e ∧ x)¯ (e ∧ y);
(lr − c39) e¯ (x → y) = e¯ [(e¯ x) → (e¯ y)];
(lr − c40) x¯ (e → f) = x¯ [(x¯ e) → (x¯ f)];
(lr − c41) e → (x → y) = (e → x) → (e → y).

Proof. (lr − c36). Since e ≤ x → e, then x ¯ e ≤ x ¯ (x → e), hence x ∧
e ≤ x ¯ (x → e). From x ¯ (x → e) ≤ x, e we deduce the another inequality
x¯ (x → e) ≤ x ∧ e, so x¯ (x → e) = e ∧ x.

Analogous for the sequend equality.
(lr − c37). We have

(e ∨ x)¯ (e ∨ y) lr−c20= [(e ∨ x)¯ e] ∨ [(e ∨ x)¯ y] = [(e ∨ x)¯ e] ∨ [(e¯ y) ∨ (x¯ y)]

= [(e ∨ x) ∧ e] ∨ [(e¯ y) ∨ (x¯ y)] = e ∨ (e¯ y) ∨ (x¯ y) = e ∨ (x¯ y).
(lr − c38). As above,

(e ∧ x)¯ (e ∧ y) = (e¯ x)¯ (e¯ y) = (e¯ e)¯ (x¯ y) = e¯ (x¯ y) = e ∧ (x¯ y).

(lr − c39). By lr − c7 we have x → y ≤ (e¯ x) → (e¯ y), hence e¯ (x → y) ≤
e¯ [(e¯ x) → (e¯ y)].

Conversely, (e¯ x)¯ [(e¯ x) → (e¯ y)] ≤ e¯ y ≤ y so e¯ [(e¯ x) → (e¯ y)] ≤
x → y. Hence e¯ [(e¯ x) → (e¯ y)] ≤ e¯ (x → y).

(lr − c40). We have x ¯ [(x ¯ e) → (x ¯ f)] = x ¯ [(x ¯ e) → (x ∧ f)] lr−c22=

x¯ [((x¯e) → x)∧ ((x¯e) → f)] = x¯ [1∧((x¯e) → f)] = x¯ ((x¯e) → f) lr−c13=
lr−c13= x¯ [x → (e → f)] lr−c36= x ∧ (e → f) = x¯ (e → f), since e → f ∈ B(A),

see Remark 1.5.
(lr − c41). Follows from lr − c13 and lr − c36 since e ∧ x = e¯ x.¥
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Corollary 1.19. If e ∈ B(A) and x, y ∈ A, then:
(lr − c42) e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y).

Definition 1.5. Let A and B be residuated lattices. f : A → B is a morphism
of residuated lattices if f is morphism of bounded lattices and for every x, y ∈ A :
f(x¯ y) = f(x)¯ f(y) and f(x → y) = f(x) → f(y).

Following current usage, if f is one-one we shall equivalently say that f is an
injective homomorphism , or an embedding . If the homomorphism f : A → B is
onto, we say that f is surjective . A bijective morphism of residuated lattices will
be called isomorphism of residuated lattices (we write A ≈ B). The kernel of
homomorphism f : A → B is the set Ker(f) = f−1(0) = {x ∈ A : f(x) = 0}.

Definition 1.6. A Heyting algebra is a lattice (L,∨,∧) with 0 such that for
every a, b ∈ L, there exists an element a → b ∈ L (called the pseudocomplement of
a with respect to b) such that for every x ∈ L, a ∧ x ≤ b iff x ≤ a → b (that is,
a → b = sup{x ∈ L : a ∧ x ≤ b}).

Definition 1.7. Following Diego ([51]), by Hilbert algebra we mean an algebra
(A,→, 1) of type (2, 0) satisfying the following identities:

(H1) x → (y → x) = 1;
(H2) (x → (y → z)) → ((x → y) → (x → z)) = 1;
(H3) If x → y = y → x = 1, then x = y.

Remark 1.8. ([51]) If (L,∨,∧,→, 0) is a Heyting algebra, then (L,→, 1) is a
Hilbert algebra, where 1 = a → a for an element a ∈ L.

Taking as a guide -line the case of BL− algebras (see Example 3.9), a residuated
lattice A will be called G- algebra if x2 = x, for every x ∈ A.

Remark 1.9. In a G-algebra A, x¯ y = x ∧ y for every x, y ∈ A.

Proposition 1.20. In a residuated lattice A the following assertions are equiv-
alent :

(i) x2 = x for every x ∈ A;
(ii) x¯ (x → y) = x¯ y = x ∧ y for every x, y ∈ A.

Proof. (i) ⇒ (ii). Let x, y ∈ A. By lr − c12 we have

x¯ (x → y) ≤ (x¯ x) → (x¯ y) ⇔ x¯ (x → y) ≤ x → (x¯ y) ⇔
x → y ≤ x → (x → (x¯ y)) = x2 → (x¯ y) = x → (x¯ y) ⇒

x¯ (x → y) ≤ x¯ y.

Since y ≤ x → y, then x¯ y ≤ x¯ (x → y), so x¯ (x → y) ≤ x¯ y.
Clearly, x¯y ≤ x, y. To prove x¯y = x∧y, let t ∈ A such that t ≤ x and t ≤ y.

Then t = t2 ≤ x¯ y, that is, x¯ y = x ∧ y.
(ii) ⇒ (i). In particular for x = y we obtain x¯ x = x ∧ x = x ⇔ x2 = x. ¥

Proposition 1.21. For a residuated lattice (A,∧,∨,¯,→, 0, 1) the following are
equivalent:

(i) (A,→, 1) is a Hilbert algebra;
(ii) (A,∧,∨,¯,→, 0, 1) is a G-algebra.
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Proof. (i) ⇒ (ii). Suppose that (A,→, 1) is a Hilbert algebra, then for every
x, y, z ∈ A we have

x → (y → z) = (x → y) → (x → z).
From lr − c13 we have

x → (y → z) = (x¯ y) → z and (x → y) → (x → z) = (x¯ (x → y)) → z,

so we obtain
(x¯ y) → z = (x¯ (x → y)) → z

hence x¯ y = x¯ (x → y); for x = y we obtain x2 = x, that is, A is a G- algebra.
(ii) ⇒ (i). Follows from Proposition 1.20. ¥

3. The lattice of deductive systems of a residuated lattice

In this section we put in evidence the congruences of a residuated lattice and present
some results relative to lattice of deductive systems of a residuated lattice. We characterize
the subdirectly irreducible residuated lattices and the residuated lattices for which the lattice
of deductive systems is a Boolean algebra.

Definition 1.8. A non empty subset D ⊆ A is called a deductive system of A,
ds for short, if the following conditions are satisfied:

(Ds1) 1 ∈ D;
(Ds2) If x, x → y ∈ D, then y ∈ D.

Clearly {1} and A are ds ; a ds D of A is called proper if D 6= A.

Remark 1.10. 1. A ds D is proper iff 0 /∈ D iff no element x ∈ A holds
x, x∗ ∈ D;

2. x ∈ D iff xn ∈ D for every n ≥ 1.

Remark 1.11. A nonempty subset D⊆ A is a ds of A iff for all x, y ∈ A :
(Ds′1) If x, y ∈ D, then x¯ y ∈ D;
(Ds′2) If x ∈ D, y ∈ A, x ≤ y, then y ∈ D.

Indeed, assume that D ⊆ A,D 6= ∅ is a subset of A satisfy Ds′1 and Ds′2. In
such case there is an element x ∈ D ⊆ A and as x ≤ 1 we have 1 ∈ D. Assume
x, x → y ∈ D. Then x¯ (x → y) ≤ y ∈ D and so D is a ds. Let conversely, D be a
ds. Assume x, y ∈ D. Since x → [y → (x¯ y)] = 1 ∈ D, we have y → (x¯ y) ∈ D,
therefore x ¯ y ∈ D. Thus Ds1 holds. To verify Ds2 let x ∈ D, x ≤ y. Then
x → y = 1 ∈ D, hence y ∈ D.

Remark 1.12. Deductive systems are called also implicative (or congruence)
filters in literature. To avoid confusion we reserve, however, the name filter to
lattice filters in this paper. From lr − c2 and Remark 1.11 we deduce that every ds
of A is a filter for L(A), but filters of L(A) are not, in general, deductive systems
for A (see [129]).

We denote by Ds(A) the set of all deductive systems of A.
In wath follows we will take in consideration the connections between the con-

gruences of a residuated lattice A and the implicative filtres (deductive systems) of
A.

Whith any deductive systems D of A we can associate a congruence θD on A by
defining : (a, b) ∈ θD iff a → b, b → a ∈ D iff (a → b) ¯ (b → a) ∈ D. Conversely,
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for θ ∈ Con(A), the subset Dθ of A defined by a ∈ Dθ iff (a, 1) ∈ θ is a deductive
system of A. Moreover the natural maps associated whith the above are mutually
inverse and establish an isomorphism between the lattices Ds(A) and Con(A).

So, as in the case of lattices we have the following result:

Theorem 1.22. Let A be a residuated lattice, D ∈ Ds(A) and θ ∈ Con(A).
Then

(i) θD ∈ Con(A) and Dθ ∈ Ds(A);
(ii) The assignments D Ã θD and θ Ã Dθ give a laticeal isomorphisms between

Ds(A) and Con(A).

For a ∈ A, let a/D be the equivalence class of a modulo θD. If we denote by
A/D the quotient set A/θD, then A/D becomes a residuated lattice with the natural
operations induced from those of A. Clearly, in A/D, 0 = 0/D and 1 = 1/D.

Proposition 1.23. Let D ∈ Ds(A), and a, b ∈ A, then
(i) a/D = 1/D iff a ∈ D, hence a/D 6= 1 iff a /∈ D;

(ii) a/D = 0/D iff a∗ ∈ D;
(iii) If D is proper and a/D = 0/D, then a /∈ D;
(iv) a/D ≤ b/D iff a → b ∈ D.

Proof. (i). We have a/D = 1/D iff (a → 1)¯ (1 → a) ∈ D iff 1¯ a = a ∈ D.
(ii). We have a/D = 0/D iff (a → 0)¯ (0 → a) ∈ D iff a∗ ¯ 1 = a∗ ∈ D.
(iii). Follow from Remark 1.10.
(iv). By lr− c4 we have a/D ≤ b/D iff a/D → b/D = 1 iff (a → b)/D = 1/D iff

a → b ∈ D (by (i)). ¥
We recall (see [22]) some fundamental concepts of Universal Algebra.
Let A and (Ai)i∈I be algebras of the same type. A subdirect representation of

A with factors Ai is an embedding f : A → ∏
i∈I

Ai such that each fi defined by fi

= πi ◦ f is onto Ai, for each i ∈ I. Here, πi denotes the i− th projection. Such an
A is also called subdirect product of Ai.

An algebra A is subdirectly irreducible (si for short) iff it is non-trivial and
for any subdirect representation f : A → ∏

i∈I

Ai, there exists a j such that fj is

an isomorphism of A onto Aj . A fundamental subdirect representation theorem of
Birkhoff’s says that every algebra has a subdirect representation with si factors.

Two other important types of algebras (see [22], Chapter 3) are: directly in-
decomposable algebras, i.e., these that cannot be nontrivially represented as direct
products and simple algebras, i. e., these that have two-element congruence lattices
(see [22], p.89).

Clearly, simple implies si implies directly indecomposable; neither of the converse
implications holds in general.

By Proposition 1.23 it follows immediately that a residuated lattice A is subdi-
rectly irreducible iff it has the second smallest ds, i.e. the smallest ds among all ds
except {1} (see and [18]).

The next theorem characterises internally subdirectly irreducible and simple
residuated lattices.

Theorem 1.24. ([92]) A residuated lattice A is:
(i) subdirectly irreducible iff there exists an element a < 1 such that for any

x < 1 there exists a natural number n ≥ 1 such that xn ≤ a;
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(ii) simple iff a can be taken to be 0.

Corollary 1.25. ([18], [92]) If A is subdirectly irreducible, then B(A) = {0, 1}.
Proposition 1.26. ([92]) In any si residuated lattice, if x ∨ y = 1, then either

x = 1 or y = 1 holds.

Therefore, every si residuated lattice has at most one coatom (recall that are
element a of a lattice L with the greatest element 1 is a coatom if it is maximal
among elements in L\{1}).

The next result characterises these si residuated lattices which have the coatom:

Theorem 1.27. ([91]) A residuated lattice A has the unique coatom iff there
exists an element a < 1 and a natural number n such that xn ≤ a holds for any
x < 1.

Directly indecomposable residuated lattices also have quite a handly description.
It was obtained for a subvariety of residuated latticers, called product algebras, by
Cignoli and Torrens in [46].

For arbitrary residuated lattices we have:

Theorem 1.28. ([92]) A nontrivial residuated lattice A is directly indecompos-
able iff B(A) = {0, 1}.

Remark 1.13. The lattices from Examples 1.6, 1.7 and 1.8 are directly inde-
composable.

For a nonempty subset S ⊆ A, the smallest ds of A which contains S, i.e.
∩{D ∈ Ds(A) : S ⊆ D}, is said to be the ds of A generated by S and will be
denoted by [S).

If S = {a}, with a ∈ A, we denote by [a) the ds generated by {a} ([a) is called
principal).

For D ∈ Ds(A) and a ∈ A, we denote by D(a) = [D ∪ {a}) (clearly, if a ∈ D,
then D(a) = D).

Proposition 1.29. Let S ⊆ A a nonempty subset of A, a ∈ A, D,D1, D2 ∈
Ds(A). Then

(i) If S is a deductive system, then [S) = S;
(ii) [S) = {x ∈ A : s1 ¯ ... ¯ sn ≤ x, for some n ≥ 1 and s1, ..., sn ∈ S}. In

particular, [a) = {x ∈ A : x ≥ an, for some n ≥ 1};
(iii) D(a) = {x ∈ A : x ≥ d¯ an, whith d ∈ D and n ≥ 1};
(iv) [D1 ∪D2) = {x ∈ A : x ≥ d1 ¯ d2 for some d1 ∈ D1 and d2 ∈ D2};
Proof. (i). Obvioulsly.
(ii). If we denote by S′ the set from the right part of equality from enounce, it is

immediate that this is an deductive system which contain the set S, hence [S) ⊆ S′
. Let now D ∈ Ds(A) such that S ⊆ D and x ∈ S′ . Then there are s1, ..., sn ∈ S
such that s1 ¯ ...¯ sn ≤ x. Since s1, ..., sn ∈ D ⇒ s1 ¯ ...¯ sn ∈ D ⇒ x ∈ D, hence
S′ ⊆ D; we deduce that S′ ⊆ ∩D = [S), that is, [S) = S′.

(iii), (iv). Following by (ii). ¥

Lemma 1.30. Let D ∈ Ds(A) and a ∈ A. Then D(a) = {x ∈ A : an → x ∈ D,
for some n ≥ 1}.
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Proof. If x ∈ D(a), then x ≥ d ¯ an, for some n ≥ 1 and d ∈ D. Thus,
d ≤ an → x, so an → x ∈ D.

Conversely, assume that d = an → x ∈ D for some n ≥ 1. We also have
(an ¯ d) → x = d → (an → x) = d → d = 1, hence an ¯ d ≤ x. Therefore, x ∈ D(a).
¥

Proposition 1.31. For any element x of a residuated lattice A, there is a proper
ds D of A such that x ∈ D iff ord(x) = ∞.

Proof. Let D be a proper ds and x ∈ D. Then xn ∈ D, whence xn 6= 0 for
any natural number n. Therefore ord(x) = ∞. Conversely, if ord(x) = ∞, then
D = [x) = {y ∈ A : xn ≤ y for some natural number n} is a proper ds of A and
x ∈ D. ¥

For D1, D2 ∈ Ds(A) we put

D1 ∧D2 = D1 ∩D2 and D1 ∨D2 = [D1 ∪D2).

Proposition 1.32. If a, b ∈ A, then
(i) [a) = {x ∈ A : a ≤ x} iff a¯ a = a ;

(ii) a ≤ b implies [b) ⊆ [a);
(iii) [a) ∩ [b) = [a ∨ b);
(iv) [a) ∨ [b) = [a ∧ b) = [a¯ b);
(v) [a) = 1 iff a = 1.

Proof. (i), (ii). Obviously.
(iii). Since a, b ≤ a ∨ b, by (ii), [a ∨ b) ⊆ [a), [b), hence [a ∨ b) ⊆ [a) ∩ [b). Let

now x ∈ [a) ∩ [b); then x ≥ am, x ≥ bn for some natural numbers m,n ≥ 1, hence
x ≥ am ∨ bn ≥ (a ∨ b)mn, (by lr − c30), so x ∈ [a ∨ b), that is, [a) ∩ [b) ⊆ [a ∨ b).
Hence [a) ∩ [b) = [a ∨ b).

(iv). Since a¯ b ≤ a∧ b ≤ a, b, by (ii), we deduce that [a), [b) ⊆ [a∧ b) ⊆ [a¯ b),
hence [a) ∨ [b) ⊆ [a ∧ b) ⊆ [a¯ b).

For the converse inclusions, let x ∈ [a¯b). Then for some natural number n ≥ 1,
x ≥ (a ¯ b)n = an ¯ bn ∈ [a) ∨ [b) (since an ∈ [a), bm ∈ [b)), (by Proposition 1.29,
(ii)), hence x ∈ [a) ∨ [b), that is, [a¯ b) ⊆ [a) ∨ [b), so [a) ∨ [b) = [a ∧ b) = [a¯ b).

(v). Obviously. ¥

Definition 1.9. We recall ([73], p.93) that a lattice (L,∨,∧) is called Brouwe-
rian if it satisfies the identity a∧ (

∨
i
bi) =

∨
i
(a∧bi) ) (whenever the arbitrary unions

exists). Let L be a complete lattice and let a be an element of L. Then a is called
compact if a ≤ ∨X for some X ⊆ L implies that a ≤ ∨X1 for some finite X1 ⊆ X.
A complete lattice is called algebraic if every element is the join of compact elements
(in the literature, algebraic lattices are also called compactly generated lattices).

Proposition 1.33. The lattice (Ds(A),⊆ ) is a complete Brouwerian lattice
(hence distributive), the compacts elements being exactly the principal ds of A.

Proof. Clearly, if (Di)i∈I is a family of ds from A, then the infimum of this
family is ∧

i∈I
Di = ∩

i∈I
Di and the supremum is ∨

i∈I
Di = [ ∪

i∈I
Di) = {x ∈ A : x ≥

xi1 ¯ ... ¯ xim , where i1, ..., im ∈ I, xij ∈ Dij , 1 ≤ j ≤ m}, that is, Ds(A) is
complete.
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We will to prove that the compacts elements of Ds(A) are exactly the principal
ds of A. Let D be a compact element of Ds(A). Since D =

∨
a∈D

[a), there are m ≥ 1

and a1, ..., am ∈ A such that D = [a1)∨ ...∨ [am) = [a1 ¯ ....¯ am), (by Proposition
1.32, (iv)). Hence D is a principal ds of A.

Conversely, let a ∈ A and (Di)i∈I be a family of ds of A such that [a) ⊆ ∨
i∈I

Di.

Then a ∈ ∨
i∈I

Di = [ ∪
i∈I

Di), so we deduce that there are m ≥ 1, i1, ..., im ∈ I, xij ∈ Dij

(1 ≤ j ≤ m) such that a ≥ xi1 ¯ ...¯ xim .
It follows that a ∈ [Di1 ∪ ... ∪Dim), so [a) ⊆ [Di1 ∪ ... ∪Dim) = Di1 ∨ ... ∨Dim .
For any ds D we have D =

∨
a∈D

[a), so the lattice Ds(A) is algebraic.

In order to prove that Ds(A) is Brouwerian we must show that for every ds D and
every family (Di)i∈I of ds, D∧( ∨

i∈I
Di) = ∨

i∈I
(D∧Di) ⇔ D∩( ∨

i∈I
Di) = [ ∪

i∈I
(D∩Di)).

Clearly, [ ∪
i∈I

(D ∩Di)) ⊆ D ∩ ( ∨
i∈I

Di).

Let now x ∈ D ∩ ( ∨
i∈I

Di). Then x ∈ D and there exist i1, ..., im ∈ I, xij ∈ Dij

(1 ≤ j ≤ m) such that x ≥ xi1 ¯ ... ¯ xim . Then x = x ∨ (xi1 ¯ ... ¯ xim) ≥
(x ∨ xi1) ¯ .... ¯ (x ∨ xim) (by lr − c30). Since x ∨ xij ∈ D ∩ Dij , for every 1 ≤
j ≤ m we deduce that x ∈ ∨

i∈I
(D ∩ Di), hence D ∩ ( ∨

i∈I
Di) ⊆ ∨

i∈I
(D ∩ Di), that is,

D ∩ ( ∨
i∈I

Di) = ∨
i∈I

(D ∩Di).¥

Corollary 1.34. If we denote by Dsp(A) the family of all principal ds of A,
then Dsp(A) is a bounded sublattice of Ds(A).

Proof. Apply Proposition 1.32, (iii), (iv) and the fact that {1} = [1) ∈ Dsp(A)
and A = [0) ∈ Dsp(A). ¥

For D1, D2 ∈ Ds(A) we put

D1 → D2 = {a ∈ A : D1 ∩ [a) ⊆ D2}.
Lemma 1.35. If D1, D2 ∈ Ds(A) then

(i) D1 → D2 ∈ Ds(A);
(ii) If D ∈ Ds(A), then D1 ∩D ⊆ D2 iff D ⊆ D1 → D2, that is,

D1 → D2 = sup{D ∈ Ds(A) : D1 ∩D ⊆ D2}.
Proof. (i). Since [1) = {1} and [1) ∩D1 = {1} ⊆ D2 we deduce that 1 ∈ D1 →

D2.
Let x, y ∈ A such that x ≤ y and x ∈ D1 → D2 , that is, [x) ∩D1 ⊆ D2. Then

[y) ⊆ [x), so [y)∩D1 ⊆ [x)∩D1 ⊆ D2, hence [y)∩D1 ⊆ D2, that is, y ∈ D1 → D2 .
To proof that (Ds′1) is verified, let x, y ∈ A such that x, y ∈ D1 → D2, hence

[x) ∩D1 ⊆ D2 and [y) ∩D1 ⊆ D2.

We deduce ([x) ∩ D1) ∨ ( [y) ∩ D1) ⊆ D2, hence by Proposition 1.33, ([x)∨
[y)) ∩ D1 ⊆ D2. By Proposition 1.32 we deduce that [x ¯ y) ∩ D1 ⊆ D2, hence,
x¯ y ∈ D1 → D2, that is, D1 → D2 ∈ Ds(A).

(ii). Suppose D1 ∩ D ⊆ D2 and let x ∈ D. Then [x) ⊆ D, hence [x) ∩ D1 ⊆
D ∩D1 ⊆ D2, so x ∈ D1 → D2, that is, D ⊆ D1 → D2.
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Suppose D ⊆ D1 → D2 and let x ∈ D1 ∩D. Then x ∈ D, hence x ∈ D1 → D2,
that is, [x) ∩ D1 ⊆ D2. Since x ∈ [x) ∩ D1 ⊆ D2 we obtain x ∈ D2, that is,
D1 ∩D ⊆ D2. ¥

For D1, D2 ∈ Ds(A), we denote

D1 ∗D2 = {x ∈ A : x ∨ y ∈ D2, for all y ∈ D1}.
Proposition 1.36. For all D1, D2 ∈ Ds(A), D1 ∗D2 = D1 → D2.

Proof. Let x ∈ D1 ∗D2 and z ∈ [x) ∩D1, that is, z ∈ D1 and z ≥ xn for some
n ≥ 1. Then x ∨ z ∈ D2. Since z = z ∨ xn ≥ (z ∨ x)n (by lr − c30) we deduce that
z ∈ D2, hence x ∈ D1 → D2, so D1 ∗D2 ⊆ D1 → D2.

For converse inclusion, let x ∈ D1 → D2. Thus [x)∩D1 ⊆ D2, so, if y ∈ D1 then
x∨y ∈ [x)∩D1, hence x∨y ∈ D2. We deduce that x ∈ D1∗D2, so D1 → D2 ⊆ D1∗D2.
Since D1 ∗D2 ⊆ D1 → D2 we deduce that D1 ∗D2 = D1 → D2. ¥

Corollary 1.37. (Ds(A),∨,∧,→, {1}) is a Heyting algebra, where for D ∈
Ds(A),

D∗ = D → 0 = D → {1} = {x ∈ A : x ∨ y = 1, for every y ∈ D},
hence for every x ∈ D and y ∈ D∗, x ∨ y = 1. In particular, for every a ∈ A,

[a)∗ = {x ∈ A : x ∨ a = 1}.
Proposition 1.38. If x, y ∈ A, then [x¯ y)∗ = [x)∗ ∩ [y)∗.

Proof. If a ∈ [x¯y)∗, then a∨(x¯y) = 1. Since x¯y ≤ x, y then a∨x = a∨y = 1,
hence a ∈ [x)∗ ∩ [y)∗, that is, [x¯ y)∗ ⊆ [x)∗ ∩ [y)∗.

Let now a ∈ [x)∗ ∩ [y)∗, that is, a ∨ x = a ∨ y = 1.
By lr− c30 we deduce a∨ (x¯ y) ≥ (a∨ x)¯ (a∨ y) = 1, hence a∨ (x¯ y) = 1,

that is, a ∈ [x¯ y)∗ .
It follows that [x)∗ ∩ [y)∗ ⊆ [x¯ y)∗, hence [x¯ y)∗ = [x)∗ ∩ [y)∗. ¥
Theorem 1.39. If A is a residuated lattice, then the following assertions are

equivalent:
(i) (Ds(A),∨,∧,∗ , {1}, A) is a Boolean algebra;

(ii) Every ds of A is principal and for every a ∈ A there exists n ≥ 1 such that
a ∨ (an)∗ = 1.

Proof. (i) ⇒ (ii). Let D ∈ Ds(A) ; since Ds(A) is supposed Boolean algebra,
then D ∨D∗ = A. So, since 0 ∈ A, there exist a ∈ D, b ∈ D∗ such that a¯ b = 0.

Since b ∈ D∗ , by Corollary 1.37, it follow that a ∨ b = 1. By lr − c28 we
deduce that a ∧ b = a ¯ b = 0, that is, b is the complement of a in L(A). Hence
a, b ∈ B(A) = B(L(A)).

If x ∈ D, since b ∈ D∗, we have b∨x = 1. Since a = a∧ (b∨x) lr−c42= (a∧b)∨ (a∧
x) = a∧ x we deduce that a ≤ x, that is, D = [a). Hence every ds of A is principal.

Let now x ∈ A; since Ds(A) is a Boolean algebra, then [x) ∨ [x)∗ = A ⇔
[x)∗(x) = A ⇔ {a ∈ A : a ≥ c¯ xn, with c ∈ [x)∗ and n ≥ 1} = A (see Proposition
1.29, (ii)).

So, since 0 ∈ A, there exist c ∈ [x)∗ and n ∈ ω such that c ¯ xn = 0. Since
c ∈ [x)∗ , then x ∨ c = 1. By lr − c15, from c ¯ xn = 0 we deduce c ≤ (xn)∗. So,
1 = x ∨ c ≤ x ∨ (xn)∗, hence x ∨ (xn)∗ = 1.
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(ii) ⇒ (i). By Corollary 1.37, Ds(A) is a Heyting algebra. To prove Ds(A) is
a Boolean algebra, we must show that for D ∈ Ds(A) , D∗ = {1} only for D = A
([2], p. 175). By hypothesis every ds of A is principal, so we have a ∈ A such that
D = [a).

Also, by hypothesis, for a ∈ A , there is n ∈ ω such that a ∨ (an)∗ = 1. By
Corollary 1.37, (an)∗ ∈ [a)∗ = {1}, hence (an)∗ = 1, that is, an = 0. By Remark
1.10, we deduce that 0 ∈ D, hence D = A. ¥

4. The spectrum of a residuated lattice

This section contains some characterizations for meet-irreducible and completely meet-
irreducible ds of a residuated lattice A.

Definition 1.10. Let L be a lattice with the least element 0 and the greatest
element 1. We recall that (see Definition ??) an element p < 1 is finitely meet-
irreducible if p = x ∧ y implies p = x or p = y; an element p < 1 is meet-prime if
x ∧ y ≤ p implies x ≤ p or y ≤ p. Dually is defined the notions of join-irreducible
and join-prime.

Remark 1.14. If L is distributive, meet-irreducible and meet-prime elements are
the same.

These definitions can be extended to arbitrary meets and we obtain the concepts
of completely meet (join)-irreducible and completely meet (join)-prime elements,
which are no longer equivalent.

We denote by Ir(L) (Irc(L)) the set of all meet-irreducible (completely meet-
irreducible) elements of L.

Proposition 1.40. Let D ∈ Ds(A) and a, b ∈ A such that a ∨ b ∈ D. Then
D(a) ∩D(b) = D.

Proof. Clearly, D ⊆ D(a) ∩D(b). To prove converse inclusion, let x ∈ D(a) ∩
D(b). Then there are d1, d2 ∈ D and m,n ≥ 1 such that x ≥ d1¯am and x ≥ d2¯bn.
Then x ≥ (d1¯ am)∨ (d2¯ bn) ≥ (d1 ∨ d2)¯ (d1 ∨ bn)¯ (d2 ∨ am)¯ (a∨ b)mn, hence
x ∈ D, that is, D(a) ∩D(b) ⊆ D, so we obtain the desired equality.¥

Corollary 1.41. For D ∈ Ds(A) the following are equivalent:
(i) If D = D1 ∩D2 whith D1, D2 ∈ Ds(A), then D = D1 or D = D2;

(ii) For a, b ∈ A, if a ∨ b ∈ D, then a ∈ D or b ∈ D.

Proof. (i) ⇒ (ii). If a, b ∈ A such that a ∨ b ∈ D, then, by Proposition 1.40,
D(a) ∩D(b) = D, hence D = D(a) or D = D(b), so a ∈ D or b ∈ D.

(ii) ⇒ (i). Let D1, D2 ∈ Ds(A) such that D = D1 ∩D2. If by contrary D 6= D1

and D 6= D2 then there are a ∈ D1\D and b ∈ D2\D.
If denote c = a ∨ b, then c ∈ D1 ∩D2 = D, so a ∈ D or b ∈ D, a contradiction.

¥

Definition 1.11. We say that P ∈ Ds(A) is prime if P 6= A and P verify one
of the equivalent assertions from Corollary 1.41.

Remark 1.15. Following Corollary 1.41, P ∈ Ds(A), P 6= A is prime iff P is a
meet-irreducible ds in the lattice (Ds(A),⊆).
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We denote Spec(A) = Ir(Ds(A))\{A} and by Irc(A) = Irc(Ds(A))\{A}.
Example 1.12. Consider the example from Remark 1.1 (2) of residuated lattice

I = [0, 1] which is not a BL− algebra. If x ∈ [0, 1], x > 1
4 , then x + x > 1

2 , hence
x ¯ x = x ∧ x = x, so [x) = [x, 1]. If a, b ∈ I and a ∨ b ∈ [x) = [x, 1], then
a ∨ b = max{a, b} ≥ x, hence a ≥ x or b ≥ x. So, a ∈ [x) or b ∈ [x), that is,
[x) ∈ Spec(I).

Example 1.13. Consider the residuated lattice A = {0, a, b, c, 1} from Example
1.6. It is imediate to prove that

Ds(A) = {{1}, {1, c}, {1, a, c}, {1, b, c}, A}
and

Spec(A) = {{1}, {1, a, c}, {1, b, c}}.
Since {1, c} = {1, a, c} ∩ {1, b, c}, then {1, c} /∈ Spec(A). Since ¯ coincide with ∧,
the ds of A coincide with the filters of the associated lattice L(A).

Proposition 1.42. For a proper ds P of A consider the following assertions:
(1) P ∈ Spec(A);
(2) If a, b ∈ A, and a ∨ b = 1, then a ∈ P or b ∈ P ;
(3) For all a, b ∈ A, a → b ∈ P or b → a ∈ P ;
(4) A/P is a chain.

Then
(i) (1) ⇒ (2) but (2); (1);

(ii) (3) ⇒ (1) but (1); (3);
(iii) (4) ⇒ (1) but (1); (4).

Proof. (i).(1) ⇒ (2) is clearly by Corollary 1.41, (since 1 ∈ P ).
(2); (1) Consider A from Example 1.6. Then D = {1, c} /∈ Spec(A). Clearly, if

x, y ∈ A and x∨y = 1, then x = 1 or y = 1, hence x ∈ D or y ∈ D, but D /∈ Spec(A).
(ii). To prove (3) ⇒ (1), let a, b ∈ A such that a ∨ b ∈ P. By lr − c6 we obtain

a ∨ b ≤ [(a → b) → b] ∧ [(b → a) → a], hence (a → b) → b, (b → a) → a ∈ P. If
a → b ∈ P then b ∈ P ; if b → a ∈ P, then a ∈ P, that is, P ∈ Spec(A).

(1) ; (3) Consider A from Example 1.6. Then P = {1} ∈ Spec(A). We have
a → b = b 6= 1 and b → a = a 6= 1, hence a → b and b → a /∈ P.

(iii). To prove (4) ⇒ (1) let a, b ∈ A. Since A/P is supposed chain, a/P ≤ b/P
or b/P ≤ a/P ⇔ (by Proposition 1.23) a → b ∈ P or b → a ∈ P and we apply (ii).

(1); (4) Consider A from Example 1.6 and P = {1} ∈ Spec(A). Then A/P ≈ A
is not a chain. ¥

Remark 1.16. If A is a BL− algebra, then all assertions from the above propo-
sition are equivalent, see Theorem 3.23 and Proposition 3.30.

Remark 1.17. If in Example 1.6 we consider P = {1, a, c} or P = {1, b, c}, then
P ∈ Spec(A), and A/P ≈ L2 = {0, 1}.

Remark 1.18. 1. In general, in a residuated lattice A, if P is a prime
ds and Q is a proper ds such that P ⊆ Q, then Q is not a prime ds.
For example, if consider A = {0, a, b, c, 1} from Example 1.6. We have
P = {1}, Q = {1, c} ∈ Ds(A), P ⊆ Q,P = {1} ∈ Spec(A) but Q is not a
prime ds (see Example 1.13);
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2. If the residuated lattice A is a BL− algebra and P is a prime ds, Q is a
proper ds such that P ⊆ Q, then Q is a prime ds, (see Theorem 3.25).

Remark 1.19. If P is a prime ds of A, then A\P is an ideal in the lattice
L(A) = (A,∧,∨, 0, 1).

Proof. Since P is proper, 0 /∈ P, hence we have 0 ∈ A\P. If a ≤ b and b ∈ A\P,
then a ∈ A\P, since P is a ds of A. If a, b ∈ A\P (that is, a /∈ P and b /∈ P ), then
a ∨ b ∈ A\P, since P is a prime ds. ¥

Theorem 1.43. (Prime ds theorem) If D ∈ Ds(A) and I is an ideal of the
lattice L(A) such that D ∩ I = ∅, then there is a prime ds P of A such that D ⊆ P
and P ∩ I = ∅.

Proof. Let FD = {D′ ∈ Ds(A) : D ⊆ D′ and D′∩ I = ∅}. A routine application
of Zorn’s lemma shows that FD has a maximal element P. Suppose by contrary that
P is not a prime deductive system, that is, there are a, b ∈ A such that a ∨ b ∈ P,
but a /∈ P, b /∈ P (see Corollary 1.41).

By the maximality of P we deduce that P (a), P (b) /∈ FD, hence P (a) ∩ I 6= ∅
and P (b)∩ I 6= ∅, that is, there are p1 ∈ P (a)∩ I and p2 ∈ P (b)∩ I. By Proposition
1.29, p1 ≥ f ¯ am and p2 ≥ g ¯ bn, whith f, g ∈ P and m,n natural numbers.

Then p1∨p2 ≥ (f¯am)∨(g¯bn)
lr−c30≥ (f∨g)¯(g∨am)¯(f∨bn)¯(bn∨am)

lr−c30≥
lr−c30≥ (f ∨ g)¯ (g ∨ am)¯ (f ∨ bn)¯ (a ∨ b)m+n. Since f ∨ g, g ∨ am, f ∨ bn ∈ P

we deduce that p1 ∨ p2 ∈ P ; but p1 ∨ p2 ∈ I, hence P ∩ I 6= ∅, a contradiction.
Hence P is a prime ds. ¥
Remark 1.20. If A is a nontrivial residuated lattice, then any proper ds of A

can be extended to a prime ds.

Remark 1.21. In general, if A is a residuated lattice, the set of proper ds includ-
ing a prime ds P of A is not a chain, but if the residuated lattice is a BL− algebra,
then the set of proper ds including a prime ds P of A is a chain, (see Theorem 3.26).
If we consider the residuated lattice from Example 1.6 and the prime ds P = {1}.
The set of proper ds including a prime ds P = {1} of A is {{1, c}, {1, a, c}, {1, b, c}},
but {1, a, c} * {1, b, c} and {1, b, c} * {1, b, c}, so {{1, c}, {1, a, c}, {1, b, c}} is not a
chain.

Corollary 1.44. Let D ∈ Ds(A) and a ∈ A\D. Then:
(i) There is P ∈ Spec(A) such that D ⊆ P and a /∈ P ;

(ii) D is the intersection of those prime ds which contain D;
(iii) ∩Spec(A) = {1}.
Proposition 1.45. For a proper ds P ∈ Ds(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) For every x, y ∈ A\P there is z ∈ A\P such that x ≤ z and y ≤ z.

Proof. (i) ⇒ (ii). Let P ∈ Spec(A) and x, y ∈ A\P . If by contrary, for every
a ∈ A with x ≤ a and y ≤ a then a ∈ P, since x, y ≤ x ∨ y we deduce that x ∨ y
∈ P, hence, x ∈ P or y ∈ P, a contradiction.

(ii) ⇒ (i). Suppose by contrary that there exist D1, D2 ∈ Ds(A) such that
D1 ∩ D2 = P and P 6= D1, P 6= D2. So, we have x ∈ D1\P and y ∈ D2\P. By
hypothesis there is z ∈ A\P such that x ≤ z and y ≤ z.

We deduce z ∈ D1 ∩D2 = P, a contradiction. ¥
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Corollary 1.46. For a proper ds P ∈ Ds(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) If x, y ∈ A and [x) ∩ [y) ⊆ P, then x ∈ P or y ∈ P.

Proof. (i) ⇒ (ii). Let x, y ∈ A such that [x)∩ [y) ⊆ P and suppose by contrary
that x, y /∈ P. Then by Proposition 1.45 there is z ∈ A\P such that x ≤ z and
y ≤ z. Hence z ∈ [x) ∩ [y) ⊆ P, so z ∈ P , a contradiction.

(ii) ⇒ (i). Let x, y ∈ A such that x ∨ y ∈ P. Then [x ∨ y ) ⊆ P .
Since [x∨y) = [x)∩ [y) (by Proposition 1.32, (iii)) we deduce that [x)∩ [y) ⊆ P,

hence, by hypothesis, x ∈ P or y ∈ P, that is, P ∈ Spec(A). ¥

Corollary 1.47. For a proper ds P ∈ Ds(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) For every α, β ∈ A/P, α 6= 1, β 6= 1 there is γ ∈ A/P, γ 6= 1 such that
α ≤ γ, β ≤ γ.

Proof. (i) ⇒ (ii). Clearly, by Proposition 1.45 and Proposition 1.23, since if
α = a/P, with a ∈ A, then the condition α 6= 1 is equivalent with a /∈ P.

(ii) ⇒ (i). Let α, β ∈ A/P. Then in A/P, α = a/P 6= 1 and β = b/P 6= 1. By
hypothesis there is γ = c/P 6= 1 (that is, c /∈ P ) such that α, β ≤ γ equivalent with
a → c, b → c ∈ P. If consider d = (b → c) → ((a → c) → c), then by lr − c6, we
deduce that a, b ≤ d. Since c /∈ P we deduce that d /∈ P , hence by Proposition 1.45,
we deduce that P ∈ Spec(A). ¥

Theorem 1.48. For a proper ds P ∈ Ds(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) For every D ∈ Ds(A), D → P = P or D ⊆ P.

Proof. (i) ⇒ (ii). Let P ∈ Spec(A). Since Ds(A) is a Heyting algebra (by
Corollary 1.37) for D ∈ Ds(A) we have

P = (D → P ) ∩ ((D → P ) → P )

and so P = D → P or P = (D → P ) → P. If P = (D → P ) → P then D ⊆ P.
(ii) ⇒ (i). Let D1, D2 ∈ Ds(A) such that D1 ∩D2 = P. Then D1 ⊆ D2 → P

(see Lemma 1.35, (ii)) and so, if D2 ⊆ P, then P = D2 and if D2 → P = P, then
P = D1, hence P ∈ Spec(A). ¥

Definition 1.12. ([73], p.58) Let (L,∨,∧) a lattice with 0 and x ∈ L. An
element x∗ ∈ L is a pseudocomplement of x if x ∧ x∗ = 0, and x ∧ y = 0 implies
that y ≤ x∗ (that is, x∗ = sup{y ∈ L : x ∧ y = 0}). The lattice L is called
pseudocomplemented if every element x ∈ L has a pseudocomplement x∗ ∈ L.

Remark 1.22. If (L,∨,∧,→, 0) is a Heyting algebra, then (L,∨,∧,∗ , 0) is a
pseudocomplemented lattice, where for every x ∈ L, x∗ = x → 0.

We recall that if (L,∨,∧,∗ , 0, 1) is a pseudocomplemented distributive lattice,
then two subsets associated with L ([2], p.153) are

Rg(L) = {x ∈ L : x∗∗ = x} and

D(L) = {x ∈ L : x∗ = 0}.
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The elements of Rg(L) are called regular and those of D(L) dense. Note that
{0, 1} ⊆ Rg(L), 1 ∈ D(L) and D(L) is a filter in L and Rg(L) is a Boolean algebra
under the operations induced by the ordering on L ([2], p.157).

Corollary 1.49. For a residuated lattice A, Spec(A) ⊆ D(Ds(A))∪Rg(Ds(A)).

Proof. Let P ∈ Spec(A) and D = P ∗ ∈ Ds(A); then by Theorem 1.48, D ⊆ P
or D → P = P equivalent with P ∗ ⊆ P or P ∗ → P = P. Since Ds(A) is a Heyting
algebra then P ∗ → P = P ∗∗, so P ∗∗ = A or P ∗∗ = P equivalent with P ∗ = {1} or
P ∗∗ = P, that is P ∈ D(Ds(A)) ∪Rg(Ds(A)). ¥

Relative to the uniqueness of deductive systems as intersection of primes we
have:

Theorem 1.50. If every D ∈ Ds(A) has a unique representation as an inter-
section of elements of Spec(A), then (Ds(A),∨,∧,∗ , {1}, A) is a Boolean algebra.

Proof. Let D ∈ Ds(A) and D′ = ∩{M ∈ Spec(A) : D * M} ∈ Ds(A). By
Corollary 1.44, (ii), D ∩ D′ = ∩{M ∈ Spec(A)} = {1}; if D ∨ D′ 6= A, then by
Corollary 1.44, (i), there exists D′′ ∈ Spec(A) such that D ∨D′ ⊆ D′′ and D′′ 6= A.
Consequently, D′ has two representations D′ = ∩{M ∈ Spec(A) : D * M} =
D′′ ∩ (∩{M ∈ Spec(A) : D * M}), which is contradictory. Therefore D ∨D′ = A
and so Ds(A) is a Boolean algebra. ¥

Remark 1.23. For the case of distributive lattice see [73], p.77.

As an immediate consequence of Zorn’s lemma we obtain:

Lemma 1.51. If D ∈ Ds(A), D 6= A and a /∈ D, then there exists Da ∈ Ds(A)
maximal with the property that D ⊆ Da and a /∈ Da.

Proof. Let FD,a = {D′ ∈ Ds(A) : D ⊆ D′ and a /∈ D′}; clearly FD,a 6= ∅,
because D ∈ FD,a.

If C is a chain in FD,a then ∪C ∈ FD,a. By Zorn’s lemma there exists a ds Da

which is maximal subject to containing D and a /∈ Da. ¥
Definition 1.13. D ∈ Ds(A), D 6= A is called maximal relative to a if a /∈ D

and if D′ ∈ Ds(A) is proper such that a /∈ D′, and D ⊆ D′, then D = D′.

If in Lemma 1.51 we consider D = {1} we obtain:

Corollary 1.52. For any a ∈ A, a 6= 1, there is a ds Da maximal relative to a.

Theorem 1.53. For D ∈ Ds(A), D 6= A the following are equivalent:
(i) D ∈ Irc(A);

(ii) There is a ∈ A such that D is maximal relative to a.

Proof. (i) ⇒ (ii). See ([69], p.248), since by Proposition 1.33, Ds(A) is an
algebraic lattice.

(ii) ⇒ (i). Let D ∈ Ds(A) maximal relative to a and suppose D = ∩
i∈I

Di with

Di ∈ Ds(A) for every i ∈ I. Since a /∈ D there is j ∈ I such that a /∈ Dj . So, a /∈ Dj

and D ⊆ Dj . By the maximality of D we deduce that D = Dj , that is, D ∈ Irc(A).
¥

Theorem 1.54. Let D ∈ Ds(A) be a ds, D 6= A and a ∈ A\D. Then the
following are equivalent:
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(i) D is maximal relative to a;
(ii) For every x ∈ A\D there is n ≥ 1 such that xn → a ∈ D.

Proof. (i) ⇒ (ii). Let x ∈ A\D. If a /∈ D(x) = D ∨ [x), since D ⊂ D(x) then
D(x) = A (by the maximality of D) hence a ∈ D(x), a contradiction. We deduce
that a ∈ D(x), hence a ≥ d ¯ xn, with d ∈ D and n ≥ 1. Then d ≤ xn → a, hence
xn → a ∈ D.

(ii) ⇒ (i). We suppose by contrary that there is D′ ∈ Ds(A), D′ 6= A such that
a /∈ D′ and D ⊂ D′. Then there is x0 ∈ D′ such that x0 /∈ D, hence by hypothesis
there is n ≥ 1 such that xn

0 → a ∈ D ⊂ D′. Thus from xn
0 → a ∈ D′ and xn

0 ∈ D′,
we deduce that a ∈ D′ , a contradiction. ¥

Corollary 1.55. For a ds D ∈ Ds(A), D 6= A the following are equivalent:

(i) D ∈ Irc(A);
(ii) In the set A/D\{1} we have an element p 6= 1 with the property that for

every α ∈ A/D\{1} there is n ≥ 1 such that αn ≤ p.

Proof.(i) ⇒ (ii). By Theorem 1.53, D is maximal relative to an element a /∈ D;
then, if denote p = a/D ∈ A/D, p 6= 1 (since a /∈ D ) and for every α = b/D, α 6= 1
(that is b /∈ D) by Theorem 1.54 there is n ≥ 1 such that bn → a ∈ D, that is,
αn ≤ p.

(ii) ⇒ (i). Let p = a/D ∈ A/D\{1}, (that is, a /∈ D ) and α = b/D ∈ A/D\{1},
(that is, b /∈ D). By hypothesis there is n ≥ 1 such that αn ≤ p equivalent with
bn → a ∈ D. Then, by Theorem 1.54, we deduce that D ∈ Irc(A). ¥

Definition 1.14. A ds P of A is a minimal prime if P ∈ Spec(A) and, whenever
Q ∈ Spec(A) and Q ⊆ P, we have P = Q.

Proposition 1.56. If P is a minimal prime ds, then for any a ∈ P there is
b ∈ A\P such that a ∨ b = 1.

Proof. Let P be a minimal prime ds and a ∈ P.
We define the set

Sa = {x ∈ A : there is b ∈ A\P such that a ∨ b ≥ x}.

If b ∈ A\P then a ∨ b ≥ b, so b ∈ Sa, that is, A\P ⊆ Sa. Moreover, a ∈ Sa

because a ∨ 0 = a ≥ a and 0 ∈ A\P.
We shall prove that Sa is an ideal of the lattice L(A).
Let x, y ∈ A such that y ∈ Sa and x ≤ y. Thus, there is b ∈ A\P such that

a ∨ b ≥ y ≥ x, hence a ∨ b ≥ x, so x ∈ Sa.
If x, y ∈ Sa then there are b, c ∈ A\P such that a ∨ b ≥ x and a ∨ c ≥ y. If

we suppose that b ∨ c ∈ P we get b ∈ P or c ∈ P because P is a prime ds. Thus,
b ∨ c ∈ A\P and a ∨ (b ∨ c) ≥ x ∨ y, so x ∨ y ∈ Sa, hence Sa is an ideal.

Now, we suppose that 1 /∈ Sa. It follows that {1}∩Sa = ∅ so, by Theorem 1.43,
there is a prime ds Q such that Sa ∩Q = ∅. Since A\P ⊆ Sa, we get Q ⊆ P. But Q
is prime and P is minimal prime, so P = Q. On the other hand, a ∈ Sa, so a /∈ Q.
We get a ∈ P\Q , which contradicts the fact that P = Q. Thus, our assumption
that 1 /∈ Sa is false. We conclude that 1 ∈ Sa and the proof is finished. ¥
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5. Maximal deductive systems; archimedean and hyperarchimedean
residuated lattices

In this section we introduce the notions of archimedean and hyperarchimedean residu-
ated lattice and prove two theorems of Nachbin type for residuated lattices.

Definition 1.15. A ds of A is maximal if it is proper and it is not contained
in any other proper ds.

The following result is an immediate consequence of Zorn’s lemma:

Proposition 1.57. In a nontrivial residuated lattice A, every proper ds can be
extended to a maximal ds.

We shall denote by Max(A) the set of all maximal ds of A.

Proposition 1.58. Max(A) ⊆ Spec(A).

Proof. Let M ∈ Max(A) and D1, D2 ∈ Ds(A) such that M = D1 ∩D2. By the
maximality of M we deduce that M = D1 or M = D2, hence M ∈ Spec(A) (see
Corollary 1.41). ¥

We have:

Theorem 1.59. If D is a proper ds of A, then the following are equivalent:
(i) D is a maximal ds;

(ii) For any x /∈ D there exist d ∈ D, n ≥ 1 such that d¯ xn = 0.

Proof. (i) ⇒ (ii). If x /∈ D, then [D ∪ {x}) = A, hence 0 ∈ [D ∪ {x}). By
Proposition 1.29, (iii), there exist n ≥ 1 and d ∈ D such that d ¯ xn ≤ 0. Thus
d¯ xn = 0.

(ii) ⇒ (i). Assume there is a proper ds D′ such that D ⊂ D′. Then there exists
x ∈ D′ such that x /∈ D. By hypothesis there exist d ∈ D, n ≥ 1 such that d¯xn = 0.
But x, d ∈ D′ hence we obtain 0 ∈ D′, a contradiction. ¥

Corollary 1.60. If M is a proper ds of A, then the following are equivalent:
(i) M is a maximal ds;

(ii) For any x ∈ A, x /∈ M iff (xn)∗ ∈ M, for some n ≥ 1.

Theorem 1.61. If M is a proper ds of A, then the following are equivalent:
(i) M is a maximal ds,

(ii) A/M is locally finite.

Proof. (i) ⇔ (ii). It follows by observing that the condition (ii) can be re-
formulated in the following way: for any x ∈ A, x/M 6= 1/M (that is, x /∈ M),
(x/M)n = 0/M, for some n ≥ 1 ⇔ xn/M = 0/M ⇔ (xn)∗ ∈ M. ¥

Definition 1.16. The intersection of the maximal ds of A is called the radical
of A and will be denoted by Rad(A). It is obvious that Rad(A) ∈ Ds(A).

Example 1.14. Let A be the 5−element residuated lattice from Example 1.6. It is
easy to see that A has two maximal ds: {1, a, c} and {1, b, c}, hence Rad(A) = {1, c}.

For any n ≥ 1 and a ∈ A we denote ña = [(a∗)n]∗.

Theorem 1.62. ([63], [92])
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(i) Rad(A) = {x ∈ A : for any n ≥ 1 there exists m ≥ 1 such that m̃(xn) =
1} = {x ∈ A : for any n ≥ 1 there is kn ≥ 1 such that [(xn)∗]kn = 0} (that
is, Rad(A) is the set of unityes of A);

(ii) D(A) ∈ Ds(A) and D(A) ⊆ Rad(A).

For a residuated lattice A we make the following notation:

RadBL(A) = {a ∈ A : (an)∗ ≤ a, for every n ≥ 1}.
Proposition 1.63. For a residuated lattice A, RadBL(A) ⊆ Rad(A).

Proof. Let a /∈ Rad(A), hence there is a maximal ds M with a /∈ M. Then
there is n such that (an)∗ ∈ M, (by Corollary 1.60). If suppose a ∈ RadBL(A) then
in particular for this n we have (an)∗ ≤ a, hence a ∈ M, by (Ds′2), a contradiction.
Hence (an)∗ � a, i.e. a /∈ RadBL(A), that is, RadBL(A) ⊆ Rad(A). ¥

Remark 1.24. If A is a BL− algebra, then Rad(A) = RadBL(A).

Proposition 1.64. If A is a residuated lattice, then B(A) ∩Rad(A) = {1}.
Proof. Obviously, 1 ∈ B(A) ∩Rad(A). Let e ∈ B(A), e 6= 1. By Theorem 1.43,

there is a prime ds P of A such that e /∈ P. By Proposition 1.16, (ii), we have
e ∨ e∗ = 1 ∈ P, so e∗ ∈ P (since P is prime and e /∈ P ). By Proposition 1.57, there
is a maximal ds M such that P ⊆ M. It follows that e∗ ∈ M, so e /∈ M. Thus,
e /∈ Rad(A). ¥

Definition 1.17. An element a of a residuated lattice A is called infinitesimal
if a 6= 1 and an ≥ a∗ for any n ≥ 1.

We denote by Inf(A) the set of all infinitesimals of A.

Example 1.15. If A = {0, a, b, c, 1} is the 5−element residuated lattice from
Example 1.6, then a is not infinitesimal (since a∗ = b and a � b); analogously, we
deduce that b is not infinitesimal Since c∗ = 0, then cn = c ≥ 0 = c∗, for every
natural number n, hence c is an infinitesimal element of A. So, Inf(A) = {c}.

Lemma 1.65. For every a, b ∈ A, we have:
(lr − c43) a∗∗ ¯ b∗∗ ≤ (a¯ b)∗∗.

Proof. By lr − c19, (a¯ b)∗ = a → b∗, so (a¯ b)∗ ¯ a ≤ b∗. By lr − c11 we
deduce that b∗∗ ≤ [(a¯ b)∗ ¯ a]∗ = (a¯ b)∗ → a∗, so b∗∗ ¯ (a¯ b)∗ ≤ a∗. Then
a∗∗ ≤ [b∗∗ ¯ (a¯ b)∗]∗ = b∗∗ → (a¯ b)∗∗, that is, a∗∗ ¯ b∗∗ ≤ (a¯ b)∗∗. ¥

Corollary 1.66. For every a ∈ A and n ≥ 1 we have:
(lr − c44) (a∗∗)n ≤ (an)∗∗ .

Proposition 1.67. For every nonunit element a of A (a 6= 1), a is infinitesimal
implies a ∈ Rad(A).

Proof. Let a 6= 1 be an infinitesimal and suppose a /∈ Rad(A). Thus, there is a
maximal ds M of A such that a /∈ M. By Corollary 1.60, there is n ≥ 1 such that
(an)∗ ∈ M . By hypothesis an ≥ a∗ hence (an)∗ ≤ a∗∗, so a∗∗ ∈ M. By lr − c44 we
deduce that (a∗∗)n ≤ (an)∗∗, hence (an)∗∗ ∈ M. If denote b = (an)∗ we conclude
that b, b∗ ∈ M, hence 0 = b∗ ¯ b ∈ M, that is, M = A, a contradiction.¥

Corollary 1.68. Inf(A) ⊆ Rad(A).
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Remark 1.25. 1. If A is the residuated lattice from Example 1.6, then
Inf(A) ⊂ Rad(A), since Inf(A) = {c} and Rad(A) = {1, c} (see Examples
1.14 and 1.15).

2. In general, Rad(A)\{1} * Inf(A). Indeed, let A be the residuated lat-
tice from Example 1.7. Then the ds of A are {1}, {1, a, b, c} and A. It is
easy to see that A has two prime ds: {1}, {1, a, b, c} and a unique max-
imal ds {1, a, b, c}; hence Rad(A) = {1, a, b, c}. Obviously, a is an infin-
itesimal element of A (an = c, for every n ≥ 1, a∗ = d and c ≥ d).
But (b2 = c, b∗ = e and c, e are incomparable), (c2 = c, c∗ = f and c, f
are incomparable), (d2 = 0, d∗ = a and a > 0), (e2 = d, e∗ = b and
d < b), (f2 = d, f∗ = c and d < c), (02 = 0, 0∗ = 1 and 0 < 1), so we
conclude that b, c, d, e, f, 0 /∈ Inf(A). It follows that Inf(A) = {a}. Thus
Inf(A) ⊆ Rad(A) and Rad(A)\{1} * Inf(A).

Remark 1.26. If A is a BL algebra, then Rad(A)\{1} = Inf(A), see Proposi-
tion 3.52.

Proposition 1.69. For a ∈ A and n ≥ 1, the following assertions are equivalent:

(i): an ∈ B(A);
(ii): a ∨ (an)∗ = 1.

Proof. (i) ⇒ (ii). Since an ∈ B(A), by Proposition 1.16 we deduce that
an ∨ (an)∗ = 1. But an ≤ a, so 1 = an ∨ (an)∗ ≤ a ∨ (an)∗. We obtain that
a ∨ (an)∗ = 1.

(ii) ⇒ (i). Since a ∨ (an)∗ = 1 lr−c34⇒ an ∨ [(an)∗]n = 1. Since [(an)∗]n ≤ (an)∗,
we obtain 1 = an ∨ [(an)∗]n ≤ an ∨ (an)∗, so an ∨ (an)∗ = 1. By Proposition 1.16 we
deduce that an ∈ B(A). ¥

Lemma 1.70. If a ∈ A and n ≥ 1 then the following hold: an ∈ B(A) and
an ≥ a∗, implies a = 1.

Proof. By Proposition 1.69, an ∈ B(A) ⇔ a ∨ (an)∗ = 1. By hypothesis,
an ≥ a∗. By lr − c12 we obtain (an)∗ ≤ a∗∗, so 1 = a ∨ (an)∗ ≤ a ∨ a∗∗ = a∗∗, hence
a∗∗ = 1, that is, a∗ = 0.

Then (a ¯ a) → 0 = a → (a → 0) = a → 0 = a∗ = 0, so we deduce that
(a2)∗ = 0. Recursively we obtain that (an)∗ = 0. Then a ∨ (an)∗ = a ∨ 0 = 1, hence
a = 1.¥

Lemma 1.71. In any residuated lattice A the following are equivalent:

(i) For every a ∈ A, an ≥ a∗ for any n ≥ 1 implies a = 1;
(ii) For every a, b ∈ A, an ≥ b∗ for any n ≥ 1 implies a ∨ b = 1;

(iii) For every a, b ∈ A, an ≥ b∗ for any n ≥ 1 implies a → b = b and b → a = a.

Proof. (i) ⇒ (ii). Let a, b ∈ A such that an ≥ b∗ for any n ≥ 1. We get
(a ∨ b)∗ = a∗ ∧ b∗ ≤ b∗ ≤ an ≤ (a ∨ b)n, hence (a ∨ b)n ≥ (a ∨ b)∗, for any n ≥ 1. By
hypothesis, a ∨ b = 1.

(ii) ⇒ (iii). Since 1 = a ∨ b ≤ [(b → a) → a] ∧ [(a → b) → b] we deduce that
(b → a) → a = (a → b) → b = 1, that is, a → b = b and b → a = a.

(iii) ⇒ (i). Let a ∈ A such that an ≥ a∗ for any n ≥ 1. If consider b = a we
obtain a ∨ b = 1 ⇔ a ∨ a = 1 ⇔ a = 1.¥
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Definition 1.18. A residuated lattice A is called archimedean if the equivalent
conditions from Lemma 1.71 are satisfied.

One can easily remark that a residuated lattice is archimedean iff it has no
infinitesimals.

Example 1.16. 1. Consider A = {0, a, b, c, 1} the residuated lattice from
Example 1.6. Since cn = c for every natural number n, and c∗ = 0 we
deduce that cn ≥ c∗ for every n ≥ 1 but c 6= 1, hence A is not archimedean;

2. Consider A = {0, a, b, c, d, e, f, 1} the residuated lattice from Example 1.7.
We have a∗ = d, b∗ = e, c∗ = f, d∗ = a, e∗ = b and f∗ = c. Since a ≥ d = a∗
and an = c for every n ≥ 2 and c ≥ d = a∗ we deduce that an ≥ a∗, for
every n ≥ 1, hence A is also not archimedean;

3. Consider A = {0, a, b, c, d, 1} the residuated lattice from Example 1.9. We
have an = a for every n ≥ 1 and a∗ = d hence an � a∗ for every n ≥
1; bn = 0 for every n ≥ 1 and b∗ = c hence bn � b∗ for every n ≥ 1; c2 = a
� c∗ = b, dn = d for every n ≥ 1 and d∗ = a, hence dn � d∗ = a, for every
n ≥ 1. Hence if x ∈ A and xn ≥ x∗, for every n ≥ 1, then x = 1, that is, A
is archimedean.

Definition 1.19. Let A be a residuated lattice. An element a ∈ A is called
archimedean if it satisfy the condition:

there is n ≥ 1 such that an ∈ B(A),

(equivalent by Proposition 1.69 with a∨ (an)∗ = 1). A residuated lattice A is called
hyperarchimedean if all its elements are archimedean.

Remark 1.27. If the residuated lattice A is a BL(MV )− algebra we obtain the
Definition 3.12(respectively, 2.7 and 2.8).

Example 1.17. 1. Consider A = {0, a, b, c, d, 1} the residuated lattice from
Example 1.9; By Example 1.16 we deduce that A is archimedean. By
Remark 1.7 (3) we have B(A) = {0, a, d, 1}. Since a2 = a ∈ B(A),
b2 = 0 ∈ B(A), c2 = a ∈ B(A) and d2 = d ∈ B(A) we deduce that A
is even hyperarchimedean.

2. Consider A = {0, a, b, c, d, e, f, g, 1} the residuated lattice from Example
1.10; we have B(A) = {0, b, f, 1} (see Remark 1.7). Since a2 = 0 ∈
B(A), b2 = b ∈ B(A), c2 = 0 ∈ B(A), d2 = 0 ∈ B(A), e2 = b ∈ B(A), f2 =
f ∈ B(A) and g2 = f ∈ B(A) we deduce that A is hyperarchimedean.

3. If consider A = {0, a, b, c, d, 1} the residuated lattice from Example 1.8 we
deduce that B(A) = {0, 1}. Since an = a /∈ B(A), for every n ≥ 1, we
deduce that A is not hyperarchimedean; since a∗ = 0, then an = a ≥ 0 = a∗,
for every n ≥ 1, but a 6= 1, so A is not even archimedean.

From Lemma 1.70 we deduce:

Corollary 1.72. Every hyperarchimedean residuated lattice is archimedean.

Theorem 1.73. For a residuated lattice A, if A is hyperarchimedean, then for
any ds D, the quotient residuated lattice A/D is archimedean.

Proof. To prove A/D is archimedean, let x = a/D ∈ A/D such that xn ≥ x∗
for any n ≥ 1. By hypothesis, there is m ≥ 1 such that a∨(am)∗ = 1, i.e. am ∈ B(A).
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It follows that x ∨ (xm)∗ = 1 (in A/D), i.e. xm ∈ B(A/D). In particular we have
xm ≥ x∗, so by Lemma 1.70 we deduce that x = 1, that is, A/D is archimedean. ¥

We recall a theorem of Nachbin type for lattices (see [2], p.73):

Theorem 1.74. A distributive lattice is relatively complemented iff every prime
ideal is maximal.

Now, we present an analogously theorem of Theorem 1.74 for residuated lattices:

Theorem 1.75. For a residuated lattice A the following assertions are equivalent:
(i) A is hyperarchimedean;

(ii) Spec(A) = Max(A);
(iii) Any prime ds is minimal prime.

Proof. (i) ⇒ (ii). Since Max(A) ⊆ Spec(A), we only have to prove that any
prime ds of A is maximal. Let P ∈ Spec(A). To prove P ∈ Max(A), let x /∈ P. Since
A is hyperarchimedean there is n ≥ 1 such that xn ∈ B(A), hence x ∨ (xn)∗ = 1,
(by Proposition 1.69). Since 1 ∈ P we deduce that x ∨ (xn)∗ ∈ P. Since x /∈ P, by
Corollary 1.41 we deduce that (xn)∗ ∈ P, that is, P ∈ Max(A) (see Corollary 1.60).

(ii) ⇒ (iii). Let P, Q prime ds such that P ⊆ Q. By hypothesis, P is maximal,
so P = Q. Thus Q is minimal prime.

(iii) ⇒ (i). Let a be a nonunit element from A. We shall prove that a is an
archimedean element. If we denote

D = [a)∗ = {x ∈ A : a ∨ x = 1} (by Corollary 1.37),

then D ∈ Ds(A). Since a 6= 1, then a /∈ D and we consider

D′ = D(a) = {x ∈ A : x ≥ d¯ an for some d ∈ D and n ≥ 1}.
If we suppose that D′ is a proper ds of A, then by Corollary 1.43, there is a prime
ds P such that D′ ⊆ P. By hypothesis, P is a minimal prime. Since a ∈ P, using
Proposition 1.56 , we infer that there is x ∈ A\P such that a∨x = 1. It follows that
x ∈ D ⊆ D′ ⊆ P, hence x ∈ P, so we get a contradiction.

Thus D′ is not proper, so 0 ∈ D′, hence there is n ≥ 1 and d ∈ D such that
d¯ an = 0. Thus d ≤ (an)∗ . We get a ∨ d ≤ a ∨ (an)∗. But a ∨ d = 1 (since d ∈ D),
so we obtain that a ∨ (an)∗ = 1, that is a is an archimedean element. ¥

In the end of this section we recall another theorem of Nachbin for lattices (see
[73], p. 76):

Theorem 1.76. Let L be a distributive lattice with 0 and 1. Then L is a Boolean
lattice iff P (L) is unordered (where P (L) is there set of all prime ideals of L).

Now, we present an analogously theorem of Theorem 1.76 for residuated lattices:

Theorem 1.77. For a residuated lattice A the following assertions are equivalent:
(i) A is hyperarchimedean,

(ii) (Spec(A),⊆) is unordered.

Proof. (i) ⇒ (ii). Let A be hyperarchimedean, and suppose by contrary that
there are P, Q ∈ Spec(A), P ⊂ Q. Chose a ∈ Q\P. Then an ∈ Q for every n ≥ 1,
hence (an)∗ /∈ Q and (an)∗ /∈ P for every n ≥ 1. Since A is hyperarchimedean, there
exists n ≥ 1 such that a∨ (an)∗ = 1 (see Proposition 1.69). Then a∨ (an)∗ = 1 ∈ P,
hence (an)∗ ∈ P (since a /∈ P, see Corollary 1.41 ), a contradiction.
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(ii) ⇒ (i). Now let (Spec(A),⊆) be unordered and a ∈ A, and let us assume
that a is not archimedean element, that is, an /∈ B(A) for every n ≥ 1.

The set Ia = {x ∈ A : x ¯ an = 0 for some n ≥ 1} is an ideal for the lattice
L(A) = (A,∧,∨, 0, 1). Indeed, if x, y ∈ A, y ∈ Ia and x ≤ y, then y¯an = 0 for some
n ≥ 1. Since x¯ an ≤ y ¯ an = 0 we deduce that x¯ an = 0, hence x ∈ Ia. Also, if
x, y ∈ Ia then there are m,n ≥ 1 such that x¯am = y¯an = 0. If denote p = m+n,
then x¯ ap = y¯ ap = 0. By lr− c20, (x∨ y)¯ ap = (x¯ ap)∨ (y¯ ap) = 0∨ 0 = 0,
hence x∨ y ∈ Ia, so Ia is an ideal of L(A). Consider I = the ideal of L(A) generated
by Ia ∪ {a} = (Ia ∪ {a}] = (a] ∨ Ia (where (a] = {x ∈ A : x ≤ a}).

Clearly I = {x ∈ A : x ≤ y ∨ a with y ∈ Ia}. The ideal I does not contain 1,
since if suppose 1 ∈ I, then there exist y ∈ Ia and n ≥ 1 such that y ∨ a = 1 and
y ¯ an = 0. By lr − c34, yn ∨ an = 1. Since yn ≤ y we deduce that yn ¯ an = 0, so
by lr − c28, yn ∧ an = 0, hence an ∈ B(A), a contradiction.

Following Theorem 1.43 (with D = {1}), there is a prime ds P of A (i.e. P ∈
Spec(A)) such that P ∩ I = ∅.

Consider Pa = the ds generated by P ∪ {a} (i. e. Pa = P (a) = [a) ∨ P = {x ∈
A : x ≥ y ¯ an with y ∈ P and n ≥ 1}); here, we recall that [a) is the ds generated
by {a}− see Proposition 1.29, (ii).

Note that 0 /∈ Pa, otherwise y ¯ an = 0 for some y ∈ P and n ≥ 1. Then
y ∈ P ∩ I = ∅.

Following Theorem 1.43 (with D = Pa), there exists a prime ds Q of A (i.e.
Q ∈ Spec(A)) such that 0 /∈ Q and Pa ⊆ Q.

Then P ⊂ Q, a contradiction since (Spec(A),⊆) is supposed unordered. ¥

6. Residuated lattice of fractions relative to a ∧− closed system

In this section, taking as a guide-line the case of rings we introduce for a resid-
uated lattice A the notion of residuated lattice of fractions relative to a ∧-closed
system S. In particular if A is an MV -algebra (pseudo MV -algebra), BL-algebra,
(pseudo BL-algebra) we obtain the results from Chapters 6, 7 and 8 (see Remarks
1.31 and ??).

Definition 1.20. A nonempty subset S ⊆ A is called ∧−closed system in A if
1 ∈ S and x, y ∈ S implies x ∧ y ∈ S.

If P is a prime ideal of the underlying lattice L(A) = (A,∧,∨) (that is P 6= A
and if x, y ∈ A such that x ∧ y ∈ P, then x ∈ P or y ∈ P ), then S = A\P is a
∧−closed system.

We denote by S(A) the set of all ∧−closed system of A (clearly {1}, A ∈ S(A)).
For S ∈ S(A), on A we consider the relation θS defined by (x, y) ∈ θS iff there

is e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

Lemma 1.78. The relation θS is a congruence on A.

Proof. The reflexivity (since 1 ∈ S ∩ B(A)) and the symmetry of θS are
immediately. To prove the transitivity of θS , let (x, y), (y, z) ∈ θS . Thus there are
e, f ∈ S∩B(A) such that x∧e = y∧e and y∧f = z∧f. If denote g = e∧f ∈ S∩B(A),
then g ∧ x = (e ∧ f)∧ x = (e ∧ x) ∧ f = (y ∧ e) ∧ f = (y ∧ f) ∧ e = (z ∧ f)∧
e = z ∧ (f ∧ e) = z ∧ g, hence (x, z) ∈ θS .
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To prove the compatibility of θS with the operations ∧,∨,¯ and→ , let x, y, z, t ∈
A such that (x, y) ∈ θS and (z, t) ∈ θS . Thus there are e, f ∈ S ∩ B(A) such that
x ∧ e = y ∧ e and z ∧ f = t ∧ f ; we denote g = e ∧ f ∈ S ∩B(A), see Remark 1.5.

We obtain:

(x ∧ z) ∧ g = (x ∧ z) ∧ (e ∧ f) = (x ∧ e) ∧ (z ∧ f) = (y ∧ e) ∧ (t ∧ f) = (y ∧ t) ∧ g,

hence (x ∧ z, y ∧ t) ∈ θS and

(x∨ z)∧ g
lr−c35= (x∨ z)¯ g

lr−c20= (x¯ g)∨ (z¯ g) lr−c35= [(e∧ f)∧ x]∨ [(e∧ f)∧ z] =

= [(e ∧ x) ∧ f ] ∨ [e ∧ (f ∧ z)] = [(e ∧ y) ∧ f ] ∨ [e ∧ (f ∧ t)] =

= [(e∧ f)∧ y]∨ [(e∧ f)∧ t] lr−c35= (y¯ g)∨ (t¯ g) lr−c20= (y ∨ t)¯ g
lr−c30= (y ∨ t)∧ g.

hence (x ∨ z, y ∨ t) ∈ θS .
By lr − c35 we obtain:

(x¯ z)∧ g = (x¯ z)¯ g = (x¯ e)¯ (z¯ f) = (x∧ e)¯ (z ∧ f) = (y ∧ e)¯ (t∧ f) =

= (y ¯ e)¯ (t¯ f) = (y ¯ t)¯ g = (y ¯ t) ∧ g,

hence (x¯ z, y ¯ t) ∈ θS and by lr − c39:

(x → z) ∧ g = (x → z)¯ g = g ¯ [(g ¯ x) → (g ¯ z)] = g ¯ [(g ∧ x) → (g ∧ z)] =

= g ¯ [(g ∧ y) → (g ∧ t)] = g ¯ [(g ¯ y) → (g ¯ t)] = (y → t)¯ g = (y → t) ∧ g,

hence (x → z, y → t) ∈ θS .¥
For x ∈ A we denote by x/S the equivalence class of x relative to θS and

by A[S] = A/θS . By pS : A → A[S] we denote the canonical map defined by
pS(x) = x/S, for every x ∈ A. Clearly, A[S] become a residuated lattice, where
0 = 0/S, 1 = 1/S and for every x, y ∈ A, x/S ∧ y/S = (x ∧ y)/S, x/S ∨ y/S =
(x ∨ y)/S, x/S ¯ y/S = (x ¯ y)/S, x/S → y/S = (x → y)/S. So, pS is an onto
morphism of residuated lattices.

Remark 1.28. Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1 we deduce that
s/S = 1/S = 1, hence pS(S ∩B(A)) = {1}.

Remark 1.29. If S = {1} or S is such that 1 ∈ S and S∩(B(A)\{1}) = ∅, then
for x, y ∈ A, (x, y) ∈ θS ⇐⇒ x ∧ 1 = y ∧ 1 ⇐⇒ x = y, hence in this case A[S] = A.

Remark 1.30. If S is an ∧−closed system such that 0 ∈ S (for example S = A
or S = B(A)), then for every x, y ∈ A, (x, y) ∈ θS (since x ∧ 0 = y ∧ 0 and
0 ∈ S ∩B(A)), hence in this case A[S] = 0.

Proposition 1.79. If a ∈ A, then a/S ∈ B(A[S]) iff there is e ∈ S ∩B(A) such
that a ∨ a∗ ≥ e. So, if e ∈ B(A), then e/S ∈ B(A[S]).

Proof. For a ∈ A, we have by Proposition 1.16, a/S ∈ B(A[S]) ⇔ a/S ∨
(a/S)∗ = 1 ⇔ (a ∨ a∗)/S = 1/S iff there is e ∈ S ∩ B(A) such that (a ∨ a∗) ∧ e =
1 ∧ e = e ⇔ a ∨ a∗ ≥ e.

If e ∈ B(A), since 1 ∈ S ∩ B(A) and 1 = e ∨ e∗ ≥ 1, we deduce that e/S ∈
B(A[S]). ¥
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Theorem 1.80. If A′ is a residuated lattice and f : A → A′ is an morphism of
residuated lattices such that f(S ∩ B(A)) = {1}, then there is an unique morphism
of residuated lattices f ′ : A[S] → A′ such that the diagram

A
pS−→ A[S]

↘
f

↙
f ′

A′

is commutative (i.e. f ′ ◦ pS = f).

Proof. If x, y ∈ A and pS(x) = pS(y), then (x, y) ∈ θS , hence there is e ∈
S ∩ B(A) such that x ∧ e = y ∧ e. Since f is morphism of residuated lattices, we
obtain that f(x∧e) = f(y∧e) ⇔ f(x)∧f(e) = f(y)∧f(e) ⇔ f(x)∧1 = f(y)∧1 ⇔
f(x) = f(y).

From this remark, we deduce that the map f ′ : A[S] → A′ defined for x ∈ A by
f ′(x/S) = f(x) is correct defined. Clearly, f ′ is an morphism of residuated lattices.
The unicity of f ′ follows from the fact that pS is an onto map.¥

Definition 1.21. Theorem 1.80 allows us to call A[S] the residuated lattice of
fractions relative to the ∧−closed system S.

Remark 1.31. If the residuated lattice A is a BL− algebra, then x/S ∧ y/S =
(x ∧ y)/S = (x ¯ (x → y))/S = x/S ¯ (x/S → y/S) and (x/S → y/S) ∨ (y/S →
x/S) = ((x → y) ∨ (y → x))/S = 1/S = 1, hence A[S] is a BL− algebra. In this
case, A[S] is the BL-algebra of fractions relative to the ∧−closed system S, and we
obtain the Theorem 6.3 Analogous if A is a pseudo BL− algebra, so we obtain the
Theorem 8.3.

Suppose now that P is a prime ideal of the underlying lattice L(A). Then P 6= A
and S = A\P is a ∧−closed system in A;we denote A[S] by AP and IP = {x/S :
x ∈ P}.

Lemma 1.81. If x ∈ A such that x/S ∈ IP , then x ∈ P.

Proof. If x/S ∈ IP , then x/S = y/S with y ∈ P ⇒ there is e ∈ S ∩B(A) such
that x ∧ e = y ∧ e ≤ y ⇒ x ∧ e ∈ P ⇒ x ∈ P (since P is prime and e ∈ S = A\P,
hence e /∈ P). ¥

Proposition 1.82. The set IP is a proper prime ideal of the underlying lattice
L(AP).

Proof. If x, y ∈ P, then x/S ∨ y/S = (x ∨ y)/S ∈ AP (since x ∨ y ∈ P).
Consider now x ∈ P and y ∈ A such that y/S ≤ x/S. Then y/S → x/S = 1/S ⇔
(y → x)/S = 1/S ⇔ there is e ∈ S ∩B(A) such that e∧ (y → x) = e∧ 1 = e, hence
e ≤ y → x ⇔ e ¯ y ≤ x ⇔ e ∧ y ≤ x. Then e ∧ y ∈ P, hence y ∈ P, so y/S ∈ IP ,
that is, IP is an ideal of AP .

If by contrary, IP = AP , then 1/S ∈ IP , hence 1 ∈ P (by Lemma 1.81) ⇔
P = A, a contradiction.

To prove that IP is prime, let x, y ∈ A such that x/S∧y/S ∈ IP . Then (x∧y)/S ∈
IP ⇒ x∧ y ∈ P, by Lemma 1.81 ⇒ x ∈ P or y ∈ P ⇒ x/S ∈ IP or y/S ∈ IP , hence
IP is a proper prime ideal in lattice L(AP). ¥
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Remark 1.32. Following the model of commutative rings, the process of passing
from A to AP is called localization at P (taking as a guide-line the case of rings, see
[81]).



CHAPTER 2

MV-algebras

MV-algebras are particular residuated lattices.
MV-algebras were originally introduced by Chang in [42] in order to give an algebraic

counterpart of the ÃLukasiewicz many valued logic (MV = many valued). Just take a quick
view over this domain. In 1958, Chang defined the MV-algebras and in 1959 he also proved
the completeness theorem which stated the real unit interval [0, 1] as a standard model
of this logic. The structures directly obtained from ÃLukasiewicz logic, in the sense that
the basic operations coincide with the basic logical connectives (implication and negation),
were defined by Font, Rodriguez and Torrens in [62] under the name of Wajsberg algebras.
Wajsberg algebras and MV - algebras are categorically isomorphic. One great event in the
theory of MV-algebras was Mundici’s theorem from 1986: the category of MV-algebras is
equivalent to the category of abelian lattice-ordered groups with strong unit [105]. Through
its consequences, this theorem can be identified at the origins of a considerable number of
results on MV-algebras.

In the last years, one can distinguish at least three fruitful research directions, coexisting
and communicating with deeper and deeper researches on MV-algebras.

One direction is concerned with structures obtained by adding operations to the MV-
algebra structure, or even combining MV-algebras with other structures in order to obtain
more expressive models and powerful logical systems.

Another direction is centered on the non-commutative extensions of MV-algebras, called
pseudo MV-algebras (psMV-algebras, for short), introduced by Georgescu and Iorgulescu in
1999 [66], [68].

Finally, the third direction I want to emphasize began with Hájek’s book, where BL-
logic and BL-algebras were defined [74], [75]. Juste notice that ÃLukasiewicz logic in an
axiomatic extension of BL-logic and, consequently, MV-algebras are a particular class of BL-
algebras (see Remark 3.4). The non-commutative corresponding structures, called pseudo
BL-algebras, were introduced by Di Nola, Georgescu and Iorgulescu [67], [53], [54].

The standard reference for the domain of MV-algebras is the monograph [45].
In this chapter, we recall some basic definitions and results abut MV-algebras.
For an MV-algebra A, we denote by Id(A) the set of ideals of A. We present some known

basic definitions and results relative to the lattice of ideals of A.
We study the prime spectrum Spec(A) and the maximal spectrum Max(A) of an MV-

algebra.
For any class of structures, the representation theorems have a special significace.
The Chang’s Subdirect Representation Theorem is a fundamental result.
The idea of associating a totally ordered abelian group to any MV- algebra A is due

to Chang, who in [42] and [43] gave first purely algebraic proof of the completeness of the
ÃLukasiewicz axioms for the infinite-valued calculus. In [45] is proved the Chang completeness
theorem starting that if an equation holds in the unit real interval [0, 1], then the the

35
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equation holds in every MV- algebra. This proof is elementary, and use the good sequences;
good sequences and Γ functor were first introduced in [105].

An applications is the equivalence between MV- algebras and lattice ordered abelian
groups with strong unit.

We also prove the one-to-one correspondence between MV- algebras and Wajsberg al-
gebras; each MV- algebra can be seen as Wajsberg algebra and conversely. MV- algebras
will turn out to be particular residuated lattices.

For further reading on MV- algebras we recommend [45].

1. Definitions and first properties. Some examples. Rules of calculus

We introduce MV- algebras by means of a small number of simple equations, in an
attempt to capture certain properties of the real unit interval [0, 1] equipped with addition
x ⊕ y = min{1, x + y} and negation 1 − x see Remark 1.2. We show that every MV-
algebra contains a natural lattice-order. An main result is Chang’s Subdirect Representation
Theorem, stating that if an equation holds in all totally ordered MV- algebras, then the
equation holds in all MV- algebras.

Definition 2.1. An MV -algebra is an algebra A = (A,⊕,∗ , 0) of type (2, 1, 0)
satisfying the following equations:
(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(MV2) x⊕ y = y ⊕ x;
(MV3) x⊕ 0 = x;
(MV4) x∗∗ = x;
(MV5) x⊕ 0∗ = 0∗;
(MV6) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, for all x, y, z ∈ A.

Note that axioms MV1-MV3 state that (A,⊕, 0) is an abelian monoid.

Remark 2.1. If in MV6 we put y = 0 we obtain x∗∗ = 0∗∗ ⊕ x, so, if 0∗∗ = 0
then x∗∗ = x for every x ∈ A. Hence, the axiom MV4 is equivalent with (MV ′

4)
0∗∗ = 0.

In order to simplify the notation, an MV -algebra A = (A,⊕,∗ , 0) will be referred
by its support set, A. An MV -algebra is trivial if its support is a singleton. On an
MV -algebra A we define the constant 1 and the auxiliary operations ¯,ª and →
as follows :

1 = 0∗,
x¯ y = (x∗ ⊕ y∗)∗,

xª y = x¯ y∗ = (x∗ ⊕ y)∗,
x → y = x∗ ⊕ y∗,

for any x, y ∈ A.
We consider the operation ∗ more binding that any other operation, and ¯ more

binding that ⊕ and ª.

Remark 2.2. ([82]) In MV -algebra A = (A,⊕,∗ , 0) we have:

(MV
′
1 ) x¯ (y ¯ z) = (x¯ y)¯ z;

(MV
′
2 ) x¯ y = y ¯ x;

(MV
′
3 ) x¯ 1 = x;

(MV
′
4 ) x∗∗ = x;
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(MV
′
5 ) x¯ 1∗ = 1∗;

(MV
′
6 ) (x∗¯y)∗¯y = (y∗¯x)∗¯x, for all x, y ∈ A, that is (A,¯,∗ , 1) is an MV−

algebra.
A subalgebra of an MV - algebra A is a subset A′ of A containing the zero element

of A, closed under the operations of A and equipped with the restriction to A′ of
these operations.

In the sequel, we provide some basic examples of MV -algebras.

Example 2.1. A singleton {0} is a trivial example of an MV -algebra; an MV -
algebra is said nontrivial provided its universe has more that one element.

Example 2.2. Any Boolean algebra is an MV -algebra in which the operations
⊕ and ∨ coincide and ∗ is the Boolean negation.

We recall that a lattice-ordered group (l-group) (see [10]) is a structure (G,+, 0,≤
) such that (G,+, 0) is a group, (G,≤) is a lattice and the following property is
satisfied:

for any x, y, a, b ∈ G, x ≤ y ⇒ a + x + b ≤ a + y + b.

For any l -group, (G,+, 0,≤) and for any g ≥ 0 in G we denote

[0, g] = {x ∈ G : 0 ≤ x ≤ g}.
If G is an l -group, then a strong unit is an element u > 0 such that for any x ∈ G
there is a natural number n such that −nu ≤ x ≤ nu, see Definition 2.11.

In the sequel, an lu-group will be a pair (G, u) where G is an l -group and u is a
strong unit of G. If (G, u) and (H, v) are lu-groups then an lu-group homomorphism
is an l -group homomorphism h : G → H such that h(u) = v.

Example 2.3. Let (G,+, 0,≤) be an abelian l-group and u ∈ G, u > 0. If we
define

x⊕ y = u ∧ (x + y)
and

x∗ = u− x,

for x, y ∈ [0, u], then [0, u]G = ([0, u],⊕,∗ , 0) is an MV -algebra. For any x, y ∈ [0, u],
we get

x¯ y = (x− u + y) ∨ 0,

x → y = (u− x + y) ∧ u,

xª y = (x− y) ∨ 0,

and the lattice operations coincide to those of G. In particular, if we consider the
real unit interval [0, 1] and for all x, y ∈ [0, 1] we define

x⊕ y = min{1, x + y}
and

x∗ = 1− x,

then ([0, 1],⊕,∗ , 0) is an MV -algebra.

Example 2.4. The rational numbers in [0, 1], and, for each integer n ≥ 2, the
n-element set ÃLn =

{
0, 1

n−1 , ..., n−2
n−1 , 1

}
yield examples of MV−subalgebras of [0, 1].
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Example 2.5. Given an MV -algebra (A,⊕,∗ , 0) and a nonempty set X, the
set AX of all functions f : X −→ A becomes an MV -algebra with the pointwise
operations, i.e., if f, g ∈ AX then (f ⊕ g)(x) = f(x) ⊕ g(x), f∗(x) = [f(x)]∗ for
any x ∈ X and 0 is the constant function associated with 0 ∈ A. The continuous
functions from [0, 1] into [0, 1] form a subalgebra of the MV -algebra [0, 1][0,1].

Example 2.6. (Chang’s MV -algebra C - see [42]) Let {c, 0, 1, +,−} be a set of
formal symbols. For any n ∈ N we define the following abbreviations:

nc :=





0, if n = 0,
c, if n = 1,

c + (n− 1)c, if n > 1,
1− nc :=





1, if n = 0,
1− c, if n = 1,

1− (n− 1)c− c, if n > 1.

We consider C = {nc : n ∈ N} ∪ {1 − nc : n ∈ N} and define the MV -algebra
operations as follows:

(⊕1) if x = nc and y = mc then x⊕ y := (m + n)c;
(⊕2) if x = 1− nc and y = 1−mc then x⊕ y := 1;
(⊕3) if x = nc and y = 1−mc and m ≤ n then x⊕ y := 1;
(⊕4) if x = nc and y = 1−mc and n < m then x⊕ y := 1− (m− n)c;
(⊕5) if x = 1−mc and y = nc and m ≤ n then x⊕ y := 1;
(⊕6) if x = 1−mc and y = nc and n < m then x⊕ y := 1− (m− n)c;
(∗1) if x = nc then x∗ := 1− nc;
(∗2) if x = 1− nc then x∗ := nc.

Then, the structure (C,⊕,∗ , 0) is an MV -algebra, which is called the Chang’s
algebra.

Theorem 2.1. If x, y, z ∈ A then the following hold :
(mv − c1) 1∗ = 0;
(mv − c2) x⊕ y = (x∗ ¯ y∗)∗;
(mv − c3) x⊕ 1 = 1, x¯ 1 = x, x¯ 0 = 0;
(mv − c4) (xª y)⊕ y = (y ª x)⊕ x;
(mv − c5) x⊕x∗ = 1, x¯x∗ = 0, (x¯ y)∗ = x∗⊕ y∗, (x⊕ y)∗ = x∗¯ y∗, x¯ (x∗⊕ y) =

y ¯ (y∗ ⊕ x), x¯ (y ¯ z) = (x¯ y)¯ z;
(mv − c6) xª 0 = x, 0ª x = 0, xª x = 0, 1ª x = x∗, xª 1 = 0;
(mv − c7) x⊕ x = x iff x¯ x = x.

Proof. (mv − c1). Obviously, 1∗ = 0∗∗ = 0.
(mv − c2). We have x∗ ¯ y∗ = (x∗∗ ⊕ y∗∗)∗ = (x⊕ y)∗, so x⊕ y = (x⊕ y)∗∗ =

(x∗ ¯ y∗)∗.
(mv − c3). We have x⊕ 1 = x⊕ 0∗ = 0∗ = 1, x¯ 1 = (x∗ ⊕ 1∗)∗ = x∗∗ = x and

x¯ 0 = (x∗ ⊕ 0∗)∗ = 1∗∗ = 0.
(mv− c5). By MV4 we have 1 = (x∗⊕ 1)∗⊕ 1 = (1∗⊕ x)∗⊕ x = x∗⊕ x = x⊕ x∗

and x¯ x∗ = (x∗ ⊕ x∗∗)∗ = 1∗ = 0.
Also (x ¯ y)∗ = (x∗ ⊕ y∗)∗∗ = x∗ ⊕ y∗, (x ⊕ y)∗ = (x∗ ¯ y∗)∗∗ = x∗ ¯ y∗,

x ¯ (x∗ ⊕ y) = [x∗ ⊕ (x∗ ⊕ y)∗]∗ = [x∗ ⊕ (x∗ ⊕ y∗∗)∗]∗ = [(x∗∗ ⊕ y∗)∗ ⊕ y∗]∗ =
(x⊕ y∗)∗∗ ¯ y∗∗ = (x⊕ y∗)¯ y

and (x ¯ y) ¯ z = [(x ¯ y)∗ ⊕ z∗]∗ = (x∗ ⊕ y∗ ⊕ z∗)∗ = [x∗ ⊕ (y∗ ⊕ z∗)]∗ =
x¯ (y∗ ⊕ z∗)∗ = x¯ (y ¯ z).

The other relations follows similarly. ¥
Lemma 2.2. For x, y ∈ A, the following conditions are equivalent:
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(i) x∗ ⊕ y = 1;
(ii) x¯ y∗ = 0;

(iii) y = x⊕ (y ª x);
(iv) There is an element z ∈ A such that x⊕ z = y.

Proof. (i) ⇒ (ii). Follows from MV4 and mv − c1 : x ¯ y∗ = (x∗ ⊕ y∗∗)∗ =
(x∗ ⊕ y)∗ = 1∗ = 0.

(ii) ⇒ (iii). Follows from MV3 and mv − c4 : x ⊕ (y ª x) = x ⊕ (y ¯ x∗) =
y ⊕ (x¯ y∗) = y ⊕ 0 = y

(iii) ⇒ (iv). Take in (iii), z = y ª x.

(iv) ⇒ (i). We have x∗ ⊕ y = x∗ ⊕ (x⊕ z) = (x∗ ⊕ x)⊕ z
mv−c5= 1⊕ z

mv−c3= 1. ¥
For any two elements x, y ∈ A let us agree to write x ≤ y iff x and y satisfy the

equivalent conditions (i)− (iv) in the above lemma. So, ≤ is an order relation on A
(called the natural order on A).

Indeed, reflexivity is equivalent to mv − c5, (x ≤ x iff x∗ ⊕ x = 1) antisimetry
follows from conditions (ii) and (iii) (if x ≤ y and y ≤ x then y = x⊕ (x∗ ¯ y) and
x = y⊕ (y∗¯x) but by MV6, x⊕ (x∗¯ y) = y⊕ (y∗¯x), so x = y ) and transitivity
follows from condition (iv) (if x ≤ y and y ≤ z then there exist u, v ∈ A such that
y = x⊕ u and z = y ⊕ v, so z = x⊕ u⊕ v, that is, x ≤ z).

We will say that an MV -algebra A is an MV -chain if it is linearly ordered
relative to natural order.

The order relation in Chang’s algebra C is defined by: x ≤ y iff [x = nc and
y = 1−mc ] or [x = nc and y = mc and n ≤ m ] or [x = 1−nc and y = 1−mc and
m ≤ n ]. In conclusion, C is a linearly ordered MV -algebra:

C = {0, c, ..., nc, ..., 1− nc, ..., 1− c, 1}.
Theorem 2.3. If x, y, z ∈ A then the following hold :

(mv − c8) x ≤ y iff y∗ ≤ x∗;
(mv − c9) If x ≤ y, then x⊕ z ≤ y ⊕ z and x¯ z ≤ y ¯ z;

(mv − c10) If x ≤ y, then xª z ≤ y ª z and z ª y ≤ z ª x;
(mv − c11) xª y ≤ x, xª y ≤ y∗;
(mv − c12) (x⊕ y)ª x ≤ y;
(mv − c13) x¯ z ≤ y iff x ≤ z∗ ⊕ y;
(mv − c14) x⊕ y ⊕ x¯ y = x⊕ y.

Proof. (mv − c8). Follows from Lema 2.2, (i), since x∗ ⊕ y = (y∗)∗ ⊕ x∗.
(mv − c9). We get y ⊕ z ⊕ (x ⊕ z)∗ = y ⊕ (z ⊕ x∗ ¯ z∗) = y ⊕ (x∗ ⊕ x ¯ z) =

(y ⊕ x∗) ⊕ x ¯ z = 1 ⊕ x ¯ z = 1, so x ⊕ z ≤ y ⊕ z. The other inequality follows
similarly.

(mv−c13). We have x¯z ≤ y ⇔ (x¯z)∗⊕y = 1 ⇔ x∗⊕z∗⊕y = 1 ⇔ x ≤ z∗⊕y.
The other relations follows similarly. ¥

Lemma 2.4. On A, the natural order determines a bounded distributive lattice
structure. Specifically, the join x∨ y and the meet x∧ y of the elements x and y are
given by:

x ∨ y = (xª y)⊕ y = (y ª x)⊕ x = x¯ y∗ ⊕ y = y ¯ x∗ ⊕ x,

x ∧ y = (x∗ ∨ y∗)∗ = x¯ (x∗ ⊕ y) = y ¯ (y∗ ⊕ x).
Clearly, x¯ y ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x⊕ y.
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Proof. Obviously, y ≤ (xª y)⊕ y and x ≤ (xª y)⊕ y
mv−c4= (y ª x)⊕ x.

Suppose x ≤ z and y ≤ z. By Lema 2.2, (i) and (iii), x∗⊕z = 1 and z = (zªy)⊕y.
Then, ((xª y)⊕ y)∗ ⊕ z = ((xª y)∗ ª y)⊕ y ⊕ (z ª y) = (y ª (xª y)∗)⊕ (xª

y)∗ ⊕ (z ª y) = (y ª (x ª y)∗) ⊕ x∗ ⊕ y ⊕ (z ª y) = (y ª (x ª y)∗) ⊕ x∗ ⊕ z = 1. It
follows that (xª y)⊕ y ≤ z, so x ∨ y = (xª y)⊕ y.

We now imediately obtain the second equality as consequance of first equality
together with mv − c8. ¥

We shall denote this distributive lattice with 0 and 1 by L(A) (see [42], [45]).
We recall that:

Definition 2.2. An MV -algebra is called Kleene algebra iff it satisfies the ad-
ditional condition:

x ∧ x∗ ≤ y ∨ y∗.

Proposition 2.5. ([45]) In any MV -algebra A, the following properties hold:
(i) (A,¯, 1) is an abelian monoid;

(ii) (A,∨,∧, 0, 1) is a bounded distributive lattice;
(iii) (A,∨,∧,∗ , 0, 1) is a Kleene algebra;
(iv) (A,∨,∧,¯,→, 0, 1) is a residuated lattice.

For each x ∈ A , let 0x = 0, x0 = 1 and for each integer n ≥ 0, (n+1)x = nx⊕x,
and xn+1 = xn ¯ x, respectively.

We say that the element x ∈ A has order n, and we write ord(x) = n, if n is the
last natural number such that nx = 1. We say that the element x has a finite order
, and we write ord(x) < ∞, if x has order n for some n ∈ N. If no such n exists, we
say that x has infinite order and we write ord(x) = ∞. An MV -algebra A is locally
finite if every non-zero element of A has finite order.

Theorem 2.6. If x, x1, ...xn, y, z, (xi)i∈I are elements of A, then the following
hold:

(mv − c15) (x ∨ y)∗ = x∗ ∧ y∗, (x ∧ y)∗ = x∗ ∨ y∗;
(mv − c16) x⊕ y = (x ∨ y)⊕ (x ∧ y), x¯ y = (x ∨ y)¯ (x ∧ y);

(mv − c17) x⊕
( ∧

i∈I

xi

)
=

∧
i∈I

(x⊕ xi);

(mv − c18) x¯
( ∨

i∈I

xi

)
=

∨
i∈I

(x¯ xi);

(mv − c19) x ∧
( ∨

i∈I

xi

)
=

∨
i∈I

(x ∧ xi);

(mv − c20) x ∨
( ∧

i∈I

xi

)
=

∧
i∈I

(x ∨ xi);

(mv − c21) x⊕
( ∨

i∈I

xi

)
=

∨
i∈I

(x⊕ xi);

(mv − c22) x¯
( ∧

i∈I

xi

)
=

∧
i∈I

(x¯ xi), (if all suprema and infima exist).

If I = {1, 2, ..., n} then
(mv − c23) x∨(x1¯ ...¯xn) ≥ (x∨x1)¯ ...¯(x∨xn); in particular xm∨yn ≥ (x∨y)mn

for every m,n ≥ 0;
(mv − c24) x ∧ (x1 ⊕ ...⊕ xn) ≤ (x ∧ x1) ⊕ ...⊕ (x ∧ xn); in particular (mx) ∧ (ny) ≤

mn(x ∧ y) for every m,n ≥ 0;
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(mv − c25) If x ∨ y = 1 then xm ∨ yn = 1 for every m,n ≥ 0;
(mv − c26) If x ∧ y = 0, then for every integers m,n ≥ 0, (mx) ∧ (ny) = 0.

Proof. (mv−c15). (x∨y)∗ = (x⊕x∗¯y)∗ = x∗¯(x⊕y∗) = x∗¯(x∗∗⊕y∗) = x∗∧y∗
and (x ∧ y)∗ = [x¯ (x∗ ⊕ y)]∗ = x∗ ⊕ (x¯ y∗) = x∗ ⊕ (x∗∗ ¯ y∗) = x∗ ∨ y∗.

(mv−c16). We get (x∨y)⊕ (x∧y) = x⊕ (x∗¯y)⊕ [y¯ (x⊕y∗)] = x⊕ (x∗¯y)⊕
[y¯(x∗¯y)∗] = x⊕y⊕(y∗¯x∗¯y) = x⊕y⊕0 = x⊕y and x¯y = (x∗⊕y∗)∗ = [(x∗∨
y∗)⊕(x∗∧y∗)]∗ = (x∗∨y∗)∗¯(x∗∧y∗)∗ = (x∗∗∧y∗∗)¯(x∗∗∨y∗∗) = (x∨y)¯(x∧y).

(mv − c17). It is obvious that x ⊕
( ∧

i∈I

xi

)
≤ x ⊕ xi, for any i ∈ I. Let z ∈ A

such that z ≤ x⊕ xi, for any i ∈ I. Then z ≤ x∗∗⊕ xi, for any i ∈ I, so z¯ x∗ ≤ xi,
for any i ∈ I.

Thus we have that z ¯ x∗ ≤ ∧
i∈I

xi, so z ≤ x ⊕
( ∧

i∈I

xi

)
. Hence x ⊕

( ∧
i∈I

xi

)
=

∧
i∈I

(x⊕ xi).

(mv−c18). It is obvious that x¯xi ≤ x¯
( ∨

i∈I

xi

)
, for any i ∈ I. Let z ∈ A such

that x¯ xi ≤ z, for any i ∈ I. Then xi ≤ x∗ ⊕ z, for any i ∈ I, so
∨
i∈I

xi ≤ x∗ ⊕ z.

Thus we have that (
∨
i∈I

xi)¯ x ≤ z. We deduce that x¯
( ∨

i∈I

xi

)
=

∨
i∈I

(x¯ xi).

(mv − c19). By definition, x ∧
( ∨

i∈I

xi

)
=

( ∨
i∈I

xi

)
¯

[( ∨
i∈I

xi

)∗
⊕ x

]
mv−c18=

∨
i∈I

[
xi ¯

(( ∨
i∈I

xi

)∗
⊕ x

)]
.

For any i ∈ I we have xi ≤
∨
j∈I

xj , so

(
∨
j∈I

xj

)∗
≤ x∗i ⇒

(
∨
j∈I

xj

)∗
⊕x ≤ x∗i ⊕x ⇒

xi ¯
[(

∨
j∈I

xj

)∗
⊕ x

]
≤ xi ¯ (x∗i ⊕ x) = x ∧ xi.

We deduce that
∨
i∈I

(
xi ¯

[(
∨
j∈I

xj

)∗
⊕ x

])
≤ ∨

i∈I

(x ∧ xi).

Another inequality is obviously.
(mv − c20). It follows smilarly with mv − c19.

(mv − c21). We remark that x ⊕ xi ≤ x ⊕
( ∨

i∈I

xi

)
, for any i ∈ I. Let z such

that x ⊕ xi ≤ z for any i ∈ I. We get x∗ ∧ xi = x∗ ¯ (x ⊕ xi) ≤ x∗ ¯ z, for any

i ∈ I. Using mv − c19, it folows that x∗ ∧
( ∨

i∈I

xi

)
=

∨
i∈I

(x∗ ∧ xi) ≤ x∗ ¯ z. Thus,

x⊕
[
x∗ ∧

( ∨
i∈I

xi

)]
≤ x⊕ (x∗ ¯ z) = x ∨ z = z.

Using mv− c17, it folows that x⊕
[
x∗ ∧

( ∨
i∈I

xi

)]
= (x⊕x∗)∧

[
x⊕

( ∨
i∈I

xi

)]
=

1 ∧
[
x⊕

( ∨
i∈I

xi

)]
= x⊕

( ∨
i∈I

xi

)
.
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Thus, x⊕
( ∨

i∈I

xi

)
≤ z.

(mv − c22). It is obvious that x ¯
( ∧

i∈I

xi

)
≤ x ¯ xi, for any i ∈ I. Let z ∈ A

such that z ≤ x¯ xi, for any i ∈ I. Then x∗ ⊕ z ≤ x∗ ⊕ (x¯ xi) = x∗ ∨ xi, for any

i ∈ I, so x∗ ⊕ z ≤ ∧
i∈I

(x∗ ∨ xi) = x∗ ∨
( ∧

i∈I

xi

)
.

Thus we have that x¯(x∗ ⊕ z) ≤ x¯
[
x∗ ∨

( ∧
i∈I

xi

)]
= (x¯x∗)∨

[
x¯

( ∧
i∈I

xi

)]
=

0 ∨
[
x¯

( ∧
i∈I

xi

)]
= x¯

( ∧
i∈I

xi

)
. We deduce that

z = x ∧ z ≤ x¯
( ∧

i∈I

xi

)
.

The other relations follows similarly. ¥
Remark 2.3. (x¯ y∗) ∧ (y ¯ x∗) = 0, for any x, y ∈ A.

Proof. Indeed, 0 = (x∧y)¯ (x∧y)∗ = (x∧y)¯ (x∗∨y∗) = [x¯ (x∗∨y∗)]∧ [y¯
(x∗∨y∗)] = [(x¯x∗)∨ (x¯y∗)]∧ [(y¯x∗)∨ (y¯y∗)] = [0∨ (x¯y∗)]∧ [(y¯x∗)∨0] =
(x¯ y∗) ∧ (y ¯ x∗). ¥

Lemma 2.7. If a, b, x are elements of A, then:
(mv − c27) [(a ∧ x)⊕ (b ∧ x)] ∧ x = (a⊕ b) ∧ x;
(mv − c28) a∗ ∧ x ≥ x¯ (a ∧ x)∗.

Proof. (mv − c27). By mv − c17 we have

[(a ∧ x)⊕ (b ∧ x)] ∧ x = ((a ∧ x)⊕ b) ∧ ((a ∧ x)⊕ x) ∧ x =

= ((a ∧ x)⊕ b) ∧ x = (a⊕ b) ∧ (x⊕ b) ∧ x = (a⊕ b) ∧ x.

(mv − c28). We have

x¯ (a ∧ x)∗ = x¯ (a∗ ∨ x∗) mv−c18= (x¯ a∗) ∨ (x¯ x∗) mv−c5=
mv−c5= (x¯ a∗) ∨ 0 = x¯ a∗ ≤ a∗ ∧ x.¥

For any MV -algebra A we shall denote by B(A) the set of all complemented
elements of L(A); the elements of B(A) are called the boolean elements of A.

Theorem 2.8. For every element e in an MV -algebra A, the following condi-
tions are equivalent:

(i) e ∈ B(A);
(ii) e ∨ e∗ = 1;

(iii) e ∧ e∗ = 0;
(iv) e⊕ e = e;
(v) e¯ e = e.

Proof. First we prove the folowing implications: (iv) ⇒ (iii) ⇒ (ii) ⇒ (v) ⇒
(iv).

(iv) ⇒ (iii). e ∧ e∗ = e∗ ¯ (e∗∗ ⊕ e) = e∗ ¯ (e⊕ e) = e∗ ¯ e = 0.
(iii) ⇒ (ii). 1 = 0∗ = (e ∧ e∗)∗ = e∗ ∨ e.
(ii) ⇒ (v). e = e¯ 1 = e¯ (e ∨ e∗) = (e¯ e) ∨ (e¯ e∗) = (e¯ e) ∨ 0 = e¯ e.
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(v) ⇒ (iv). By hypothesis, e∗⊕e∗ = e∗. It follows that e = e⊕0 = e⊕ (e¯e∗) =
e⊕ e¯ (e∗ ⊕ e∗) = e⊕ (e ∧ e∗) = (e⊕ e) ∧ (e⊕ e∗) = (e⊕ e) ∧ 1 = e⊕ e.

For the equivalence (i) ⇔ (iii) see the proof of Theorem 4.11 (the equivalence
(i) ⇔ (iv)) .¥

Theorem 2.9. If e ∈ B(A) and x ∈ A then e⊕ x = e ∨ x and e¯ x = e ∧ x.

Proof. Obviously, e ⊕ x ≥ e ∨ x and e ¯ x ≤ e ∧ x. We shall prove that
e ⊕ x ≤ e ∨ x and e ∧ x ≤ e ¯ x. Thus, (e ⊕ x) ¯ (e ∨ x)∗ = (e ⊕ x) ¯ (e∗ ∧ x∗) =
[(e ⊕ x) ¯ e∗] ∧ [(e ⊕ x) ¯ x∗] = x ∧ e∗ ∧ e ∧ x∗ = 0 and (e ∧ x) ¯ (e ¯ x)∗ =
(e ∧ x)¯ (e∗ ⊕ x∗) = [e¯ (e∗ ⊕ x∗)] ∧ [x¯ (e∗ ⊕ x∗)] = e ∧ x∗ ∧ x ∧ e∗ = 0. ¥

Corollary 2.10. ([45])
(i) B(A) is subalgebra of the MV -algebra A. A subalgebra B of A is a boolean

algebra iff B ⊆ B(A),
(ii) An MV -algebra A is a boolean algebra iff the operation ⊕ is idempotent,

i.e., the equation x⊕ x = x is satisfied by A.

Example 2.7. 1. If A is an MV -chain, then B(A) = {0, 1} = L2.
2. If A is an MV -algebra and X a nonempty set, then B(AX) = (B(A))X

(see Example 2.5). In particular, if A = [0, 1] then B(A) = L2, hence
B([0, 1]X) = (L2)X for every nonempty set X.

Remark 2.4. For e ∈ B(A) we denote A(e) = {x ∈ A : x ≤ e} = (e] (see
Proposition 2.12); for x ∈ A we introduce xs = x∗∧e ∈ A(e). Then (A(e),⊕,s , 0, e)
is an MV -algebra.

Corollary 2.11. If a ∈ B(A) and x, y ∈ A, then:
(mv − c29) a∗ ∧ x = x¯ (a ∧ x)∗;
(mv − c30) a ∧ (x⊕ y) = (a ∧ x)⊕ (a ∧ y);
(mv − c31) a ∨ (x⊕ y) = (a ∨ x)⊕ (a ∨ y).

Proof. (mv − c29). See the proof of mv − c28.
(mv − c30). We have:

(a ∧ x)⊕ (a ∧ y) mv−c17= [(a ∧ x)⊕ a] ∧ [(a ∧ x)⊕ y] =

= [(a ∧ x) ∨ a] ∧ [(a⊕ y) ∧ (x⊕ y)] = a ∧ (a⊕ y) ∧ (x⊕ y) = a ∧ (x⊕ y).
(mv − c31). We have (a ∨ x)⊕ (a ∨ y) = (a⊕ x)⊕ (a⊕ y) = (a⊕ a)⊕ (x⊕ y) =

a⊕ (x⊕ y) = a ∨ (x⊕ y). ¥
Definition 2.3. Let A and B be MV−algebras. A function f : A → B is a

morphism of MV−algebras iff it satisfies the following conditions, for every x, y ∈ A :
(MV7) f(0) = 0;
(MV8) f(x⊕ y) = f(x)⊕ f(y);
(MV9) f(x∗) = (f(x))∗.

Remark 2.5. One can immediately prove that:

f(1) = 1,

f(x¯ y) = f(x)¯ f(y),
f(x ∨ y) = f(x) ∨ f(y),
f(x ∧ y) = f(x) ∧ f(y),

for every x, y ∈ A.
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Recall that, following current usage, if f is one-one we shall equivalently say that
f is an injective homomorphism, or an embedding. If the homomorphism f : A → B
is onto B we say that f is surjective. The kernel of a homomorphism f : A → B is
the set Ker(f) = f−1(0) = {x ∈ A : f(x) = 0}.

We denote by MV the category whose objects are MV−algebras and whose
morphisms are MV−algebras homomorphisms. SinceMV is an equational category,
then the monomorphisms in MV are exactly the injective morphisms ([2]). If A and
B are MV− algebras we write A ≈ B iff there is an isomorphism of MV− algebras
from A onto B (that is a bijective morphism of MV− algebras).

2. The lattice of ideals of an MV-algebra

For an MV -algebra, we denote by Id(A) the set of ideals of A. We present some known
basic definitions and results relative to the lattice of ideals of A. For I1, I2 ∈ Id(A) we
define I1 ∧ I2 = I1 ∩ I2, I1 ∨ I2= the ideal generated by I1 ∪ I2 and for I ∈ Id(A),
I∗ = {a ∈ A : a∧ x = 0, for every x ∈ I}. Theorem 2.17 characterizes the MV -algebras
for which the lattice of ideals (Id(A),∧,∨,∗ , {0}, A) is a Boolean algebra.

Definition 2.4. An ideal of an MV -algebra A is a nonempty subset I of A
satisfying the following conditions:

(I1) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I;
(I2) If x, y ∈ I, then x⊕ y ∈ I.

Remark 2.6. If I is an ideal then 0 ∈ I; x, y ∈ I ⇒ x∨ y ∈ I; x⊕ y ∈ I ⇔ x∨
y ∈ I.

We denote by Id(A) the set of ideals of an MV -algebra A.
The intersection of any family of ideals of A is an ideal of A. For a nonempty

set M ⊆ A, we denote by (M ] the ideal of A generated by M , i.e., the intersection
of all ideals I ⊇ M. If M = {a} with a ∈ A, we denote by (a] the ideal generated
by {a} ((a] is called principal).

Note that (0] = {0} and (1] = A.
An ideal I of an MV− algebra A is proper iff I 6= A.

Example 2.8. (The ideals of [0, 1]) Let A = [0, 1] be the MV -algebra from
Example 2.3 and I ⊆ [0, 1] an ideal. Suppose that there is x ∈ [0, 1] such that x 6= 0.
It follows that there is n ∈ N such that nx = x⊕ ...⊕ x︸ ︷︷ ︸

n ori

= (x⊕ ...⊕ x︸ ︷︷ ︸
n ori

) ∧ 1 = 1.

Since I is an ideal, it follows that nx = 1 ∈ I and I = [0, 1]. We deduce that for
x 6= 0, (x] = A, thus Id(A) = {{0}, [0, 1]}.

Example 2.9. If consider the MV -algebra A = L2
3 from Example 2.4 , then

Id(A) = {I1 = {(0, 0)}; I2 = ((0, 1)] = {(0, 0), (0, 1)}; I3 = ((1, 0)] = {(0, 0), (1, 0)};
I4 = ((0, 1

2)] = {(0, 0), (0, 1
2), (0, 1)}; I5 = ((1

2 , 0)] = {(0, 0), (1
2 , 0), (1, 0)}; I6 = ((1

2 , 1
2)] =

A}.
Remark 2.7. If f : A → B be an MV -algebras homomorphism then Ker(f) is

a proper ideal of A. Indeed, since f(0) = 0 we deduce that 0 ∈ Ker(f). If a, b ∈ A
such that a ≤ b and b ∈ Ker(f), then f(a) ≤ f(b) and f(b) = 0. We get f(a) = 0,
so b ∈ Ker(f). If a, b ∈ Ker(f) then f(a ⊕ b) = f(a) ⊕ f(b) = 0 ⊕ 0 = 0, so
a ⊕ b ∈ Ker(f). Hence Ker(f) is an ideal. Since f(1) = 1, we get 1 /∈ Ker(f), so
Ker(f) is a proper ideal.
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Proposition 2.12. (i) If M ⊆ A is a nonempty set, then

(M ] = {x ∈ A : x ≤ x1 ⊕ ...⊕ xn for some x1, ..., xn ∈ M}.
In particular, for a ∈ A, (a] = {x ∈ A : x ≤ na for some integer n ≥ 0}; if
e ∈ B(A), then (e] = {x ∈ A : x ≤ e };

(ii) If I1, I2 ∈ Id(A), then

I1 ∨ I2
def
= (I1 ∪ I2] = {a ∈ A : a ≤ x1 ⊕ x2 for some x1 ∈ I1and x2 ∈ I2};

(iii) If x, y ∈ A, then (x] ∩ (y] = (x ∧ y].

Proof. (i). We denote I = {x ∈ A : x ≤ x1 ⊕ ... ⊕ xn for some x1, ..., xn ∈ M}
and we prove that I is the smallest ideal containing M. We remark that M ⊆ I, so
I is non empty. Let a ≤ b and b ∈ I, so there are n ≥ 1 and x1, ..., xn ∈ M such
that a ≤ b ≤ x1 ⊕ ...⊕ xn. It follows that a ∈ I.

Let now, a, b ∈ I. Then a ≤ x1 ⊕ ... ⊕ xn and b ≤ y1 ⊕ ... ⊕ ym for some
x1, ..., xn, y1, ..., ym ∈ M. We get a ⊕ b ≤ x1 ⊕ ... ⊕ xn ⊕ y1 ⊕ ... ⊕ ym so a ⊕ b ∈ I.
Thus I is an ideal containing M. Let I ′ another ideal of A that contains M and let
a an arbitrary element from I. Hence a ≤ x1 ⊕ ... ⊕ xn and x1, ..., xn ∈ M ⊆ I ′.
Because I ′ is an ideal, it follows that x1 ⊕ ... ⊕ xn ∈ I ′, so a ∈ I ′ and I ⊆ I ′. We
proved that I is the smallest ideal containing M, so (M ] = I.

(ii). Follows by (i).
(iii). Obviously, x ∈ (x] and y ∈ (y]. Since x ∧ y ≤ x, y we get x ∧ y ∈ (x] and

x ∧ y ∈ (y]; then x ∧ y ∈ (x] ∩ (y], which is an ideal. Then (x ∧ y] ⊆ (x] ∩ (y].
Conversely, suppose that z ∈ (x] ∩ (y]; then z ≤ nx and z ≤ my for some

m,n ≥ 1. It follows that z ≤ nx ∧my ≤ n(x ∧my) ≤ nm(x ∧ y), by mv − c24; thus
z ∈ (x ∧ y]. ¥

For I ∈ Id(A) and a ∈ A \ I we denote by I(a) = (a] ∨ I = (I ∪ {a}].
Remark 2.8. For I(a) we have the next characterization:

I(a) = {x ∈ A : x ≤ y ⊕ na, for some y ∈ I and integer n ≥ 0}.
Corollary 2.13. Let I ∈ Id(A) and a, b ∈ A\I; then I(a) ∩ I(b) = I(a ∧ b).

Proof. Since a ∧ b ≤ a, b we deduce a ∧ b ∈ I(a) ∩ I(b), hence I(a) ∩ I(b) ⊇
I(a ∧ b). Let now x ∈ I(a) ∩ I(b). Then x ≤ x1 ⊕ ma and x ≤ x2 ⊕ nb for some
x1, x2 ∈ I and positive integers m,n. If y = x1 ⊕ x2 ∈ I, and p = m + n, then
x ≤ (x1 ⊕ma) ∧ (x2 ⊕ nb) ≤ (y ⊕ pa) ∧ (y ⊕ pb) mv−c17= y ⊕ (pa ∧ pb) ≤ y ⊕ p2(a ∧ b)
(by mv − c24), hence x ∈ I(a ∧ b), that is I(a) ∩ I(b) ⊆ I(a ∧ b). We deduce
I(a) ∩ I(b) = I(a ∧ b).¥

Corollary 2.14. If x, y ∈ A then (x] ∨ (y] = (x⊕ y].

Proof. It is suffices to show the inclusion (x ⊕ y] ⊆ (x] ∨ (y]. If z ∈ (x ⊕ y]
then z ≤ n(x ⊕ y) for some integer n ≥ 0. But n(x ⊕ y) = (nx) ⊕ (ny) and so
z ≤ (nx) ⊕ (ny). Since nx ∈ (x] and ny ∈ (y] we deduce that z ∈ (x] ∨ (y] that is
(x⊕ y] ⊆ (x] ∨ (y]. ¥

For I1, I2 ∈ Id(A), we put

I1 ∧ I2 = I1 ∩ I2,

I1 ∨ I2 = (I1 ∪ I2],
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I1 → I2 = {a ∈ A : (a] ∩ I1 ⊆ I2}.
Then (Id(A), ∨,∧, {0}, A) is a complete Brouwerian lattice (see Definition 1.9).

Lemma 2.15. If I1, I2 ∈ Id(A), then
(i) I1 → I2 ∈ Id(A),

(ii) If I ∈ Id(A), then I1 ∩ I ⊆ I2 iff I ⊆ I1 → I2 (that is,

I1 → I2 = sup{I ∈ Id(A) : I1 ∩ I ⊆ I2}).
Proof. (i) Since (0]∩ I1 ⊆ I2 we deduce that 0 ∈ I1 → I2. If x, y ∈ A, x ≤ y and

y ∈ I1 → I2, then (y]∩I1 ⊆ I2. Since (x] ⊆ (y] we deduce that (x]∩I1 ⊆ (y]∩I1 ⊆ I2,
hence x ∈ I1 → I2 . Let now x, y ∈ I1 → I2; then (x]∩ I1 ⊆ I2 and (y]∩ I1 ⊆ I2. We
deduce ((x]∩ I1)∨ ((y]∩ I1) ⊆ I2 hence ((x]∨ (y])∩ I1 ⊆ I2, so (x⊕ y]∩ I1 ⊆ I2 (by
Corollary 2.14), that is x⊕ y ∈ I1 → I2.

(ii) (⇒) Let I ∈ Id(A) such that I1 ∩ I ⊆ I2 . If x ∈ I then (x] ∩ I1 ⊆ I ∩ I1 ⊆
I2 hence x ∈ I1 → I2 , that is I ⊆ I1 → I2.

(⇐) We suppose I ⊆ I1 → I2 and let x ∈ I1 ∩ I ; then x ∈ I, hence x ∈ I1 → I2

that is (x] ∩ I1 ⊆ I2. Since x ∈ (x] ∩ I1 then x ∈ I2 that is I1 ∩ I ⊆ I2.¥
Remark 2.9. From Lemma 2.15 we deduce that (Id(A), ∨,∧,→, {0}) is a Heyt-

ing algebra; for I ∈ Id(A),

I∗ = I → {0} = {x ∈ A : (x] ∩ I = {0}}.
Corollary 2.16. (i) For every I ∈ Id(A), I∗ = {x ∈ A : x ∧ y = 0 for

every y ∈ I} (see [68], p.114);
(ii) For any x ∈ A, (x]∗ = {y ∈ A : (y] ∩ (x] = {0}} = {y ∈ A : x ∧ y = 0}( by

Proposition 2.12, (iii)).

Theorem 2.17. If A is an MV -algebra, then the following conditions are equiv-
alent:

(i) (Id(A),∨,∧,∗ , {0}, A) is a Boolean algebra;
(ii) Every ideal of A is principal and for every x ∈ A, there is n ∈ N such that

x ∧ (nx)∗ = 0 ⇔ x∗ ∨ nx = 1.

Proof. (i) ⇒ (ii). If I ∈ Id(A), because Id(A) is supposed Boolean lattice then
I ∨ I∗ = A, hence 1 ∈ I ∨ I∗ . By Proposition 2.12 (ii), 1 = a ⊕ b with a ∈ I and
b ∈ I∗. By Corollary 2.16 (i), x ∧ b = 0 for every x ∈ I .

So (x∗∨b∗)∗ = 0 ⇔ x∗∨b∗ = 1 ⇔ (x⊕b∗)∗⊕b∗ = 1 ⇔ x⊕b∗ ≤ b∗ ⇔ x⊕b∗ = b∗
for every x ∈ I .

Since a⊕ b = 1 we obtain b∗ ≤ a hence x⊕ b∗ = b∗ ≤ a for every x ∈ I. Finally,
we obtain x ≤ x⊕ b∗ ≤ a, hence x ≤ a for every x ∈ I, that is I = (a].

Let x ∈ A; since Id(A) is a Boolean algebra then (x] ∨ (x]∗ = A. By Corollary
2.16 (ii), we have

(x] ∨ (x]∗ = (x]∗(x) = A ⇔
⇔ {a ∈ A : a ≤ y ⊕ nx, for some y ∈ (x]∗and n ∈ N} = A.

(see Remark 2.8).
So, since 1 ∈ A, there exists y ∈ (x]∗ and n ∈ N such that y ⊕ nx = 1. Since

y ∈ (x]∗, then y ∧ x = 0.
By Lemma 2.2, from y ⊕ nx = 1 we deduce (nx)∗ ≤ y. So,

(nx)∗ ∧ x ≤ y ∧ x = 0,
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hence (nx)∗ ∧ x = 0 ⇔ x∗ ∨ nx = 1.
(ii) ⇒ (i). By Remark 2.9, Id(A) is a Heyting algebra. To prove Id(A) is a

Boolean lattice we must show I∗ = {0} only for I = A ([2], p.175).
By hypothesis, every ideal is principal, then I = (a] for some a ∈ A. Also, for

a ∈ A, there is n ∈ N such that a∧ (na)∗ = 0. By Corollary 2.16 (ii), (na)∗ ∈ (a]∗ =
{0}, hence (na)∗ = 0, that is na = 1. By Proposition 2.12 (i), we deduce that 1 ∈ I,
hence I = A. ¥

The distance function d : A×A → A is defined by

d(x, y) = (x¯ y∗)⊕ (y ¯ x∗) = (xª y)⊕ (y ª x).

Theorem 2.18. In every MV -algebra we have:
(i) d(x, y) = 0 iff x = y;

(ii) d(x, 0) = 0, d(x, 1) = x∗;
(iii) d(x∗, y∗) = d(x, y);
(iv) d(x, y) = d(y, x);
(v) d(x, z) ≤ d(x, y)⊕ d(y, z);

(vi) d(x⊕ u, y ⊕ v) ≤ d(x, y)⊕ d(u, v);
(vii) d(x¯ u, y ¯ v) ≤ d(x, y)⊕ d(u, v).

Proof. (i). If x = y then it is obvius that d(x, y) = 0. Conversely, if d(x, y) = 0
then x¯ y∗ = y ¯ x∗ = 0. We get that x ≤ y and y ≤ x, so x = y.

(ii), (iii). Follows by easy computations.
(iv). We get d(x, y) = (xª y)⊕ (y ª x) = (y ª x)⊕ (xª y) = d(y, x).
(v). We firstly prove that x¯ z∗ ≤ (x¯ y∗)⊕ (y ¯ z∗).
Indeed, (x ¯ z∗)∗ ⊕ (x ¯ y∗) ⊕ (y ¯ z∗) = x∗ ⊕ z ⊕ (x ¯ y∗) ⊕ (y ¯ z∗) =

[x∗ ⊕ (x¯ y∗)]⊕ [z ⊕ (y ¯ z∗)] = (x∗ ∨ y∗)⊕ (z ∨ y) ≥ y∗ ⊕ y = 1.
Now, d(x, z) = (x¯ z∗)⊕ (z ¯ x∗) ≤ (x¯ y∗)⊕ (y ¯ z∗)⊕ (z ¯ y∗)⊕ (y ¯ x∗) =

d(x, y)⊕ d(y, z).
(vi). We firstly prove that (∗) : (x⊕ u)∗ ¯ (y ⊕ v) ≤ (x∗ ¯ y)⊕ (u∗ ¯ v).
We have [(x⊕ u)∗ ¯ (y ⊕ v)]∗ ⊕ (x∗ ¯ y)⊕ (u∗ ¯ v) = x⊕ u⊕ (y∗ ¯ v∗)⊕ (x∗ ¯

y)⊕ (u∗ ¯ v) =
[x⊕ (x∗¯y)]⊕u⊕ (y∗¯v∗)⊕ (u∗¯v) = [y⊕ (y∗¯x)]⊕u⊕ (y∗¯v∗)⊕ (u∗¯v) =

[y ⊕ (y∗ ¯ v∗)]⊕ [u⊕ (u∗ ¯ v)]⊕ (y∗ ¯ x) = (y ∨ v∗)⊕ (u ∨ v)⊕ (y∗ ¯ x)
≥ (y ∨ v∗)⊕ (u ∨ v) ≥ v∗ ⊕ v = 1.
Now we prove (vi) using the inequality (∗) : d(x⊕u, y⊕v) = (x⊕u)∗¯ (y⊕v)⊕

(y ⊕ v)∗ ¯ (x⊕ u) ≤ [(x∗ ¯ y)⊕ (u∗ ¯ v)]⊕ [(y∗ ¯ x)⊕ (v∗ ¯ u)] = d(x, y)⊕ d(u, v).
(vii). Follows by (iii) and (vi) : d(x ¯ u, y ¯ v) = d((x∗ ⊕ u∗)∗, (y∗ ⊕ v∗)∗) =

d(x∗ ⊕ u∗, y∗ ⊕ v∗) ≤ d(x∗, y∗)⊕ d(u∗, v∗) = d(x, y)⊕ d(u, v). ¥
As an immediate consequence we have:

Proposition 2.19. If f : A → B is an MV−algebras homomorphism then the
following assertions are equivalent:

(i) f is injective;
(ii) Ker(f) = {0}.
Proof. (i) ⇒ (ii). We suppose that f is injective and let a ∈ Ker(f). Then

f(a) = f(0) = 0, so a = 0.
(ii) ⇒ (i). Convesely, let Ker(f) = {0} and a, b ∈ A such that f(a) = f(b). It

follows that f(d(a, b)) = d(f(a), f(b)) = 0. Since Ker(f) = {0} we get d(a, b) = 0
so a = b. Thus f is an injective homomorphism. ¥
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Example 2.10. (i) I want to determine all the homomorphisms of MV -
algebras f : [0, 1] → [0, 1]. Let A = [0, 1] be the MV -algebra from Example
2.3 and f : [0, 1] → [0, 1] be an MV -algebras homomorphism. By Remark
2.7, Ker(f) is a proper ideal of [0, 1], so by Example 2.8, Ker(f) = {0}.
Thus, by Proposition 2.19, f is injective. We remark that f(1

2) = 1− f(1
2),

so f(1
2) = 1

2 . Since f is increasing, f([0, 1
2 ]) ⊆ [0, 1

2 ] and so to determine f

it is suffice to determine f|[0, 1
2
]. We have 1

4⊕ 1
4 = 1

2 ⇒ f(1
4)⊕f(1

4) = f(1
2) =

1
2 ⇒ f(1

4) = 1
4 . By induction we prove that f( 1

2n ) = 1
2n for every n ≥ 1.

For x = k
2n ≤ 1

2 we get f(x) = f(
1
2n
⊕ ...⊕ 1

2n︸ ︷︷ ︸
k ori

) = f(
1
2n

)⊕ ...⊕ f(
1
2n︸ ︷︷ ︸

k ori

) =

1
2n
⊕ ...⊕ 1

2n︸ ︷︷ ︸
k ori

=
1
2n

+ ... +
1
2n︸ ︷︷ ︸

k ori

= k
2n . We deduce that f( k

2n ) = k
2n for k

2n ≤ 1
2 .

Let x ∈ [0, 1
2 ]. We know that there are two sequences (an)n≥1, (bn)n≥1 ∈

[0, 1
2 ] by the form k

2n such that an ≤ x ≤ bn with an < an+1 ≤ x ≤ bn+1 < bn

for every n . Since f is increasing we get an < an+1 ≤ f(x) ≤ bn+1 < bn.
Thus, f(x) = lim

n→∞an = lim
n→∞bn = x. We proved that f(x) = x for any

x ∈ [0, 1]. In conclusion, the only MV -algebras homomorphism f : [0, 1] →
[0, 1] is the identity.

(ii) A similar conclusion can be obtained if we consider the MV -algebra Q∩[0, 1]
or the MV -algebras Ln with n ≥ 2. Indeed, if f : Ln → Ln be an MV -

algebras homomorphism, then
1

n− 1
⊕ ...⊕ 1

n− 1︸ ︷︷ ︸
n−1 ori

= 1 ⇒ f(
1

n− 1
)⊕ ...⊕ f(

1
n− 1

)
︸ ︷︷ ︸

n−1 ori

=

1 ⇒ f( 1
n−1) 6= 0. Suppose that f( 1

n−1) = k
n−1 , k > 1. Then f(n−2

n−1) =

f(
1

n− 1
⊕ ...⊕ 1

n− 1
)

︸ ︷︷ ︸
n−2 ori

= f(
1

n− 1
)⊕ ...⊕ f(

1
n− 1

)
︸ ︷︷ ︸

n−2 ori

. We get f( 1
n−1) ≥

2
n−1 ⇒ f(n−2

n−1) ≥ 2
n− 1

⊕ ...⊕ 2
n− 1︸ ︷︷ ︸

n−2 ori

= 1 ⇒ f(n−2
n−1) = 1. But n−2

n−1 =

(
1

n−1

)∗
⇒ f

(
n−2
n−1

)
= 1− f

(
1

n−1

)
< 1, a contradiction. In conclusion, the

only MV -algebras homomorphism f : Ln → Ln is the identity.

Definition 2.5. An equivalence relation ∼ on a MV -algebra A is a congruence
if the following properties are satisfied:

(Con−mv1) x ∼ y ⇒ x∗ ∼ y∗;
(Con−mv2) x ∼ y, x′ ∼ y′ ⇒ x⊕ x′ ∼ y ⊕ y′, for every x, x′, y, y′ ∈ A.

Proposition 2.20. Let I be an ideal of an MV -algebra A. Then the binary
relation ∼I on A defined by x ∼I y iff d(x, y) ∈ I (equivalent with x ¯ y∗ ∈ I and
y ¯ x∗ ∈ I) is a congruence relation on A. Moreover, I = {x ∈ A : x ∼I 0}.

Proof. Firstly we prove that ∼I is an equivalence on A. The reflexivity, x ∼I x
follows by the fact that d(x, x) = 0 ∈ I, for any x ∈ I; The reflexivity, x ∼I y ⇒
y ∼I x, follows by the fact that d(x, y) = d(y, x); in order to prove the transitivity,
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we suppose that x ∼I y and y ∼I z, that is d(x, y), d(y, z) ∈ I. By Theorem 2.18,
(v), d(x, z) ≤ d(x, y)⊕ d(y, z) ∈ I, so d(x, z) ∈ I and x ∼I z.

Now we have to prove the congruence properties. If x ∼I y then d(x, y) =
d(x∗, y∗) ∈ I, so x∗ ∼I y∗.

Suppose x ∼I y, x′ ∼I y′ . Then d(x, y), d(x′, y′) ∈ I. By Theorem 2.18,
(vi), d(x ⊕ x′, y ⊕ y′) ≤ d(x, y) ⊕ d(x′, y′) ∈ I, so d(x ⊕ x′, y ⊕ y′) ∈ I . Hence
x⊕ x′ ∼I y ⊕ y′. ¥

Proposition 2.21. Conversely, if θ is a congruence relation on A, then Iθ =
{x ∈ A : (x, 0) ∈ θ} ∈ Id(A) and (x, y) ∈ θ iff (d(x, y), 0) ∈ θ.

Proof. Because θ is reflexive we get 0 ∈ Iθ, so Iθ is non empty. If x ≤ y and
y ∈ Iθ then x = x ∧ y and (x = x ∧ y, x ∧ 0 = 0) ∈ θ, so (x, 0) ∈ θ and x ∈ Iθ. If
x, y ∈ Iθ, then (x, 0) ∈ θ, (y, 0) ∈ θ so, by Con −mv2, (x ⊕ y, 0) ∈ θ so x ⊕ y ∈ Iθ.
Hence Iθ is an ideal. ¥

Proposition 2.22. The assignement I Ã∼I is a bijection from the set Id(A)
of ideals of A onto the set of congruences on A; more precisely, the function α :
Id(A) → Con(A) defined by α(I) =∼I is an isomorphism of partially orderd sets.

Proof. Let I and J be too ideals such that ∼I=∼J . If a ∈ A we get a =
d(a, 0) ∈ I ⇔ a ∼I 0 ⇔ a ∼J 0 ⇔ d(a, 0) ∈ J so I = J. Thus, α is injective. The
map α is also surjective since for any ∼∈ Con(A) we have α(Is) =∼ .

The proof is complete showing that I ⊆ J ⇔ ∼I⊆∼J .¥
If I is an ideal of A and x ∈ A, the congruence class of x with respect to ∼I

will be denoted by x/I, i.e. x/I = {y ∈ A : x ∼I y}; one can eassy to see that
x ∈ I iff x/I = 0/I. We shall denote the quotient set A/ ∼I by A/I. Since ∼I is a
congruence on A, the MV -algebra operations on A/I given by

x/I ⊕ y/I
def
= (x⊕ y)/I

and
(x/I)∗ def

= x∗/I,

are well defined. Hence, the system (A/I,⊕,∗ , 0/I) becomes an MV− algebra,
called the quotient algebra of A by the ideal I. The assignement x → x/I defines a
homomorphism pI from A onto the quotient algebra A/I, which is called the natural
homomorphism from A onto A/I; we remark that Ker(pI) = I.

Clearly, if x, y ∈ A then x/I ≤ y/I iff (x∗ ⊕ y)/I = 1/I iff (x∗ ⊕ y)∗ ∈ I iff
xª y ∈ I iff x¯ y∗ ∈ I.

3. The spectrum and the maximal ideals

In this Subsection we study the prime spectrum Spec(A) and the maximal spectrum
Max(A) of an MV-algebra. If every ideal I ∈ Id(A) has a unique representation as in-
tersection of prime ideals then Id(A) is a Boolean algebra (see Theorem 2.39). We give a
new characterizations for prime ideals of an MV-algebra (see Theorem 2.40, Theorem 2.41,
Corollary 2.42 and Theorem 2.43).

Remark 2.10. An ideal proper P is finitely meet-irreducible in Id(A) iff I∩J ⊆
P ⇒ I ⊆ P or J ⊆ P, for all I, J ∈ Id(A). Indeed, let I, J ∈ Id(A) such that
I ∩ J = P. We deduce that I ∩ J ⊆ P so, I ⊆ P or J ⊆ P. But since I ∩ J = P
we have that P ⊆ I, J. Finally, we obtain I = P or J = P, so P is finitely meet-
irreducible in Id(A).
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Definition 2.6. A proper ideal P of A is prime if it satisfies the following
condition:

for each x and y in A, either xª y = x¯ y∗ ∈ P or y ª x = y ¯ x∗ ∈ P.

Following tradition, we denote by Spec(A) the set of all prime ideals of A. Spec(A)
is called the spectrum of A.

An ideal I of an MV -algebra A is called maximal iff it is proper and no proper
ideal of A strictly contains I, i.e., for each ideal J 6= I, if I ⊆ J, then J = A. We
denote by Max(A) the set of all maximal ideals of A.

The next lemma summarize, some easy relations between ideals and kernels of
homomorphisms.

Lemma 2.23. ([45]) Let A,B be MV− algebras and f : A → B a homomor-
phism. Then the following properties hold:

(i) For each ideal J ∈ Id(B), the set f−1(J) = {x ∈ A : f(x) ∈ J} is an ideal
of A. Thus, in particular, Ker(f) ∈ Id(A);

(ii) f(x) ≤ f(y) iff xª y ∈ Ker(f);
(iii) f is injective iff Ker(f) = {0};
(iv) Ker(f) 6= A iff B is nontrivial;
(v) Ker(f) ∈ Spec(A) iff B is nontrivial and the image f(A), as a subalgebra

of B, is an MV− chain.

The well-known isomorphism theorems have corresponding versions for MV−
algebras. We only enounce the first and the second isomorphism theorem, since
their proof follows directly from the classical ones, as an immediately consequence
of Lema 2.23.

Theorem 2.24. (The first isomorphism theorem) If A and B are two MV−
algebras and f : A → B is a homomorphism, then A/Ker(f) and Im(f) are iso-
morphic MV− algebras.

Theorem 2.25. (The second isomorphism theorem) If A is an MV− algebra
and I, J are two ideals such that I ⊆ J, then (A/I)/pI(J) and A/J are isomorphic
MV− algebras.

Theorem 2.26. For a proper ideal P ∈ Id(A) the following are equivalent:

(i) P is finitely meet-irreducible in Id(A), (equivalently by Remark 2.10 with
I ∩ J ⊆ P ⇒ I ⊆ P or J ⊆ P, for all I, J ∈ Id(A));

(ii) P ∈ Spec(A);
(iii) A/P is chain;
(iv) If x ∧ y ∈ P, then x ∈ P or y ∈ P ;
(v) If x ∧ y = 0, then x ∈ P or y ∈ P.

Proof. We prove the equivalences (i) ⇔ (iv), (ii) ⇔ (iv).
(i) ⇒ (iv). Let x, y ∈ A such that x ∧ y ∈ P. Then (x] ∩ (y] = (x ∧ y] ⊆ P, so

x ∈ P or y ∈ P.
(iv) ⇒ (i). Let I, J ∈ Id(A) such that I ∩ J ⊆ P. If we suppose that I * P and

J * P then there are x ∈ I\P and y ∈ J\P. We get x ∧ y ∈ I ∩ J ⊆ P, and by
hypothesis, x ∈ P or y ∈ P, a contradiction. Thus, I ⊆ P or J ⊆ P.
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(ii) ⇒ (iv). Suppose that x∧y ∈ P and x¯y∗ ∈ P. It follows that (x¯y∗)⊕(x∧
y) ∈ P. But (x¯y∗)⊕(x∧y) = [(x¯y∗)⊕x]∧[(x¯y∗)⊕y] = [(x¯y∗)⊕x]∧(x∨y) ≥ x.
We get x ∈ P. Similarly, if x∗ ¯ y ∈ P we infere that y ∈ P.

(iv) ⇒ (ii). Obviously, since (x¯ y∗) ∧ (y ¯ x∗) = 0 ∈ P.
We prove the equivalence (iii) ⇔ (iv) ⇔ (v).
(iii) ⇒ (iv). x ∧ y ∈ P ⇒ x/P ∧ y/P = 0/P ⇒ x/P = 0/P or y/P = 0/P ⇒

x ∈ P or y ∈ P.
(iv) ⇒ (v). Obviously, x∧ y = 0 ∈ P, so by (iv) we deduce that x ∈ P or y ∈ P.
(v) ⇒ (iii). Let x/P, y/P ∈ A/P ; since (x ¯ y∗) ∧ (y ¯ x∗) = 0 ∈ P we deduce

by (v) that x/P ≤ y/P or y/P ≤ x/P, so A/P is totally ordered. ¥
Remark 2.11. We have a directly proof for the implication (ii) ⇒ (iii) : Let

x/P, y/P ∈ A/P and suppose that x¯y∗ ∈ P. Then (x/P )¯ (y/P )∗ = (x¯y∗)/P =
0/P , so x/P ≤ y/P.

Theorem 2.27. If A is an MV− algebra then the following properties hold:
(i) Every proper ideal of A that contains a prime ideal is prime;

(ii) For each prime ideal I of A, the set I = {J ∈ Id(A) : I ⊆ J and J 6= A}
is totally ordered by inclusion.

Proof. (i). Let I and P proper ideals of A such that I ⊆ P and P is prime. Let
x, y ∈ A. Since P is prime it follows that x¯ y∗ ∈ P or y ¯ x∗ ∈ P. Because P ⊆ I
we deduce that x¯ y∗ ∈ I or y ¯ x∗ ∈ I, so I is a prime ideal of A.

(ii). Let J,K ∈ I and suppose that J * K and K * J. Thus, there are two
elements x, y ∈ A such that x ∈ J\K and y ∈ K\J. Since I is prime, we get
x ¯ y∗ ∈ I ⊆ K or y ¯ x∗ ∈ I ⊆ J. It follows that x ∨ y = y ⊕ (x ¯ y∗) ∈ K or
x ∨ y = x⊕ (y ¯ x∗) ∈ J, so x ∈ K or y ∈ J, which is a contradiction. Thus, J ⊆ K
and K ⊆ J and I is linearly ordered. ¥

Corollary 2.28. Every prime ideal of an MV− algebra A is contained in a
unique maximal ideal of A.

Proof. ([45]) Let I ∈ Spec(A). The set I = {J ∈ Id(A) : J 6= A and I ⊆ J} is
totally orderd by inclusion. Therefore, M = ∪

J∈I
J is an ideal. Further, M is a proper

ideal, because 1 /∈ M ; we conclude that M is the only maximal ideal containing I.
¥

The next result will play an important role:

Theorem 2.29. (Prime ideal theorem) Let A be an MV− algebra, I ∈ Id(A)
and a ∈ A\I. Then there is P ∈ Spec(A) such that I ⊆ P and a /∈ P. In particular
for every element a ∈ A, a 6= 0 there is P ∈ Spec(A) such that a /∈ P.

Proof. ([45]) A routine application of Zorn’s Lemma shows that there is an
ideal P ∈ Id(A) which is maximal with respect to the property that I ⊆ P and
a /∈ P. We shall show that P is a prime ideal. Let x, y be elements of A and
suppose that both x ª y /∈ P and y ª x /∈ P. Then the ideal (P ∪ {x ª y}] must
contain the element a. By Remark 2.8, a ≤ p ⊕ n(x ª y), for some p ∈ P and
some integer n ≥ 1. Similarly, there is an element q ∈ P and an integer m ≥ 1
such that a ≤ q ⊕ m(y ª x). Let u = p ⊕ q and s = max{n,m}. Then u ∈ P,
a ≤ u ⊕ s(x ª y) and a ≤ u ⊕ s(y ª x). Hence by mv − c17 and mv − c18 we have
a ≤ [u ⊕ s(x ª y)] ∧ [u ⊕ s(y ª x)] = u ⊕ [s(x ª y) ∧ s(y ª x)] = u, hence a ∈ P, a
contradiction. ¥
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Corollary 2.30. Any proper ideal I of A can be extended to a prime ideal.

Proof. Apply Theorem 2.29.

Theorem 2.31. For any MV− algebra A, the following are equivalent:
(i) A is an MV− chain;

(ii) Any proper ideal of A is prime;
(iii) {0} is a prime ideal;
(iv) Spec(A) is linearly ordered.

Proof. (i) ⇒ (ii). Let I ∈ Id(A), proper ideal. Since A is an MV− chain and
pI : A → A/I is a surjective homomorphism we deduce that A/I is also an MV−
chain and by Lemma 2.23, (v), I is a prime ideal.

(ii) ⇒ (iii). Is obvious.
(iii) ⇒ (iv). By Theorem 2.27, (i) and the fact that {0} is a prime ideal, we

deduce that Spec(A) = {I ∈ Id(A) : I is proper and {0} ⊆ I}. Hence by Theorem
2.27, (ii) Spec(A) is linearly ordered.

(iv) ⇒ (i). Let x, y ∈ A and suppose that x � y and y � x, so x ¯ y∗ 6= 0 or
y ¯ x∗ 6= 0. By Theorem 2.29, there are P, Q prime ideals such that x ¯ y∗ /∈ P
and y ¯ x∗ /∈ Q. Hence y ¯ x∗ ∈ P and x ¯ y∗ ∈ Q. By hypothesis, Spec(A) is
linearly ordered, so P ⊆ Q or Q ⊆ P. Thus, y ¯ x∗ ∈ Q or x ¯ y∗ ∈ P, which is a
contradiction. We have x ≤ y or y ≤ x, so A is an MV− chain. ¥

Remark 2.12. Relative to Theorem 2.31, (i) ⇒ (iv), we have a more general
result: If A is an MV− chain, then the set Id(A) is totally ordered by inclusion.
Indeed, let I, J ∈ Id(A) such that I * J and J * I. Then there exists two elements
x, y ∈ A such that x ∈ I\J and y ∈ J\I. Whence x � y and y � x, a contradiction.

Corollary 2.32. If A is an MV− algebra then:
(i) For every I ∈ Id(A), I = ∩{P ∈ Spec(A) : I ⊆ P};

(ii) ∩{P ∈ Spec(A)} = {0}.
Proof. Apply Theorem 2.29. If a 6= 0 there is a prime ideal P ∈ Spec(A) such

that a /∈ P, so a /∈ ∩{P ∈ Spec(A)}.¥
The next proposition generalizes a well known property of maximal ideals in

boolean algebras:

Proposition 2.33. If M is a proper ideal of A then the following are equivalent:
(i) M is maximal;

(ii) for any a ∈ A, a /∈ M iff (na)∗ ∈ M for some integer n ≥ 1.

Proof. (i) ⇒ (ii). Suppose that M is a maximal ideal of A. Since a /∈ M, then
(M ∪ {a}] = A, so there exist x ∈ M and n ≥ 1 such that na ⊕ x = 1. We deduce
that (na)∗ ≤ x ∈ M, so (na)∗ ∈ M.

Conversely, if a ∈ M, then na ∈ M, for each integer n ≥ 1; since M is proper
we deduce that (na)∗ /∈ M.

(ii) ⇒ (i). Let I 6= M be an ideal of A such that M ⊂ I. Then for every a ∈ I\M
we must have (na)∗ ∈ M for some integer n ≥ 1. Hence 1 = na⊕ (na)∗ ∈ I, so I = A
and M is maximal. ¥

Proposition 2.34. If M is a proper ideal of A then the following are equivalent:
(i) M is maximal;
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(ii) for any a ∈ A, if a /∈ M then there is n ∈ N such that (a∗)n ∈ M ;
(iii) A/M is locally finite (i.e., every nonzero element from A/M has a finite

order).

Proof. By Proposition 2.33, (i) ⇔ (ii), since (na)∗ = (a∗)n, by mv − c5.
(i) ⇒ (iii). We proved that every nonzero element from A/M has a finite order.

Let a/M 6= 0/M. Then a /∈ M so there is n ∈ N such that (a∗)n ∈ M. We deduce
that (a∗)n/M = 0/M ⇒ n(a/M) = 1/M. We obtain that A/M is locally finite.

(iii) ⇒ (i). Let I 6= M be an ideal of A such that M ⊂ I and consider a ∈ I\M.
Because a/M 6= 0/M we must have n(a/M) = 1/M, for some integer n ≥ 1, so
(na)/M = 1/M, thus (na)∗ ∈ M ⊆ I. We have, na, (na)∗ ∈ I so I = A and M is
maximal. ¥

Remark 2.13. If A is locally finite, then A is a chain. Indeed, suppose that
x, y ∈ A such that x � y and y � x. Then x ¯ y∗ 6= 0, y ¯ x∗ 6= 0, so there is n
such that n(x ¯ y∗) = 1, n(y ¯ x∗) = 1. Since (x ¯ y∗) ∧ (y ¯ x∗) = 0, by mv − c26

we deduce that [n(x ¯ y∗)] ∧ [n(y ¯ x∗)] = 0, but [n(x ¯ y∗)] ∧ [n(y ¯ x∗)] = 1, a
contradiction. Conversely assertion, is not true. Indeed, the Chang MV− algebra
C is chain but nc < 1 for every n.

The intersection of the maximal ideals of A is called the radical of A; it will be
denote by Rad(A).

From the Theorem 2.29 and Corollary 2.28 we deduce that:

Corollary 2.35. Every nontrivial MV− algebra has a maximal ideal.

Lemma 2.36. Any maximal ideal of an MV− algebra is a prime ideal and any
proper ideal of A can be extended to a maximal ideal.

Proof. M maximal
Proposition 2.34⇒ A/M is locally finite Remark 2.13⇒ A/M is a

chain Theorem 2.26⇒ M is prime. ¥
Remark 2.14. M prime ideal ; M maximal ideal. Indeed, in Chang MV−

algebra C, {0} is a prime ideal but {0, c, ..., nc, ...} is the only maximal ideal.

Remark 2.15. In [0, 1] and Ln, {0} is a maximal ideal.

Definition 2.7. Let A be an MV− algebra. An element x ∈ A is called
archimedean if there is n ≥ 1 such that nx ∈ B(A).

Lemma 2.37. The following condition are equivalent:
(i) x is an archimedean element;

(ii) there is n ≥ 1 such that x∗ ∨ nx = 1;
(iii) there is n ≥ 1 such that nx = (n + 1)x.

Proof. (i) ⇒ (ii). Using Theorem 2.9, we have x∗ ∨ nx = x∗ ⊕ nx = x∗ ⊕ x ⊕
(n− 1)x = 1.

(ii) ⇒ (iii). We have 1 = x∗ ∨ nx = (nx) ⊕ (nx)∗ ¯ x∗ = (nx) ⊕ (nx ⊕ x)∗ =
(nx)⊕ [(n + 1)x]∗ ⇒ (n + 1)x ≤ nx. Obviously, nx ≤ (n + 1)x, so nx = (n + 1)x.

(iii) ⇒ (i). nx = (n + 1)x = (n + 2)x = ... = (2n)x implies (nx)⊕ (nx) = nx, so
nx ∈ B(A). ¥

Definition 2.8. An MV− algebra A is called hyperarchimedean if all its ele-
ments are archimedean.
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Remark 2.16. Any finite MV− algebra is hyperarchimedean.

Remark 2.17. A is hyperarchimedean iff Max(A) = Spec(A). For the proof see
Theorem 3.56 for the case of BL− algebras.

Proposition 2.38. Let A and B be MV− algebras, f : A → B a homomorphism
of MV− algebras and M be a maximal ideal of B. Then the inverse image f−1(M)
is a maximal ideal of A.

Proof. By Lemma 2.23, (i), f−1(M) is an ideal of A; f−1(M) is proper since
f(1) = 1 /∈ M.

Let x /∈ f−1(M), so f(x) /∈ M. By Proposition 2.33 there is an integer n ≥ 1
such that (nf(x))∗ ∈ M. It follows that (nx)∗ ∈ f−1(M), whence by Proposition
2.33, f−1(M) is a maximal ideal of A. ¥

Relative to the uniqueness of ideals as intersection of primes we have:

Theorem 2.39. If A is an MV− algebra and every I ∈ Id(A) has a unique
representation as an intersection of elements of Spec(A), then (Id(A),∨,∧,∗ , {0}, A)
is a Boolean algebra.

Proof. Let I ∈ Id(A) and I ′ = ∩{P ∈ Spec(A) : I * P} ∈ Id(A). By Corollary
2.32 (ii), I ∩ I ′ = ∩{P ∈ Spec(A)} = {0}; if I ∨ I ′ 6= A, then by Theorem 2.29 there
exists I ′′ ∈ Spec(A) such that I ∨ I ′ ⊆ I ′′ and I ′′ 6= A. Consequently, I ′ has two
representations I ′ = ∩{P ∈ Spec(A) : I * P} = I ′′ ∩ (∩{P ∈ Spec(A) : I * P}),
which is contradictory. Therefore I ∨ I ′ = A and so Id(A) is a Boolean algebra. ¥

Theorem 2.40. For a proper ideal P ∈ Id(A) the following assertions are equiv-
alent:

(i) P ∈ Spec(A);
(ii) For every x, y ∈ A\P there exists z ∈ A\P such that z ≤ x and z ≤ y.

Proof. (i) ⇒ (ii). Let P ∈ Spec(A) and x, y ∈ A\P . If by contrary, for every
a ∈ A with a ≤ x and a ≤ y then a ∈ P, since x ∧ y ≤ x, y we deduce x ∧ y ∈ P.
Hence, by Theorem 2.26 (iv), x ∈ P or y ∈ P, a contradiction.

(ii) ⇒ (i). I suppose by contrary that there exist I1, I2 ∈ Id(A) such that
I1 ∩ I2 = P, and P 6= I1, P 6= I2. So, we have x ∈ I1\P and y ∈ I2\P. By hypothesis
there is z ∈ A\P such that z ≤ x and z ≤ y.

We deduce z ∈ I1 ∩ I2 = P - a contradiction. ¥
Theorem 2.41. Let A be an MV− algebra and I a proper ideal of A. The next

assertions are equivalent:
(i) I ∈ Spec(A);

(ii) If x, y ∈ A and (x] ∩ (y] ⊆ I, then x ∈ I or y ∈ I.

Proof. (i) ⇒ (ii). Let x, y ∈ A such that (x]∩ (y] ⊆ I and suppose by contrary
that x, y /∈ I. Then by Theorem 2.40, there is z ∈ A\I such that z ≤ x and z ≤ y.
Hence z ∈ (x] ∩ (y] ⊆ I, so z ∈ I, a contradiction.

(ii) ⇒ (i). Let x, y ∈ A such that x ∧ y ∈ I. Then (x ∧ y] ⊆ I .
Since (x]∩ (y] = (x∧ y] (by Proposition 2.12, (iii)) we deduce that (x]∩ (y] ⊆ I,

hence x ∈ I or y ∈ I, that is I ∈ Spec(A) (by Theorem 2.26 (iv)). ¥
Corollary 2.42. Let A be an MV− algebra. For I ∈ Id(A) the next assertions

are equivalent:
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(i) I ∈ Spec(A);
(ii) For every x, y ∈ A/I, x 6= 0, y 6= 0, there exists z ∈ A/I, z 6= 0 such that

z ≤ x and z ≤ y.

Proof. Clearly, by Theorem 2.40, since if x = a/I, with a ∈ A, then the
condition x 6= 0 is equivalent with a /∈ I. ¥

As in the case of residuated lattices (see Theorem 1.48) we have:

Theorem 2.43. Let A be an MV− algebra. For a proper ideal I ∈ Id(A) the
next assertions are equivalent:

(i) I ∈ Spec(A),
(ii) For every J ∈ Id(A), J → I = I or J ⊆ I.

Theorem 2.44. ([68]) Let A be an MV− algebra and P ∈ Id(A). Then P is
meet-irreducible element in the lattice Id(A) iff there is an element a ∈ A\P such
that P is an maximal element in the set {I ∈ Id(A) : a /∈ I}.

4. Subdirect representation theorem

For any class of structures, the representation theorems have a special signifi-
cance.

We denote by I an nonempty set. The direct product of family {Ai}i∈I of MV−
algebras, denoted by

∏
i∈I

Ai is the MV− algebra obtained by endowing the cartesian

product of the family with the MV− operations defined pointwise. In other words,∏
i∈I

Ai is the set of all functions f : I → ∪
i∈I

Ai such that f(i) ∈ Ai, for all i ∈ I, with

the operations ∗ and ⊕ defined by f∗(i) = (f(i))∗ and (f ⊕ g)(i) = f(i) ⊕ g)(i).
The zero element of

∏
i∈I

Ai is the function 0 : I → ∪
i∈I

Ai such that 0(i) = 0Ai ∈ Ai.

For every j ∈ I the map πj :
∏
i∈I

Ai → Aj is defined by πj(f) = f(j); each πj is a

homomorphism onto Aj , called the j-th projection function . In particular for each
MV− algebra A and nonempty set X, the MV− algebra AX is the direct product
of the family {Ax}x∈X , where Ax = A for all x ∈ X.

Proposition 2.45. Let a natural number n and e1, ..., en ∈ B(A) such that
ei ∧ ej = 0 for any i 6= j and

n∨
i=1

ei = 1, then A s isomorphic with the direct product

of the family {A(ei)}i=1,n and the isomorphism is given by f : A →
n∏

i=1
A(ei), f(x) =

(x ∧ e1, ..., x ∧ en).

Proof. By Theorem 2.9 the function f is an morphism of MV− algebras.
If x, y ∈ A such that f(x) = f(y) then x∧ ei = y ∧ ei for any i = 1, ..., n. We get

that x = x∧1 = x∧ (e1∨ ...∨ en) = (x∧ e1)∨ ...∨ (x∧ en) = (y∧ e1)∨ ...∨ (y∧ en) =
y ∧ (e1 ∨ ...∨ en) = y ∧ 1 = y, so f is injective. In order to prove the surjectivity, we

consider (x1, ..., xn) ∈
n∏

i=1
A(ei). If we denote x =

n∨
i=1

xi, then f(x) = (x1, ..., xn). We

have proved that f is an MV− algebra isomorphism. ¥

Proposition 2.46. Let A =
n∏

i=1
Ai. Then there exist e1, ..., en ∈ B(A) such that

ei ∧ ej = 0 for any i 6= j and
n∨

i=1
ei = 1 and Ai ≈ A(ei), for all i = 1, ..., n.
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Proof. Let e1 = (1, 0, ..., 0), ..., en = (0, ..., 0, 1). ¥
Definition 2.9. An MV− algebra A is indecomposable if A ≈ A1×A2 implies

A1 or A2 is trivial, where A1 and A2 are too MV− algebras and A1 × A2 is their
direct product.

By Propositions 2.45 and 2.46 we obtain:

Proposition 2.47. An MV− algebra A is indecomposable iff B(A) = {0, 1}.
Corollary 2.48. If A is an MV− chain then A is indecomposable.

Example 2.11. The MV− algebra [0, 1] and Chang’s MV− algebra C are in-
decomposable.

Definition 2.10. An MV− algebra A is a subdirect product of a family {Ai}i∈I

of MV− algebras iff there exists a one-one homomorphism h : A → ∏
i∈I

Ai such that

for each j ∈ I the composite map πj ◦ h is a homomorphism onto Aj .

If A is a subdirect product of a family {Ai}i∈I , then A is isomorphic to the sub-
algebra h(A) of

∏
i∈I

Ai; also, the restriction to h(A) of each projection is a surjective

map.
In [45] it is prove the following result, as particular case of a theorem of universal

algebra, due to Birkhoff:

Theorem 2.49. An MV− algebra A is a subdirect product of a family {Ai}i∈I

of MV− algebras iff there is a family {Ji}i∈I of ideals of A such that:
(i) Ai

∼= A/Ji for each i ∈ I and
(ii) ∩

i∈I
Ji = {0}.

The following result is fundamental:

Theorem 2.50. (Chang’s Subdirect Representation Theorem) Every nontrivial
MV− algebra is a subdirect product of MV− chains.

Proof. By Theorem 2.49 and Lemma 2.23 (v), an MV− algebra A is a sub-
direct product of a family {Ai}i∈I of MV− chains iff there is a family {Pi}i∈I

of prime ideals of A such that ∩
i∈I

Pi = {0} (the monomorphism is Φ : A →
∏

P∈Spec(A)

A/P, Φ(a) = (a/P )P∈Spec(A). To prove apply Corollary 2.32, (i) to the

ideal {0}. ¥

5. MV-algebras and lu-groups; Chang completeness theorem

The idea of associating a totally ordered abelian group to any MV- algebra A is due
to Chang, who in [42] and [43] gave first purely algebraic proof of the completeness of the
ÃLukasiewicz axioms for the infinite-valued calculus. In [45] is proved the Chang completeness
theorem starting that if an equation holds in the unit real interval [0, 1], then the the
equation holds in every MV- algebra. This proof is elementary, and use the good sequences;
good sequences and Γ functor were first introduced in [105].

An applications is the categorical equivalence between MV- algebras and lattice ordered
abelian groups with strong unit.

We recall the definition of an lu-group:
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Definition 2.11. An lu-group is an algebra (G,+,−, 0,∨,∧, u), where
(lu−G1) (G,+,−, 0) is a group;
(lu−G2) (G,∨,∧) is a lattice;
(lu−G3) For any x, y, a, b ∈ G, x ≤ y implies a + x + b ≤ a + y + b;
(lu−G4) u > 0 is a strong unit for G (that is, for all x ∈ G there is some natural

number n ≥ 1 such that −nu ≤ x ≤ nu ).

If G is abelian, then (G,+,−, 0,∨,∧, u) will be called abelian lu-group.

Remark 2.18. ([10], Propositions 1.2.2, 1.2.14 ) If G is an ordered group (l-
group, see [10]) then

(i) (G,∨,∧) is a distributive lattice and for every x, y, z ∈ G;
(ii) If x ≤ y then z + x ≤ z + y and x + z ≤ y + z;

(iii) x ≤ y iff −y ≤ −x;
(iv) (x ∨ y) + z = (x + z) ∨ (y + z); z + (x ∨ y) = (z + x) ∨ (z + y);
(v) (x ∧ y) + z = (x + z) ∧ (y + z); z + (x ∧ y) = (z + x) ∧ (z + y).

Remark 2.19. For each element x of an l-group G, the positive part x+, the
negative part x− and the absolute value of x are defined as folows: x+ = 0∨x, x− =
0∨ (−x), |x| = x+ + x− = x+ ∨ x−; a strong unit u of G is an archimedean element
of G, i.e. an element u ∈ G such that for each x ∈ G there is an integer n ≥ 0 with
|x| ≤ nu.

Following common usage, we let R, Q,Z denote the additive abelian groups of
reals, rationales, integers with the natural order.

Example 2.12. (R, +) with the natural order is an abelian lu-group, where for
example u = 1.

Example 2.13. (Q,+) and (Z, +) are abelian lu-groups with the natural order
and u = 1.

Example 2.14. Let (X, τ) be a topological space and C(X) the aditive group
of real - valued continuous functions defined on X. We make C(X) an l-group by
providing it with its usual pointwise order: f ≤ g iff f(x) ≤ g(x) for all x ∈ X.
If denote by Cb(X) the subgroup of bounded elements of C(X), then Cb(X) is an
abelian lu-group where order units are the elements u ∈ Cb(X) with the property that
there exists c > 0 such that u(x) ≥ c for every x ∈ X.

Proposition 2.51. ([45]) If (G, u) is an abelian lu-group then for any x ≥ 0 in
G there are x1,...,xn ∈ [0, u] such that x = x1 + ... + xn. Hence, any abelian lu-group
is generated by its unit interval [0, u].

The best reference to general lattice ordered groups is [10] and [50].
We shall often write (G, u) to indicate that G is an abelian lu-group with strong

unit u. If (G, u) is an abelian lu-group then the unit interval of G is

[0, u]G = {g ∈ G : 0 ≤ g ≤ u}.
It has a canonical MV− algebra structure given by Example 2.3. Mundici’s result
says that for any MV− algebra A there is an abelian lu-group (GA, u) such that
A and [0, u]GA

are isomorphic. The categorical equivalence means that the entire
theory of abelian lu-groups applies to MV− algebras. The main work involved has
the flavor of translation.
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Definition 2.12. Let G and G′ be l-groups. A function h : G → G′ is said
to be l-group homomorphism iff h is both a group homomorphism and a lattice
homomorphism i.e., for each x, y ∈ G, h(x−y) = h(x)−h(y), h(x∨y) = h(x)∨h(y)
and h(x ∧ y) = h(x) ∧ h(y). If 0 < u ∈ G, 0 < u′ ∈ G′ and let h : G → G′ is said
to be l-group homomorphism such that h(u) = u′. Then h is said to be a unital
l-homomorphism .

We recall that we denote by MV the category of MV− algebras and by UG we
denote the category whose objects are abelian lu-groups and whose morphisms are
abelian lu-group homomorphisms. The definition of Mundici’s functor

Γ : UG →MV
is strainghtforward (see [3], [45]):

Γ(G, u) := [0, u]G,

Γ(h) := h|[0,u],

where (G, u) is an abelian lu-group and h : (G, u) → (H, v) is an abelian lu-group
homomorphism.

Example 2.15. If G = R and u = 1, then Γ(R, 1) = [0, 1] (see Example 2.3).

Example 2.16. If G = Q and u = 1, then Γ(Q, 1) = Q ∩ [0, 1] (see Example
2.4).

Example 2.17. If G = Z and u = 1, then Γ(Z, 1) = {0, 1} = L2.

Example 2.18. If G = Z and u = n ≥ 2, then Γ(Z, n) is isomorphic with MV -
algebra ÃLn (see Example 2.4). Also, Γ( 1

n−1Z, 1) = ÃLn, where 1
n−1Z = { z

n−1 : z ∈ Z}.

Example 2.19. Let G = Z ×lex Z be the lexicographical product, i.e. the group
operations are defined on components but the order relation is lexicographic:

(n1, n2) ≤ (m1,m2) iff n1 < m1 or n1 = m1 and n2 ≤ m2.

We remark that G is a totally ordered abelian l-group and u = (1, 0) is a strong unit.
Then the MV -algebra Γ(G, u) is isomorphic with Chang’s algebra C (see Example
2.6).

A sequence a = (a1, a2, ....) of elements of an arbitrary MV -algebra A is said to
be good iff for each i = 1, 2...

ai ⊕ ai+1 = ai,

and there is an integer n such that ar = 0 for all r > n.
Instead of a = (a1, a2, ...., an, 0, 0, ..) we shall often write a = (a1, a2, ...., an).
For each a ∈ A, the good sequence (a, 0, ..., 0...) will be denoted by (a).

Definition 2.13. For any two good sequences a = (a1, a2, ...., an) and b =
(b1, b2, ...., bm) their sum c = a + b is defined by c = (c1, c2, ....), where for all
i = 1, 2...

ci = ai ⊕ (ai−1 ¯ b1)⊕ ...⊕ (a1 ¯ bi−1)⊕ bi.

We denote by MA the set of good sequences of A equipped with the addition.
In [45] we have the following results of good sequences:

Proposition 2.52. Let A be an MV -algebra. Then (MA, +) is an abelian
monoid with the following additional properties:



5. MV-ALGEBRAS AND LU-GROUPS; CHANG COMPLETENESS THEOREM 59

(i) (cancellation) For any good sequences a,b, c if a + b = a + c then b = c;
(ii) (zero-law) If a + b = (0) then a = b = (0).

Definition 2.14. For any two good sequences a = (a1, a2, ...., an) and b =
(b1, b2, ...., bn) we write b ≤ a iff b and a satisfy the equivalent conditions:

(i) There is a good sequence c such that b + c = a;
(ii) bi ≤ ai, for all i = 1, 2, ...n .

Remark 2.20. Let a and b be good sequences. If b ≤ a then there is a
unique good sequence c such that b + c = a. This c, denoted a − b is given by
c = (a1, a2, ...., an, ...) + (b∗1, b

∗
2, ...., b

∗
n, ...). In particular, for each a ∈ A, we have

(a∗) = (1)− (a).

Proposition 2.53. Let a = (a1, a2, ...., an, ...) and b = (b1, b2, ...., bn, ...) be good
sequences of an MV -algebra A. The sequences

a ∨ b = (a1 ∨ b1, ..., an ∨ bn, ....)

and
a ∧ b = (a1 ∧ b1, ..., an ∧ bn, ....)

are good and are in fact the supremum and infimum of a and b with respect the
order defined by Definition 2.14.

Remark 2.21. For all a, b ∈ A, we have ((a) + (b)) ∧ (1) = (a⊕ b).

From the abelian monoid MA enriched with the lattice-order we obtain (via
Maltzev theorem) an abelian l -group GA such that MA is isomorphic, both as a
monoid and as a lattice, to positive cone G+

A. Let us agree to say that a pair of
good sequences (a,b) is equivalent to another pair (a′,b′) iff a + b′= a′ + b. The
equivalence class of the pair (a,b) shall be denoted by [a,b]. Let GA be the set
of equivalence classes of pairs of good sequences, where the zero element 0, is the
equivalence class [(0), (0)], an addition + is defined by

[a,b] + [c,d] = [a + c,b + d],

a subtraction - is defined by
−[a,b] = [b,a].

Then GA = (GA, 0, +,−) is an abelian group. We shall now equip GA with a
lattice -order. We define

[a,b] ¹ [c,d]
iff

a + d ≤ c + b,

where ≤ is the partial order of MA. The supremum (g) and infimum (f) are given
by:

[a,b] g [c,d] = [(a + d) ∨ (c + b),b + d]
and

[a,b] f [c,d] = [(a + d) ∧ (c + b),b + d].
The l -group GA with the above lattice order is called the Chang l-group of the MV
-algebra A. The element uA = [(1), (0)] is a strong unit of the l -group GA.

A crucial property of the lu-group GA is given by the following result (for more
details, see [45]):
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Theorem 2.54. The correspondence a 7−→ ϕA(a) = [(a), (0)] defines an isomor-
phism from the MV -algebra A onto the MV -algebra Γ(GA, uA) = [0, uA].

Proof. By definition, [(0), (0)] ¹ [a,b] ¹ uA iff there is c ∈ A such that (a,b)
is equivalent to ((c), (0)). Thus, ϕA maps A onto the unit interval [[(0), (0)], uA] of
GA. Is obviously that this map is one-one. By Remark 2.21, ϕA(a⊕ b) = (ϕA(a) +
ϕA(b)) ∧ uA and by Remark 2.20, ϕA(a∗) = uA − ϕA(a); we deduce that ϕA is a
homomorphism from the MV -algebra A onto the MV -algebra Γ(GA, uA) = [0, uA].
¥

Using the good sequences we obtain the Completeness Theorem (for more details,
see [45]):

Theorem 2.55. An equation holds in [0, 1] if and only if it holds in every MV -
algebra.

The natural equivalence between MV -algebras and abelian lu-groups with strong
unit was first established in [105], building on previous work by Chang [43] for the
totally ordered case.

We shall prove that Γ is a natural equivalence between the categories UG and
MV.

We give an explicit construction of an adjoint functor of Γ.
Our starting point is the lu-group GA with order unit uA.
Let A and B be MV -algebras, h : A → B a homomorphism. If a = (a1, a2, ...)

is a good sequence of A then (h(a1), h(a2), ...) is a good sequence of B. If h∗ :
MA → MB is defined by h∗(a) = (h(a1), h(a2), ...) for all a ∈ MA, then we have:
h∗(a + b) = h∗(a) + h∗(b), h∗(a∨ b) = h∗(a)∨ h∗(b), h∗(a∧ b) = h∗(a)∧ h∗(b). Thus,
h∗ : MA → MB is both a monoid homomorphism and lattice homomorphism. Let
us define the map h# : GA → GB by h#([a, b]) = [h#(a), h#(b)] and let uA and uB

be the strong units of GA and GB. Then the map h# is a unital l -homomorphism
of (GA, uA) into (GB, uB). For the definition of the functor

Ξ : MV → UG
(the inverse of the functor Γ which together with Γ determine a categorical equiva-
lence), let us agree to write Ξ(A) = (GA, uA) and Ξ(h) = h#.

In our present notation, Theorem 2.54 states that the map a 7−→ ϕA(a) =
[(a), (0)] defines an isomorphism of the MV -algebra A and Γ(Ξ(A)).

Using the maps ϕA (A ∈MV) we obtain:

Theorem 2.56. The composite functor ΓΞ is naturally equivalent to the identity
functor of MV. In other words, for all MV -algebras A,B and homomorphism
h : A → B, we have a commutative diagram

A
h→ B

↓ ϕA ↓ ϕB

Γ(Ξ(A)) →
Γ(Ξ(h))

Γ(Ξ(B))

in the sense that, for each a ∈ A, ϕB(h(a)) = (Γ(Ξ(h))(ϕA(a)).

Proof. ([45]) For each a ∈ A, ϕB(h(a)) = [(h(a)), (0)] and ϕA(a) = [(a), (0)].
Further, Ξ(h)([(a), (0)]) = [(h(a)), (0)], the latter being an element of Γ(Ξ(B)).
Since Γ(Ξ(h)) is the restriction of Ξ(h) to Γ(Ξ(B)), we can write (Γ(Ξ(h))(ϕA(a)) =
[(h(a)), (0)] = ϕB(h(a)). ¥
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Now, we prove that the composite functor ΣΓ is also a naturally equivalent to
the identity functor of the category UG.

We first define the dual of the maps ϕA.
In [45] it is proved the following (see, Lemma 7.1.3, p. 141 and Corollary 7.1.6,

p. 145):

Lemma 2.57. Suppose G is an abelian l-group with order unit u, and let A =
Γ(G, u) ⊆ G. For each 0 ≤ a ∈ G there is a unique good sequence g(a) = (a1, ..., an)
of elements of A such that a = a1 + ... + an.

Theorem 2.58. For every (G, u) ∈ UG let the map ψ(G,u) : G → GΓ((G,u)) be
defined by ψ(G,u)(a) = [g(a+), g(a−)], for all a ∈ G. It follows that ψ(G,u) is an
l-group isomorphism of G onto GΓ((G,u)) and ψ(G,u)(u) = [(u), (0)].

From Theorem 2.58, using the maps ψ(G,u) we have the following :

Theorem 2.59. The composite functor ΞΓ is naturally equivalent to the identity
functor of UG. In other words, for any two abelian l-groups with strong unit (G, u)
and (H, v) and unital l-homomorphism f : (G, u) → (H, v), we have a commutative
diagram

(G, u)
f→ (H, v)

↓ ψ(G,u) ↓ ψ(H,v)

Ξ(Γ(G, u)) →
Ξ(Γ(f))

Ξ(Γ(G, u))

in the sense that, for each a ∈ G, ψ(H,v)(f(a)) = (Ξ(Γ(f))(ψ(G,u)(a)).

Proof. ([45]) By Lemma 2.57 we can write g(a+) = (a1, ..., an), for a uniquely
determined good sequence (a1, ..., an) ∈ MΓ((G,u)). Letting h = Γ(f), we then ob-

tain f(a)+ = f(a+) =
n∑

i=1
f(ai) =

n∑
i=1

h(ai), whence g(f(a)+) = (h(a1), ..., h(an)) =

h∗(g(a+)). Similarly, g(f(a)−) = h∗(g(a−)), whence ψ(H,v)(f(a)) = [g(f(a)+), g(f(a)−)] =
[h∗(g(a+)), h∗(g(a−))] = h#([g(a+), g(a−)]) = (Ξ(Γ(f))([g(a+), g(a−)]) = (Ξ(Γ(f))(ψ(G,u)(a)).
¥

From the Theorems 2.56 and 2.59 we immediately get:

Corollary 2.60. (Mundici) The functor Γ establishes a categorical equivalence
between UG and MV.

Example 2.20. Let (A,∧,∨,∗ , 0, 1) be a Boolean algebra; then (A,∨,∗ , 0) is an
MV− algebra (see Example 2.2)

(i). If A = {0, 1} = L2, then GA = Ξ(A) = (Z, +) (because MA ≈ (N,+)).
(ii). If A is finite, then there exists a natural number n such that A = Ln

2 . So,
Ξ(A) = Ξ(Ln

2 ) = (Ξ(L2))
n = Zn with u = (1, 1, ..., 1).

(iii). If A is infinite, then there exists an infinite set X such that A is a Boolean
subalgebra of LX

2 (we can consider for example X = {f : A → L2 : f is
morphism of Boolean algebras}). Then, Ξ(A) is isomorphic with an abelian
lu-subgroup of Ξ(LX

2 ) = ZX . Clearly, the function u : X → Z, u(x) = 1,
for every x ∈ X is not a strong unit for ZX , but if consider G = {f ∈ ZX :
there exists an natural number n such that f ≤ nu}, then u is a strong unit
for G. Thus, Ξ(A) is isomorphic with an abelian lu-subgroup of G.
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Example 2.21. For an MV -chain A we consider GA as the set of all the order
pairs (m, a) with m ∈ Z and a ∈ A. If on GA = Z ×A we define:

(m + 1, 0) = (m, 1),

(m, a) + (n, b) =
{

(m + n, a⊕ b) if a⊕ b < 1,
(m + n + 1, a¯ b) if a⊕ b = 1,

−(m, a) = (−m− 1, a∗),
then (GA, +, (0, 0)) is an abelian group. Moreoever if we set (m, a) ≤ (n, b) iff m < n
or m = n and a ≤ b (lexicographical order), then GA becomes an abelian lu-group,
(0, 1) is a strong unit and GA = Ξ(A).

In the sequel G will designate an abelian lu-group with strong unit u, and A will
designate [0, u]G.

Definition 2.15. For any integer k, let πk : G → A be defined by

πk(g) = ((g − ku) ∧ u) ∨ 0.

Proposition 2.61. The maps πk, k ∈ Z, have the following properties for all
f, g ∈ G :

(mv − c32) π0|A = 1A;
(mv − c33) πk(g) ≥ πk+1(g), for all k ∈ Z;
(mv − c34) πk(f ∨ g) = πk(f) ∨ πk(g) and πk(f ∧ g) = πk(f) ∧ πk(g), for all k ∈ Z,

(hence πk is an increasing map for all k ∈ Z ).

Proof. (mv − c32). If g ∈ A (that is 0 ≤ g ≤ u), then π0(g) = (g ∧ u) ∨ 0 =
g ∨ 0 = g, hence π0|A = 1A.

(mv − c33). From Remark 2.18, we deduce that ku ≤ ku + u = (k + 1)u, so
−(k+1)u ≤ −ku, hence g− (k+1)u ≤ g−ku. Therefore πk+1(g) = ((g− (k+1)u)∧
u) ∨ 0 ≤ ((g − ku) ∧ u) ∨ 0 = πk(g).

(mv − c34). For f, g ∈ G and k ∈ Z we have:

πk(f ∨ g) = ((f ∨ g)− ku) ∧ u) ∨ 0 =

= (((f − ku) ∨ (g − ku)) ∧ u) ∨ 0 = (((f − ku) ∧ u) ∨ ((g − ku) ∧ u)) ∨ 0 =

= [((f − ku) ∧ u) ∨ 0] ∨ [((g − ku) ∧ u)) ∨ 0] = πk(f) ∨ πk(g)
and analogously πk(f ∧ g) = πk(f) ∧ πk(g). ¥

Remark 2.22. By the proof of Proposition 2.61 we deduce that mv−c32, mv−c33

and mv − c34 are true in general when G is non-abelian.

6. MV-algebras and Wajsberg algebras

Mathematicians want to minimize the set of axioms of a certain mathematical theory
and maximize the set of consequences of these axioms. In this section we introduce the
Wajsberg algebras, which have important consequences each having direct application in
fuzzy logic. We also study MV- algebras by giving first a long definition of this algebraic
structure.This definition shows some basic properties of this structure. We also prove that
there is one-to-one correspondence between MV- algebras and Wajsberg algebras; each MV-
algebra can be seen as Wajsberg algebra and conversely. MV- algebras will turn out to be
particular residuated lattices.
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Definition 2.16. An algebra (L,→,∗ , 1) of type (2, 1, 0) will be called Wajsberg
algebra if for every x, y, z ∈ L the following axioms are verifyed :

(W1) 1 → x = x;
(W2) (x → y) → [(y → z) → (x → z)] = 1;
(W3) (x → y) → y = (y → x) → x;
(W4) (x∗ → y∗) → (y → x) = 1.

A first example of Wajsberg algebra is offer by a Boolean algebra (L,∨,∧,′ , 0, 1),
where for x, y ∈ L, x → y = x′ ∨ y.

For more information about Wajsberg algebras, I recommend to the reader the
paper [62] and the book [22]

If L is a Wajsberg algebra, on L we define the relation x ≤ y ⇔ x → y = 1; it
is immediate that ≤ is an order relation on L (called natural order ) and 1 is the
greatest element in L.

Theorem 2.62. Let L be a Wajsberg algebra and x, y, z ∈ L. Then
(w − c1) If x ≤ y, then y → z ≤ x → z;
(w − c2) x ≤ y → x;
(w − c3) If x ≤ y → z, then y ≤ x → z;
(w − c4) x → y ≤ (z → x) → (z → y);
(w − c5) x → (y → z) = y → (x → z);
(w − c6) If x ≤ y, then z → x ≤ z → y;
(w − c7) 1∗ ≤ x;
(w − c8) x∗ = x → 1∗.

Proof. (w − c1). From W2 we deduce that x → y ≤ (y → z) → (x → z); since
x → y = 1 , then (y → z) → (x → z) = 1, hence y → z ≤ x → z.

(w − c2). From y = 1 and w − c1 we deduce that 1 → x ≤ y → x, hence
x ≤ y → x.

(w − c3). If x ≤ y → z, then (y → z) → z ≤ x → z. By W3 we deduce that
(z → y) → y ≤ x → z. Since y ≤ (z → y) → y we deduce that y ≤ x → z.

(w − c4). By W2 we have that z → x ≤ (x → y) → (z → y) , so by w − c3 we
deduce that x → y ≤ (z → x) → (z → y).

(w − c5). We have y ≤ (z → y) → y = (y → z) → z. By w − c4 we deduce that
(y → z) → z ≤ (x → (y → z)) → (x → z), hence y ≤ (x → (y → z)) → (x → z),
therefore x → (y → z) ≤ y → (x → z).

By a symmetric argument y → (x → z) ≤ x → (y → z). So, it follows the
required equality.

(w − c6). Follows immediate from w − c4.
(w − c7). We have x∗ → 1∗ ≤ 1 → x = x, so, 1∗ ≤ x.
(w − c8). We have x∗ ≤ (1∗)∗ → x∗ ≤ x → 1∗, by w − c4. On another hand,

x∗ → 1∗ ≤ 1 → x = x ⇒ x → 1∗ ≤ (x∗ → 1∗) → 1∗ = (1∗ → x∗) → x∗
⇒ 1∗ → x∗ ≤ (x → 1∗) → x∗, by w − c3.

Since 1∗ ≤ x∗, by w− c6 we deduce that 1 = (x → 1∗) → x∗, hence x → 1∗ ≤ x∗,
so x → 1∗ = x∗. ¥

We deduce that 1∗ is the lowest element of Wajsberg algebra L relative to natural
ordering, that is, 1∗ = 0.

As in the case of residuated lattices, for x ∈ L we denote x∗∗ = (x∗)∗.
The following result is straighforward :
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Proposition 2.63. If L is a Wajsberg algebra and x, y ∈ L, then
(w − c9) x∗∗ = x;

(w − c10) x∗ → y∗ = y → x, x∗ → y = y∗ → x;
(w − c11) x ≤ y ⇔ y∗ ≤ x∗.

Proof. (w − c9). From (x → 1∗) → (x → 1∗) = 1 we deduce by w − c5 that
x → [(x → 1∗) → 1∗] = 1. Thus, x ≤ x∗∗. By W4, (x∗ → 1∗) → (1 → x) = 1, so
x∗∗ → x = 1. Hence, x∗∗ ≤ x. We obtain that x∗∗ = x.

(w− c10). By W4 and w− c9 we have x∗ → y∗ ≤ y → x = y∗∗ → x∗∗ ≤ x∗ → y∗.
(w − c11). If x ≤ y, then x → y = 1, thus, by w − c9, x∗∗ → y∗∗ = 1, hence, by

W4, 1 → (y∗ → x∗) = 1, which implies y∗ ≤ x∗. By a similar argument, y∗ ≤ x∗
implies x∗∗ ≤ y∗∗, so by w − c9, x ≤ y.¥

Proposition 2.64. Let L be a Wajsberg algebra. Relative to the natural order-
ing, L become lattice, where for x, y ∈ L,

(w∨) : x ∨ y = (x → y) → y

and
(w∧) : x ∧ y = (x∗ ∨ y∗)∗.

Proof. From w−c2 we deduce that x, y ≤ (x → y) → y = (y → x) → x. If z ∈ L
is such that x, y ≤ z then x → z = 1 and by W1 we deduce that (x → z) → z = z.
Also, z → x ≤ y → x hence (y → x) → x ≤ (z → x) → x = (x → z) → z = z or
(x → y) → y ≤ z, therefore x ∨ y = (x → y) → y.

To prove that x ∧ y = (x∗ ∨ y∗)∗ , we observe that from x∗, y∗ ≤ x∗ ∨ y∗ we
deduce that (x∗ ∨ y∗)∗ ≤ x∗∗ = x, y∗∗ = y.

Let now z ∈ L such that z ≤ x, y. Then x∗, y∗ ≤ z∗ ⇒ x∗ ∨ y∗ ≤ z∗ ⇒ z = z∗∗ ≤
(x∗ ∨ y∗)∗, hence x ∧ y = (x∗ ∨ y∗)∗. ¥

Corollary 2.65. If L is a Wajsberg algebra and x, y ∈ L, then
(w − c12) (x ∧ y)∗ = x∗ ∨ y∗;
(w − c13) (x ∨ y)∗ = x∗ ∧ y∗.

In what follows we want to mark some connections between Wajsberg algebras
and residuated lattices.

If L is a Wajsberg algebra, for x, y ∈ L we define x¯ y = (x → y∗)∗.

Theorem 2.66. If (L,→,∗ , 1) is a Wajsberg algebra, then (L,∨,∧,¯,→, 0 =
1∗, 1) is a residuated lattice.

Proof. To prove that the triple (L,¯, 1) is a commutative monoid, let x, y, z ∈
L. We have x¯ y = (x → y∗)∗ = (x∗∗ → y∗)∗ = (y → x∗∗∗)∗ = (y → x∗)∗ = y ¯ x,
hence the operation ¯ is commutative.

For the associativity of ¯ we have : x¯ (y¯ z) = x¯ (z¯ y) = x¯ (z → y∗)∗ =
[x → (z → y∗)∗∗]∗ = [x → (z → y∗)]∗ = [z → (x → y∗)]∗ = [z → (x → y∗)∗∗]∗ =
z ¯ (x → y∗)∗ = z ¯ (x¯ y) = (x¯ y)¯ z.

Also, x¯ 1 = (x → 1∗)∗ = (x → 0)∗ = x∗∗ = x.
We have to prove x¯ y ≤ z ⇔ x ≤ y → z.
Indeed, x¯ y ≤ z ⇔ (x → y∗)∗ ≤ z ⇔ z∗ ≤ x → y∗ ⇔ x ≤ z∗ → y∗ = y → z ⇔

x ≤ y → z. ¥
Thus, all properties valid in any residuated lattice hold in Wajsberg algebras,

too.
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Corollary 2.67. If L is a Wajsberg algebra and x, y, z ∈ L, then
(w − c14) (x ∨ y) → z = (x → z) ∧ (y → z);
(w − c15) x → (y ∧ z) = (x → y) ∧ (x → z);
(w − c16) (x → y) ∨ (y → x) = 1;
(w − c17) (x ∧ y) → z = (x → y) → (x → z).

Proof. (w − c14),(w − c15). Follows from Theorems 2.66 and rules of calculus
from residuated lattices .

(w− c16). We have (y → x) → (x → y) = [(x∨ y) → x] → [(x∨ y) → y] = [x∗ →
(x ∨ y)∗] → [y∗ → (x ∨ y)∗] = y∗ → {[x∗ → (x ∨ y)∗] → (x ∨ y)∗} =

= y∗ → [x∗ ∨ (x∨ y)∗] = [x∗ ∨ (x∨ y)∗]∗ → y = [x∧ (y ∨ x)] → y = x → y, hence
(x → y) ∨ (y → x) = [(x → y) → (y → x)] → (y → x) = (y → x) → (y → x) = 1.

(w − c17). We have (x ∧ y) → z = (x∗ ∨ y∗)∗ → (z∗)∗ = z∗ → (x∗ ∨ y∗) =
z∗ → [(y∗ → x∗) → x∗] = z∗ → [(x → y) → x∗] = (x → y) → (z∗ → x∗)
= (x → y) → (x → z).¥

Remark 2.23. By Theorem 2.66, any Wajsberg algebra can viewed as a resid-
uated lattice. In general, the converse is not true. For an example of residuated
lattice which is not Wajsberg algebra see [129].

We will give necessary and sufficient conditions for a residuated lattice to be
Wajsberg algebra.

Define on a Wajsberg algebra L a binary operation ⊕, for x, y ∈ L, by x⊕ y =
x∗ → y. Then we have

(mv∧) : x ∧ y = (x⊕ y∗)¯ y

and
(mv∨) : x ∨ y = (x¯ y∗)⊕ y.

Indeed, x∧y = (x∗∨y∗)∗ = [(x∗ → y∗) → y∗]∗ = [y → (x∗ → y∗)∗]∗ = y¯ (x∗ →
y∗) = y ¯ (x ⊕ y∗) = (x ⊕ y∗) ¯ y and x ∨ y = (x → y) → y = (x → y∗∗)∗∗ → y =
(x¯ y∗)∗ → y = (x¯ y∗)⊕ y.

Is eassy to verify that the following equations under the given notation are
satisfied in every Wajsberg algebra:

x⊕ y = y ⊕ x; x¯ y = y ¯ x;
x⊕ (y ⊕ z) = (x⊕ y)⊕ z; x¯ (y ¯ z) = (x¯ y)¯ z;
x⊕ x∗ = 1; x¯ x∗ = 0;
x⊕ 1 = 1; x¯ 0 = 0;
x⊕ 0 = x; x¯ 1 = x;
(x⊕ y)∗ = x∗ ¯ y∗; (x¯ y)∗ = x∗ ⊕ y∗;
x∗∗ = x; 1∗ = 0;
x ∨ y = y ∨ x; x ∧ y = y ∧ x;
x ∨ (y ∨ z) = (x ∨ y) ∨ z; x ∧ (y ∧ z) = (x ∧ y) ∧ z;
x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z); x¯ (y ∨ z) = (x¯ y) ∨ (x¯ z),

that is, (L,⊕,¯,∗ , 0, 1) is an MV− algebra (see Definition 2.1).
Also the converse is true: given an MV− algebra (L,⊕,¯,∗ , 0, 1) we can define

a binary operation → such that the Wajsberg algebra axioms hold.

Proposition 2.68. Define on an MV− algebra (L,⊕,¯,∗ , 0, 1) a binary oper-
ation → by

x → y = x∗ ⊕ y (x, y ∈ L).
Then we obtain a Wajsberg algebra (L,→,∗ , 1).
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Proof. Let x, y, z ∈ L. We show that (L,→,∗ , 1) satisfies the axioms W1 −W4.
Indeed, 1 → x = 1∗ ⊕ x = 0⊕ x = x;
(x → y) → [(y → z) → (x → z)] = (x∗⊕ y)∗⊕ [(y∗⊕ z)∗⊕ (x∗⊕ z)] = (x¯ y∗)⊕

[(y¯z∗)⊕ (x∗⊕z)] = [(y∗¯x)⊕x∗]⊕ [(y¯z∗)⊕z] = (y∗∨x∗)⊕ (y∨z) ≥ y∗⊕y = 1
and (x → y) → y = (x∗⊕ y)∗⊕ y = (x¯ y∗)⊕ y = x∨ y = y∨x = (y¯x∗)⊕x =

(y∗ ⊕ x)∗ ⊕ x = (y → x) → x;
Finally, y → x = y∗ ⊕ x = x⊕ y∗ = x∗∗ ⊕ y∗ = x∗ → y∗.
Thus, (x∗ → y∗)∗ ⊕ (y → x) = 1, so (x∗ → y∗) → (y → x) = 1. ¥
By Theorems 2.66 and 2.68 we deduce

Theorem 2.69. There is a one-to-one correspondence between MV− algebras
and Wajsberg algebras.

Remark 2.24. By Theorem 2.69 we deduce that an MV− algebra has all the
Wajsberg algebra properties and conversely. Moreover, the category of MV− algebras
and the category of Wajsberg algebras are equivalent. Still, the Wajsberg algebras are
special, since they are the structure that naturally arise from Lukasiewicz logic.

Theorem 2.70. Let (L,∨,∧,¯,→, 0, 1) be a residuated lattice . Then (L,→,∗ , 1)
is a Wajsberg algebra iff (x → y) → y = (y → x) → x, for every x, y ∈ L, where
x∗ = x → 0.

Proof. , ,⇒ ”. The condition is clearly necessary.
, ,⇐ ”. From (x → 0) → 0 = (0 → x) → x we deduce that x∗∗ = 1 → x = x,

hence x∗∗ = x, for x ∈ L. So, take in consideration the calculus rules lr−c1− lr−c20

from residuated lattices, we deduce that W1,W2 and W3 holds.
For W4 : x∗ → y∗ = (x → 0) → (y → 0) = y → [(x → 0) → 0] = y → x∗∗ = y →

x and the proof is complete. ¥
Remark 2.25. Theorem 2.70 states that Wajsberg algebras, or equivalently,

MV− algebras, are exactly those residuated lattices where x ∨ y and (x → y) → y
coincide.



CHAPTER 3

BL-algebras

BL-algebras are particular residuated lattices.
The origin of BL-algebras is in Mathematical Logic. BL-algebras have been introduced

by Hájek [75] in order to investigate many-valued logic by algebraic means. His motivations
for introducing BL-algebras were of two kinds.

The first one was providing an algebraic counterpart of a propositional logic, called
Basic Logic, which embodies a fragment common to some of the most important many-
valued logics, namely ÃLukasiewicz Logic, Gödel Logic and Product Logic. This Basic Logic
(BL for short) is proposed as the most general many-valued logic with truth values in [0, 1]
and BL-algebras are the corresponding Lindenbaum-Tarski algebras.

The second one was to provide an algebraic mean for the study of continuous t-norms
(triangular norms) on [0, 1]. An exhaustive treatment of t-norms can be found in the mono-
graph [89].

It turns out that the variety of BL-algebras is generated by the class of algebras of the
form ([0, 1],min, max,¯,→, 0, 1), where ¯ is a continuous t-norm and → is its residuum
[44], called usually BL-algebras.

The standard references for the domain of BL-algebras are the monographs [75], [129].
In this chapter we present some basic definitions and results on BL-algebras and we give

more examples.
The MV-center of a BL-algebra, defined by Turunen and Sessa in [132], is a very

important construction, which associates an MV-algebra with every BL-algebra.
In this way, many properties can be transferred from MV-algebras to BL-algebras and

backwards. We shall use more times this construction. We present some results in the more
general setting of pseudo BL -algebras [53] and new results about the injective BL-algebras:
we prove that the complete and divisible MV-algebras are injective objects in the category
of BL-algebras.

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. We put
in evidence characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean
BL-algebras, too, are characterized (Corollary 3.55). Also, we prove a Nachbin type theorem
for BL-algebras (see Theorem 3.56).

These results are in the general spirit of algebras of logic, as exposed in [118].

1. Definitions and first properties. Some examples. Rules of calculus.

Definition 3.1. ([75]) A BL-algebra is an algebra

A = (A,∧,∨,¯,→, 0, 1)

of type (2, 2, 2, 2, 0, 0) satisfying the following:
(BL1) (A,∧,∨, 0, 1) is a bounded lattice;
(BL2) (A,¯, 1) is a commutative monoid;
(BL3) ¯ and → form an adjoint pair, i.e. c ≤ a → b iff a¯c ≤ b, for all a, b, c ∈ A;

67
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(BL4) a ∧ b = a¯ (a → b);
(BL5) (a → b) ∨ (b → a) = 1, for all a, b ∈ A.

Remark 3.1. BL−algebras are exactly the residuated lattices satisfying BL4, BL5

(see Definition 1.2).

In order to simplify the notation, a BL-algebra A = (A,∧,∨,¯,→, 0, 1) will be
referred by its support set, A. A BL-algebra is nontrivial if 0 6= 1 .

Remark 3.2. For any BL-algebra A, the reduct L(A) = (A,∧,∨, 0, 1) is a
bounded distributive lattice. Indeed, let x, y, z ∈ A. First, x ∧ y, x ∧ z ≤ x ∧ (y ∨ z),
therefore, (x∧ y)∨ (x∧ z) ≤ x∧ (y ∨ z). The converse holds, too as by BL4, lr− c20

and lr − c12 (since by Remark 3.1, A is a residuated lattice), we have x ∧ (y ∨ z) =
(y ∨ z) ¯ [(y ∨ z) → x] = {y ¯ [(y ∨ z) → x]} ∨ {z ¯ [(y ∨ z) → x]} ≤ [y ¯ (y →
x)] ∨ [z ¯ (z → x)] = (y ∧ x) ∨ (z ∧ x) = (x ∧ y) ∨ (x ∧ z).

A BL -chain is a totally ordered BL-algebra, i.e., a BL-algebra such that its
lattice order is total.

For any a ∈ A , we define a∗ = a → 0 and denote (a∗)∗ by a∗∗. Clearly, 0∗ = 1.
We define a0 = 1 and an = an−1 ¯ a for n ∈ N\{0}. The order of a ∈ A, a 6= 1,

in symbols ord(a) is the smallest n ∈ N such that an = 0; if no such n exists, then
ord(a) = ∞.

A BL-algebra is called locally finite if all non unit elements in it have finite
order.

Example 3.1. Define on the real unit interval I = [0, 1] the binary operations
¯ and → by

x¯ y = max{0, x + y − 1}
x → y = min{1, 1− x + y}.

Then (I,≤,¯,→, 0, 1) is a BL-algebra (called ÃLukasiewicz structure).

Example 3.2. Define on the real unit interval I = [0, 1]

x¯ y = min{x, y}
x → y = 1 iff x ≤ y and y otherwise.

Then (I,≤,¯,→, 0, 1) is a BL-algebra (called Gődel structure ).

Example 3.3. Let ¯ be the usual multiplication of real numbers on the unit
interval I = [0, 1] and x → y = 1 iff x ≤ y and y/x otherwise. Then (I,≤,¯,→, 0, 1)
is a BL-algebra (called Product structure or Gaines structure ).

Remark 3.3. Not every residuated lattice, however, is a BL-algebra (see [129],
p.16). Consider, for example a residuated lattice defined on the unit interval, for all
x, y, z ∈ I, such that

x¯ y = 0, iff x + y ≤ 1
2

and x ∧ y elsewhere

x → y = 1 if x ≤ y and max{1
2
− x, y} elsewhere.

Let 0 < y < x, x + y < 1
2 . Then y < 1

2 − x and 0 6= y = x ∧ y, but x ¯ (x → y) =
x¯ (1

2 − x) = 0. Therefore BL4 does not hold.
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Example 3.4. If (A,∧,∨, e, 0, 1) is a Boolean algebra, then (A,∧,∨,¯,→, 0, 1)
is a BL-algebra where the operation ¯ coincide with ∧ and x → y =ex ∨ y, for all
x, y ∈ A.

Example 3.5. If (A,∧,∨,→, 0, 1) is a relative Stone lattice (see [2], p.176), then
(A,∧,∨,¯,→, 0, 1) is a BL-algebra where the operation ¯ coincide with ∧ .

Example 3.6. If (A,⊕,∗ , 0) is an MV -algebra, then (A,∧,∨,¯,→, 0, 1) is a
BL-algebra, where for x, y ∈ A :

x¯ y = (x∗ ⊕ y∗)∗,

x → y = x∗ ⊕ y, 1 = 0∗,

x ∨ y = (x → y) → y = (y → x) → x and x ∧ y = (x∗ ∨ y∗)∗.

Remark 3.4. If in a BL− algebra, x∗∗ = x for all x ∈ A, and for x, y ∈ A we
denote x⊕ y = (x∗ ¯ y∗)∗ then (A,⊕,∗ , 0) is an MV− algebra.

Remark 3.5. MV−algebras will turn to be particular case of BL−algebras.
Indeed, by Theorems 2.66 and 2.69, MV−algebras are residuated lattices where the
BL-algebra axioms BL4, BL5 hold by w∨, w − c16 and mv∧.

Example 3.7. From the logical point of view, the most important example of a
BL-algebra is the Lindenbaum-Tarski algebra LBL of the propositional Basic Logic
BL. The formulas in this logic are built up of denumerable many propositional vari-
ables v1, ...vn with two operations & and → and one constant 0 as follows:

(i) every propositional variable is a formula;
(ii) 0 is a formula;

(iii) if φ, ψ are formulas, then φ&ψ and φ → ψ are formulas.
Let us denote by Fmla the set of all formulas of BL. Further connectives can be

defined:
φ ∧ ψ := φ&(φ → ψ),

φ ∨ ψ := ((φ → ψ) → ψ) ∧ ((ψ → φ) → φ),

eφ := φ → 0,

φ ↔ ψ := (φ → ψ) ∧ (ψ → φ),

1 := 0 → 0.

The axioms of a BL are:
(A1) (φ → ψ) → ((ψ → χ) → (φ → χ));
(A2) (φ&ψ) → φ;
(A3) (φ&ψ) → (ψ&φ);
(A4) (φ&(φ → ψ)) → (ψ&(ψ → φ));
(A5) (φ → (ψ → χ)) → ((φ&ψ) → χ);
(A6) ((φ&ψ) → χ) → (φ → (ψ → χ));
(A7) ((φ → ψ) → χ) → (((ψ → φ) → χ) → χ);
(A8) 0 → φ.

The deduction rule is modus ponens: if φ and φ → ψ then ψ. We say that φ
is a theorem and we denote by ` φ if there is a proof of φ from A1 − A8 using
modus ponens. The completeness theorem for BL says that ` φ if and only if φ is a
tautology in every standard BL-algebra [44].
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On the set Fmla of all formulas we define the equivalence relation ≡ by:

φ ≡ ψ iff ` φ ↔ ψ.

Let us denote by [φ] the equivalence class of the formula φ, and LBL the set of all
equivalence classes. We define

0 := [0],
1 := [1],

[φ] ∧ [ψ] := [φ ∧ ψ],
[φ] ∨ [ψ] := [φ ∨ ψ],
[φ]¯ [ψ] := [φ&ψ],

[φ] → [ψ] := [φ → ψ].
Then (LBL,∧,∨,¯,→, 0, 1) is a BL-algebra.

Example 3.8. A product algebra (or P-algebra) ([75], [46]) is a BL-algebra A
satisfying:

(P1) c∗∗ ≤ (a¯ c → b¯ c) → (a → b);
(P2) a ∧ a∗ = 0.

Product algebras are the algebraic counterparts of propositional Product Logic
[75]. The standard product algebra is the Product structure.

Example 3.9. A G-algebra ([75], Definition 4.2.12) is a BL-algebra A satis-
fying:

(G) a¯ a = a, for all a ∈ A.

G-algebras are the algebraic counterpart of Gödel Logic. The standard G-algebra
is the Gödel structure.

Example 3.10. If (A,∧,∨,¯,→, 0, 1) is a BL-algebra and X is a nonempty
set, then the set AX becomes a BL-algebra (AX ,∧,∨,¯,→, 0, 1) with the operations
defined pointwise. If f, g ∈ AX , then

(f ∧ g)(x) = f(x) ∧ g(x),

(f ∨ g)(x) = f(x) ∨ g(x),
(f ¯ g)(x) = f(x)¯ g(x),
(f → g)(x) = f(x) → g(x)

for all x, y ∈ X and 0, 1 : X → A are the constant functions associated with 0, 1 ∈ A.

Example 3.11. ([84])
We give an example of a finite BL-algebra which is not an MV -algebra. Let

A = {0, a, b, c, 1}.
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Define on A the following operations:

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

,

¯ 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

.

We have, 0 ≤ c ≤ a, b ≤ 1, but a, b are incomparable, hence A is not a BL−
chain. We remark that x ¯ y = x ∧ y for all x, y ∈ A, so ord(x) = ∞ for all
x ∈ A, x 6= 0. It follows also that x¯x = x∧x = x for all x ∈ A, so A is a G-algebra.
It is easy to see that 0∗ = 1 and x∗ = 0 for all x ∈ A, x 6= 0, so 0∗∗ = 0 and x∗∗ = 1
for all x ∈ A, x 6= 0. Thus, A is not an MV− algebra.

Example 3.12. ([84])
We give an example of a finite MV -algebra which is not an MV -chain. The set

L3×2 = {0, a, b, c, d, 1} ≈ L3 × L2 = {0, 1, 2} × {0, 1} =

= {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}
organized as lattice as in figure

and as BL−algebra with the operation → and

x¯ y = min{z : x ≤ y → z} = (x → y∗)∗, x∗ = x → 0

as in the following tables, is a non-linearly ordered MV -algebra

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

,

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

We have in L3×2 the following operations:
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⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

,
∗ 0 a b c d 1

1 d c b a 0

It is easy to see that 0∗ = 1, a∗ = d, b∗ = c, c∗ = b, d∗ = a, 1∗ = 0 and x∗∗ = x,
for all x ∈ A, hence L3×2 is an MV− algebra which is not chain.

By Remark 3.1, all properties valid in any residuated lattices hold in any BL-
algebras. Using this rules of calculus and axioms BL4, BL5 it is eassy to proved that
if A is a BL-algebra and a, a′, a1, ..., an, b, b′, c, bi ∈ A, (i ∈ I) we have the following
rules of calculus (for more details see [75] and [129]) :

(bl − c1) a¯ b ≤ a, b, hence a¯ b ≤ a ∧ b and a¯ 0 = 0;
(bl − c2) a ≤ b implies a¯ c ≤ b¯ c;
(bl − c3) a ≤ b iff a → b = 1;
(bl − c4) 1 → a = a, a → a = 1, a ≤ b → a, a → 1 = 1;
(bl − c5) a¯ a∗ = 0;
(bl − c6) a¯ b = 0 iff a ≤ b∗;
(bl − c7) a ∨ b = 1 implies a¯ b = a ∧ b;
(bl − c8) a → (b → c) = (a¯ b) → c = b → (a → c);
(bl − c9) (a → b) → (a → c) = (a ∧ b) → c;

(bl − c10) a → (b → c) ≥ (a → b) → (a → c);
(bl − c11) a ≤ b implies c → a ≤ c → b, b → c ≤ a → c and b∗ ≤ a∗;
(bl − c12) a ≤ (a → b) → b , ((a → b) → b) → b = a → b;
(bl − c13) c¯ (a ∨ b) = (c¯ a) ∨ (c¯ b);
(bl − c14) c¯ (a ∧ b) = (c¯ a) ∧ (c¯ b);
(bl − c15) a ∨ b = ((a → b) → b) ∧ ((b → a) → a);
(bl − c16) (a ∧ b)n = an ∧ bn, (a ∨ b)n = an ∨ bn, hence a ∨ b = 1 implies an ∨ bn = 1

for any n ∈ N ;
(bl − c17) a → (b ∧ c) = (a → b) ∧ (a → c);
(bl − c18) (a ∧ b) → c = (a → c) ∨ (b → c);
(bl − c19) (a ∨ b) → c = (a → c) ∧ (b → c);
(bl − c20) a → b ≤ (b → c) → (a → c);
(bl − c21) a → b ≤ (c → a) → (c → b);
(bl − c22) a → b ≤ (a¯ c) → (b¯ c);
(bl − c23) a¯ (b → c) ≤ b → (a¯ c);
(bl − c24) (b → c)¯ (a → b) ≤ a → c;
(bl − c25) (a1 → a2)¯ (a2 → a3)¯ ...¯ (an−1 → an) ≤ a1 → an;
(bl − c26) a, b ≤ c and c → a = c → b implies a = b;
(bl − c27) a∨ (b¯ c) ≥ (a∨ b)¯ (a∨ c), hence am ∨ bn ≥ (a∨ b)mn, for any m,n ∈ N ;
(bl − c28) (a → b)¯ (a

′ → b
′
) ≤ (a ∨ a

′
) → (b ∨ b

′
);

(bl − c29) (a → b)¯ (a
′ → b

′
) ≤ (a ∧ a

′
) → (b ∧ b

′
);

(bl − c30) (a → b) → c ≤ ((b → a) → c) → c;
(bl − c31) a¯ (

∧
i∈I

bi) ≤
∧
i∈I

(a¯ bi);
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a¯ (
∨
i∈I

bi) =
∨
i∈I

(a¯ bi);

a → (
∧
i∈I

bi) =
∧
i∈I

(a → bi);

(
∨
i∈I

bi) → a =
∧
i∈I

(bi → a);
∨
i∈I

(bi → a) ≤ (
∧
i∈I

bi) → a;

∨
(

i∈I

a → bi) ≤ a → (
∨
i∈I

bi);

a ∧ (
∨
i∈I

bi) =
∨
i∈I

(a ∧ bi); if A is a BL-chain then a ∨ (
∧
i∈I

bi) =
∧
i∈I

(a ∨ bi),

(whenever the arbitrary meets and unions exist)

(bl − c32) a ≤ a∗∗ , 1∗ = 0 , 0∗ = 1, a∗∗∗ = a∗, a∗∗ ≤ a∗ → a;
(bl − c33) (a ∧ b)∗ = a∗ ∨ b∗ and (a ∨ b)∗ = a∗ ∧ b∗;
(bl − c34) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ , (a ∨ b)∗∗ = a∗∗ ∨ b∗∗, (a ¯ b)∗∗ = a∗∗ ¯ b∗∗ , (a →

b)∗∗ = a∗∗ → b∗∗;
(bl − c35) (a∗∗ → a)∗ = 0, (a∗∗ → a) ∨ a∗∗ = 1;
(bl − c36) a = a∗∗ ¯ (a∗∗ → a);
(bl − c37) a → b∗ = b → a∗ = a∗∗ → b∗ = (a¯ b)∗;
(bl − c38) If a∗∗ ≤ a∗∗ → a, then a∗∗ = a;
(bl − c39) b∗ ≤ a implies a → (a¯ b)∗∗ = b∗∗.

Proof. (bl − c1). See lr − c2.
(bl − c2). See lr − c8.
(bl − c3). See lr − c4.
(bl − c4). See lr − c1.
(bl − c5). See lr − c15.
(bl − c6). See lr − c15.
(bl − c7). See lr − c28.
(bl − c8). See lr − c13.

(bl − c9). We have (a → b) → (a → c) bl−c8= [(a → b)¯ a] → c = (a ∧ b) → c.
(bl − c10). See lr − c29.
(bl − c11). See lr − c11.
(bl − c12). Follows from a ∧ b ≤ b.
(bl − c13). See lr − c20.
(bl − c14). By lr − c21, c¯ (a ∧ b) ≤ (c¯ a) ∧ (c¯ b).
Conversely, we prove first that a → b = a → (a ∧ b) : a ∧ b ≤ b ⇒ a → (a ∧ b) ≤

a → b and a → b ≤ a → (a ∧ b) ⇔ a¯ (a → b) ≤ a ∧ b ⇔ a ∧ b ≤ a ∧ b.

So, we get a → b = a → (a ∧ b)
bl−c22≤ (c¯ a) → (c¯ (a ∧ b)).

Thus a → b ≤ [(c¯ a) → (c¯ b)] → [(c¯ a) → (c¯ (a ∧ b))] and by replacing a
by b and b by a we obtain b → a ≤ [(c¯ b) → (c¯ a)] → [(c¯ b) → (c¯ (b ∧ a))]. It
is eassy to proof that the right term of the last two inequalities are equal (see also,
psbl − c23) and we denote the common value by x. So, a → b ≤ x, b → a ≤ x.

On other side, (a → b) ∨ (b → a) BL5= 1, therefore we get 1 ≤ x ∨ x = x, hence
x = 1.

Thus (c¯ a) → (c¯ b) ≤ (c¯ a) → (c¯ (a∧ b)) ⇔ (c¯ a)¯ [(c¯ a) → (c¯ b)] ≤
c¯ (a ∧ b) ⇔ (c¯ a) ∧ (c¯ b) ≤ c¯ (a ∧ b).
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(bl−c15). Denote x = ((a → b) → b)∧((b → a) → a). By BL4, a∧b = a¯(a → b)
so a ≤ (a → b) → b; from bl−c4, b ≤ (a → b) → b; it follows that a∨b ≤ (a → b) → b.
Analogous, a ∨ b ≤ (b → a) → a. Hence a ∨ b ≤ ((a → b) → b) ∧ ((b → a) → a).

We have x = x¯1 BL5= x¯ [(a → b)∨ (b → a)] bl−c13= [x¯ (a → b)]∨ [x¯ (b → a)];
but x¯ (a → b) = [(a → b) → b)∧ ((b → a) → a]¯ (a → b) ≤ [(a → b) → b)]¯ (a →
b) BL4= (a → b)∧b ≤ b; similary, x¯(b → a) ≤ a. Hence, x = [x¯(a → b)]∨ [x¯(b →
a)] ≤ b ∨ a. It follows that a ∨ b = x.

(bl − c16). If a ∨ b = 1 then, a = a ¯ 1 = a ¯ (a ∨ b) = (a ¯ a) ∨ (a ¯ b) ≤
a2 ∨ b. Hence a2 ∨ b ≥ a. Then (a2 ∨ b) ∨ b ≥ a ∨ b = 1, so a2 ∨ b = 1. Similarly,
b = 1 ¯ b = (a2 ∨ b) ¯ b = (a2 ¯ b) ∨ (b ¯ b) ≤ a2 ∨ b2. Thus, a2 ∨ b2 ≥ b; hence
a2 ∨ (a2 ∨ b2) ≥ a2 ∨ b = 1, so a2 ∨ b2 = 1.

It follows that 1 = a∨ b = a2 ∨ b2 = (a2)2 ∨ (b2)2 = ... . We obtain a2n ∨ b2n
= 1,

for each integer n ≥ 1. Since n ≤ 2n it follows that an ∨ bn ≥ a2n ∨ b2n
= 1, which

implies an ∨ bn = 1.
(bl − c17). See lr − c22.
(bl − c18). Let t ∈ A such that a → c, b → c ≤ t, so (a ∧ b) → c.
Conversely,......................
(bl − c19). See lr − c23.
(bl − c20). See lr − c10.
(bl − c21). See lr − c9.
(bl − c22). See lr − c7.
(bl − c23). See lr − c12.
(bl − c24). We have (b → c)¯ (a → b) ≤ a → c ⇔ a¯ (b → c)¯ (a → b) ≤ c ⇔

(a ∧ b)¯ (b → c) ≤ c.
But (a ∧ b)¯ (b → c) ≤ b)¯ (b → c) = b ∧ c ≤ c.
(bl − c25). Similarly with bl − c24.
(bl − c26). We have a = a ∧ c = c¯ (c → a) = c¯ (c → b) = c ∧ b = b
(bl − c27). See lr − c30.
(bl − c28). See lr − c31.
(bl − c29). See lr − c32.
(bl − c30). We have [(b → a) → c]¯ [(a → b) → c] ≤ [(b → a) → c] ∧ [(a → b) →

c] bl−c19= [(b → a) ∨ (a → b)] → c = 1 → c = c so, (a → b) → c ≤ ((b → a) → c) → c.
(bl − c31). See Theorem 1.3.
(bl − c32). See lr − c16 and lr − c17.
(bl−c33). For (a∨b)∗ = a∗∧b∗, see lr−c28. By lr−c27, we have (a∧b)∗ ≥ a∗∨b∗.

Conversely, we get that a → b = a → (a ∧ b)
bl−c20≤ (a ∧ b)∗ → a∗ and b → a =

b → (b ∧ a)
bl−c20≤ (a ∧ b)∗ → b∗, so

(a → b)¯(a∧b)∗ ≤ a∗ and (b → a)¯(a∧b)∗ ≤ b∗. It follows that (a∧b)∗ = 1¯(a∧
b)∗ = [(a → b)∨(b → a)]¯(a∧b)∗ = [(a → b)¯(a∧b)∗]∨[(b → a)¯(a∧b)∗] ≤ a∗∨b∗.

(bl − c34). We prove that (a¯ b)∗∗ = a∗∗ ¯ b∗∗.
Since a¯b ≤ a, we have that (a¯b)∗∗ ≤ a∗∗ and (a¯b)∗∗ = (a¯b)∗∗∧a∗∗ = (b →

a∗)∗ ∧ a∗∗ = a∗∗ ¯ [a∗∗ → (b → a∗)∗] = a∗∗ ¯ [a∗∗ → (b∗∗ → a∗)∗] = a∗∗ ¯ [(a∗∗ →
b∗) → a∗] = a∗∗ ¯ [(a∗∗ → b∗) ¯ a∗∗]∗ = a∗∗ ¯ (a∗∗ ∧ b∗)∗ = a∗∗ ¯ (a∗ ∨ b∗∗) =
(a∗∗ ¯ a∗) ∨ (a∗∗ ¯ b∗∗) = 0 ∨ (a∗∗ ¯ b∗∗) = a∗∗ ¯ b∗∗.

See also psbl − c52.
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(bl − c35). Since a∗ ≤ a∗∗ → a we have (a∗∗ → a)∗ ≤ a∗∗. Hence (a∗∗ →
a)∗ = a∗∗ ∧ (a∗∗ → a)∗ = a∗∗ ¯ [a∗∗ → (a∗∗ → a)∗] = a∗∗ ¯ [(a∗∗ → a) ¯ a∗∗]∗ =
a∗∗ ¯ (a∗∗ ∧ a)∗ = a∗∗ ¯ a∗ = 0.

We have [(a∗∗ → a) → a∗∗] → a∗∗ = [(a∗∗ → a)∗∗ → a∗∗] → a∗∗ = (1 → a∗∗) →
a∗∗ = 1.

On the other hand, we have [a∗∗ → (a∗∗ → a)] → (a∗∗ → a) = [(a∗∗ → (a∗∗ →
a))¯ a∗∗] → a = [a∗∗ ∧ (a∗∗ → a)] → a = [(a∗∗ → a)¯ ((a∗∗ → a) → a∗∗)] → a =

[(a∗∗ → a)¯ (a∗ → (a∗∗ → a)∗)] → a = [(a∗∗ → a)¯ a∗∗] → a = 1.
So, (a∗∗ → a) ∨ a∗∗ = 1.
(bl − c36). We have a∗∗ ¯ (a∗∗ → a) = a∗∗ ∧ a = a.
(bl − c37). See lr − c19.
(bl − c38). If a∗∗ ≤ a∗∗ → a, then by bl − c35, a∗∗ → a = (a∗∗ → a) ∨ a∗∗ = 1,

hence a∗∗ = a.
(bl− c39). Assume that b∗ ≤ a, then by using bl− c37, a → (a¯ b)∗∗ = (a¯ b)∗ →

a∗ = [(a → b∗)¯ a]∗ = (a ∧ b∗)∗ = b∗∗. ¥

Remark 3.6. Also, we obtain the rules (bl − c1) − (bl − c39) by (psbl − c1) −
(psbl − c69) if x¯ y = y ¯ x, for all x, y ∈ A, that is, the pseudo BL-algebra A is a
BL-algebra (see Chapter 5).

Proposition 3.1. If in a BL-algebra A, z∗∗ = z, for all z ∈ A, then for all
x, y ∈ A, x ∨ y = (y → x) → x.

Proof. x ∨ y = (x ∨ y)∗∗ = (x∗ ∧ y∗)∗ = [x∗ ¯ (x∗ → y∗)]∗ = (x∗ → y∗) →
x∗∗ w−c10= (y → x) → x∗∗ = (y → x) → x. ¥

Remark 3.7. By Proposition 3.1, if z∗∗ = z, holds for all z ∈ A, then for all
x, y ∈ A, (y → x) → x = x ∨ y = (x → y) → y. In [129], MV− algebras where
defined in following way: BL− algebras of this kind will turn out to be so called
MV− algebras.

As an immediate consequence of Theorem 2.70 and Proposition 3.1 we obtain
(see Remark 1.2):

Theorem 3.2. A BL− algebra A is an MV− algebra iff x∗∗ = x for all x ∈ A.

For any BL-algebra A, B(A) denotes the Boolean algebra of all complemented
elements in L(A) (hence B(A) = B(L(A))).

Proposition 3.3. For e ∈ A, the following are equivalent:
(i) e ∈ B(A);

(ii) e¯ e = e and e = e∗∗;
(iii) e¯ e = e and e∗ → e = e;
(iv) e ∨ e∗ = 1.

Proof. (i) ⇒ (ii). Suppose that e ∈ B(A). Then e ∨ a = 1 and e ∧ a = 0,
for some a ∈ A. By bl − c6 and bl − c7 we obtain a ≤ e∗. Moreover e∗ = 1 ¯ e∗ =
(e ∨ a)¯ e∗ = (e¯ e∗) ∨ (a¯ e∗) = 0 ∨ (a¯ e∗) = a¯ e∗ ≤ a. Hence e∗ ≤ a. Thus,
a = e∗ is the complement of e. It follows that e∗ ∈ B(A) and, similarly, e∗∗ is the
complement of e∗. But the complement of e∗ is also e. Since L(A) is distributive, we
get e = e∗∗.

(ii) ⇒ (iii). We have that e → e∗ = e → (e → 0) = (e¯ e) → 0 = e → 0 = e∗.
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Hence, e∧e∗ = e¯(e → e∗) = e¯e∗ = 0. Since e∧e∗ = e∗∧e = e∗¯(e∗ → e) = 0,
by bl − c6 we obtain that e∗ → e ≤ e∗∗ = e. But, by bl − c4 , e ≤ e∗ → e. We have
that e∗ → e = e.

(iii) ⇒ (iv). Applying bl − c15, e ∨ e∗ = 1 ⇔ (e → e∗) → e∗ = 1 and (e∗ →
e) → e = 1. By (iii), e∗ → e = e, hence (e∗ → e) → e = 1. We also have that
e → e∗ = e → (e → 0) = (e¯ e) → 0 = e → 0 = e∗. So, (e → e∗) → e∗ = 1.

(iv) ⇒ (i). From e∨ e∗ = 1 it follows that, by bl− c7, e∧ e∗ = e¯ e∗ = 0. Hence
e∗ is the complement of e. That is, e ∈ B(A).¥

Remark 3.8. If a ∈ A, and e ∈ B(A), then e¯ a = e ∧ a, a → e = (a¯ e∗)∗ =
a∗∨e; if e ≤ a∨a∗, then e¯a ∈ B(A). Indeed, e∧a = e¯(e → a) = e¯e¯(e → a) =
e¯ (e ∧ a) = (e¯ e) ∧ (e¯ a) = e ∧ (e¯ a) = e¯ a.

Proposition 3.4. For e ∈ A, the following are equivalent:
(i) e ∈ B(A);

(ii) (e → x) → e = e, for every x ∈ A.

Proof. (i) ⇒ (ii). If x ∈ A, then from 0 ≤ x we deduce e∗ ≤ e → x hence
(e → x) → e ≤ e∗ → e = e. Since e ≤ (e → x) → e we obtain (e → x) → e = e.

(ii) ⇒ (i). If x ∈ A, then from (e → x) → e = e we deduce (e → x)¯ [(e → x) →
e] = (e → x) ¯ e, hence (e → x) ∧ e = e ∧ x. For x = 0 we obtain that e∗ ∧ e = 0.
Also, from hypothesis (for x = 0) we obtain e∗ → e = e. So, from bl− c15 we obtain

e ∨ e∗ = [(e → e∗) → e∗] ∧ [(e∗ → e) → e]
= [(e → e∗) → e∗] ∧ (e → e)
= [(e → e∗) → e∗] ∧ 1
= (e → e∗) → e∗

= [e¯ (e → e∗)]∗ (by bl − c37)
= (e ∧ e∗)∗ = 0∗ = 1,

hence e ∈ B(A).¥

Remark 3.9. If L3×2 is the MV− algebra from Example 3.12, we remark that
0 ⊕ 0 = 0, a ⊕ a = a, c ⊕ c = 1 6= c, b ⊕ b = d 6= b, d ⊕ d = d and 1 ⊕ 1 = 1, hence
B(A) = {0, a, d, 1}.

Lemma 3.5. If e, f ∈ B(A) and x, y ∈ A, then:
(bl − c40) e ∨ (x¯ y) = (e ∨ x)¯ (e ∨ y);
(bl − c41) e ∧ (x¯ y) = (e ∧ x)¯ (e ∧ y);
(bl − c42) e¯ (x → y) = e¯ [(e¯ x) → (e¯ y)];
(bl − c43) x¯ (e → f) = x¯ [(x¯ e) → (x¯ f)];
(bl − c44) e → (x → y) = (e → x) → (e → y).

Proof. (bl − c40). We have

(e∨x)¯ (e∨ y) bl−c13= [(e∨x)¯ e]∨ [(e∨x)¯ y] bl−c13= [(e∨x)¯ e]∨ [(e¯ y)∨ (x¯ y)]

= [(e ∨ x) ∧ e] ∨ [(e¯ y) ∨ (x¯ y)] = e ∨ (e¯ y) ∨ (x¯ y) = e ∨ (x¯ y).

(bl − c41). We have

(e ∧ x)¯ (e ∧ y) = (e¯ x)¯ (e¯ y) = (e¯ e)¯ (x¯ y) = e¯ (x¯ y) = e ∧ (x¯ y).
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(bl − c42). By bl − c22 we have x → y ≤ (e ¯ x) → (e ¯ y), hence e ¯ (x →
y) ≤ e ¯ [(e ¯ x) → (e ¯ y)]. Conversely, e ¯ [(e ¯ x) → (e ¯ y)] ≤ e and (e ¯
x) ¯ [(e ¯ x) → (e ¯ y)] ≤ e ¯ y ≤ y so e ¯ [(e ¯ x) → (e ¯ y)] ≤ x → y. Hence
e¯ [(e¯ x) → (e¯ y)] ≤ e¯ (x → y).

(bl − c43). We have

x¯ [(x¯ e) → (x¯ f)] = x¯ [(x¯ e) → (x ∧ f)] bl−c31=

bl−c31= x¯ [((x¯ e) → x) ∧ ((x¯ e) → f)] =

= x¯ [1 ∧ ((x¯ e) → f)] = x¯ ((x¯ e) → f)

bl−c8= x¯ [x → (e → f)] = x ∧ (e → f) = x¯ (e → f).

(bl − c44). Follows from bl − c8 and bl − c9 since e ∧ x = e¯ x.¥

Lemma 3.6. If a, b, x are elements of A and a, b ≤ x then
(bl − c45) a¯ (x → b) = b¯ (x → a).

Proof. We have

a¯ (x → b) = (x ∧ a)¯ (x → b) = [x¯ (x → a)]¯ (x → b)

= [x¯ (x → b)]¯ (x → a) = (x ∧ b)¯ (x → a) = b¯ (x → a).¥

Proposition 3.7. For a BL- algebra (A,∧,∨,¯,→, 0, 1) the following are equiv-
alent:

(i) (A,→, 1) is a Hilbert algebra;
(ii) (A,∧,∨,→, 0, 1) is a relative Stone lattice.

Proof. (i) ⇒ (ii). Suppose that (A,→, 1) is a Hilbert algebra (see Definition
1.7), then for every x, y, z ∈ A we have

x → (y → z) = (x → y) → (x → z)

From bl − c8 and bl − c9 we have

x → (y → z) = (x¯ y) → z

and
(x → y) → (x → z) = (x ∧ y) → z,

so we obtain
(x¯ y) → z = (x ∧ y) → z

hence x¯ y = x ∧ y, that is (A,∧,∨,→, 0, 1) is a relative Stone lattice.
(ii) ⇒ (i). If (A,∧,∨,→, 0, 1) is a relative Stone lattice, then (A,∧,∨,→, 0, 1) is

a Heyting algebra, so by Remark 1.8, (A,→, 1) is a Hilbert algebra. ¥

Definition 3.2. Let A and B be BL−algebras. A function f : A → B is a
morphism of BL−algebras iff it satisfies the following conditions, for every x, y ∈ A :

(BL6) f(0A) = 0B;
(BL7) f(x¯ y) = f(x)¯ f(y);
(BL8) f(x → y) = f(x) → f(y).
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Remark 3.10. If f : A → B is a morphism of BL−algebras then for every
x, y ∈ A,

f(x∗) = [f(x)]∗, f(1A) = 1B,

f(x⊕ y) = f(x)⊕ f(y), where x⊕ y = (x∗ ¯ y∗)∗,
if x ≤ y then f(x) ≤ f(y),

f(x ∧ y) = f(x) ∧ f(y), f(x ∨ y) = f(x) ∨ f(y).
Indeed, using BL6−BL8 we obtain: f(x∗) = f(x → 0A) = f(x) → f(0A) = f(x) →
0B = [f(x)]∗; f(1A) = f(0A → 0A) = f(0A) → f(0A) = 0B → 0B = 1B; f(x⊕ y) =
f((x∗ ¯ y∗)∗) = [f(x∗ ¯ y∗)]∗ = [f(x∗) ¯ f(y∗)]∗ = [f(x)∗ ¯ f(y)∗]∗ = f(x) ⊕ f(y);
if x ≤ y then x → y = 1A, thus f(x → y) = f(1A) ⇔ f(x) → f(y) = 1B, hence
f(x) ≤ f(y); f(x∧y) = f(x¯(x → y)) = f(x)¯f(x → y) = f(x)¯ [f(x) → f(y)] =
f(x)∧f(y); f(x∨y) = f(((x → y) → y)∧((y → x) → x)) = f((x → y) → y)∧f((y →
x) → x) = [( f(x) → f(y)) → f(y)] ∧ [(f(y) → f(x)) → f(x)] = f(x) ∨ f(y).

We deduce that every morphism of BL -algebras is a morphism of MV− algebras
(see Definition 2.3).

We shall denote by BL the category whose objects are nontrivial BL− algebras
and whose morphisms are BL− morphisms. Clearly, the category MV of MV−
algebras is a subcategory of BL.

2. Injective objects in the BL-algebras category.

The first aim of this Subsection is to present the MV-center of a BL-algebra, defined
by Turunen and Sessa in [132]. This is a very important construction, which associates an
MV-algebra with every BL-algebra. In this way, many properties can be transferred from
MV-algebras to BL-algebras and backwards. We shall use more times this construction. We
present some known results, which can be found in [70] and we also prove some new ones.

The second one was to present some results about the injective BL-algebras.
We recall that an MV-algebra is called complete if it contains the greatest lower bound

and the lowest upper bound of any subset. In [129] the injective MV-algebras are charac-
terized: In fact, an MV-algebra A is injective if and only if A is complete and divisible, i.e.
for any a ∈ A and for any natural number n ≥ 1 there is x ∈ A, called the n-divisor of a,
such that nx = a and a∗⊕ [(n−1)x] = x∗. It is also known that all injective MV-algebras
are either isomorphic to ÃLukasiewicz structure or, more generally, isomorphic to retracts of
power of ÃLukasiewicz structure.

In [30], we prove that the complete and divisible MV-algebras are injective objects in
the category of BL-algebras (see also [63]).

2.0.1. MV-center of a BL-algebra. As we saw in Example 3.6, MV -algebras are
BL-algebras, and more, a BL-algebra A is an MV -algebra iff a∗∗ = a for every
a ∈ A.

The MV -center of a A, denoted by MV (A) is defined as

MV (A) = {a ∈ A : a∗∗ = a} = {a∗ : a ∈ A}.
Hence, a BL-algebra A is an MV -algebra iff A = MV (A).

By Proposition 3.3 follows that B(A) ⊆ MV (A).

Example 3.13. ([132]) If A is a product algebra or a G-algebra, then MV (A)
is a Boolean algebra. If A is the Product structure or the Gődel structure, then
MV (A) = {0, 1}.
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Example 3.14. If A is the 5-element BL-algebra from Example 3.11, MV (A) =
{0, 1}.

Proposition 3.8. ([132], Theorem 2 ) Let A be a BL-algebra and let us define
for all a, b ∈ A, a∗ ⊕ b∗ = (a¯ b)∗. Then

(i) (MV (A),⊕,∗ , 0) is an MV -algebra;
(ii) the order ≤ of A agrees with the one of MV (A), defined by

a ≤MV b iff a∗ ⊕ b = 1, for all a, b ∈ MV (A);

(iii) the residuum → of A coincides with the residuum →MV in MV (A), defined
by

a →MV b = a∗ ⊕ b, for all a, b ∈ MV (A);

(iv) the product ¯MV on MV (A) is such that

a¯MV b = (a¯ b)∗∗ = a¯ b, for all a, b ∈ MV (A);

(v) MV (A) is the largest MV− subalgebra of A.

Proposition 3.9. B(A) = B(MV (A)).

Proof. Applying Proposition 3.3, (ii), we get that B(A) = MV (A) ∩ {a ∈ A :
a¯ a = a} = B(MV (A)), following Theorem 2.8. ¥

2.1. Reflexive subcategories.

Remark 3.11. ([2], p.31 ) Since the categories MV and BL are equational, then
in these categories the monomorphisms are exactly the one-one morphisms.

Definition 3.3. ([2], p.27) A subcategory B of category A is reflective if there
is a functor R : A → B called reflector, such that for each A ∈ Ob(A), there exists
a morphism ΦR(A) : A → R(A) of A with the following properties:

(R1) If f ∈ HomA(A,A′), then ΦR(A′)◦f = R(f)◦ΦR(A), that is the diagram

A
f−→ A′

↓ΦR(A) ↓ΦR(A′)

R(A)
R(f)−→ R(A′)

is commutative,
(R2) If B ∈ Ob(B), and f ∈ HomA(A, B), then there exists a unique morphism

f ′ ∈ HomB(R(A), B), such that f ′ ◦ ΦR(A) = f, that is the diagram

A
ΦR(A)−→ R(A)

↘
f

↙
f ′

B

is commutative.

Theorem 3.10. ([2], p.29 ) Suppose R : A → B is a reflector. Then R preserves
inductive limits of partially ordered systems.

Theorem 3.11. ([2], p.30 ) Suppose R : A → B is a reflector which preserves
monomorphisms. If B is an injective object in B, then it is also injective in A.
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Theorem 3.12. The category MV of MV-algebras is a reflective subcategory of
the category BL of BL-algebras and the reflector R : BL →MV preserves monomor-
phisms.

Proof. Let (A,∧,∨,¯,→, 0, 1) ∈ Ob(BL) and define

R(A) = MV (A) = {x∗ : x ∈ A} = {x ∈ A : x∗∗ = x}.
By Proposition 3.8, (R(A),∧,∨,⊕,∗ , 0) is the greatest MV -subalgebra of A via the
operations:

x∗ ⊕ y∗ = x∗∗ → y∗ = (x¯ y)∗ = (x∗∗ ¯ y∗∗)∗,

x∗ ∨ y∗ = (x∗ → y∗) → y∗ = (y∗ → x∗) → x∗,
and

x∗ ∧ y∗ = (x∗∗ ∨ y∗∗)∗.
We define ΦR(A) : A →R(A) by ΦR(A)(x) = x∗∗, for every x ∈ A.
By bl − c34 we deduce that ΦR(A) is a morphism in BL.
If A,A′ ∈ Ob(BL) and f ∈ HomBL(A,A′), then R(f) : R(A) → R(A′) defined

by R(f)(x∗) = f(x∗) = (f(x))∗ for every x ∈ A is a morphism in MV.
Indeed, if x, y ∈ A, then R(f)(x∗ ⊕ y∗) = R(f)((x ¯ y)∗) = (f(x ¯ y))∗ =

(f(x) ¯ f(y))∗ = f(x)∗ ⊕ f(y)∗ = (R(f)(x∗)) ⊕ (R(f)(y∗)) and R(f)((x∗)∗) =
(f(x∗))∗ = (f(x)∗)∗ = (R(f)(x))∗.

So, we obtain a functor R : BL →MV .
To prove R is a reflector, we consider the diagram

A
f−→ A′

↓ΦR(A) ↓ΦR(A′)

R(A)
R(f)−→ R(A′)

with A,A′ ∈ Ob(BL).
If x ∈ A, then (ΦR(A′)◦f)(x) = ΦR(A′)(f(x)) = (f(x))∗∗ and (R(f)◦ΦR(A))(x) =

R(f)(ΦR(A)(x)) = R(f)(x∗∗) = (f(x∗))∗ = (f(x)∗)∗ = (f(x))∗∗, hence ΦR(A′)◦f =
R(f) ◦ ΦR(A), that is the above diagram is commutative.

Let now A ∈ Ob(BL), M ∈ Ob(MV) and f : A → M a morphism in BL.

A
ΦR(A)−→ R(A)

↘
f

↙
f ′

M

For x ∈ A, we define f ′(x∗) = f(x∗) = f(x)∗ (hence f ′ = f|R(A)).
For x, y ∈ A, we have f ′(x∗⊕y∗) = f ′((x¯y)∗) = (f(x¯y))∗ = (f(x)¯f(y))∗ =

f(x)∗ ⊕ f(y)∗, f((x∗)∗) = f(x)∗∗ = f(x) = (f(x∗))∗ and f ′(0) = f ′(1∗) = f(1)∗ =
1∗ = 0, hence f ′ is an morphism in MV. Since (f ′ ◦ ΦR(A))(x) = f ′(ΦR(A)(x)) =
f ′(x∗∗) = f(x)∗∗ = f(x), we deduce that f ′ ◦ ΦR(A) = f.

If we have again f ′′ : R(A) → M a morphism in MV such that f ′′ ◦ΦR(A) = f
, then for any x ∈ A, (f ′′ ◦ ΦR(A))(x∗) = f(x∗), hence f ′′(x∗) = f(x∗) = f ′(x∗), so
f ′′ = f ′.

Let now f : A → A′ a monomorphism in BL and x, y ∈ A such that R(f)(x∗) =
R(f)(y∗).
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Then f(x∗) = f(y∗), hence x∗ = y∗, that is R(f) is a monomorphism in MV
(by Remark 3.11). ¥

We recall that an MV -algebra is called complete if it contains the greatest lower
bound and the lowest upper bound of any subset.

Definition 3.4. An MV -algebra A is called divisible if for any a ∈ A and for
any natural number n ≥ 1 there is x ∈ A such that nx = a and a∗⊕ [(n− 1)x] = x∗.

In [63] and [129], p.66, it is proved:

Theorem 3.13. For any MV -algebra A the next assertions are equivalent:
(i) A is injective object in the category MV,

(ii) A is complete and divisible MV -algebra.

Theorem 3.14. If A is a complete and divisible MV-algebra, then A is an in-
jective object in the category BL.

Proof. By Theorem 3.13, A is an injective object in the category MV. Since
MV is reflective subcategory of BL and the reflector R : BL → MV preserves
monomorphisms (by Theorem 3.12), then by Theorem 3.11 we deduce that A is
injective object in the category BL. ¥

3. The lattice of deductive systems of a BL-algebra

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. We put
in evidence characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean
BL-algebras, too, are characterized (Corollary 3.55). We also prove some results relative
to the lattice of deductive systems of a BL-algebra (Theorem 3.20 characterizes the BL-
algebras for which the lattice of deductive systems is a Boolean lattice) and we put in
evidence characterizations for prime and completely meet-irreducible deductive systems of
a BL-algebra (see Proposition 3.31, Corollary 3.33, Theorem 3.34, Theorem 3.39, Theorem
3.40 and Corollary 3.41).

Also we introduce the notions of archimedean and hyperarchimedean BL-algebra and
we prove a Nachbin type theorem for BL-algebras (see Theorem 3.56).

3.1. The lattice of deductive systems of a BL-algebra. As in the case of
residuated lattices (see Definition 1.8) we have:

Definition 3.5. A non empty subset D ⊆ A is a deductive system of A, ds for
short, if the following conditions are satisfied:

(bl −Ds1) 1 ∈ D;
(bl −Ds2) If x, x → y ∈ D , then y ∈ D.

Clearly {1} and A are ds; a ds of A is called proper if D 6= A.

Remark 3.12. A ds D is proper iff 0 /∈ D iff no element a ∈ A holds a, a∗ ∈ D.

Remark 3.13. In [130] it is proved that a non empty subset D ⊆ A is a ds of
A, iff D is a filter of A (i.e. for all a, b ∈ A:

(bl −Ds′1) a, b ∈ D implies a¯ b ∈ D;
(bl −Ds′2) a ∈ D and a ≤ b implies b ∈ D).



82 3. BL-ALGEBRAS

Remark 3.14. A deductive system D ⊆ A is a lattice filter of A. Indeed, let
a, b ∈ D. Since a → [b → (a¯ b)] = 1 ∈ D, we have b → (a¯ b) ∈ D, and, moreover,
a¯ b ∈ D. Now a¯ b ≤ a¯1 = a, a¯ b ≤ 1¯ b = b, hence a¯ b ≤ a∧ b, so a∧ b ∈ D.
Convesely, if a∧ b ∈ D then a, b ∈ D as a∧ b ≤ a, b. Thus, D is a lattice filter of A.

Deductive systems are called also implicative filters in literature.
We denote by Ds(A) the set of all deductive systems of A.
For a nonempty subset M ⊆ A we denote by [M) the ds of A generated by M

(that is, [M) = ∩{D ∈ Ds(A) : M ⊆ D}).
If M = {a} with a ∈ A, we denote by [a) the ds generated by {a} ([a) is called

principal).
For D ∈ Ds(A) and a ∈ A\D, we denote by D(a) = [D ∪ {a}).
Proposition 3.15. (i) If M ⊆ A is a nonempty subset of A, then:

[M) = {a ∈ A : x1 ¯ ...¯ xn ≤ a, for some x1,..., xn ∈ M}.
In particular, for a ∈ A,

[a) = {x ∈ A : x ≥ an, for some n ∈ N};
(ii) If D ∈ Ds(A) and a ∈ A\D, then

D(a) = {x ∈ A : x ≥ y ¯ an, with y ∈ D and n ∈ N};
(iii) If x, y ∈ A, and x ≤ y , then [y) ⊆ [x);
(iv) If x, y ∈ A, then [x) ∩ [y) = [x ∨ y).

Proof. (i), (ii). As in the case of residuated lattices (see the proof of Proposition
1.29).

(iii). Let z ∈ [y). Then there is n ≥ 1 such that z ≥ yn ≥ xn, hence z ∈ [x).
(iv). As in the case of residuated lattices (see the proof of Proposition 1.32, (iii)).

¥

Remark 3.15. If e, f ∈ B(A), then [e) = {x ∈ A : e ≤ x} and [e) = [f)
iff e = f. Indeed, by Proposition 3.15, [e) = {x ∈ A : x ≥ en = e, for some
n ∈ N} = {x ∈ A : e ≤ x}; if [e) = [f), then e ∈ [f), so e ≥ f and f ∈ [e), so f ≥ e.
We deduce that e = f.

Example 3.15. Let A be the BL−algebra from Example 3.11. Then [a) =
{a, 1}, [b) = {b, 1} and [c) = {a, b, c, 1}.

Remark 3.16. ([129], p.17 ) If D ∈ Ds(A) and a ∈ A, then a ∈ D iff an ∈ D,
for any n ∈ N.

For D1, D2 ∈ Ds(A) we put D1 ∧D2 = D1 ∩D2 and D1 ∨D2 = [D1 ∪D2) =
{a ∈ A : a ≥ x¯ y, for some x ∈ D1 and y ∈ D2}.

Then (Ds(A),∧,∨, {1}, A) is a complete Brouwerian lattice.

Proposition 3.16. The lattice (Ds(A), ⊆) is an algebraic lattice (see Definition
1.9).

Proof. See the proof of Proposition 1.33. ¥

Lemma 3.17. If x, y ∈ A, then [x) ∨ [y) = [x¯ y).
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Proof. Since x¯ y ≤ x, y, then [x), [y) ⊆ [x¯ y), hence [x) ∨ [y) ⊆ [x¯ y).
If z ∈ [x¯y), then for some natural number n, z ≥ (x¯y)n = xn¯yn ∈ [x)∨ [y),

hence z ∈ [x) ∨ [y), that is [x¯ y) ⊆ [x) ∨ [y), so [x) ∨ [y) = [x¯ y).¥
For D1, D2 ∈ Ds(A) we put

D1 → D2 = {a ∈ A : D1 ∩ [a) ⊆ D2}.
Lemma 3.18. If D1, D2 ∈ Ds(A) then
(i) D1 → D2 ∈ Ds(A);

(ii) If D ∈ Ds(A), then D1 ∩D ⊆ D2 iff D ⊆ D1 → D2 (that is, D1 → D2 =
sup{D ∈ Ds(A) : D1 ∩D ⊆ D2}).

Proof. See the case of residuated lattices (Lemma 1.35). ¥
Remark 3.17. From Lemma 3.18 we deduce that (Ds(A),∨,∧,→, {1}) is a

Heyting algebra; for D ∈ Ds(A),

D∗ = D → 0 = D → {1} = {x ∈ A : [x) ∩D = {1}}
and so, for a ∈ A,

[a)∗ = {x ∈ A : [x) ∩ [a) = {1}} =
= {x ∈ A : [x ∨ a) = {1}} = {x ∈ A : x ∨ a = 1}.

Proposition 3.19. If x, y ∈ A, then [x¯ y)∗ = [x)∗ ∩ [y)∗.

Proof. If a ∈ [x¯y)∗, then a∨(x¯y) = 1. Since x¯y ≤ x, y then a∨x = a∨y = 1,
hence a ∈ [x)∗ ∩ [y)∗, that is [x¯ y)∗ ⊆ [x)∗ ∩ [y)∗.

Let now a ∈ [x)∗ ∩ [y)∗, that is a ∨ x = a ∨ y = 1.
By bl− c27 we deduce a∨ (x¯ y) ≥ (a∨ x)¯ (a∨ y) = 1, hence a∨ (x¯ y) = 1,

that is a ∈ [x¯ y)∗ .
It follows that [x)∗ ∩ [y)∗ ⊆ [x¯ y)∗, hence [x¯ y)∗ = [x)∗ ∩ [y)∗. ¥
As in the case of residuated lattices (see Theorem 1.39) we have:

Theorem 3.20. If A is a BL-algebra, then the following assertions are equiva-
lent:

(i) (Ds(A),∨,∧,∗ , {1}, A) is a Boolean algebra,
(ii) Every ds of A is principal and for every x ∈ A, there is n ∈ N such that

x ∨ (xn)∗ = 1.

3.2. The spectrum of a BL-algebra. For the lattice Ds(A) (which is dis-
tributive) we denote by Spec(A) the set of all (finitely) meet-irreducible (hence
meet-prime) elements (Spec(A) is called the spectrum of A) and by Irc(A) the set
of all (completely) meet-irreducible elements of the lattice Ds(A) (see Definition
1.10).

Definition 3.6. ([129], p.18) A proper ds D of A is called prime if, for any
a, b ∈ A, the condition a ∨ b ∈ D implies a ∈ D or b ∈ D.

Theorem 3.21. A non-degenerate BL-algebra contains a prime ds.

Proof. See [129], p.18, Theorem 1. ¥
Example 3.16. Let A be the BL−algebra from Example 3.11. Then the ds of A

are {1}, {a, 1}, {b, 1}, {a, b, c, 1} and A. Since ¯ = ∧ the ds of A coincide with the
filters of the associated lattice L(A). It is eassy to see that A has three prime filters
{a, 1}, {b, 1}, {a, b, c, 1}.
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A congruence relation on a BL− algebra A is an equivalence relation with respect
to the operations ¯,→,∨ and ∧.

In [129], (p.21, Propositions 26, 27 and 28) it is proved that there is one-to-one
correspondence between deductive systems of A and congruence relations on A.

Indeed, if ∼ is a congruence relation on a BL− algebra A then D = {a ∈ A :
a ∼ 1} is a deductive system of A. Conversly, if D is a deductive system of A then
by defining x ∼D y iff (x → y)¯ (y → x) ∈ D, we obtain a congruence relations on
A.

Starting from a ds D, the quotient algebra A/D becomes a BL-algebra with the
natural operations induced from those of A. We let x/D be the congruence class of
x modulo ≡D, x ∈ A.

In [75] it is proved the following result:

Proposition 3.22. Let D be a ds of A and x, y ∈ A.
(i) x/D = 1/D iff x ∈ D;

(ii) x/D = 0/D iff x∗ ∈ D;
(iii) if D is proper and x/D = 0/D then x /∈ D;
(iv) x/D ≤ y/D iff x → y ∈ D;
(v) A/D is BL− chain iff D is a prime ds of A.

Theorem 3.23. ([53],[54],[129]) For a proper P ∈ Ds(A) the following are
equivalent:

(i) P is prime;
(ii) For all a, b ∈ A, a → b ∈ P or b → a ∈ P ;

(iii) A/P is a chain.

Proof. First we prove the equivalence (i) ⇔ (ii).
(i) ⇒ (ii). Since for all a, b ∈ A, (a → b) ∨ (b → a) = 1 ∈ P, we have that either

a → b ∈ P or b → a ∈ P.
(ii) ⇒ (i). Assume either a → b ∈ P or b → a ∈ P, holds for all a, b ∈ A. Let

a ∨ b ∈ P, and say, a → b ∈ P. Now a ∨ b ≤ (a → b) → b ∈ P, therefore b ∈ P. Thus,
P is prime.

(i) ⇒ (iii). If P is prime then by equivalence (i) ⇔ (ii), for all a, b ∈ A,
a → b ∈ P or b → a ∈ P. Thus a/P ≤ b/P or b/P ≤ a/P , so A/P is a chain.

(i) ⇒ (iii). If A/P is chain, then for all a, b ∈ A, either a/P ≤ b/P or b/P ≤ a/P ,
whence either a → b ∈ P or b → a ∈ P. Thus, by equivalence (i) ⇔ (ii), P is prime.
¥

Theorem 3.24. A is a BL− chain iff then any proper ds of A is a prime ds of
A.

Proof. Assume first that A is a BL− chain and let D a proper ds of A. Then
for all a, b ∈ A, a ∨ b = a or a ∨ b = b. Thus a ∨ b ∈ D iff a ∈ D or b ∈ D and so
each ds D of A is prime. Conversely, if each ds D of A is prime, then, in particular,
{1} is prime and as, for all a, b ∈ A, (a → b) ∨ (b → a) = 1, either a → b = 1 or
b → a = 1, that is, either a ≤ b or b ≤ a, whence A is a BL− chain.¥

Theorem 3.25. If P is a prime ds of A and D is a proper ds of A such that
P ⊆ D, then also D is prime.

Proof. Assume a, b ∈ A such that a∨b ∈ D. Since P is prime either a → b ∈ P or
b → a ∈ P. Assume that a → b ∈ P. Then a → b ∈ D. Since a∨b ≤ (a → b) → b ∈ D
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we deduce that b ∈ D. Analogously, the condition b → a ∈ P implies a ∈ D, thus D
is prime. ¥

Theorem 3.26. The set of proper deductive systems including a given prime ds
P of A is totally ordered with respect the inclusion.

Proof. Let D, D′ two proper ds containing P such that D * D′ and D′ * D.
Then there are two disjoint elements a, b ∈ A such that a ∈ D\D′ and b ∈ D′\D.
Since P is prime either a → b ∈ P or b → a ∈ P. If a → b ∈ P ⊆ D, then b ∈ D,
a contradiction. Similarly, if b → a ∈ P ⊆ D′, then a ∈ D′, another contradiction.
Thus, either D ⊆ D′ or D′ ⊆ D. ¥

Definition 3.7. If D is a proper ds and there exists another proper ds D′ such
that D ⊆ D′ we say that D can be extended to D′.

Theorem 3.27. Any proper ds D of a non-degenerate BL− algebra A can be
extended to a prime ds.

Proof. See [129], p.19, Theorem 2. ¥
As in the case of residuated lattices (see Theorem 1.43) we have:

Theorem 3.28. (Prime ds theorem) If D ∈ Ds(A) and I an ideal of the lattice
L(A) such that D ∩ I = ∅, then there is a prime ds P of A such that D ⊆ P and
P ∩ I = ∅.

Corollary 3.29. If D ∈ Ds(A) is proper and a ∈ A\D, then there is P ∈
Spec(A) such that D ⊆ P and a /∈ P. In particular, for D = {1} we deduce that for
any a ∈ A, a 6= 1, there is Pa ∈ Spec(A), such that a /∈ Pa.

Proposition 3.30. For a proper P ∈ Ds(A) the following are equivalent:
(i) P is prime;

(ii) P ∈ Spec(A);
(iii) If a, b ∈ A and a ∨ b = 1, then a ∈ P or b ∈ P.

Proof. (i) ⇒ (ii). Let D1, D2 ∈ Ds(A) such that D1 ∩D2 = P.
Since P ⊆ D1, P ⊆ D2, by Theorem 3.26, D1 ⊆ D2 or D2 ⊆ D1, hence P = D1

or P = D2.
(ii) ⇒ (i). Let a, b ∈ A, such that a ∨ b ∈ P.
Since P (a)∩P (b) = (P ∨ [a))∩ (P ∨ [b)) = P ∨ ([a)∩ [b)) = P ∨ [a∨ b) = P, then

P = P (a) or P = P (b), hence a ∈ P or b ∈ P, that is P is prime.
(i) ⇒ (iii). Clearly, since 1 ∈ P.
(iii) ⇒ (i). Followings by Theorem 3.23, (ii) ⇒ (i) (since (a → b) ∨ (b → a) = 1

for every a, b ∈ A). ¥
As in the case of residuated lattices we have the following results:

Proposition 3.31. For a proper P ∈ Ds(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) For every x, y ∈ A\P there is z ∈ A\P such that x ≤ z and y ≤ z.

Corollary 3.32. For a proper P ∈ Ds(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) If x, y ∈ A and [x) ∩ [y) ⊆ P, then x ∈ P or y ∈ P.

Corollary 3.33. For a proper P ∈ Ds(A) the following are equivalent:
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(i) P ∈ Spec(A);
(ii) For every x, y ∈ A/P, x 6= 1, y 6= 1 there is z ∈ A/P, z 6= 1 such that x ≤ z,

y ≤ z.

Theorem 3.34. For a proper P ∈ Ds(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) For every D ∈ Ds(A), D → P = P or D ⊆ P.

Corollary 3.35. For a BL-algebra A, Spec(A) ⊆ D(Ds(A)) ∪Rg(Ds(A)).

Remark 3.18. From Corollary 3.29 we deduce that for every D ∈ Ds(A),

D = ∩{P ∈ Spec(A) : D ⊆ P} and ∩ {P ∈ Spec(A)} = {1}.
Relative to the uniqueness of deductive systems as intersection of primes we

have:

Theorem 3.36. If every D ∈ Ds(A) has a unique representation as an inter-
section of elements of Spec(A), then (Ds(A),∨,∧,∗ , {1}, A} is a Boolean algebra.

Lemma 3.37. If D ∈ Ds(A), D 6= A and a /∈ D, then there exists Da ∈ Ds(A)
maximal with the property that D ⊆ Da and a /∈ Da.

If in Lemma 3.37 we consider D = {1} we obtain:

Corollary 3.38. For any a ∈ A, a 6= 1, there is an ds Da maximal with the
property that a /∈ Da .

Theorem 3.39. For D ∈ Ds(A), D 6= A the following are equivalent:
(i) D ∈ Irc(A);

(ii) There is a ∈ A such that D is maximal relative to a (see Definition 1.13).

Theorem 3.40. Let D ∈ Ds(A), D 6= A and a ∈ A\D. Then the following are
equivalent:

(i) D is maximal relative to a;
(ii) For every x ∈ A\D there is n ∈ N such that xn → a ∈ D.

Corollary 3.41. For D ∈ Ds(A), D 6= A, the following are equivalent:
(i) D ∈ Irc(A);

(ii) In the set A/D\{1} we have an element p 6= 1 with the property that for
every x ∈ A/D\{1} there is n ∈ N such that xn ≤ p.

Proposition 3.42. If P is a minimal prime ds (see Definition 1.14), then for
any a ∈ P there is b ∈ A\P such that a ∨ b = 1.

3.3. Maximal deductive systems; archimedean and hyperarchimedean
BL-algebras.

Definition 3.8. An ds of a BL-algebra A is maximal if it is proper and it is
not contained in any other proper ds.

We shall denote by Max(A) the set of all the maximal ds of A; it is obvious
that, Max(A) ⊆ Spec(A).

We have:

Theorem 3.43. For M ∈ Ds(A),M 6= A, the following conditions are equiva-
lent:
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(i) M ∈ Max(A);
(ii) For every x /∈ M there is n ∈ N such that (xn)∗ ∈ M ;

(iii) A/M is locally finite.

Proof. (i) ⇒ (ii). Assume that M ∈ Max(A) and x /∈ M. Define a subset D
of A by D = {z ∈ A : for some y ∈ M, n ∈ N, y ¯ xn ≤ z}. Obviously, 1 ∈ D. If
a, a → b ∈ D then for some y, y′ ∈ M, n,m ∈ N, holds y ¯ xn ≤ a, y′ ¯ xm ≤ a → b.
Since y ¯ y′ ∈ M and (y ¯ xn) ¯ (y′ ¯ xm) = (y ¯ y′) ¯ xn+m ≤ a ¯ (a → b) ≤ b.
Thus b ∈ D, so D is a ds.

Since, for any y ∈ M, y ¯ x ≤ y, we have M ⊆ D. But as 1 ∈ M and 1¯ x ≤ x,
we also have x ∈ D. Since M is maximal, D = A, so 0 ∈ D. Then there exists
y ∈ M,n ∈ N, y ¯ xn ≤ 0 ⇔ y ≤ (xn)∗. Hence (xn)∗ ∈ M.

(ii) ⇒ (iii). Let x/M ∈ A/M be such that x/M 6= 1/M, so x /∈ M. Then
there is n ∈ N such that (xn)∗ ∈ M and therefore (xn/M)∗ = (xn)∗/M = 1/M ,
so xn/M ≤ (xn)∗∗/M = 1∗/M = 0/M. We deduce that xn/M = (x/M)n = 0/M,
whence A/M is locally finite.

(iii) ⇒ (i). Let D be a ds such that M ⊂ D. Then there is an element x ∈ A
such that x ∈ D and x /∈ M. Then x/M 6= 1/M and therefore xn/M = 0/M for
some n, that is 0 ∼M xn. Since M ⊂ D, then 0 ∼D xn, that is xn/D = 0/D. But
x ∈ D so xn ∈ D, thus xn/D = 1/D, therefore 0/D = 1/D, which implies 0 ∈ D, so
D = A, whence M is maximal. ¥

In [129] it is proved that:

Theorem 3.44. If A is a locally finite BL− algebra, then x∗∗ = x for any
element x ∈ A.

Remark 3.19. By Theorem 3.44 and Theorem 3.2, we see that any locally finite
BL− algebra is an MV− algebra; in particular the quotient algebra A/M induced
by a maximal ds M of a BL− algebra A is an MV− algebra.

Theorem 3.45. In a non-degenerate BL−algebra any proper ds can be extended
to a maximal, prime ds.

Proof. Let D ∈ Ds(A) be a proper ds. By Theorem 3.27, D can be extended
to a prime ds P . Let the set F = {D′ : P ⊆ D′, D′ a proper ds on A}. By Theorem
3.26 F is a totally ordered set, and by Theorem 3.25, D′ ∈ F is a prime ds. Let
M = ∪{D′ : D′ ∈ F}. Obviously, 1 ∈ M. If a, a → b ∈ M, then a, a → b ∈ D′, for
some D′ ∈ F , so b ∈ D′ ⊆ M. Therefore, M is a ds. Since 0 /∈ D′ for any D′ ∈ F , we
deduce that 0 /∈ M. Thus M is a proper ds and obviously is prime. The maximality
of M is implied by the construction of M. ¥

Let us remind that a BL− algebra A is a subdirect product of a family {Ai}i∈I

of BL− algebras if
(i) A is a BL− subalgebra of

∏
i∈I

Ai;

(ii) for all j ∈ I the BL− morphism A ↪→ ∏
i∈I

Ai
πj→ Aj is onto.

A representation of A as a subdirect product of nontrivial BL−algebras {Ai}i∈I

consists a monomorphism α : A → ∏
i∈I

Ai such that α(A) is a subdirect product of

the family {Ai}i∈I .

Theorem 3.46. ([75], Lemma 2.3.16 ) Every BL− algebra is a subdirect product
of BL− chains.
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Applying a general result of universal algebra ([18], Lemma II.8.2, P.57), we get
also the following generalization of the above theorem:

Theorem 3.47. If {Di}i∈I is a family of filters of A such that ∩
i∈I

Di = {1}, then

the family {A/Di}i∈I determines a subdirect representation of A.

If f : A → B is a BL− morphism, then the kernel of f is the set Ker(f) = {a ∈
A : f(a) = 1}.

Proposition 3.48. Let f : A → B be a BL− morphism. Then the following
properties hold:

(i) for any (proper, prime) ds D′ of B, the set f−1(D′) = {a ∈ A : f(a) ∈ D′}
is a (proper, prime) ds of A; in particular, Ker(f) is a proper ds of A;

(ii) if M ′ is a maximal ds of B, then f−1(M ′) is a maximal ds of A;
(iii) if f is surjective and D is a ds of A, then f(D) is a ds of B;
(iv) if f is surjective and M is a maximal ds of A such that f(M) is proper,

then f(M) is a maximal ds of B;
(v) f is injective iff Ker(f) = {1}.

Proof. (i). The proof follows directly from the classical ones.
(ii). By (i) we have that f−1(M ′) is a proper ds of A. To prove that it is maximal

we shall apply Theorem 3.43. Let x ∈ A such that x /∈ f−1(M ′), so f(x) /∈ M ′.
Since M ′ is a maximal ds of B, there is n ≥ 1 such that [f(xn)]∗ ∈ M ′, that is
f((xn)∗) ∈ M ′. We deduce that (xn)∗ ∈ f−1(M ′) .

(iii). Obvioulsy, 1 = f(1) ∈ f(D). Let x, y ∈ f(D), that is there are a, b ∈ D
such that x = f(a), y = f(b). It follows that a ¯ b ∈ D, so x ¯ y = f(a) ¯ f(b) =
f(a¯ b) ∈ f(D).

Let now x, y ∈ B, x ≤ y and x ∈ f(D). Then, there is a ∈ D such that x = f(a),
and since f is surjective, there exists b ∈ A, such that y = f(b). Then y = x ∨ y =
f(a) ∨ f(b) = f(a ∨ b) and a ∨ b ≥ a ∈ D, so a ∨ b ∈ D. Thus, y ∈ f(D).

(iv). Let N be a proper ds of B such that f(M) ⊆ N. We have M ⊆ f−1(f(M)) ⊆
f−1(N) and since f−1(N) is proper, we must have M = f−1(N). It follows that
f(M) = f(f−1(N)) = N since f is surjective.

(v). Similarly with the proof of Proposition 2.19. ¥
Definition 3.9. As in the case of residuated lattices, the intersection of the

maximal ds of A is called the radical of A. It will be denoted by Rad(A). It is
obvious that Rad(A) is ds.

Example 3.17. Let A be the BL−algebra from Example 3.11. It is eassy to see
that {a, b, c, 1} is the unique maximal ds of A, hence Rad(A) = {a, b, c, 1}.

Proposition 3.49. ([53], [54]) Rad(A) = {a ∈ A : (an)∗ ≤ a, for any n ∈ N}.
Proposition 3.50. For any a, b ∈ Rad(A), a∗ ¯ b∗ = 0.

Proof. Let a, b ∈ Rad(A); to prove a∗¯b∗ = 0 is equivalent with (a∗¯b∗)∗ = 1.
Suppose that (a∗ ¯ b∗)∗ 6= 1. By Corollary 3.29, there is a prime ds P such that
(a∗ ¯ b∗)∗ /∈ P. By bl − c37 we have (a∗ ¯ b∗)∗ = a∗ → b∗∗ /∈ P, so by Theorem 3.23,
b∗∗ → a∗ ∈ P, that is (b∗∗ ¯ a)∗ ∈ P.

By Theorem 3.45 there is a maximal ds M such that P ⊆ M. Then b∗∗¯a /∈ M.
By Theorem 3.43, there is n ∈ N such that [(b∗∗ ¯ a)n]∗ = [(bn)∗∗ ¯ an]∗ ∈ M ; so,
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if denote c = (bn)∗∗ ¯ an, we have c∗ ∈ M . Since a, b ∈ Rad(A) then we infer that
a, b ∈ M, hence c = (bn)∗∗ ¯ an ∈ M . Hence c and c∗ are in M which contradicts
the fact that M is a proper ds of A. ¥

Proposition 3.51. Let A be a BL− algebra. Then B(A) ∩Rad(A) = {1}.
Proof. See the proof of Proposition 1.64. ¥
Definition 3.10. As in the case of residuated lattices, an element a ∈ A is

called infinitesimal if a 6= 1 and an ≥ a∗, for any n ∈ N.

Proposition 3.52. For every nonunit element a of A the following are equiva-
lent:

(i) a is infinitesimal;
(ii) a ∈ Rad(A).

Proof. (i) ⇒ (ii). Let a 6= 1 an infinitesimal and suppose a /∈ Rad(A). Thus,
there is a maximal ds M of A such that a /∈ M. By Theorem 3.43, there is n ∈ N
such that (an)∗ ∈ M . By hypothesis an ≥ a∗ hence (an)∗ ≤ a∗∗, so a∗∗ ∈ M,
hence (a∗∗)n = (an)∗∗ ∈ M. If denote b = (an)∗ we conclude that b, b∗ ∈ M which
contradicts the fact that M is a proper ds.

(ii) ⇒ (i). Let a ∈ Rad(A); then (an)∗ ≤ a for any n ∈ N. For n = 1 we obtain
that a∗ ≤ a. Since for any n ∈ N, an ∈ Rad(A) we deduce that (an)∗ ≤ an. Since
a∗ ¯ an ≤ a∗ ¯ a = 0 we obtain that a∗ ¯ an = 0 for any n ∈ N, hence by bl − c6,
a∗ ≤ (an)∗. So, for any n ∈ N, a∗ ≤ (an)∗ and (an)∗ ≤ an, hence a∗ ≤ an, that is a
is an infinitesimal. ¥

Remark 3.20. If BL-algebra A is an MV− algebra, an element a is infinitesimal
if a 6= 0 and na ≤ a∗, for each integer n ≥ 0. In [45], the set of all infinitesimals in
A is denoted by Infinit(A) and it is proved (Proposition 3.6.4, p. 73) the following
result: For any MV− algebra A,Rad(A) = Infinit(A) ∪ {0}.

Lemma 3.53. If a ∈ A, n ∈ N such that a ∨ (an)∗ = 1 and an ≥ a∗, then a = 1.

Proof. By bl − c11 we obtain (an)∗ ≤ a∗∗, so 1 = a ∨ (an)∗ ≤ a ∨ a∗∗ = a∗∗,
hence a∗∗ = 1, that is a∗ = 0. Then a → (a → 0) = a → 0 = 0. From bl − c8 we
deduce that (a2)∗ = 0. Recursively we obtain that (an)∗ = 0. Then a∨ 0 = 1, hence
a = 1.¥

Lemma 3.54. In any BL-algebra A the following are equivalent:
(i) For every a ∈ A, an ≥ a∗ for any n ∈ N implies a = 1;

(ii) For every a, b ∈ A, an ≥ b∗ for any n ∈ N implies a → b = b and b → a = a.

Proof. (i) ⇒ (ii). Let a, b ∈ A such that an ≥ b∗ for any n ∈ N. We get
(a ∨ b)∗ = a∗ ∧ b∗ ≤ b∗ ≤ an ≤ (a ∨ b)n, hence (a ∨ b)n ≥ (a ∨ b)∗ for any n ∈ N . By
hypothesis, a ∨ b = 1. From bl − c15 we deduce (a → b) → b = (b → a) → a = 1,
hence a → b = b and b → a = a.

(ii) ⇒ (i). Let a ∈ A such that an ≥ a∗ for any n ∈ N. By hypothesis for n = 1
and b = a we obtain a ≥ a∗, hence a∗ → a = 1. But a∗ → a = a (by (ii)), so a = 1.¥

Definition 3.11. A BL-algebra A is called archimedean if the equivalent con-
ditions from Lemma 3.54 are satisfied.

One can easily remark that a BL-algebra is archimedean iff it has no infinitesi-
mals.
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Definition 3.12. Let A be a BL-algebra. An element a ∈ A is called archimedean
if it satisfies the condition:

there is n ∈ N, n ≥ 1, such that a ∨ (an)∗ = 1.

A BL-algebra A is called hyperarchimedean if all its elements are archimedean.

From Lemma 3.53 we deduce:

Corollary 3.55. Every hyperarchimedean BL-algebra is archimedean.

Now, we have a theorem of Nachbin type (see [2], p.73) for BL-algebras:

Theorem 3.56. For a BL-algebra A the following are equivalent:
(i) A is hyperarchimedean;

(ii) For any ds D, the quotient BL-algebra A/D is an archimedean BL-algebra,
(iii) Spec(A) = Max(A);
(iv) Any prime ds is minimal prime.

Proof. (i) ⇒ (ii). To prove A/D is archimedean, let x = a/D ∈ A/D such that
xn ≥ x∗ for any n ∈ N. By hypothesis, there is m ∈N,m ≥ 1 such that a∨(am)∗ = 1.
It follows that x∨(xm)∗ = 1 (in A/D). In particular we have xm ≥ x∗, so by Lemma
3.53 we deduce that x = 1, that is A/D is archimedean.

(ii) ⇒ (iii). Since Max(A) ⊆ Spec(A), we only have to prove that any prime
ds of A is maximal. If P ∈ Spec(A), then A/P is a chain (see Theorem 3.23). By
hypothesis A/P is archimedean. By Theorem 3.43 to prove P ∈ Max(A) is suffice
to prove that A/P is locally finite.

Let x = a/P ∈ A/P, x 6= 1. Then there is n ∈ N, n ≥ 1, such that xn � x∗.
Since A/P is chain we have xn ≤ x∗. Thus xn+1 ≤ x¯x∗ = 0, hence xn+1 = 0, that
is o(x) < ∞. It follows that A/P is locally finite.

(iii) ⇒ (iv). Let P, Q prime ds such that P ⊆ Q. By hypothesis, P is maximal,
so P = Q. Thus Q is minimal prime.

(iv) ⇒ (i). Let a be a nonunit element from A. We shall prove that a is an
archimedean element. If we denote

D = [a)∗ = {x ∈ A : a ∨ x = 1} (by Remark 3.17),

then D ∈ Ds(A). Since a 6= 1, then a /∈ D and we consider

D′ = D(a) = {x ∈ A : x ≥ d¯ an for some d ∈ D and n ∈ N}.
If we suppose that D′ is a proper ds of A, then by Corollary 3.29, there is a prime
ds P such that D′ ⊆ P. By hypothesis, P is a minimal prime. Since a ∈ P, using
Proposition 3.42 , we infer that there is x ∈ A\P such that a∨x = 1. It follows that
x ∈ D ⊆ D′ ⊆ P, hence x ∈ P, so we get a contradiction. Thus D′ is not proper, so
0 ∈ D′, hence there is n ∈ N and d ∈ D such that d ¯ an = 0. Thus d ≤ (an)∗ (by
bl − c6). We get a ∨ d ≤ a ∨ (an)∗. But a ∨ d = 1 (since d ∈ D ), so we obtain that
a ∨ (an)∗ = 1, that is a is an archimedean element. ¥



CHAPTER 4

Pseudo MV-algebras

If G is an lu-group, then the interval [0, u] can be endowed with a structure that leads
to a non-commutative generalization of MV- algebras.

In 1999, Georgescu and Iorgulescu (see [66], [68]) defined pseudo MV- algebras as a
non-commutative extensions of MV- algebras. Dvurečenskij extended Mundici’s equivalence
results. In [58], he proved that every pseudo MV- algebra is isomorphic with an interval in
an l-group and he established the categorical equivalence between pseudo MV- algebras and
l-groups with strong unit.

For a detailed study of pseudo MV- algebras one can see [68], [58].
For an exhaustive theory of l-groups we refer to [10].
In this chapter, we review the basic definition of pseudo MV-algebras with more details

and more examples, but we also prove many results about the lattice of ideals.

1. Definitions and first properties. Some examples. Rules of calculus

Since MV− algebras are categorically equivalent to abelian l -groups with strong
unit (lu-group), started from arbitrary l -groups and thus obtained the more general
notion of pseudo MV -algebra.

If we consider that the l -group G from Example 2.3 is not necessarily abelian,
then it makes sense to define two negations on the interval [0, u] :

x∗ = u− x

and
xs = −x + u

for any x ∈ [0, u].
This was the starting point of the theory of pseudo MV -algebras [68].
We shall present briefly some basic definitions and results (for more details, see

[66], [68]) .
We consider an algebra A = (A,⊕,− ,s , 0, 1) of type (2, 1, 1, 0, 0). We put by

definition:
y ¯ x = (x− ⊕ y−)s,

and we consider that the operation ¯ has priority to the operation ⊕.

Definition 4.1. A pseudo MV− algebra is an algebra A = (A,⊕,¯,− ,s , 0, 1)
of type (2, 2, 1, 1, 0, 0) satisfying the following equations:

(psMV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(psMV2) x⊕ 0 = 0⊕ x = x;
(psMV3) x⊕ 1 = 1⊕ x = 1;
(psMV4) 1s = 0, 1− = 0;
(psMV5) (x− ⊕ y−)s = (xs ⊕ ys)−;
(psMV6) x⊕ xs ¯ y = y ⊕ ys ¯ x = x¯ y− ⊕ y = y ¯ x− ⊕ x;

91
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(psMV7) x¯ (x− ⊕ y) = (x⊕ ys)¯ y;
(psMV8) (x−)s = x, for every x, y, z ∈ A.

We denote a pseudo MV− algebra A = (A,⊕,¯,− ,s , 0, 1) by its universe A.
We can define two implications corresponding to the two negations:

x → y := x∗ ⊕ y and x Ã y := y ⊕ xs

for any x, y ∈ A.
If A′ ⊆ A we write A′ ≤ A to indicate that A′ is a pseudo MV− subalgebra of

A.

Example 4.1. A singleton {0} is a trivial example of a pseudo MV− algebra;
a pseudo MV− algebra is said nontrivial provided its universe has more that one
element.

Example 4.2. Let us consider an arbitrary l-group (G,+,−, 0,≤). For each
u ∈ G, u > 0, let

[0, u] = {x ∈ G : 0 ≤ x ≤ u}
and for each x, y ∈ [0, u], let x⊕ y = u∧ (x + y), x¯ y = (x− u + y)∨ 0, x− = u− x
and xs = −x + u. Then ([0, u],⊕,¯,− ,s , 0, u) is a pseudo MV− algebra. We
remark that the order relation is the restriction of the order relation on G. Moreover,
(x−)− = u + x− u and (xs)s = −u + x + u, for every x, y ∈ [0, u].

In [58] Dvurečenskij proved that every pseudo-MV algebra is isomorphic with
an interval in an l -group.

Example 4.3. Clearly, every MV algebra is a pseudo MV− algebra, where the
unary operations −,s coincide.

Every commutative pseudo MV− algebra (i.e. ⊕ is commutative) is an MV−
algebra (see Proposition 4.9). Also, every finite pseudo MV− algebra is an MV
algebra.

For another classes of pseudo MV− algebras (local, archimedean) see [58] and
[100].

Theorem 4.1. If x, y, z ∈ A then the following hold:
(psmv − c1) y ¯ x = (xs ⊕ ys)−;
(psmv − c2) x⊕ y = (y− ¯ x−)s = (ys ¯ xs)−;
(psmv − c3) (xs)− = x;
(psmv − c4) 0s = 0− = 1;
(psmv − c5) x¯ 1 = 1¯ x = x, x¯ 0 = 0¯ x = 0;
(psmv − c6) x⊕ xs = 1, x− ⊕ x = 1;
(psmv − c7) x¯ x− = 0, xs ¯ x = 0;
(psmv − c8) (x⊕ y)− = y− ¯ x−, (x⊕ y)s = ys ¯ xs;
(psmv − c9) (x¯ y)− = y− ⊕ x−, (x¯ y)s = ys ⊕ xs;

(psmv − c10) (xs ¯ y)⊕ ys = (ys ¯ x)⊕ xs;
(psmv − c11) x¯ (x− ⊕ y) = y ¯ (y− ⊕ x);
(psmv − c12) x¯ (y ¯ z) = (x¯ y)¯ z.

Proof. (psmv − c1). Follows by psMV5 and by definition of ¯.
(psmv−c2). x⊕y = [(x⊕y)s]− = (ys¯xs)−; analogously, x⊕y = (y−¯x−)s.
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(psmv − c3). In psMV5 we make x = 1. So, (1s ⊕ ys)− = (1− ⊕ y−)s ⇒
(0⊕ ys)− = (0⊕ y−)s ⇒ (ys)− = (y−)s

psMV8= y.

(psmv − c4). 0s
psMV4= (1−)s

psMV8= 1 and 0− psMV4= (1s)− psmv−c3= 1.
(psmv − c5). x ¯ 1 = (xs ⊕ 1s)− = (xs ⊕ 0)− = (xs)− = x; analogously,

1¯ x = x;
x¯ 0 = (xs ⊕ 0s)− = (xs ⊕ 1)− = 1− = 0; analogously, 0¯ x = 0,
(psmv − c6). In psMV6 we make x = 1; then y ⊕ ys = 1.
In y ⊕ ys = 1 we make y = x− ; then x− ⊕ x = x− ⊕ (x−)s = 1.
(psmv− c7). x¯x− = [(x−)s⊕xs]− = (x⊕xs)− = 0; analogously, xs¯x = 0.
(psmv − c8). (x⊕ y)− = [(x−)s ⊕ (y−)s]− = y− ¯ x−; analogously, (x⊕ y)s =

ys ¯ xs.
(psmv−c9). (x¯y)− = [(y−⊕x−)s]− = y−⊕x−; analogously, (x¯y)s = ys⊕xs.
(psmv−c10). In (x¯y−)⊕y = (y¯x−)⊕x we make the substitution of x by xs and

of y by ys; then (xs¯y)⊕ys = [xs¯(y−)s]⊕ys = [ys¯(xs)−]⊕xs = (ys¯x)⊕xs.
(psmv − c11). x ¯ (x− ⊕ y) = [(x− ⊕ y)s ⊕ xs]− = [(ys ¯ x) ⊕ xs]− = [(xs ¯

y)⊕ ys]− = y ¯ (y− ⊕ x).
(psmv−c12). (x¯y)¯z = [(x¯y)¯z)−]s = [z−⊕(x¯y)−]s = [z−⊕(y−⊕x−)]s =

[(z− ⊕ y−)⊕ x−]s = [(y ¯ z)− ⊕ x−]s = [(x¯ (y ¯ z))−]s = x¯ (y ¯ z).¥

Lemma 4.2. For x, y ∈ A, the following conditions are equivalent:

(i) x− ⊕ y = 1;
(ii) ys ¯ x = 0;

(iii) y = x⊕ (xs ¯ y);
(iv) x = x¯ (x− ⊕ y);
(v) There is an element z ∈ A such that x⊕ z = y;

(vi) x¯ y− = 0;
(vii) y ⊕ xs = 1.

Proof. (i) ⇒ (ii). x− ⊕ y = 1 ⇒ ys ¯ x = (x− ⊕ y)s = 1s = 0.
(ii) ⇒ (i). ys ¯ x = 0 ⇒ x− ⊕ y = (ys ¯ x)− = 0− = 1.

(ii) ⇒ (iii). ys ¯ x = 0 ⇒ y = y ⊕ (ys ¯ x)
psMV6= x⊕ (xs ¯ y).

(iii) ⇒ (v). Clearly.
(v) ⇒ (i). x− ⊕ y = x− ⊕ (x⊕ z) = (x− ⊕ x)⊕ z = 1⊕ z = 1.
(i) ⇒ (iv). Clearly.
(iv) ⇒ (ii). x = x¯ (x− ⊕ y) = y ¯ (y− ⊕ x) ⇒ ys ¯ x = ys ¯ [y ¯ (y− ⊕ x)] =

(ys ¯ y)¯ (y− ⊕ x) = 0.
(i) ⇒ (vi). x = x¯1 = x¯(x−⊕y) = (x⊕ys)¯y ⇒ x¯y− = [(x⊕ys)¯y]¯y− =

(x⊕ ys)¯ (y ¯ y−) = 0.

(vi) ⇒ (i). y = 0⊕ y = (x¯ y−)⊕ y
psMV6= x⊕ (xs ¯ y), so x− ⊕ y = x− ⊕ [x⊕

(xs ¯ y)] = (x− ⊕ x)⊕ (xs ¯ y) = 1⊕ (xs ¯ y) = 1.
(vi) ⇒ (vii). x¯ y− = 0 ⇒ (x¯ y−)s = 1 ⇒ (y−)s ⊕ xs = 1 ⇒ y ⊕ xs = 1.

(vii) ⇒ (ii). We have x = x ¯ 1 = (y ⊕ xs) ¯ x
psMV7= = y ¯ (y− ⊕ x). So,

ys ¯ x = ys ¯ [y ¯ (y− ⊕ x)] = (ys ¯ y)¯ (y− ⊕ x)] = 0¯ (y− ⊕ x) = 0.¥
For any two elements x, y ∈ A let us agree to write x ≤ y iff x and y satisfy

the equivalent conditions (i) − (vii) in the above lemma. So, ≤ is a partial order
relation on A (which is called the natural order on A).
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Proposition 4.3. ≤ is an order relation on A.

Proof. We have: x ≤ x ⇔ x− ⊕ x = 1, obviously; if x ≤ y and y ≤ x we have
y = x ⊕ (xs ¯ y)

psMV6= y ⊕ (ys ¯ x) = x; if x ≤ y and y ≤ z, there exist a, b such
that y = x⊕ a and z = y ⊕ b, so z = (x⊕ a)⊕ b ⇒ x ≤ z. ¥

Remark 4.1. If A = (A,⊕,¯,− ,s , 0, 1) is a pseudo MV− algebra then

(A,¯,⊕,s ,− , 1, 0)

is also a pseudo MV− algebra, called the dual pseudo MV− algebra of A.

Proposition 4.4. The following properties hold:
(psmv − c13) x ≤ y iff y− ≤ x− iff ys ≤ xs;
(psmv − c14) If x ≤ y, then x⊕ z ≤ y ⊕ z and z ⊕ x ≤ z ⊕ y;
(psmv − c15) If x ≤ y, then x¯ z ≤ y ¯ z and z ¯ x ≤ z ¯ y;
(psmv − c16) x¯ y ≤ z iff y ≤ x− ⊕ z iff x ≤ z ⊕ ys;
(psmv − c17) x¯ y ≤ x, x¯ y ≤ y, x ≤ x⊕ y, y ≤ x⊕ y.

Proof. (psmv − c13). y− ≤ x− ⇔ (x−)s ¯ y− = 0 ⇔ x¯ y− = 0 ⇔ x ≤ y and
ys ≤ xs ⇔ (ys)− ⊕ xs = 1 ⇔ y ⊕ xs = 1 ⇔ x ≤ y .

(psmv − c14). If x ≤ y, then there exists an element a ∈ A such that x⊕ a = y,
so, z ⊕ y = z ⊕ (x⊕ a) = (z ⊕ x)⊕ a ⇒ z ⊕ x ≤ z ⊕ y;

By x ≤ y ⇒ y⊕xs = 1 ⇒ y⊕z⊕(x⊕z)s = y⊕z⊕(zs¯xs) = y⊕xs⊕(xt¯z) =
1⊕ (xt ¯ z) = 1 ⇒ x⊕ z ≤ y ⊕ z.

(psmv − c15). x ≤ y ⇒ ys ≤ xs ⇒ ys ⊕ zs ≤ xs ⊕ zs ⇒ z ¯ x ≤ z ¯ y;
analogously the other proof.

(psmv− c16). We have x¯ y ≤ z ⇔ (x¯ y)− ⊕ z = 1 ⇔ y− ⊕ x− ⊕ z = 1 ⇔ y ≤
x− ⊕ z and x¯ y ≤ z ⇔ z ⊕ (x¯ y)s = 1 ⇔ z ⊕ ys ⊕ xs = 1 ⇔ x ≤ z ⊕ ys.

(psmv − c17). Follows from psmv − c14 and psmv − c15. ¥
Proposition 4.5. On A, the natural order determines a lattice structure. Specif-

ically, the join x ∨ y and the meet x ∧ y of the elements x and y are given by:

x ∨ y = x⊕ xs ¯ y = y ⊕ ys ¯ x = x¯ y− ⊕ y = y ¯ x− ⊕ x,

x ∧ y = x¯ (x− ⊕ y) = y ¯ (y− ⊕ x) = (x⊕ ys)¯ y = (y ⊕ xs)¯ x.

Proof. For the join we have x− ⊕ x ⊕ (xs ¯ y) = 1 ⇒ x ≤ x ⊕ xs ¯ y and
similarly, y ≤ y ⊕ ys ¯ x. Let x, y ≤ z. We shall prove that y ⊕ ys ¯ x ≤ z.

Remark that [y⊕ (ys¯ x)]−⊕ z = [(ys¯ x)−¯ y−]⊕ z = [(x−⊕ y)¯ y−]⊕ y⊕
(zs¯y) = [y¯(x−⊕y)−]⊕x−⊕y⊕(zs¯y) = [y¯(x−⊕y)−]⊕x−⊕z⊕(ys¯x) = 1.

For the meet it is obvious that x¯ (x− ⊕ y) = (x⊕ ys)¯ y ≤ x, y. Let z ≤ x, y;
then x−, y− ≤ z−, hence x− ∨ y− ≤ z−. It follows that z = (z−)s ≤ (x− ∨ y−)s =
[x− ⊕ (x−)s ¯ y−]s =

[x− ⊕ (x ¯ y−)]s = [(x ¯ y−)]s ¯ (x−)s = [(y−)s ⊕ xs] ¯ x = (y ⊕ xs) ¯ x =
x¯ (x− ⊕ y). ¥

Remark 4.2. Clearly, x¯ y ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x⊕ y.

Theorem 4.6. Let I be an arbitrary set. If x, y, z, (xi)i∈I are elements of A,
then the following hold:

(psmv − c18) x⊕
( ∧

i∈I

xi

)
=

∧
i∈I

(x⊕ xi);
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(psmv − c19)
( ∧

i∈I

xi

)
⊕ x =

∧
i∈I

(xi ⊕ x);

(psmv − c20) x¯
( ∨

i∈I

xi

)
=

∨
i∈I

(x¯ xi);

(psmv − c21)
( ∨

i∈I

xi

)
¯ x =

∨
i∈I

(xi ¯ x);

(psmv − c22) x ∧
( ∨

i∈I

xi

)
=

∨
i∈I

(x ∧ xi);

(psmv − c23) x ∨
( ∧

i∈I

xi

)
=

∧
i∈I

(x ∨ xi);

(psmv − c24) x⊕
( ∨

i∈I

xi

)
=

∨
i∈I

(x⊕ xi);

(psmv − c25)
( ∨

i∈I

xi

)
⊕ x =

∨
i∈I

(xi ⊕ x);

(psmv − c26) x¯
( ∧

i∈I

xi

)
=

∧
i∈I

(x¯ xi);

(psmv − c27)
( ∧

i∈I

xi

)
¯ x =

∧
i∈I

(xi ¯ x),if all suprema and infima exist.

Proof. (psmv − c18). Obviously, x⊕
( ∧

i∈I

xi

)
≤ x⊕ xi, for every i ∈ I.

Let now y ≤ x ⊕ xi, for every i ∈ I; then y ≤ (xs)− ⊕ xi, for every i ∈ I. We
deduce that xs ¯ y ≤ xi, for every i ∈ I and hence xs ¯ y ≤ ∧

i∈I

xi; it follows that

y ≤ (xs)−⊕
( ∧

i∈I

xi

)
= x⊕

( ∧
i∈I

xi

)
. Therefore we get that x⊕

( ∧
i∈I

xi

)
=

∧
i∈I

(x⊕xi).

( psmv − c19). Remark first that
( ∧

i∈I

xi

)
⊕ x ≤ xi ⊕ x, for every i ∈ I. Let now

y ≤ xi⊕x, for every i ∈ I; then y ≤ xi⊕ (x−)s, for every i ∈ I and y¯x− ≤ xi, for

every i ∈ I ;it follows that and hence y¯x− ≤ ∧
i∈I

xi and hence y ≤
( ∧

i∈I

xi

)
⊕(x−)s =

( ∧
i∈I

xi

)
⊕ x. Therefore we get that

( ∧
i∈I

xi

)
⊕ x =

∧
i∈I

(xi ⊕ x).

(psmv − c20). Obviously, x¯ xi ≤ x¯
( ∨

i∈I

xi

)
, for every i ∈ I. Let x¯ xi ≤ y,

for every i ∈ I; then xi ≤ x− ⊕ y, for every i ∈ I so
∨
i∈I

xi ≤ x− ⊕ y.

It follows that x¯
( ∨

i∈I

xi

)
≤ y. Therefore we get that x¯

( ∨
i∈I

xi

)
=

∨
i∈I

(x¯xi).

(psmv − c21). Remark first that xi ¯ x ≤
( ∨

i∈I

xi

)
¯ x, for every i ∈ I. Let

xi¯x ≤ y, for every i ∈ I; then xi ≤ y⊕xs, for every i ∈ I and hence
∨
i∈I

xi ≤ y⊕xs.

It follows that
( ∨

i∈I

xi

)
¯x ≤ y and therefore we get that

( ∨
i∈I

xi

)
¯x =

∨
i∈I

(xi¯x).
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(psmv − c22). We have x ∧
( ∨

i∈I

xi

)
=

( ∨
i∈I

xi

)
¯

[(
∨
j∈I

xj

)−
⊕ x

]
=

∨
i∈I

[
xi ¯

((
∨
j∈I

xj

)−
⊕ x

)]
.

But for any i ∈ I, xi ≤
∨
j∈I

xj ⇒
(

∨
j∈I

xj

)−
≤ (xi)− ⇒

(
∨
j∈I

xj

)−
⊕x ≤ (xi)−⊕x

⇒ xi¯
((

∨
j∈I

xj

)−
⊕ x

)
≤ xi¯((xi)− ⊕ x) = x∧xi ⇒

∨
i∈I

[
xi ¯

((
∨
j∈I

xj

)−
⊕ x

)]
≤

∨
i∈I

(x ∧ xi).

We obtain x ∧
( ∨

i∈I

xi

)
≤ ∨

i∈I

(x ∧ xi).

The inequality
∨
i∈I

(x ∧ xi) ≤ x ∧
( ∨

i∈I

xi

)
is obvious.

(psmv − c23). We have x ∨
( ∧

i∈I

xi

)
=

( ∧
i∈I

xi

)
⊕

[(
∧
j∈I

xj

)s
¯ x

]
=

∧
i∈I

[
xi ⊕

((
∧
j∈I

xj

)s
¯ x

)]

But for any i ∈ I,
∧
j∈I

xj ≤ xi ⇒ (xi)s ≤
(

∧
j∈I

xj

)s
⇒ (xi)s ¯ x ≤

(
∧
j∈I

xj

)s
¯

x ⇒ xi ⊕ (xi)s ¯ x ≤ xi ⊕
((

∧
j∈I

xj

)s
¯ x

)
⇔ x ∨ xi ≤ xi ⊕

((
∧
j∈I

xj

)s
¯ x

)
.

Hence,
∧
i∈I

(x ∨ xi) ≤
∧
i∈I

[
xi ⊕

((
∧
j∈I

xj

)s
¯ x

)]
.

We obtain
∧
i∈I

(x ∨ xi) ≤ x ∨
( ∧

i∈I

xi

)
.

The inequality x ∨
( ∧

i∈I

xi

)
≤ ∧

i∈I

(x ∨ xi) is obvious.

(psmv−c24). Obviously, x⊕xi ≤ x⊕
( ∨

i∈I

xi

)
, for every i ∈ I. Let now x⊕xi ≤ y,

for every i ∈ I; remark that x ≤ y.
For every i ∈ I we have xs ¯ (x⊕ xi) ≤ xs ¯ y.
On other hand xs ¯ (x ⊕ xi) = xs ¯ ((xs)− ⊕ xi) = xs ∧ xi, hence xs ∧

xi ≤ xs ¯ y. It follows that xs ∧
( ∨

i∈I

xi

)
psmv−c22=

∨
i∈I

(xs ∧ xi) ≤ xs ¯ y, hence

x⊕
[
xs ∧

( ∨
i∈I

xi

)]
≤ x⊕(xs¯y) = x∨y = y, since x ≤ y; but x⊕

[
xs ∧

( ∨
i∈I

xi

)]
=

(x⊕ xs) ∧
[
x⊕

( ∨
i∈I

xi

)]
= x⊕

( ∨
i∈I

xi

)
.
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Finally, we obtain x ⊕
( ∨

i∈I

xi

)
≤ y. Therefore we get that x ⊕

( ∨
i∈I

xi

)
=

∨
i∈I

(x⊕ xi).

(psmv − c25). As in the case of psmv − c24.

(psmv−c26). Obviously, x¯
( ∧

i∈I

xi

)
= x¯xi, for every i ∈ I. Let now y ≤ x¯xi,

for every i ∈ I; remark that y ≤ x.
For every i ∈ I we have x− ⊕ y ≤ x− ⊕ (x ¯ xi). But x− ⊕ (x ¯ xi) = x− ⊕

[(x−)s ¯ xi] = x− ∨ xi, for every i ∈ I.

So, x−⊕y ≤ x−∨xi, for every i ∈ I. It follows that x−⊕y ≤ ∧
i∈I

(x−∨xi)
psmv−c23=

x−∨
( ∧

i∈I

xi

)
. Hence x¯

[
x− ∨

( ∧
i∈I

xi

)]
≥ x¯(x−⊕y) = x∧y = y, since y ≤ x; but

x¯
[
x− ∨

( ∧
i∈I

xi

)]
= (x¯x−)∨

[
x¯

( ∧
i∈I

xi

)]
= x¯

( ∧
i∈I

xi

)
, so x¯

( ∧
i∈I

xi

)
≥ y.

Therefore we get that x¯
( ∧

i∈I

xi

)
=

∧
i∈I

(x¯ xi).

(psmv − c27). Has a similar proof with psmv − c26. ¥
By Proposition 4.5 and Theorem 4.6 we deduce:

Corollary 4.7. On A, the natural order determines a distributive bounded
lattice structure.

We shall denote this distributive lattice with 0 and 1 by L(A) (see [42], [45]).

Theorem 4.8. If x, y, z are elements of A, then the following hold:

(psmv − c28) (x ∧ y)− = x− ∨ y−, (x ∨ y)− = x− ∧ y−;
(psmv − c29) (x ∧ y)s = xs ∨ ys, (x ∨ y)s = xs ∧ ys;
(psmv − c30) x¯ y− ∧ y ¯ x− = 0, xs ¯ y ∧ ys ¯ x = 0;
(psmv − c31) (y ⊕ xs) ∨ (x⊕ ys) = 1, (y− ⊕ x) ∨ (x− ⊕ y) = 1;
(psmv − c32) x ∨ y = x¯ (x ∧ y)− ⊕ y;
(psmv − c33) x ∧ y = 0 ⇒ x⊕ y = x ∨ y;
(psmv − c34) x ∧ y = 0 ⇒ x ∧ (y ⊕ z) = x ∧ z;
(psmv − c35) If y ⊕ x = z ⊕ x and x¯ y = x¯ z then y = z;
(psmv − c36) If x⊕ y = x⊕ z and y ¯ x = z ¯ x then y = z;
(psmv − c37) x⊕ y = y iff x− ⊕ y− = x−;
(psmv − c38) x⊕ y = x iff xs ⊕ ys = ys;
(psmv − c39) x⊕ x = x iff x¯ x = x.

Proof. (psmv − c28). We have (x ∧ y)− = ((x⊕ ys)¯ y)− = y− ⊕ (x⊕ ys)− =
y− ⊕ (y ¯ x−) = y− ⊕ [(y−)s ¯ x−] = x− ∨ y− and (x ∨ y)− = (x ⊕ xs ¯ y)− =
(xs ¯ y)− ¯ x− = (y− ⊕ x)¯ x− = (y− ⊕ (x−)s)¯ x− = x− ∧ y−.

(psmv− c29). We have (x∧y)s = [x¯ (x−⊕y)]s = (x−⊕y)s⊕xs = (ys¯x)⊕
xs = [ys¯(xs)−]⊕xs = xs∨ys and (x∨y)s = [(x¯y−)⊕y]s = ys¯(x¯y−)s =
ys ¯ [(y−)s ⊕ xs] = ys ¯ [(ys)− ⊕ xs] = xs ∧ ys.

(psmv− c30). We have x¯ y− = 0∨ x¯ y− = x¯ x− ∨ x¯ y− = x¯ (x− ∨ y−).
Similarly, y ¯ x− = y ¯ (x− ∨ y−). Then x ¯ y− ∧ y ¯ x− = [x ¯ (x− ∨ y−)] ∧

[y ¯ (x− ∨ y−)] = (x ∧ y)¯ (x− ∨ y−) = (x ∧ y)¯ (x ∧ y)− = 0.
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The second equality is obtained by replacing x by xs and y by ys in the first
one.

(psmv − c31). Follows by psmv − c30 applying s and −, respectively.
(psmv−c32). x¯(x∧y)−⊕y

psmv−c28= x¯(x−∨y−)⊕y = [(x¯x−)∨(x¯y−)]⊕y =
(x¯ y−)⊕ y = x ∨ y.

(psmv − c33). If x ∧ y = 0, then in psmv − c32 we obtain x ∨ y = x¯ 0− ⊕ y =
x¯ 1⊕ y = x⊕ y.

(psmv − c34). First, we remark that x ≤ x ∧ (x ⊕ z) = (0 ⊕ x) ∧ (x ⊕ z) =
[(x ∧ y) ⊕ x] ∧ (x ⊕ z) = (x ⊕ x) ∧ (y ⊕ x) ∧ (x ⊕ z). Then x ∧ z ≤ x ∧ (y ⊕ z) ≤
(x⊕ x) ∧ (y ⊕ x) ∧ (x⊕ z) ∧ (y ⊕ z) = (x ∧ y)⊕ (x ∧ z) = x ∧ z.

(psmv− c35). We get x−∨ y = x−⊕ [(x−)s¯ y] = x−⊕ (x¯ y) = x−⊕ (x¯ z) =
x− ⊕ [(x−)s ¯ z] = x− ∨ y and x− ∧ y = [y ⊕ (x−)s] ¯ x− = (y ⊕ x) ¯ x− =
(z ⊕ x) ¯ x− = [z ⊕ (x−)s] ¯ x− = x− ∧ z. Since (A,∨,∧) is a distributive lattice,
it follows that y = z.

(psmv − c36). Similarly proof with psmv − c35.
(psmv−c37). We have the following implications: x⊕y = y ⇒ [x⊕(y−)s]¯y− =

y¯ y− = 0 ⇒ x∧ y− = 0 ⇒ x− = x− ⊕ (x∧ y−) = (x− ⊕ x)∧ (x− ⊕ y−) = x− ⊕ y−
and x− ⊕ y− = x− ⇒ x ∧ y− = x¯ (x− ⊕ y−) = x¯ x− = 0 ⇒ y = (x ∧ y−)⊕ y =
(x⊕ y) ∧ (y− ⊕ y) = x⊕ y.

(psmv−c38). Similarly, we have the following implications: x⊕y = x ⇒ xs∧y =
xs ¯ ((xs)− ⊕ y) = xs ¯ (x ⊕ y) = xs ¯ x = 0 ⇒ ys = (xs ∧ y) ⊕ ys =
(xs ⊕ ys) ∧ (y ⊕ ys) = xs ⊕ ys and xs ⊕ ys = ys ⇒ xs ∧ y = (xs ⊕ ys) ¯ y =
ys ¯ y = 0 ⇒ x⊕ (xs ∧ y) = x ⇒ (x⊕ xs) ∧ (x⊕ y) = x ⇒ x⊕ y = x.

(psmv−c39). By psmv−c37, x⊕x = x ⇔ x−⊕x− = x− ⇔ (x−⊕x−)s = (x−)s

⇔ x¯ x = x. ¥
Proposition 4.9. Every commutative pseudo MV− algebra (i.e. ⊕ is commu-

tative) is an MV− algebra.

Proof. Since x⊕y = y⊕x, for any x, y ∈ A, it follows that x¯y = (y−⊕x−)s =
(x− ⊕ y−)s = y ¯ x. Hence x− ⊕ x = 1 = xs ⊕ x and x¯ x− = 0 = x¯ xs.

Then by psmv− c35 we deduce that x− = xs, for any x ∈ A, so (A,⊕,¯,− , 0, 1)
is an MV− algebra. ¥

Lemma 4.10. If a, b, x are elements of A, then:
(psmv − c40) [(a ∧ x)⊕ (b ∧ x)] ∧ x = (a⊕ b) ∧ x;
(psmv − c41) x ∧ a− ≥ x¯ (a ∧ x)− and as ∧ x ≥ (a ∧ x)s ¯ x .

Proof. (psmv − c40). By psmv − c18 and psmv − c19 we have

[(a ∧ x)⊕ (b ∧ x)] ∧ x = ((a ∧ x)⊕ b) ∧ ((a ∧ x)⊕ x) ∧ x =

= ((a ∧ x)⊕ b) ∧ x = (a⊕ b) ∧ (x⊕ b) ∧ x = (a⊕ b) ∧ x.

(psmv − c41). We have

x¯ (a ∧ x)− = x¯ (a− ∨ x−)
psmv−c20= (x¯ a−) ∨ (x¯ x−)

psmv−c7= (x¯ a−) ∨ 0 = x¯ a− ≤ x ∧ a−

and
(a ∧ x)s ¯ x = (as ∨ xs)¯ x

psmv−c21= (as ¯ x) ∨ (xs ¯ x)
psmv−c7= (as ¯ x) ∨ 0 = as ¯ x ≤ as ∧ x.¥
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2. Boolean center

For a pseudo MV− algebra A we denote by B(A) the boolean algebra associated
with the bounded distributive lattice L(A). Elements of B(A) are called the boolean
elements of A.

We characterize the elements of B(A) in therms of pseudo MV− algebra oper-
ations.

Theorem 4.11. For every element e in a pseudo MV− algebra A, the following
conditions are equivalent:

(i) e ∈ B(A);
(ii) e ∨ e− = 1;

(iii) e ∨ es = 1;
(iv) e ∧ e− = 0;
(v) e ∧ es = 0;

(vi) e⊕ e = e;
(vii) e¯ e = e.

Proof. First we prove the equivalences: (iii) ⇔ (iv) ⇔ (vi).
(iii) ⇒ (vi). e ∨ es = 1 ⇒ e = (e ∨ es) ¯ e = (e ¯ e) ∨ (es ¯ e) = e ¯ e. Then

apply psmv − c39.
(vi) ⇒ (iv). e⊕ e = e ⇒ e ∧ e− = [e⊕ (e−)s]¯ e− = (e⊕ e)¯ e− = e¯ e− = 0.
(iv) ⇒ (iii). e ∧ e− = 0 ⇒ e ∨ es = es ∨ (e−)s = (e ∧ e−)s = 0s = 1.
Hence, (iii) ⇔ (iv) ⇔ (vi).
Similarly, (ii) ⇔ (v) ⇔ (vi).
We deduce that the equivalent conditions (ii) and (iv) state that e− is a com-

plement of e, thus, in particular, (iv) ⇒ (i), and that the equivalent conditions (iii)
and (v) state that es is also a complement of e.

(i) ⇒ (iv). Assume there exists a ∈ A such that e ∧ a = 0 and e ∨ a = 1. Thus,
e ∧ a = 0 ⇒ e− = e− ⊕ (e ∧ a) = (e− ⊕ e−) ∧ (e− ⊕ a) = e− ⊕ a ⇒ a ≤ e− and
e∨ a = 1 ⇒ e− = (e∨ a)¯ e− = (e¯ e−)∨ (a¯ e−) = a¯ e− ⇒ e− ≤ a. We deduce
a = e−, so, e ∧ e− = 0.

(iv) ⇒ (i). From e ∧ e− = 0 it follows that, by psmv − c33, e ∨ e− = e⊕ e− = 1.
Hence e− is the complement of e. That is, e ∈ B(A).

(vi) ⇔ (vii). See psmv − c39.
(vii) ⇔ (ii). e¯ e = e ⇒ e− ∨ e = e− ⊕ [(e−)s ¯ e] = e− ⊕ (e¯ e) = e− ⊕ e = 1.

¥

Remark 4.3. By Theorem 4.11 it follows that for every e ∈ B(A), e− = es.

Proposition 4.12. If e ∈ B(A) and x ∈ A, then

(i) e⊕ x = e ∨ x = x⊕ e, for all x ∈ A;
(ii) e¯ x = e ∧ x = x¯ e, for all x ∈ A.

Proof. (i). We have that e∨x ≤ e⊕x and (e⊕x)¯(e∨x)− = (e⊕x)¯(e−∧x−) =
[(e⊕x)¯e−]∧[(e⊕x)¯x−] = [(e⊕x)¯e−]∧[(e⊕(x−)s)¯x−] = [(e⊕x)¯e−]∧(e∧x−) ≤
e ∧ e− = 0, so e⊕ x ≤ e ∨ x; thus, e⊕ x = e ∨ x.

Analogously, e∨x ≤ x⊕e and (e∨x)s¯(x⊕e) = [es¯(x⊕e)]∧ [xs¯(x⊕e)] =
[es ¯ (x⊕ e)] ∧ [xs ¯ ((xs)− ⊕ e)] = [es ¯ (x⊕ e)] ∧ (xs ∧ e) ≤ es ∧ e = 0, hence
x⊕ e ≤ e ∨ x; thus, x⊕ e = e ∨ x.
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(ii). We have that x ¯ e = (e− ⊕ x−)s
(i)
= (e− ∨ x−)s

(i)
= (x− ⊕ e−)s = e ¯ x.

Since (e− ∨ x−)s = e ∧ x we obtain that e¯ x = e ∧ x = x¯ e. ¥

Corollary 4.13. (i) B(A) is subalgebra of the pseudo MV− algebra A.
A subalgebra B of A is a boolean algebra iff B ⊆ B(A),

(ii) A pseudo MV− algebra A is a boolean algebra iff the operation ⊕ is idem-
potent, i.e., the equation x⊕ x = x is satisfied in A.

Proposition 4.14. For x ∈ A, the following are equivalent:

(i) there is a natural number n ≥ 1 such that nx ∈ B(A);
(ii) there is a natural number n ≥ 1 such that x− ∨ nx = 1;

(iii) there is a natural number n ≥ 1 such that xs ∨ nx = 1;
(iv) there is a natural number n ≥ 1 such that nx = (n + 1)x.

Proof. First we prove the equivalences: (i) ⇔ (iv) ⇔ (ii).
(i) ⇒ (iv). Suppose that nx ∈ B(A). Then nx ⊕ nx = nx and nx = (n + 1)x,

since nx ≤ (n + 1)x ≤ 2nx = nx.
(iv) ⇒ (ii). If nx = (n+1)x, then x− ∨nx = x−¯ (nx)−⊕ (nx) = [(n+1)x]−⊕

(nx) = (nx)− ⊕ (nx) = 1.
(ii) ⇒ (i). Assume that x−∨nx = 1; hence [(n+1)x]−⊕(nx) = (nx⊕x)−⊕(nx) =

[x− ¯ (nx)−] ⊕ (nx) = x− ∨ nx = 1 ⇒ (n + 1)x ≤ nx ⇒ (n + 1)x = nx ⇒ nx =
nx⊕ nx ⇒ nx ∈ B(A).

We prove that the equivalences: (i) ⇔ (iv) ⇔ (iii).
(iv) ⇒ (iii). If nx = (n + 1)x, then xs ∨ nx = (nx) ⊕ [(nx)s ¯ xs] = (nx) ⊕

(x⊕ nx)s = (nx)⊕ [(n + 1)x]s = (nx)⊕ (nx)s = 1.
(iii) ⇒ (i). Assume that xs ∨ nx = 1; hence (nx) ⊕ [(n + 1)x]s = (nx) ⊕ [x ⊕

(nx)]s = (nx)⊕ [(nx)s ¯ xs] = xs ∨ nx = 1 ⇒ (n + 1)x ≤ nx ⇒ (n + 1)x = nx ⇒
nx = nx⊕ nx ⇒ nx ∈ B(A). ¥

Corollary 4.15. If a ∈ B(A), then for all x, y ∈ A:

(psmv − c42) x ∧ a− = x¯ (a ∧ x)− and as ∧ x = (a ∧ x)s ¯ x;
(psmv − c43) a ∧ (x⊕ y) = (a ∧ x)⊕ (a ∧ y);
(psmv − c44) a ∨ (x⊕ y) = (a ∨ x)⊕ (a ∨ y).

Proof. (psmv − c42). See the proof of psmv − c41.
(psmv − c43). We have:

(a ∧ x)⊕ (a ∧ y)
psmv−c18= [(a ∧ x)⊕ a] ∧ [(a ∧ x)⊕ y]

psmv−c18= [(a⊕ a) ∧ (x⊕ a)] ∧ [(a ∧ x)⊕ y] =

= a ∧ (x⊕ a) ∧ [(a⊕ y) ∧ (x⊕ y)] = a ∧ (a⊕ y) ∧ (x⊕ y) = a ∧ (x⊕ y).

(psmv − c44). We have

(a ∨ x)⊕ (a ∨ y) = (a⊕ x)⊕ (a⊕ y) =

= (a⊕ a)⊕ (x⊕ y) = a⊕ (x⊕ y) = a ∨ (x⊕ y).¥
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3. Homomorphisms and ideals

Definition 4.2. Let A and B be pseudo MV− algebras. A function f : A → B
is a morphism of pseudo MV− algebras if it satisfies the following conditions, for
every x, y ∈ A :

(psMV9) f(0) = 0;
(psMV10) f(x⊕ y) = f(x)⊕ f(y);
(psMV11) f(x−) = (f(x))−;
(psMV12) f(xs) = (f(x))s.

Remark 4.4. It follows that:

f(1) = 1,

f(x¯ y) = f(x)¯ f(y),

f(x ∨ y) = f(x) ∨ f(y),

f(x ∧ y) = f(x) ∧ f(y),

for every x, y ∈ A.

Proof. We have f(1) = 1 since 1 = x ⊕ xs in A implies f(1) = f(x ⊕ xs) =
f(x)⊕ f(xs) = f(x)⊕ (f(x))s = 1 in B;

f(x ¯ y) = f(x) ¯ f(y) since f(x ¯ y) = f((ys ⊕ xs)−) = (f(ys ⊕ xs))− =
(f(ys)⊕ f(xs))−) = ((f(x)¯ f(y))s)−) = f(x)¯ f(y).

By Proposition 4.5 we deduce f(x∨ y) = f(x⊕ (xs ¯ y)) = f(x)⊕ f(xs ¯ y) =
f(x)⊕[f(xs)¯f(y)] = f(x)⊕[f(x)s¯f(y)] = f(x)∨f(y) and f(x∧y) = f(x¯(x−⊕
y)) = f(x)¯f(x−⊕y) = f(x)¯ [f(x−)⊕f(y)] = f(x)¯ [f(x)−⊕f(y)] = f(x)∧f(y).
¥

We recall that a bijective morphism f of pseudo MV− algebras is called iso-
morphism of pseudo MV− algebras; in this case we write A ≈ B.

In any pseudo MV− algebra A one can define two distance functions:

d−(x, y) := (x¯ y−)⊕ (y ¯ x−), ds(x, y) := (xs ¯ y)⊕ (ys ¯ x).

Proposition 4.16. The two distances verify the following properties:

(i) d−(x, y) = (x¯ y−) ∨ (y ¯ x−), ds(x, y) = (xs ¯ y) ∨ (ys ¯ x);
(ii) d−(x, y) = d−(y, x) and ds(x, y) = ds(y, x);

(iii) d−(x, z) ≤ d−(x, y)⊕d−(y, z)⊕d−(x, y) and ds(x, z) ≤ ds(x, y)⊕ds(y, z)⊕
ds(x, y).

Proof. (i). Follow by psmv − c30 and psmv − c33.
(ii). Follow by (i) and by commutativity of ∨.
(iii). Follow by [68], Proposition 1.35, (9) and (10). ¥
Fore more details relative to distance functions see [68], Proposition 1.35.

Definition 4.3. An ideal of a pseudo MV− algebra A is a nonempty subset I
of A satisfying the following conditions:

(I ′1) 0 ∈ I;
(I ′2) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I;
(I ′3) If x, y ∈ I, then x⊕ y ∈ I .
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If A is a pseudo MV− algebra, then an ideal I of A is proper if I 6= A. We
denote by Id(A) the set of all ideals of A. The intersection of any family of ideals of
A is still an ideal of A.

For every subset M ⊆ A, the smallest ideal of A which contains M (i.e., the
intersection of all ideals I ⊇ M), is said to be the ideal generated by M, and we
denote by (M ] this ideal. If M = {a} with a ∈ A, we denote by (a] the ideal
generated by {a}((a] is called principal).

As in the case of MV−algebras we have:

Proposition 4.17. If M ⊆ A, then

(M ] = {x ∈ A : x ≤ x1 ⊕ ...⊕ xn for some x1, ..., xn ∈ M}.
In particular, for a ∈ A, (a] = {x ∈ A : x ≤ na for some integer n ≥ 0}; if e ∈ B(A),
then (e] = {x ∈ A : x ≤ e }. Remark that (0] = {0} and (1] = A. Also, for every
ideal I of pseudo MV -algebra A and each a ∈ A we have (I ∪ {a}] = {x ∈ A : x ≤
(x1 ⊕ n1a)⊕ ...⊕ (xm ⊕ nma) for some x1, ..., xm ∈ M and for some integers m ≥ 1
and n1, ..., nm ≥ 0}.

For any ideal I, one can associate two equivalence relations ≡L(I) and ≡R(I) on
A defined by:

x ≡L(I) y iff d−(x, y) ∈ I,

x ≡R(I) y iff ds(x, y) ∈ I.

Lemma 4.18. The relations ≡L(I) and ≡R(I) are equivalence relations on A.

Proof. The relation ≡L(I)is reflexive since x ≡L(I) x ⇔ d−(x, x) = (x ¯ x−) ⊕
(x ¯ x−) = 0 ⊕ 0 = 0 ∈ I, which is true. For symmetry we have x ≡L(I) y ⇔
d−(x, y) ∈ I ⇔ d−(y, x) ∈ I ⇔ y ≡L(I) x (by Proposition 4.16, (ii)).

The relation ≡L(I)is tranzitive since (x ≡L(I) y and y ≡L(I) z)⇔ (d−(x, y) ∈ I
and d−(y, z) ∈ I) ⇒ d−(x, y)⊕d−(y, z)⊕d−(x, y) ∈ I ⇒ d−(x, z) ∈ I (by Proposition
4.16, (iii)) ⇔ x ≡L(I) z.

The proof that ≡R(I) is an equivalence relation is similar. ¥
Remark 4.5. I = {x ∈ A : x ≡L(I) 0} = {x ∈ A : x ≡R(I) 0}.
Proof. We have x = d−(x, 0) ∈ I ⇔ x ≡L(I) 0 and x = ds(x, 0) ∈ I ⇔ x ≡R(I)

0. ¥
The relations ≡L(I)and ≡R(I)being equivalence relations, we can consider the

quotient sets A/ ≡L(I)and A/ ≡R(I) . We denote by x/ ≡L(I)and x/ ≡R(I)the
equivalence classes of an element x ∈ A and called this classes left and right class
of x. We define on the set of classes two binary relations ≤L(I) and ≤R(I) by:
x/ ≡L(I)≤L(I) y/ ≡L(I) iff x¯ y− ∈ I and x/ ≡R(I)≤R(I) y/ ≡R(I) iff ys¯ x ∈ I . It
eassy to prove that the relations ≤L(I) and ≤R(I) are partial order relations on the
respective sets.

For any ideal I, the map φ : A/ ≡L(I)→ A/ ≡R(I)defined by φ(x/ ≡L(I)) =
(x−)/ ≡R(I)is a bijection between the sets A/ ≡L(I) and A/ ≡R(I) .

We shall examine the set Id(A) of ideals of a pseudo MV− algebra A.
It is eassy to prove that (Id(A),∩,∨) is a complete Browerian lattice, where

meet is the intersection of sets and the join of an arbitrary collection of ideals is the
ideal generated by the union (as sets) of these ideals, the order relation being the
inclusion of sets.
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An ideal with the property that its set of left classes is totally ordered is called
prime.

Remark 4.6. For any ideal I of A, the set of left classes is totally ordered by
≤L(I)iff the set of right classes is totally ordered by ≤R(I) . Indeed, x/ ≡L(I)≤L(I)

y/ ≡L(I) iff x ¯ y− ∈ I iff (x−)s ¯ y− ∈ I iff (x−)/ ≡R(I)≥R(I) (y−)/ ≡R(I) iff
φ(x/ ≡L(I)) ≥R(I) φ(y/ ≡L(I)).

The prime ideals are characterized in the next theorem:

Theorem 4.19. For P ∈ Id(A) the following are equivalent:
(i) P is prime (that is, A/ ≡L(P )or equivalently A/ ≡R(P ), is totally ordered);

(ii) {I ∈ Id(A) : I ⊇ P} is totally ordered under inclusion;
(iii) P is finitely meet-irreducible in Id(A);
(iv) If a ∧ b ∈ P then a ∈ P or b ∈ P ;
(v) If a ∧ b = 0 then a ∈ P or b ∈ P ;

(vi) For any a, b ∈ A, a¯ b− ∈ P or b¯ a− ∈ P ;
(vii) For any a, b ∈ A, as ¯ b ∈ P or bs ¯ a ∈ P.

Proof. First we prove the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i).
(i) ⇒ (ii). Suppose that I, J are incomparable ideals containing P : I ⊇ P, J ⊇ P

and I * J, J * I. Then there exists i ∈ I\J and j ∈ J\I. Let us consider the
left classes i/ ≡L(P ) and j/ ≡L(P ) . By (i), we have i/ ≡L(P )≤L(P ) j/ ≡L(P ) or
j/ ≡L(P )≤L(P ) i/ ≡L(P ), so, i¯ j− ∈ P or j ¯ i− ∈ P. We deduce that i¯ j− ⊕ j =
i ∨ j ∈ J or j ¯ i− ⊕ i = j ∨ i ∈ I, hence i ∈ J or j ∈ I, a contradiction.

(ii) ⇒ (iii). If I ∩ J = P then P ⊆ I and P ⊆ J. By (ii), we have I ⊆ J or
J ⊆ I. Suppose I ⊆ J ; then P = I ∩ J = I, so P = I.

(iii) ⇒ (iv).Since (a∧ b] ⊆ P we obtain (P ∨ (a])∩ (P ∨ (b]) = (P ∨ ((a]∩ (b])) =
(P ∨ (a ∧ b]) = P. By (iii), it follows that P = P ∨ (a] or P = P ∨ (b] so, a ∈ P or
b ∈ P.

(iv) ⇒ (v). If a ∧ b = 0 ∈ P then by (iv), a ∈ P or b ∈ P.
(v) ⇒ (i). Let x/ ≡L(P ), y/ ≡L(P )∈ A/ ≡L(P ); since a¯ b− ∧ b¯ a− = 0 ∈ P we

deduce by (v) that a/ ≡L(P )≤L(P ) b/ ≡L(P ) or b/ ≡L(P )≤L(P ) a/ ≡L(P ), so A/ ≡L(P )

is totally ordered by ≤L(P ) .

(v) ⇒ (vi). Since by psmv − c30, a ¯ b− ∧ b ¯ a− = 0 ∈ P we deduce that
a¯ b− ∈ P or b¯ a− ∈ P.

(vi) ⇒ (iv). Suppose that a∧b ∈ P, and that a¯b− ∈ P , hence (a¯b−)⊕(a∧b) ∈
P . But a ≤ [(a¯b−)⊕a]∧ (a∨b) = [(a¯b−)⊕a]∧ [(a¯b−)⊕b] = (a¯b−)⊕ (a∧b).
We get that a ∈ P.

(v) ⇒ (vii). Following by psmv − c30, as ¯ b ∧ as ¯ b = 0, so we deduce that
as ¯ b ∈ P or bs ¯ a ∈ P.

(vii) ⇒ (iv). Suppose that a ∧ b ∈ P and as ¯ b ∈ P. Since b ≤ (a ∨ b) ⊕ [b ⊕
(as¯ b)] = [a⊕ (as¯ b)]∧ [b⊕ (as¯ b)] = (a∧ b)⊕ (as¯ b) ∈ P. We get that b ∈ P.
¥

By Theorem 4.19 follows immediately:

Corollary 4.20. If P, Q ∈ Id(A), P ⊆ Q and P is prime, then Q is prime.

Proof. As in the case of MV - algebras (see the proof of Theorem 2.27). ¥
Theorem 4.21. (Prime ideal theorem) Let A be a pseudo MV− algebra, I ∈

Id(A) and a ∈ A\I. Then there is a prime ideal P of A such that I ⊆ P and a /∈ P.
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Proof. A routine application of Zorn’s Lemma shows that there is an ideal
P ∈ Id(A) which is maximal with respect to the property that I ⊆ P and a /∈ P.
We shall prove that P is a prime ideal. Let x, y ∈ A and suppose that P is not
prime, i.e., x¯y− /∈ P and y¯x− /∈ P. Then the ideal (P ∪{x¯y−}] moust contain
the element a. By Remark 4.17, a ≤ (s1 ⊕ n1(x ¯ y−)) ⊕ ... ⊕ (sm ⊕ nm(x ¯ y−))
for some s1, ..., sm ∈ P and for some integers m ≥ 1 and n1, ..., nm ≥ 0. Similarly,
there is t1, ..., tk ∈ P and for some integers k ≥ 1 and q1, ..., qk ≥ 0. such that
a ≤ (t1⊕q1(y¯x−))⊕ ...⊕(tk⊕qk(y¯x−)). Let s = s1⊕ ...⊕sm and t = t1⊕ ...⊕ tk;
then s, t ∈ P. Let n = max

i=1,m
{ni} and q = max

i=1,k
{qi}. Then a ≤ m(s ⊕ n(x ¯ y−))

and a ≤ k(t ⊕ q(y ¯ x−)). Let now u = s ⊕ t and p = max{n, q}. Then u ∈ P ,
a ≤ m(u ⊕ p(x ¯ y−)) and a ≤ k(u ⊕ p(y ¯ x−)). Hence a ≤ [m(u ⊕ p(x ¯ y−))] ∧
[k(u⊕p(y¯x−))] ≤ k[(m(u⊕p(x¯y−)))∧ (u⊕p(y¯x−))] ≤ mk([(u⊕p(x¯y−))]∧
[(u⊕ p(y ¯ x−))]) = mk[u⊕ (p(x¯ y−) ∧ p(y ¯ x−))]

= mk[u⊕ 0] = mku ∈ P, hence a ∈ P, a contradiction. ¥

Remark 4.7. If pseudo MV− algebra A is an MV− algebra we obtain Theorem
2.29.

Definition 4.4. An ideal H is normal if the following condition holds:

(N) for every x, y ∈ A, y ¯ x− ∈ H iff xs ¯ y ∈ H.

Lemma 4.22. Let H be a normal ideal. Then

(i) The condition (N) is equivalent with the condition

(N ′) : for any x ∈ A, H ⊕ x = x⊕H,

that is, for each h ∈ H, there exists h′ ∈ H such that h ⊕ x = x ⊕ h′ and
for each h′ ∈ H, there exists h ∈ H such that x⊕ h′ = h⊕ x.

(ii) The axiom (N) implies implies the following equivalences: h ∈ H ⇔ h= ∈
H and h ∈ H ⇔ ht ∈ H.

Proof. (i). (N) ⇒ (N ′). Let x ∈ A and h ∈ H. We put y = h⊕ x, y ≤ x. Then
(y¯x−)⊕x = y∨x = y = x⊕(xs¯y). Hence h⊕x = y = (y¯x−)⊕x = x⊕(xs¯y). If
y¯x− ∈ H we get that h′ = xs¯y ∈ H, so there exists h′ ∈ H such that h⊕x = x⊕h′
. Similarly, for each h′ ∈ H, there exists h ∈ H such that x⊕ h′ = h⊕ x. Thus (N ′)
holds.

(N ′) ⇒ (N). (Dvurecenskij) Suppose that y¯x− ∈ H; then putting h1 = y¯x−
we have x∨y = (y¯x−)⊕x = h1⊕x = x⊕(xs¯y) and there exists h2 = xs¯y ∈ H
such that x∨ y = x⊕ h2. Then xs¯ y ≤ xs¯ (x∨ y ) = xs¯ (x⊕ h2) = xs ∧ h2 ≤
h2 ∈ H. It follows that xs ¯ y ∈ H. Similarly, if we assume that xs ¯ y ∈ H we
obtain that y ¯ x− ∈ H. Thus (N) holds.

(ii). In (N) for y = 1 we obtain x− ∈ H iff xs ∈ H. Take then x = xs and
x = x−; we get that x ∈ H ⇔ x= ∈ H and x ∈ H ⇔ xt ∈ H. ¥

Remark 4.8. If e ∈ B(A), then (e] = {x ∈ A : x ≤ ne = e, for some n ≥ 1} =
{x ∈ A : x ≤ e} is a normal ideal of A. Indeed, if x, y ∈ (e] we get y ¯ x− ∈ (e] ⇔
y¯x− ≤ e ⇔ y ≤ e⊕(x−)s = e⊕x = x⊕e = (xs)−⊕e ⇔ xs¯y ≤ e ⇔ xs¯y ∈ (e].

Lemma 4.23. (Dvurecenskij) Let H be a normal ideal of A and a ∈ A\H. Then
(H ∪ {a}] = {x ∈ A : x ≤ h⊕ na for some h ∈ H and some integers n ≥ 1}.
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Proof. By Proposition 4.17, (H ∪ {a}] = {x ∈ A : x ≤ (h1 ⊕ n1a)⊕ ...⊕ (hm ⊕
nma) for some h1, ..., hm ∈ H and for some integers m ≥ 1 and n1, ..., nm ≥ 0}.
If m = 1, then x ≤ h1 ⊕ n1a. If m = 2, then x ≤ (h1 ⊕ n1a) ⊕ (h2 ⊕ n2a) =
h1⊕ (n1a⊕h2)⊕n2a = h1⊕ (h′2⊕n1a)⊕n2a = (h1⊕h′2)⊕ (n1a⊕n2a) = h12⊕n12a
with h12 = h1 ⊕ h′2 ∈ H and n12 = n1 + n2 is a natural number.

By induction we get that x ≤ h12...m⊕n12...ma with h12...m = h12...m−1⊕h′m ∈ H
and n12...m = n1 + ... + nm is a natural number. ¥

The next proposition generalizes a well known property of maximal ideals in
boolean algebras and MV− algebras. The idea that I must be a normal ideal to
be able to prove one of the implications by ussing the above lemma belongs to A.
Dvurecenskij.

Proposition 4.24. For any proper normal ideal I of a pseudo MV− algebra A,
the following conditions are equivalent:

(i) I is a maximal ideal of A,
(ii) For each x ∈ A ⇔ [(nx)s ∈ I or (mx)− ∈ I for some integers n, m ≥ 1].

Proof. (i) ⇒ (ii). Suppose that I is a maximal ideal of A and let x ∈ A\I.
Then ({x} ∪ I] = (I ∪ {x}] = A, so for some integers m,n ≥ 1 and a, b ∈ I we have
1 = nx⊕ a = b⊕mx. Hence, 1 = ((nx)s)− ⊕ a = b⊕ ((mx)−)s, so (nx)s ≤ a and
(mx)− ≤ b. Then we get (nx)s ∈ I or (mx)− ∈ I.

If x ∈ I, then nx ∈ I. Since I is proper, i.e. 1 /∈ I, it follows that (nx)s /∈ I and
(nx)− /∈ I.

(ii) ⇒ (i). Let J be an idealof A such that I ⊂ J. Then for every x ∈ J\I we
have by (ii), (nx)s ∈ I or (mx)− ∈ I for some integers n,m ≥ 1, so (nx)s ∈ J
or (mx)− ∈ J. Since x ∈ J we have nx,mx ∈ J, so nx ⊕ (nx)s = 1 ∈ J or
(mx)− ⊕mx = 1 ∈ J. We deduce that 1 ∈ J and J = A, so I is a maximal ideal of
A. ¥

Definition 4.5. A congruence on A is an equivalence relation ≡ on an pseudo
MV− algebra A satyisfing the following conditions:

(C1) if x ≡ y and a ≡ b then x⊕ a ≡ y ⊕ b and a⊕ x ≡ b⊕ y;
(C2) if x ≡ y then x− ≡ y− and xs ≡ ys.

If H is a normal ideal then ≡L(H)⇔≡R(H); let ≡H denote one of therm. The
binary relation ≡H is a congruence on A and we have H = {x ∈ A : x ≡H 0} =
0/ ≡H . Conversely, if ≡ is a congruence on A, then 0/ ≡= {x ∈ A : x ≡ 0} is a
normal ideal of A and x ≡ y iff d−(x, y) ≡ 0, or equivalently, x ≡ y iff ds(x, y) ≡ 0.

We deduce that there is a bijection between the set of normal ideals and the set
of congruences of a pseudo MV− algebra.

To any normal ideal H of A we shall denote the equivalence class of x ∈ A with
respect to ≡H by x/H and the quotient set A/ ≡H by A/H . We remark that A/H
becomes a pseudo MV− algebra with the natural operations induced by those of
A : (x/H)⊕(y/H) = (x⊕y)/H; (x/H)− = (x−)/H; (x/H)s = (xs)/H. This pseudo
MV− algebra (A/H,⊕,− ,s , 0/H = H, 1/H) is called the quotient algebra of A by
the normal ideal H.

The correspondence x → x/H defines a homomorphism pH from A onto the
quotint algebra A/H, which is called the natural homomorphism from A onto A/H;
Ker(pH) = H since x ∈ Ker(pH) ⇔ x/H = pH(x) = 0/H = H ⇔ x ≡H 0 ⇔
d−(x, 0) ∈ H and ds(x, 0) ∈ H ⇔ x ∈ H.
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Remark 4.9. If A is a pseudo MV− chain, then the set of normal ideals of A
is totally ordered by inclusion. Indeed, if I, J are normal ideals of A such that I * J
and J * I, then there would be elements a, b ∈ A such that a ∈ J\I and b ∈ I\J,
whence a � b and b � a, which is impossible.

Remark 4.10. Note that a normal ideal I is prime iff A/I is a linearly ordered
pseudo MV− algebra.

If A is an MV− algebra, then d− = ds, i.e.

d−(x, y) = ds(x, y) = d(x, y) = (x¯ y−)⊕ (y ¯ x−)

and d is the distance function of A.
It is obvious that, in this case, any ideal of A is normal.



CHAPTER 5

Pseudo BL-algebras

In [53], [54], [67], A. Di Nola, G. Georgescu and A. Iorgulescu defined the pseudo BL-
algebras as a non-commutative extension of BL- algebras (the class of pseudo BL - algebras
contains the pseudo MV-algebras, see [66], [68]). The corresponding propositional logic was
established in [76], [77].

Apart from their logical interest, pseudo BL-algebras have interesting algebraic proper-
ties (see [37], [53], [54], [70], [94]).

1. Definitions and first properties. Some examples. Rules of calculus

We review the basic definitions of pseudo BL- algebras, with more details and more
examples; a lot of identities are true in a pseudo BL-algebra. Also we put in evidence
connection between pseudo BL-algebras and pseudo MV-algebras, BL-algebras and Hilbert
algebras.

Definition 5.1. A pseudo BL− algebra is an algebra

(A,∨,∧,¯,→, Ã 0, 1)

of type (2,2,2,2,2,0,0) satisfying the following:
(psBL1) (A,∨,∧, 0, 1) is a bounded lattice;
(psBL2) (A,¯, 1) is a monoid;
(psBL3) a¯ b ≤ c iff a ≤ b → c iff b ≤ a Ã c for all a, b, c ∈ A;
(psBL4) a ∧ b = (a → b)¯ a = a¯ (a Ã b);
(psBL5) (a → b) ∨ (b → a) = (a Ã b) ∨ (b Ã a) = 1, for all a, b ∈ A.

We shall agree that the operations ∧,∨,¯ have priority towards the operations
→, Ã .

Example 5.1. Let (A,¯,⊕,− ,s , 0, 1) be a pseudo MV− algebra and let →,Ã
be two implications defined by

x → y = y ⊕ x−, x Ã y = xs ⊕ y.

Then (A,∨,∧,¯,→,Ã 0, 1) is a pseudo BL− algebra.

Example 5.2. Let us consider an arbitrary l-group (G,∨,∧, +,−, 0, 1) and let
u ∈ G, u ≤ 0. We put by definition:

x¯ y = (x + y) ∨ u, x⊕ y = (x− u + y) ∧ 0,

x− = u− x, xs = −x + u.

Then A = ([u, 0],¯,⊕,− ,s ,0 = u,1 = 0) is a pseudo MV− algebra and we define
two implications:

x → y = (y − x) ∧ 0, x Ã y = (−x + y) ∧ 0.

Then A = ([u, 0],∨,∧,¯,→, Ã,0 = u,1 = 0) is a pseudo BL− algebra.

107
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A pseudo BL− algebra is nontrivial if 0 6= 1. An element a ∈ A, a 6= 1 is called
non-unit. For any pseudo BL− algebra A, the reduct L(A) = (A,∨,∧, 0, 1) is a
bounded distributive lattice. For any a ∈ A, we define

a− = a → 0 and as = a Ã 0.

We shall write a= instead of (a−)− and at instead of (as)s.
We define a0 = 1 and an = an−1¯a for n ≥ 1. The order of a, a 6= 1, in symbols

ord(a) is the smallest n ≥ 1 such that an = 0; if no such n exists, then ord(a) = ∞.
A pseudo BL− algebra is called locally finite if all non unit elements in it are

finite order.
Now we are able to make the connections of pseudo BL− algebras with BL−algebras

and pseudo MV−algebras.

Definition 5.2. A pseudo BL− algebra A is commutative iff x¯ y = y¯ x, for
any x, y ∈ A.

Proposition 5.1. A pseudo BL -algebra A is commutative iff x Ã y = x → y,
for all x, y ∈ A. Any commutative pseudo BL−algebra A is a BL−algebra.

Then we shall say that a pseudo BL− algebra is proper if it is not commutative,
i.e. if it is not a BL algebra.

Proposition 5.2. Let (A,∨,∧,¯,→,Ã 0, 1) be a pseudo BL− algebra with the
property:

(P ) : for all x ∈ A, (xs)− = x = (x−)s.

Let us define on A a new operation by

y ⊕ x = (x− ¯ y−)s = (xs ¯ ys)− = xs → y = y− → x.

Then (A,¯,⊕,− ,s , 0, 1) is a pseudo MV− algebra.

The next Corollary generalizes the following results from [75]: A BL algebra
(A,∨,∧,¯,→, 0, 1) is an MV algebra iff x∗∗ = x, for all x ∈ A (where x∗ = x → 0).

Corollary 5.3. A pseudo BL− algebra A is a pseudo MV− algebra iff A has
property (P ).

In [37], [53], [54] it is proved that if A is a pseudo BL− algebra and a, a1, ..., an, a′, b, b′, c, bi ∈
A, (i ∈ I) then we have the following rules of calculus:

(psbl − c1) a¯ (a Ã b) ≤ b ≤ a Ã (a¯ b) and a¯ (a Ã b) ≤ a ≤ b Ã (b¯ a);
(psbl − c2) (a → b)¯ a ≤ a ≤ b → (a ¯b) and (a → b)¯ a ≤ b ≤ a → (b ¯a);
(psbl − c3) if a ≤ b then a¯ c ≤ b¯ c and c¯ a ≤ c¯ b;
(psbl − c4) if a ≤ b then c Ã a ≤ c Ã b and c → a ≤ c → b;
(psbl − c5) if a ≤ b then b Ã c ≤ a Ã c and b → c ≤ a → c;
(psbl − c6) a ≤ b iff a → b = 1 iff a Ã b = 1;
(psbl − c7) a Ã a = a → a = 1;
(psbl − c8) 1 Ã a = 1 → a = a;
(psbl − c9) b ≤ a Ã b and b ≤ a → b;

(psbl − c10) a¯ b ≤ a ∧ b and a¯ b ≤ a, b;
(psbl − c11) a Ã 1 = a → 1 = 1;
(psbl − c12) a Ã b ≤ (c¯ a) Ã (c¯ b);
(psbl − c13) a → b ≤ (a¯ c) → (b¯ c);
(psbl − c14) if a ≤ b then a ≤ c Ã b and a ≤ c → b;
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(psbl − c15) a → (b¯ c) ≥ b¯ (a → c) and a Ã (b¯ c) ≥ (a Ã b)¯ c;
(psbl − c16) if a ≤ b then b− ≤ a− and bs ≤ as;
(psbl − c17) 0¯ a = a¯ 0 = 0;
(psbl − c18) (a Ã b)¯ (b Ã c) ≤ a Ã c and (b → c)¯ (a → b) ≤ a → c;
(psbl − c19) (a1 Ã a2)¯ (a2 Ã a3)¯ ...¯ (an−1 Ã an) ≤ a1 Ã an;

(an−1 → an)¯ ...¯ (a2 → a3)¯ (a1 → a2) ≤ a1 → an;
(psbl − c20) a ∨ b = ((a Ã b) → b) ∧ ((b Ã a) → a);
(psbl − c21) a ∨ b = ((a → b) Ã b) ∧ ((b → a) Ã a);
(psbl − c22) a Ã (b Ã c) = (b ¯ a) Ã c and a → (b → c) = (a ¯ b) → c; a Ã b = a Ã

(a ∧ b) and a → b = a → (a ∧ b);
(psbl − c23) (a Ã b) Ã (a Ã c) = (b Ã a) Ã (b Ã c) and (a → b) → (a → c) = (b →

a) → (b → c);
(psbl − c24) c¯ (a ∧ b) = (c¯ a) ∧ (c¯ b) and (a ∧ b)¯ c = (a¯ c) ∧ (b¯ c);
(psbl − c25) (a Ã b)¯ (a′ Ã b′) ≤ (a ∨ a′) Ã (b ∨ b′);
(psbl − c26) (a Ã b)¯ (a′ Ã b′) ≤ (a ∧ a′) Ã (b ∧ b′);
(psbl − c27) (a → b)¯ (a′ → b′) ≤ (a ∨ a′) → (b ∨ b′);
(psbl − c28) (a → b)¯ (a′ → b′) ≤ (a ∧ a′) → (b ∧ b′);
(psbl − c29) (a Ã b) Ã c ≤ ((b Ã a) Ã c) Ã c and (a → b) → c ≤ ((b → a) → c) → c ;
(psbl − c30) (a Ã b) Ã c ≤ ((b Ã a) Ã c) → c and (a → b) → c ≤ ((b → a) → c) Ã c ;
(psbl − c31) a Ã b ≤ (b Ã c) → (a Ã c) and a → b ≤ (b → c) Ã (a → c) ;
(psbl − c32) a Ã b ≤ (c Ã a) Ã (c Ã b) and a → b ≤ (c → a) → (c → b) ;
(psbl − c33) if a ∨ b = 1 then a¯ b = a ∧ b;
(psbl − c34) if a ∨ b = 1 then, for each n ≥ 1, an ∨ bn = 1,
(psbl − c35) for each n ∈ ω, n ≥ 1,

(a → b)n ∨ (b → a)n = 1;

(a Ã b)n ∨ (b Ã a)n = 1;

(psbl − c36) a ∧ (
∨
i∈I

bi) =
∨
i∈I

(a ∧ bi),

a¯ (
∨
i∈I

bi) =
∨
i∈I

(a¯ bi),

(
∨
i∈I

bi)¯ a =
∨
i∈I

(bi ¯ a),

a Ã (
∧
i∈I

bi) =
∧
i∈I

(a Ã bi),

a → (
∧
i∈I

bi) =
∧
i∈I

(a → bi),

(
∨
i∈I

bi) Ã a =
∧
i∈I

(bi Ã a),

(
∨
i∈I

bi) → a =
∧
i∈I

(bi → a),

(whenever the arbitrary meets and unions exist)
(psbl − c37) 1s = 1− = 0, 0s = 0− = 1;
(psbl − c38) a¯ as = a− ¯ a = 0;
(psbl − c39) b ≤ as iff a¯ b = 0;
(psbl − c40) b ≤ a− iff b¯ a = 0;
(psbl − c41) a ≤ a− Ã b, a ≤ as → b;
(psbl − c42) a ≤ (a Ã b) → b, a ≤ (a → b) Ã b, hence a ≤ (as)−, a ≤ (a−)s;
(psbl − c43) a Ã b ≤ bs → as, a → b ≤ b− Ã a−;
(psbl − c44) a → bs = b Ã a−, a Ã b− = b → as;
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(psbl − c45) a ≤ b implies bs ≤ as and b− ≤ a−;
(psbl − c46) (( as)−)s = as, (( a−)s)− = a−;
(psbl − c47) a → as = a Ã a−;
(psbl − c48) (a¯ b)− = a → b−, (a¯ b)s = b Ã as;
(psbl − c49) (a ∧ b)s = as ∨ bs, (a ∨ b)s = as ∧ bs;
(psbl − c50) (a ∧ b)− = a− ∨ b−, (a ∨ b)− = a− ∧ b−;
(psbl − c51) (a ∧ b)t = at ∧ bt, (a ∨ b)t = at ∨ bt;
(psbl − c52) (a ∧ b)= = a= ∧ b=, (a ∨ b)= = a= ∨ b=;
(psbl − c53) (a ∨ c)¯ (b ∨ c ∨ as) ≤ (a¯ b) ∨ c;
(psbl − c54) (b ∨ c ∨ a−)¯ (a ∨ c) ≤ (b¯ a) ∨ c;
(psbl − c55) a ∨ (b¯ c) ≥ (a ∨ b)¯ (a ∨ c).

Proof. (psbl − c1). a¯ (a Ã b) = a ∧ b ≤ a, b; the second inequalities follow by
psBL3 : b ≤ a Ã (a¯ b) ⇔ a¯ b ≤ a¯ b and a ≤ b Ã (b¯ a) ⇔ b¯ a ≤ b¯ a.

(psbl − c2). Has a similar proof with psbl − c1.

(psbl− c3). a ≤ b
psbl−c2≤ c → (b ¯c), so by psBL3, a ¯c ≤ b ¯c and a ≤ b

psbl−c1≤
c Ã (c¯ b)

psBL3⇔ c ¯a ≤ c ¯b.

(psbl − c4). c ¯ (c Ã a)
psbl−c1≤ a ≤ b, so by psBL3, c Ã a ≤ c Ã a; (c →

a)¯ c
psbl−c2≤ a ≤ b, hence by psBL3, c → a ≤ c → b.

(psbl − c5). If a ≤ b then we deduce that a¯ (b Ã c)
psbl−c3≤ b¯ (b Ã c)

psbl−c1≤ c
so b Ã c ≤ a Ã c, by psBL3; if a ≤ b then

(b → c)¯ a
psbl−c3≤ (b → c)¯ b

psBL4= b ∧ c ≤ b; hence b → c ≤ a → c,by psBL3.
(psbl− c6). a ≤ b iff a¯ 1 ≤ b iff 1 ≤ a Ã b iff a Ã b = 1, by psBL2, psBL3 and

psBL1.
(psbl − c7). Obviously, by psbl − c6, since a ≤ a.

(psbl − c8). a = 1 ∧ a
psBL4= 1 ¯ (1 Ã a) = 1 Ã a and a = 1 ∧ a

psBL4= (1 →
a)¯ 1 = 1 → a, so 1 Ã a = 1 → a = a.

(psbl − c9). a ≤ 1 implies by psbl − c5, 1 Ã b ≤ a Ã b and 1 → b ≤ a → b so
b ≤ a Ã b and b ≤ a → b by psbl − c8.

(psbl− c10). Since b
psbl−c9≤ a → b, then a¯ b

psbl−c3≤ a¯ (a → b)
psBL4= a∧ b ≤ a, b

.
(psbl − c11). By psbl − c6 since a ≤ 1.

(psbl− c12). a Ã b
psbl−c3≤ (c¯ a) Ã (c¯ b)

psBL3⇔ (c¯ a)¯ (a Ã b) ≤ c¯ b
psBL4⇔

c¯ (a ∧ b) ≤ c¯ b.

(psbl− c13). a → b
psbl−c3≤ (a¯ c) → (b¯ c)

psBL3⇔ (a → b)¯ (a¯ c) ≤ b¯ c
psBL4⇔

(a ∧ b)¯ c ≤ b¯ c.
(psbl − c14). By psbl − c9 , a ≤ b ≤ c Ã b and a ≤ b ≤ c → b.

(psbl − c15). (a Ã b) ¯ c ≤ a Ã (b ¯ c)
psBL3⇔ a ¯ [(a Ã b) ¯ c] ≤ b ¯ c

psBL4⇔
(a∧ b)¯ c ≤ b¯ c and b¯ (a → c) ≤ a → (b¯ c)

psBL3⇔ [b¯ (a → c)]¯a ≤ b¯ c
psBL4⇔

b¯ (a ∧ c) ≤ b¯ c.
(psbl − c16). Follows from psbl − c5, by taking c = 0.
(psbl − c17). Clearly, 0 ¯ 1 = 1 ¯ 0 = 0. Then since a ≤ 1, it follows that

a¯ 0
psbl−c3≤ 1¯ 0 = 0 and 0¯ a

psbl−c3≤ 0¯ 1 = 0. Hence a¯ 0 = 0¯ a = 0.
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(psbl− c18). We get (a Ã b)¯ (b Ã c) ≤ a Ã c
psBL3⇔ a¯ [(a Ã b)¯ (b Ã c)] ≤ c

psBL4⇔ (a∧ b)¯ (b Ã c) ≤ c, which is true, since (a∧ b)¯ (b Ã c) ≤ b¯ (b Ã c)
psBL4=

b∧ c ≤ c and (b → c)¯ (a → b) ≤ a → c
psBL3⇔ [(b → c)¯ (a → b)]¯a ≤ c

psBL4⇔ (b →
c)¯ (a ∧ b) ≤ c, which is true, since (b → c)¯ (a ∧ b) ≤ (b → c)¯ b

psBL4= b ∧ c ≤ c.
(psbl − c19). Have a similar proof with psbl − c17 and psbl − c18.
(psbl − c20). Denote x = ((a Ã b) → b) ∧ ((b Ã a) → a). By psBL4, a ∧ b =

a¯ (a Ã b) so a ≤ (a Ã b) → b; from psbl − c9, we also have that b ≤ (a Ã b) → b;
it follows that a ∨ b ≤ (a Ã b) → b. Analogous, a ∨ b ≤ (b Ã a) → a. Hence
a ∨ b ≤ ((a Ã b) → b) ∧ ((b Ã a) → a).

We have x = x¯ 1
psBL5= x¯ [(a Ã b)∨ (b Ã a)]

psbl−c36= [x¯ (a Ã b)]∨ [x¯ (b Ã
a)]; but x ¯ (a Ã b) = [((a Ã b) → b) ∧ ((b Ã a) → a)] ¯ (a Ã b) ≤ [(a Ã
b) → b] ¯ (a Ã b)

psBL4= (a Ã b) ∧ b ≤ b; similary, x ¯ (b Ã a) ≤ a. Hence,
x = [x¯ (a Ã b)] ∨ [x¯ (b Ã a)] ≤ b ∨ a. It follows that a ∨ b = x.

(psbl − c21). Has a similar proof with psbl − c20.
(psbl − c22). We have the following equivalences:

(b¯a) Ã c ≤ a Ã (b Ã c)
psBL3⇔ a¯[(b¯a) Ã c] ≤ b Ã c

psBL3⇔ b¯[a¯((b¯a) Ã
c)] ≤ c

psBL2⇔ (b¯ a)¯ [(b¯ a) Ã c] ≤ c
psBL3⇔ (b¯ a) ∧ c ≤ (b¯ a) Ã c;

and a Ã (b Ã c) ≤ (b¯a) Ã c
psBL3⇔ (b¯a)¯ [a Ã (b Ã c)] ≤ c ⇔ b¯ [a¯ (a Ã

(b Ã c))] ≤ c
psBL4⇔ b¯ [a ∧ (b Ã c)] ≤ c

psBL3⇔ a ∧ (b Ã c) ≤ b Ã c.
So, (b¯ a) Ã c = a Ã (b Ã c).
The second equality has a similar proof.
a ∧ b = a ¯ (a Ã b) ≤ a ∧ b implies a Ã b ≤ a Ã (a ∧ b); On the other

side, a ∧ b ≤ b
psbl−c5⇔ a Ã (a ∧ b) ≤ a Ã b, so a Ã b = a Ã (a ∧ b); Similarly,

a → b = a → (a ∧ b).

(psbl − c23). We have (a Ã b) Ã (a Ã c)
psbl−c22= [a ¯ (a Ã b)] Ã c

psBL4=

(a ∧ b) Ã c = (b ∧ a) Ã c
psBL4= [b ¯ (b Ã a)] Ã c

psbl−c22= (b Ã a) Ã (b Ã c) and

(a → b) → (a → c)
psbl−c22= [(a → b) ¯ a] → c

psBL4= (a ∧ b) → c = (b ∧ a) → c
psBL4=

[(b → a)¯ b] → c
psbl−c22= (b → a) → (b → c).

(psbl − c24). By psbl − c22 and psbl − c12 we get a Ã b = a Ã (a ∧ b) ≤
(c¯ a) Ã (c¯ (a ∧ b)).

Thus a Ã b
psbl−c14≤ [(c¯a) Ã (c¯b)] Ã [(c¯a) Ã (c¯(a∧b))] and by replacing

a by b and b by a we obtain b Ã a
psbl−c14≤ [(c¯b) Ã (c¯a)] Ã [(c¯b) Ã (c¯(b∧a))].

By psbl− c23, the right term of the last two inequalities are equal and we denote the
common value by x. So, a Ã b ≤ x, b Ã a ≤ x.

On other side, (a Ã b) ∨ (b Ã a)
psBL5= 1, therefore we get 1 ≤ x ∨ x = x, hence

x = 1.

Thus (c¯ a) Ã (c¯ b)
psbl−c6≤ (c¯ a) Ã (c¯ (a ∧ b))

psBL3⇔ (c¯ a)¯ [(c¯ a) Ã
(c¯ b)] ≤ c¯ (a ∧ b).

By psbl−c3, a∧b ≤ a, b implies c¯(a∧b) ≤ c¯a, c¯b, so c¯(a∧b) ≤ (c¯a)∧(c¯b).
Thus the first equality holds.
The second equality, (a ∧ b)¯ c = (a¯ c) ∧ (b¯ c), has a similar proof.
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(psbl − c25). The inequalities a ¯ (a Ã b) ¯ (a′ Ã b′) ≤ a ¯ (a Ã b) = a ∧ b ≤
b ∨ b′, and a′ ¯ (a Ã b) ¯ (a′ Ã b′) ≤ a′ ¯ (a′ Ã b′) = a′ ∧ b′ ≤ b ∨ b′ imply
(a Ã b)¯ (a′ Ã b′) ≤ a Ã (b ∨ b′) and (a Ã b)¯ (a′ Ã b′) ≤ a′ Ã (b ∨ b′) therefore

(a Ã b)¯ (a′ Ã b′) ≤ [a Ã (b ∨ b′)] ∧ [a′ Ã (b ∨ b′)] psbl−c36= (a ∨ a′) Ã (b ∨ b′).
(psbl − c26). The inequalities (a ∧ a′) ¯ (a Ã b) ¯ (a′ Ã b′) ≤ a ¯ (a Ã b) ≤ b

and (a ∧ a′)¯ (a Ã b)¯ (a′ Ã b′) ≤ a′ ¯ (a′ Ã b′) ≤ b′ imply (a Ã b)¯ (a′ Ã b′) ≤
(a ∧ a′) Ã b and (a Ã b)¯ (a′ Ã b′) ≤ (a ∧ a′) Ã b′ therefore

(a Ã b)¯ (a′ Ã b′) ≤ [(a ∧ a′) Ã b] ∧ [(a ∧ a′) Ã b′] psbl−c36= (a ∧ a′) Ã (b ∧ b′).
(psbl − c27). Has a similar proof with psbl − c25.
(psbl − c28). Has a similar proof with psbl − c26.
(psbl − c29). We have [(b Ã a) Ã c] ¯ [(a Ã b) Ã c] ≤ [(b Ã a) Ã c] ∧ [(a Ã

b) Ã c]
psbl−c36= [(b Ã a)∨(a Ã b)] Ã c

psBL5= 1 Ã c
psbl−c8= c. So by psBL3 we deduce

(a Ã b) Ã c ≤ ((b Ã a) Ã c) Ã c. The second inequality has a similar proof.
(psbl − c30). Have a similar proof with psbl − c29.
(psbl− c31). We have a¯ (a Ã b)¯ (b Ã c) = (a ∧ b)¯ (b Ã c) ≤ b¯ (b Ã c) =

b ∧ c ≤ c, so a¯ (a Ã b)¯ (b Ã c) ≤ c
psBL3⇔ (a Ã b)¯ (b Ã c) ≤ a Ã c

psBL3⇔
a Ã b ≤ (b Ã c) → (a Ã c); since (b → c)¯(a → b)¯a = (b → c)¯(a∧b) ≤ (b →

c)¯ b = b∧ c ≤ c, then (b → c)¯ (a → b) ≤ a → c hence a → b ≤ (b → c) Ã (a → c)
.

(psbl − c32). a Ã b ≤ (c Ã a) Ã (c Ã b)
psBL3⇔ (c Ã a)¯ (a Ã b) ≤ (c Ã b) and

the right side of the equivalence is true by psbl − c18;
a → b ≤ (c → a) → (c → b)

psBL3⇔ (a → b)¯ (c → a) ≤ c → b and the right side
of the equivalence is true by psbl − c18.

(psbl− c33). By psbl− c20, a∨ b = ((a Ã b) → b)∧ ((b Ã a) → a) = 1, therefore

(a Ã b) → b = 1
psbl−c6⇔ a Ã b ≤ b. Thus a ∧ b = a¯ (a Ã b) ≤ a¯ b.

By psbl − c10 we also have a¯ b ≤ a ∧ b, so a¯ b = a ∧ b.

(psbl− c34). If a∨ b = 1 then, a = a¯1 = a¯ (a∨ b)
psbl−c36(ii)= (a¯a)∨ (a¯ b) ≤

a2 ∨ b. Hence a2 ∨ b ≥ a. Then (a2 ∨ b) ∨ b ≥ a ∨ b = 1, so a2 ∨ b = 1. Similarly,

b = 1¯ b = (a2 ∨ b)¯ b
psbl−c36= (a2 ¯ b) ∨ (b¯ b) ≤ a2 ∨ b2. Thus, a2 ∨ b2 ≥ b; hence

a2 ∨ (a2 ∨ b2) ≥ a2 ∨ b = 1, so a2 ∨ b2 = 1.
It follows that 1 = a∨ b = a2 ∨ b2 = (a2)2 ∨ (b2)2 = ... . We obtain a2n ∨ b2n

= 1,
for each integer n ≥ 1. Since n ≤ 2n it follows that an ∨ bn ≥ a2n ∨ b2n

= 1, which
implies an ∨ bn = 1.

(psbl − c35). Follows by psbl − c34 and psBL5.
(psbl−c36). (ii). We prove that a¯(

∨
i∈I

bi) =
∨
i∈I

(a¯bi) and (
∨
i∈I

bi)¯a =
∨
i∈I

(bi¯a).

Obviously, a ¯ bi ≤ a ¯ (
∨
i∈I

bi) for each i ∈ I. Let a ¯ bi ≤ c, i ∈ I. Then by

psBL3 we have bi ≤ a Ã c, i ∈ I, so
∨
i∈I

bi ≤ a Ã c
psBL3⇔ a ¯ (

∨
i∈I

bi) ≤ c. Therefore

we get that a¯ (
∨
i∈I

bi) =
∨
i∈I

(a¯ bi). Analogous the second equality.

(i). We prove that a ∧ (
∨
i∈I

bi) =
∨
i∈I

(a ∧ bi).
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We have a ∧ (
∨
i∈I

bi)
psBL4= (

∨
i∈I

bi) ¯ [(
∨
j∈I

bj) Ã a] =
∨
i∈I

(bi ¯ [(
∨
j∈I

bj) Ã a]). But,

for any i ∈ I, bi ≤
∨
j∈I

bj , then by psbl − c5, (
∨
j∈I

bj) Ã a ≤ bi Ã a, so by psbl − c3,

bi¯ [(
∨
j∈I

bj) Ã a] ≤ bi¯ (bi Ã a)
psBL4= bi∧a; it follows that

∨
i∈I

(bi¯ [(
∨
j∈I

bj) Ã a]) ≤
∨
i∈I

(a ∧ bi). We deduce that a ∧ (
∨
i∈I

bi) ≤
∨
i∈I

(a ∧ bi);

the converse inequality is obvious.
By this rule of calculus we immediately get that: If (A,∨,∧,¯,→,Ã, 0, 1) is a

pseudo BL-algebra, then L(A) = (A,∨,∧, 0, 1) is a bounded distributive lattice.
(iii). To prove that (

∨
i∈I

bi)¯a =
∨
i∈I

(bi¯a), remark first that bi¯a ≤ (
∨
i∈I

bi)¯a,

for every i ∈ I, by psbl− c3. Let x such that bi¯a ≤ x, i ∈ I, then bi ≤ a → x, i ∈ I;
hence

∨
i∈I

bi ≤ a → x
psBL3⇔ (

∨
i∈I

bi)¯ a ≤ x. Thus (
∨
i∈I

bi)¯ a =
∨
i∈I

(bi ¯ a).

The rules (iv). : a Ã (
∧
i∈I

bi) =
∧
i∈I

(a Ã bi), (v) : a → (
∧
i∈I

bi) =
∧
i∈I

(a → bi), (vi) :

(
∨
i∈I

bi) Ã a =
∧
i∈I

(bi Ã a), (vii) : (
∨
i∈I

bi) → a =
∧
i∈I

(bi → a)

has a similar proof.
For example we proof (vi) : (

∨
i∈I

bi) Ã a =
∧
i∈I

(bi Ã a) :

We have the following equivalences for any x ∈ A :

x ≤ (
∨
i∈I

bi) Ã a
psBL3⇔ (

∨
i∈I

bi)¯ x ≤ a
psbl−c36(iii)⇔ ∨

i∈I

(bi ¯ x) ≤ a ⇔ bi ¯ x ≤ a for

any i ∈ I ⇔ x ≤ bi Ã a for any i ∈ I ⇔ x ≤ ∧
i∈I

(bi Ã a).

(psbl − c37). Obviously by psbl − c8 and psbl − c7.

(psbl− c38). a¯as = a¯ (a Ã 0)
psBL4= a∧0 = 0 and a−¯a = (a → 0)¯a

psBL4=
a ∧ 0 = 0.

(psbl − c39). b ≤ as ⇔ b ≤ a Ã 0
psBL3⇔ a¯ b ≤ 0 ⇔ a¯ b = 0.

(psbl − c40). b ≤ a− ⇔ b ≤ a → 0
psBL3⇔ b¯ a ≤ 0 ⇔ b¯ a = 0.

(psbl − c41). a ≤ a− Ã b
psBL3⇔ a− ¯ a ≤ b

psbl−c38⇔ 0 ≤ b and a ≤ as → b
psBL3⇔

a¯ as ≤ b
psbl−c38⇔ 0 ≤ b.

(psbl − c42). a ≤ (a Ã b) → b
psBL3⇔ a ¯ (a Ã b) ≤ b

psBL4⇔ a ∧ b ≤ b, obviously;
for b = 0 we obtain a ≤ (as)−.

The other inequality , a ≤ (a → b) Ã b has a similar proof; for b = 0 we obtain
a ≤ (a−)s.

(psbl − c43). By psbl − c31, a Ã b ≤ (b Ã 0) → (a Ã 0) = bs → as and
a → b ≤ (b → 0) Ã (a → 0) = b− Ã a−.

(psbl−c44). By psbl−c43, we have a → bs ≤ (bs)− Ã a− ≤ b Ã a−,by psbl−c42

and psbl − c5; similarly, a Ã b− ≤ (b−)s → as ≤ b → as.
By using these inequalities, we get b Ã a− ≤ a → bs and b → as ≤ a Ã b−.

Thus, the equalities hold.
(psbl − c45). By psbl − c5, a ≤ b implies bs = b Ã 0 ≤ a Ã 0 = as and

b− = b → 0 ≤ a → 0 = a−.
(psbl− c46). a ≤ (as)− (by psbl− c42) implies by psbl− c45 that (( as)−)s ≤ as

and a ≤ (a−)s implies (( a−)s)− ≤ a−; the converse inequalities follows by psbl−c42.
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(psbl − c47). We have the following equivalences for any x ∈ A :
x ≤ a → as ⇔ x ¯ a ≤ as ⇔ a ¯ (x ¯ a) = 0 ⇔ (a ¯ x) ¯ a = 0 ⇔ a ¯ x ≤

a− ⇔ x ≤ a Ã a−.

(psbl − c48). (a¯ b)− = (a ¯ b) → 0
psbl−c22= a → (b → 0) = a → b− and

(a¯ b)s = (a¯ b) Ã 0
psbl−c22= b Ã (a Ã 0) = b Ã as.

(psbl − c49). We get that a Ã b = a Ã (a ∧ b)
psbl−c43≤ (a ∧ b)s → as and

b Ã a = b Ã (b ∧ a)
psbl−c43≤ (a ∧ b)s → bs.

By psBL3, (a Ã b) ¯ (a ∧ b)s ≤ as and (b Ã a) ¯ (a ∧ b)s ≤ bs. It follows

that (a ∧ b)s = 1 ¯ (a ∧ b)s
psBL5= [(a Ã b) ∨ (b Ã a)] ¯ (a ∧ b)s

psbl−c36= [(a Ã
b)¯ (a ∧ b)s] ∨ [(b Ã a)¯ (a ∧ b)s] ≤ as ∨ bs.

The converse inequality follows since as, bs ≤ (a ∧ b)s.
The second equality: (a∨b)s = as∧bs, follows by psbl−c36, (a∨b)s = (a∨b) Ã

0 = (a Ã 0) ∨ (b Ã 0) = as ∧ bs.
(psbl − c50). Has a similar proof with psbl − c49.

(psbl−c51).(a∧b)t = ((a∧ b)s)s
psbl−c49= (as∨bs)s

psbl−c49= at∧ bt ; the second
equality follows similary.

(psbl − c52). Has a similar proof with psbl − c51.
(psbl − c53) and (psbl − c54) has a similar proof.
(psbl − c54) Let u = (b¯ a) ∨ c and v = u ∨ a; hence u ≤ v.

v → u = (u ∨ a) → u
psbl−c36= (u → u) ∧ (a → u) = 1 ∧ (a → u) = a → u.

Then u = v ∧ u = (v → u) ¯ v = (a → u) ¯ (u ∨ a). But b ¯ a ≤ u implies
b ≤ a → u.

Also, we have a− ≤ a → u since 0 ≤ u. It follows that b ∨ a− ≤ a → u. Since
u ≤ a → u then u ∨ b ∨ a− ≤ a → u , so by psbl − c3, [u ∨ b ∨ a−]¯ (u ∨ a) ≤ (a →
u)¯ (u ∨ a) = u = (b¯ a) ∨ c.

Since u∨ b = [(b¯a)∨ c]∨ b ≤ b∨ c∨ b = b∨ c and b∨ c ≤ [(b¯a)∨ c]∨ b = u∨ b,
we obtain u ∨ b = b ∨ c; similarly, u ∨ a = a ∨ c.

Replacing in the previous inequality, we obtain that (b ∨ c ∨ a−) ¯ (a ∨ c) ≤
(b¯ a) ∨ c.

(psbl − c55). (a ∨ b)¯ (a ∨ c)
psbl−c36= [(a ∨ b)¯ a] ∨ [(a ∨ b)¯ c] = (a¯ a) ∨ (b¯

a) ∨ (a¯ c) ∨ (b¯ c) ≥ a ∨ a ∨ a ∨ (b¯ c) = a ∨ (b¯ c). ¥

Lemma 5.4. For every a, b, c ∈ A, we have:
(psbl − c56) a ∧ (b¯ c) ≥ b¯ (a ∧ c);
(psbl − c57) a ∧ (b¯ c) ≥ (a ∧ b)¯ c;
(psbl − c58) a ∧ (b¯ c) ≥ (a ∧ b)¯ (a ∧ c).

Proof. (psbl − c56). From psbl − c15 we have a → ( b ¯ c) ≥ b ¯ (a → c). We
deduce that [a → ( b¯ c)]¯ a ≥ b¯ [(a → c)¯ a], so a ∧ (b¯ c) ≥ b¯ (a ∧ c).

(psbl − c57). As in the case of psbl − c56.
(psbl− c58). From a∧ b ≤ a, b and a∧ c ≤ a, c we deduce (a∧ b)¯ (a∧ c) ≤ b¯ c

and (a∧ b)¯ (a∧ c) ≤ a2 ≤ a, hence (a∧ b)¯ (a∧ c) ≤ a ∧ (b¯ c).¥

Lemma 5.5. For every a, b, c ∈ A, we have:
(psbl − c59) a → (b Ã c) ≤ b Ã (a → c),
(psbl − c60) a Ã (b → c) ≤ b → (a Ã c).
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Proof. (psbl− c59). We have b¯ [a → (b Ã c)]¯a
psBL4= b¯ [a∧ (b Ã c)]

psbl−c24=

(b¯a)∧[b¯(b Ã c)]
psBL4= (b¯a)∧(b∧c) = (b¯a)∧c ≤ c, so b¯[a → (b Ã c)] ≤ a → c,

hence a → (b Ã c) ≤ b Ã (a → c).

(psbl − c60). We have a ¯ [a Ã (b → c)] ¯ b
psBL4= [a ∧ (b → c)] ¯ b

psbl−c24=

(a¯b)∧[(b → c)¯b]
psBL4= (a¯b)∧(b∧c) = (a¯b)∧c ≤ c, so [a Ã (b → c)]¯b ≤ a Ã c,

hence a Ã (b → c) ≤ b → (a Ã c).¥
Corollary 5.6. For every a, b, c ∈ A, we have:

(psbl − c61) a → (b Ã c) = b Ã (a → c);
(psbl − c62) a → (a Ã c) = a Ã (a → c).

Proof. (psbl−c61). From psbl−c59 we deduce that a → (b Ã c) ≤ b Ã (a → c).
If in psbl − c60 we change a with b we obtain b Ã (a → c) ≤ a → (b Ã c), that is,
a → (b Ã c) = b Ã (a → c).

(psl − c62). Follow from psbl − c61 if consider a = b.¥
Remark 5.1. In particular for c = 0, from psbl − c61 and psbl − c62 we deduce

psbl − c44.

Lemma 5.7. For every a, b ∈ A, we have:
(psbl − c63) a= ¯ b= ≤ (a¯ b)=,
(psbl − c64) at ¯ bt ≤ (a¯ b)t.

Proof. (psbl − c63). By psbl − c48, (a¯ b)− = a → b−, so (a¯ b)− ¯ a ≤ b−.
By psbl − c45 we deduce that b= ≤ [(a¯ b)− ¯ a]− = (a¯ b)− → a−, so b= ¯ (a¯
b)− ≤ a−. Then

a= ≤ [b= ¯ (a¯ b)−]− = b= → (a¯ b)=,

that is, a= ¯ b= ≤ (a¯ b)=.
(psbl − c64). By psbl − c48, (a¯ b)s = b Ã as, so b ¯ (a¯ b)s ≤ as. Then

at ≤ [b¯ (a¯ b)s]s = (a¯ b)s Ã bs, so (a¯ b)s ¯ at ≤ bs. Then

bt ≤ [(a¯ b)s ¯ at]s = at Ã (a¯ b)t,

that is, at ¯ bt ≤ (a¯ b)t. ¥
Corollary 5.8. For every a ∈ A and n ≥ 1 we have:

(psbl − c65) (a=)n ≤ (an)= and (at)n ≤ (an)t.

Lemma 5.9. For every a, b, c ∈ A we have:
(psbl − c66) a → (b → c) ≥ (a → b) → (a → c),
(psbl − c67) a Ã (b Ã c) ≥ (a Ã b) Ã (a Ã c),
(psbl − c68) a → (b Ã c) ≥ (a → b) Ã (a → c),
(psbl − c69) a Ã (b → c) ≥ (a Ã b) → (a Ã c).

Proof. (psbl − c66). By psbl − c22 we have a → (b → c) = (a ¯ b) → c and
(a → b) → (a → c) = [(a → b)¯ a] → c = (a∧ b) → c. Since a¯ b ≤ a∧ b we deduce
that (a¯ b) → c ≥ (a ∧ b) → c, that is, a → (b → c) ≥ (a → b) → (a → c).

(psbl − c67). As in the case of psbl − c66.
(psbl− c68). By psbl− c61 we have a → (b Ã c) = b Ã (a → c). Since b ≤ a → b

we deduce that b Ã (a → c) ≥ (a → b) Ã (a → c), that is a → (b Ã c) ≥ (a →
b) Ã (a → c).
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(psbl − c69). As in the case of psbl − c68. ¥
For any pseudo BL - algebra A, let us denote

G(A) = {x ∈ A : x¯ x = x},
M(A) = {x ∈ A : x = (xs)− = (x−)s}

and let B(A) be the Boolean algebra ([120]) of all complemented elements in the
distributive lattice L(A) = (A,∨,∧, 0, 1) of a pseudo BL-algebra A (hence B(A) =
B(L(A))).

Proposition 5.10. ([54]) If A is a pseudo BL− algebra and a ∈ G(A), b ∈ A,
then

(i) a¯ b = a ∧ b = b¯ a,
(ii) a ∧ as = 0 = a ∧ a−,

(iii) a Ã b = a → b,
(iv) as = a−.

Proof. (i). a ∧ b = a ¯ (a Ã b) = a ¯ a ¯ (a Ã b) = a ¯ (a ∧ b)
psbl−c24=

(a¯ a) ∧ (a¯ b) = a ∧ (a¯ b) = a¯ b.
(ii). Follows by (i) and psbl − c38.
(iii). We have the following equivalences for any x ∈ A :
x ≤ a Ã b ⇔ a¯ x ≤ b ⇔ x¯ a ≤ b ⇔ x ≤ a → b.
(iv). Follows taking b = 0 in (iii). ¥
Lemma 5.11. If A is a pseudo BL−algebra, then

B(A) = M(A) ∩G(A).

Proof. Consider x ∈ B(A); then for some y ∈ A we have x∨y = 1 and x∧y = 0.
Then y ¯ x = x ∧ y = 0, so x ≤ ys.

We also have ys = 1 ¯ ys = (x ∨ y) ¯ ys
psbl−c36= (x ¯ ys) ∨ (y ¯ ys)

psbl−c38=
(x¯ ys) ∨ 0 = x¯ ys, hence ys ≤ x. Thus x = ys.

Similarly, x = y−. But x− ∧ y− = 0 and x− ∨ y− = 1, i.e. x− ∧ x = 0 and
x− ∨ x = 1, and also xs ∧ ys = 0 and xs ∨ ys = 1, i.e. xs ∧ x = 0 and xs ∨ x = 1.
Then x− = xs is the unique complement of x, since the lattice L(A) is distributive;
hence x− = xs ∈ B(A) and (xs)− is the complement of xs. But x also is the
complement of xs.

It follows that x = (xs)− and thus x ∈ M(A) and xs is the complement of x.

Then x ∨ xs = 1, hence x = x¯ 1 = x¯ (x ∨ xs)
psbl−c36= (x¯ x) ∨ (x¯ xs)

psbl−c38=
(x¯ x) ∨ 0 = x¯ x, and thus x ∈ G(A).

Conversely, consider x ∈ M(A) ∩ G(A). By Proposition 5.10, (ii), x ∧ xs = 0,

hence 1 = (x∧ xs)− psbl−c50= x− ∨ (xs)− = x− ∨ x = xs ∨ x, since x ∈ M(A) and by
Proposition 5.10, (iv). It follows that x ∈ B(A). ¥

Proposition 5.12. ([53], [54]) If A is a pseudo BL− algebra, then for e ∈ A,
the following are equivalent:

(i) e ∈ B(A);
(ii) e¯ e = e and e = (es)− = (e−)s;

(iii) e¯ e = e and e− → e = e;
(iii′) e¯ e = e and es Ã e = e;
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(iv) e ∨ e− = 1;
(iv′) e ∨ es = 1.

Proof. The equivalence (i) ⇔ (ii) follows by Lemma 5.11.
The equivalence (i) ⇔ (iv) and (i) ⇔ (iv′) has a similar proof.
We prove the second equivalence.
The implication (i) ⇒ (iv′) is obvious.

Conversely, e ∨ es = 1 ⇒ e ¯ (e ∨ es) = e ¯ 1 = e
psbl−c36⇒ (e ¯ e) ∨ (e ¯ es) =

e ⇒ e¯ e = e.
By Proposition 5.10, (iv), we deduce e− = es.
On other hand, e∨ es = 1 implies e∧ es = 0 and e∨ e− = 1 implies e∧ e− = 0.

Indeed, e ∨ es = 1 ⇒ (e ∨ es)− = 0
psbl−c50⇒ e− ∧ (es)− = 0 ⇒ e− ∧ e = 0. Thus

e ∈ B(A).
The equivalence (iii) ⇔ (iv) and (iii′) ⇔ (iv′) has a similar proof.
We prove the second equivalence.
(iii′) ⇒ (iv′). e ∨ es

psbl−c20= [(e Ã es) → es] ∧ [(es Ã e) → e].
e ∨ es = 1 ⇔ [(e Ã es) → es = 1 and (es Ã e) → e = 1]
⇔ [e Ã es ≤ es and es Ã e ≤ e] ⇔ [e Ã es = es and es Ã e = e].

But e Ã es
psbl−c48= (e ¯ e)s, hence e Ã es = es ⇔ (e ¯ e)s = es (indeed,

e¯ e = e implies (e¯ e)s = es).

(iv′) ⇒ (iii′). We have e ∨ es = 1 ⇒ e ¯ (e ∨ es) = e ¯ 1 = e
psbl−c36⇔ (e ¯ e) ∨

(e¯ es) = e ⇒ e¯ e = e.
Also, e ∨ es = 1 ⇒ (es Ã e) → e = 1 ⇔ es Ã e ≤ e ⇔ es Ã e = e.¥
Remark 5.2. If a ∈ A, and e ∈ B(A), then e¯ a = e ∧ a = a¯ e and es = e−.

Proposition 5.13. If a ∈ A, and e ∈ B(A), then
(psbl − c70) a → e = (a¯ es)− = a− ∨ e;
(psbl − c71) a Ã e = (e− ¯ a)s = e ∨ as.

Proof. We have

a → e = a → (es)− psbl−c48= (a¯ es)− = (a ∧ es)− psbl−c50= a− ∨ (es)− = a− ∨ e

and

a Ã e = a Ã (e−)s
psbl−c48= (e− ¯ a)s = (e− ∧ a)s

psbl−c49= (e−)s ∨ as = e ∨ as.¥
Proposition 5.14. Let A be a pseudo BL− algebra. For e ∈ A, the following

are equivalent:
(i) e ∈ B(A),

(ii) (e → x) → e = (e Ã x) Ã e = e, for every x ∈ A,

Proof.(i) ⇒ (ii). If x ∈ A, then from 0 ≤ x we deduce e → 0 ≤ e → x and
e Ã 0 ≤ e Ã x, so e− ≤ e → x and es ≤ e Ã x hence (e → x) → e ≤ e− → e = e
and (e Ã x) Ã e ≤ es Ã e = e. Since e ≤ (e → x) → e, e ≤ (e Ã x) Ã e (by
psbl − c9) we obtain (e → x) → e = (e Ã x) Ã e = e.

(ii) ⇒ (i). If x ∈ A, then from (e → x) → e = e we deduce [(e → x) → e]¯ (e →
x) = e ¯ (e → x), hence (e → x) ∧ e = (e → x) ¯ e so (e → x) ∧ e = e ∧ x. For
x = 0 we obtain that e− ∧ e = 0. Analogously, from (e Ã x) Ã e = e we deduce
(e Ã x) ¯ [(e Ã x) Ã e] = (e Ã x) ¯ e, hence (e Ã x) ∧ e = (e Ã x) ¯ e so
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(e Ã x) ∧ e = e ∧ x. For x = 0 we obtain that e ∧ es = 0, so e− ∧ e = 0 = e ∧ es.
From hypothesis (for x = 0) we obtain by Proposition 5.10, e− → e = e− Ã e =
es Ã e = es → e = e and e− = es .

From psbl − c21 we obtain

e− ∨ e = [(e− → e) Ã e] ∧ [(e → e−) Ã e−]
= (e Ã e) ∧ [(e → e−) Ã e−]
= 1 ∧ [(e → e−) Ã e−]
= (e → e−) Ã e− = (e → es) Ã es

= [e¯ (e → es)]s (by psbl − c48)
= [(e → e−)¯ e]s = (e ∧ e−)s = 0s = 1,

hence e ∈ B(A).¥
Lemma 5.15. ([37]) Let A be a pseudo BL− algebra. If e, f ∈ B(A) and x, y ∈

A, then:
(psbl − c72) e ∨ (x¯ y) = (e ∨ x)¯ (e ∨ y);
(psbl − c73) e ∧ (x¯ y) = (e ∧ x)¯ (e ∧ y);
(psbl − c74) e¯(x Ã y) = e¯[(e¯x) Ã (e¯y)] and (x → y)¯e = [(x¯e) → (y¯e)]¯e;
(psbl − c75) x¯(e Ã f) = x¯[(x¯e) Ã (x¯f)] and (e → f)¯x = [(e¯x) → (f¯x)]¯x;
(psbl − c76) e → (x → y) = (e → x) → (e → y) and e Ã (x Ã y) = (e Ã x) Ã (e Ã y).

Proof. (psbl − c72). We have

(e∨ x)¯ (e∨ y)
psbl−c36= [(e∨ x)¯ e]∨ [(e∨ x)¯ y] = [(e∨ x)¯ e]∨ [(e¯ y)∨ (x¯ y)]

= [(e ∨ x) ∧ e] ∨ [(e¯ y) ∨ (x¯ y)] = e ∨ (e¯ y) ∨ (x¯ y) = e ∨ (x¯ y).
(psbl − c73). We have

(e ∧ x)¯ (e ∧ y) = (e¯ x)¯ (e¯ y) = (e¯ e)¯ (x¯ y) = e¯ (x¯ y) = e ∧ (x¯ y).

(psbl − c74). By psbl − c13 we have x → y ≤ (x ¯ e) → (y ¯ e), hence by psbl − c3,
(x → y) ¯ e ≤ [(x ¯ e) → (y ¯ e)] ¯ e. Conversely, [(x ¯ e) → (y ¯ e)] ¯ e ≤ e and
[(x¯ e) → (y ¯ e)]¯ (x¯ e) ≤ y ¯ e ≤ y so [(x¯ e) → (y ¯ e)]¯ e ≤ x → y. Hence
[(x¯ e) → (y ¯ e)]¯ e ≤ (x → y)∧ e = (x → y)¯ e.

By psbl − c12 we have x Ã y ≤ (e ¯ x) Ã (e ¯ y), hence by c3, e ¯ (x Ã y) ≤
e¯ [(e¯x) Ã (e¯y)]. Conversely, e¯ [(e¯x) Ã (e¯y)] ≤ e and (e¯x)¯ [(e¯x) Ã
(e¯ y)] ≤ e¯ y ≤ y so e¯ [(e¯ x) Ã (e¯ y)] ≤ x Ã y.

Hence e¯ [(e¯ x) Ã (e¯ y)] ≤ e ∧ (x Ã y) = e¯ (x Ã y).
(psbl − c75). We have

[(e¯ x) → (f ¯ x)]¯ x = [(e¯ x) → (f ∧ x)]¯ x

psbl−c36= [((e¯ x) → f) ∧ ((e¯ x) → x)]¯ x

= [((e¯ x) → f) ∧ 1]¯ x = [(e¯ x) → f ]¯ x = [(x¯ e) → f ]¯ x
psbl−c22= [x → (e → f)]¯ x = x ∧ (e → f) = x¯ (e → f).

We have
x¯ [(x¯ e) Ã (x¯ f)] = x¯ [(x¯ e) Ã (x ∧ f)]

psbl−c36= x¯ [((x¯ e) Ã x) ∧ ((x¯ e) Ã f)] = x¯ [1 ∧ ((x¯ e) Ã f)]

= x¯ [(x¯ e) Ã f ] = x¯ [(e¯ x) Ã f ]
psbl−c22= x¯ [x Ã (e Ã f)]
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= x ∧ (e Ã f) = x¯ (e Ã f).
(psbl − c76).We have

(e → x) → (e → y)
psbl−c22= [(e → x)¯e] → y = (e∧x) → y = (e¯x) → y

psbl−c22= e → (x → y)

and

(e Ã x) Ã (e Ã y)
psbl−c22= [e¯(e Ã x)] Ã y = (e∧x) Ã y = (x¯e) Ã y

psbl−c22= e Ã (x Ã y).¥
Lemma 5.16. If a, b, x are elements of a pseudo BL− algebra A and a, b ≤ x,

then
(psbl − c77) a¯ (x Ã b) = (x → a)¯ b.

Proof. We have

a¯ (x Ã b) = (x ∧ a)¯ (x Ã b) = [(x → a)¯ x]¯ (x Ã b)

= (x → a)¯ [x¯ (x Ã b)] = (x → a)¯ (x ∧ b) = (x → a)¯ b.¥
Proposition 5.17. For a pseudo BL− algebra (A,∨,∧,¯,→, Ã, 0, 1) the fol-

lowing are equivalent:
(i) (A,→, 1) and (A,Ã, 1) are Hilbert algebras;

(ii) (A,∨,∧,→, 0, 1) and (A,∨,∧,Ã, 0, 1) are relative Stone lattices.

Proof. (i) ⇒ (ii). Suppose that (A,→, 1) and (A, Ã, 1) are Hilbert algebras,
then for every x, y, z ∈ A we have

x → (y → z) = (x → y) → (x → z)

and
x Ã (y Ã z) = (x Ã y) Ã (x Ã z).

From psbl − c22 we have

x → (y → z) = (x¯ y) → z and x Ã (y Ã z) = (y ¯ x) Ã z.

But for every x, y, z ∈ A

(x ∧ y) → z = [(x → y)¯ x] → z
psbl−c22= (x → y) → (x → z)

and
(x ∧ y) Ã z = [x¯ (x Ã y)] Ã z

psbl−c22= (x Ã y) Ã (x Ã z),
so we obtain

(x¯ y) → z = (x ∧ y) → z

(x¯ y) Ã z = (x ∧ y) Ã z

hence x¯ y = x∧ y, that is (A,∨,∧,→, 0, 1) and (A,∨,∧, Ã, 0, 1) are relative Stone
lattices.

(ii) ⇒ (i). If (A,∨,∧,→, 0, 1) and (A,∨,∧, Ã, 0, 1) are relative Stone lattices,
then (A,∨,∧,→, 0, 1) and (A,∨,∧, Ã, 0, 1) are Heyting algebras, so (A,→, 1) and
(A, Ã, 1) are Hilbert algebras. ¥

Definition 5.3. Let A and B be a pseudo BL− algebras. A function f : A → B
is a morphism of pseudo BL− algebras iff it satisfies the following conditions, for
every x, y ∈ A :
(psBL6) f(0) = 0;
(psBL7) f(x¯ y) = f(x)¯ f(y);
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(psBL8) f(x → y) = f(x) → f(y);
(psBL9) f(x Ã y) = f(x) Ã f(y).

Remark 5.3. It follows that:

f(1) = 1,

f(x−) = [f(x)]−, f(xs) = [f(x)]s,

f(x ∨ y) = f(x) ∨ f(y), f(x ∧ y) = f(x) ∧ f(y),
for every x, y ∈ A.

Remark 5.4. If f is a homomorphism beteewn the pseudo BL− algebras A and
B, then f is a homomorphism beteewn the lattices L(A) and L(B), see Remark 5.3.

2. The lattice of filters of a pseudo BL-algebra

We begin the investigation of filters and congruences. We define the filters of a pseudo
BL-algebra A and we denote by F(A)(Fn(A)) the lattice of all filters (normal filters) of A;
we put in evidence some results about the lattice F(A)(Fn(A)). By using the two distance
functions we define two binary relations on , ≡L(F ) and ≡R(F ), related to a filter F of A;
these two relations are equivalence relations, but they are not congruences. The quotient
set A/L(F) and A/R(F) are bounded distributive lattices. We give characterizations for
the maximal and prime elements on F(A)(Fn(A)) and we prove the prime filter theorem.
We characterize the pseudo BL-algebras for which the lattice of filters (normal filters) is a
Boolean lattice and the archimedean and hyperarchimedean pseudo BL-algebras. In the end
we prove a theorem of Nachbin type for pseudo BL-algebras.

2.1. The lattice of filters (normal filters) of a pseudo BL-algebra. We
denote by A a pseudo - BL algebra.

Definition 5.4. A non empty subset F ⊆ A is called a fillter of A, if the
following conditions are satisfied:

(F1) If x, y ∈ F, then x¯ y ∈ F ;
(F2) If x ∈ F, y ∈ A, x ≤ y, then y ∈ F.

Clearly {1} and A are filters; a filter F of A is called proper if F 6= A.

Remark 5.5. Any filter of the pseudo BL− algebra A is a filter of the lattice
L(A).

Remark 5.6. For a nonempty subset F of A the following are equivalent:
(1) F is a filter;
(2) 1 ∈ F and if x, x → y ∈ F , then y ∈ F ;
(2′) 1 ∈ F and if x, x Ã y ∈ F , then y ∈ F.

Proof. (1) ⇒ (2′). x, x Ã y ∈ F ⇒ x ∧ y
psBL4= x¯ (x Ã y) ∈ F ; but x ∧ y ≤ y,

so by F2 we obtain y ∈ F.
(2′) ⇒ (1). We verify the condition of Definition 5.4:

F1 : If x, y ∈ F then yÃ (x Ã x ¯ y)
psbl−c22= (x ¯ y) Ã (x ¯ y) = 1 ∈ F, so

x¯ y ∈ F.
F2 : If x ∈ F and y ∈ A, x ≤ y, then x Ã y = 1 ∈ F, so y ∈ F.
Similarly, (1) ⇔ (2). ¥
We denote by F(A) the set of all filters of A.
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For a nonempty subset X ⊆ A, the smallest filter of A which contains X, i.e.
∩{F ∈ F(A) : X ⊆ F}, is said to be the filter of A generated by X and will be
denoted by [X).

If X = {a}, with a ∈ A, we denote by [a) the filter generated by {a} ([a) is called
principal).

For F ∈ F(A) and a ∈ A\F, we denote by F (a) = [F ∪ {a}).
Proposition 5.18. ([53])
(i) If X is a filter, then [X) = X;

(ii) If X ⊆ A is a nonempty subset of A, then

[X) = {x ∈ A : x1 ¯ ...¯ xn ≤ x, for some n ≥ 1 and x1, ..., xn ∈ X};
(iii) In particular, for a ∈ A,

[a) = {x ∈ A : x ≥ an, for some n ≥ 1}
(let Fp(A) be the set of all principal filters of A);

(iv) If F ∈ F(A) and a ∈ A\F, then

F (a) = {x ∈ A : x ≥ (f1 ¯ an1)¯ ...¯ (fm ¯ anm),
for some m ≥ 1, n1, ..., nm ≥ 0 and f1, ..., fm ∈ F};

(v) If x, y ∈ A, and x ≤ y , then [y) ⊆ [x);
(vi) If x, y ∈ A, then [x ∨ y), = [x ∨ y);

(vii) If x ∈ A, then [x) = {1} iff x = 1.

Proof. (i)− (iv), (vi), (vii). Is obviously (see also the proofs of Proposition 1.29
and Lemma 1.32).

(vi). Clearly, x ∈ [x) and y ∈ [y); since x, y ≤ x ∨ y we get x ∨ y ∈ [x) and
x ∨ y ∈ [y); then x ∨ y ∈ [x) ∩ [y), which is s filter. So, [x ∨ y) ⊆ [x) ∩ [y).

Conversely, suppose that z ∈ [x) ∩ [y) there exist n,m ≥ 1, such that z ≥ xn

and z ≥ ym. It follows that z ≥ xn ∨ ym ≥ (xn ∨ y)m ≥ ((x ∨ y)n)m = (x ∨ y)nm,
thus z ∈ [x ∨ y).¥

Remark 5.7. If F ∈ F(A) and a ∈ A\F, then F (a) = F ∨ [a).

Proof. Clearly, F, [a) ⊆ F (a). Let H ∈ F(A) such that F, [a) ⊆ H and x ∈ F (a).
By Proposition 5.18, (ii), x ≥ (f1¯an1)¯...¯(fm¯anm), for some m ≥ 1, n1, ..., nm ≥
0 and f1, ..., fm ∈ F. Clearly, (f1 ¯ an1) ¯ ... ¯ (fm ¯ anm) ∈ H, hence x ∈ H, so
F (a) ⊆ H, that is, F (a) = F ∨ (a]. ¥

Proposition 5.19. If F1, F2 are nonempty sets of A such that 1 ∈ F1∩F2, then

[F1 ∪ F2) = {x ∈ A : x ≥ (f1 ¯ f ′1)¯ ....¯ (fn ¯ f ′n),
for some n ≥ 1, f1, ..., fn ∈ F1 and f ′1, ..., f

′
n ∈ F2}.

Proof. Let

H = {x ∈ A : x ≥ (f1 ¯ f ′1)¯ ...¯ (fn ¯ f ′n),
for some n ≥ 1, f1, ..., fn ∈ F1 and f ′1, ..., f

′
n ∈ F2}.

We prove that H ∈ F(A).
Let x, y ∈ A, x ≤ y and x ∈ H. Since x ≥ (f1 ¯ f ′1) ¯ ... ¯ (fn ¯ f ′n), for some

n ≥ 1, f1, ..., fn ∈ F1 and f ′1, ..., f
′
n ∈ F2 we have y ≥ (f1 ¯ f ′1) ¯ ... ¯ (fn ¯ f ′n), so

y ∈ H.
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For x, y ∈ H there exist n,m≥ 1, f1, ..., fn, g1, ..., gm ∈ F1 and f ′1, ..., f
′
n, g′1, ..., g

′
m ∈

F2 such that x ≥ (f1 ¯ f ′1)¯ ...¯ (fn ¯ f ′n) and y ≥ (g1 ¯ g′1)¯ ...¯ (gm ¯ g′m). We
deduce x¯ y ≥ (f1¯ f ′1)¯ ...¯ (fn¯ f ′n)¯ (g1¯ g′1)¯ ...¯ (gm¯ g′m), so x¯ y ∈ H.

Since 1 ∈ F1∩F2, we deduce that F1, F2 ⊆ H (since for every a ∈ A, a = a¯1 =
1¯ a), hence F1 ∪ F2 ⊆ H, so we deduce that [F1 ∪ F2) ⊆ H.

Let now F ∈ F(A) such that F1∪F2 ⊆ F. Then H ⊆ F, so H ⊆ ∩F = [F1∪F2),
hence [F1 ∪ F2) = H. ¥

Corollary 5.20. If F1, F2 ∈ F(A), since 1 ∈ F1 ∩ F2, we deduce that

[F1 ∪ F2) = {x ∈ A : x ≥ (f1 ¯ f ′1)¯ ....¯ (fn ¯ f ′n),
for some n ≥ 1, f1, ..., fn ∈ F1 and f ′1, ..., f

′
n ∈ F2}.

Lemma 5.21. If x, y ∈ A, then [x) ∨ [y) = [x ∧ y) = [x¯ y).

Proof. Since x ¯ y ≤ x ∧ y ≤ x, y, then [x), [y) ⊆ [x ∧ y) ⊆ [x ¯ y), hence
[x) ∨ [y) ⊆ [x ∧ y) ⊆ [x¯ y).

If z ∈ [x ¯ y), then for some natural number n ≥ 1, z ≥ (x ¯ y)n ∈ [x) ∨ [y)
(since x ∈ [x), y ∈ [y)), hence z ∈ [x)∨ [y), that is, [x¯ y) ⊆ [x)∨ [y), so [x)∨ [y) =
[x ∧ y) = [x¯ y). ¥

Corollary 5.22. For every x, y ∈ A, [x¯ y) = [y ¯ x).

Corollary 5.23. For every x, y ∈ A, we have [x → y) ∨ [x) = [x Ã y) ∨ [x).

Proof. From Lemma 5.21 we deduce [x → y)∨ [x) = [(x → y)¯x) = [x¯ (x Ã
y)) = [x Ã y) ∨ [x). ¥

Corollary 5.24. Fp(A) is a bounded sublattice of F(A).

Proof. Apply Proposition 5.18, (vi), Lemma 5.21, the fact that 0 = {1} = [1) ∈
Fp(A) and 1 = A = [0) ∈ Fp(A). ¥

As in the case of BL−algebras (Proposition 3.16) we have:

Proposition 5.25. The lattice (F(A),∨,∧ ) is a complete Brouwerian algebraic
lattice, the compacts elements being exactly the principal filters of A.

Remark 5.8. The Proposition 5.25 is a generalization of Proposition 2.11 from
[68] (the results of this proposition are mentioned in [94] without proof).

For F1, F2 ∈ F(A) we put

F1 → F2 = {a ∈ A : F1 ∩ [a) ⊆ F2}.
Lemma 5.26. If F1, F2 ∈ F(A) then
(i) F1 → F2 ∈ F(A);

(ii) If F ∈ F(A), then F1 ∩ F ⊆ F2 iff F ⊆ F1 → F2, that is,

F1 → F2 = sup{F ∈ F(A) : F1 ∩ F ⊆ F2}.
Proof. See the case BL− algebras, Lemma 3.18. ¥
In [95], for F1, F2 ∈ F(A), the relative pseudocomplement of F1with respect to

F2 is defined by

F1 ∗ F2 = {x ∈ A : x ∨ y ∈ F2, for all y ∈ F1}.
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Proposition 5.27. For all F1, F2 ∈ F(A), F1 ∗ F2 = F1 → F2.

Proof. Let x ∈ F1 ∗ F2; then x ∨ y ∈ F2, for all y ∈ F1. To prove x ∈ F1 → F2,
that is, [x) ∩ F1 ⊆ F2, let z ∈ [x) ∩ F1. Thus z ∈ F1 and xn ≤ z for some n ≥ 1.
Since z ≤ x → z we deduce that x → z ∈ F1, hence x ∨ (x → z) ∈ F2. By psbl− c21

we deduce that [x → (x → z)] Ã (x → z) ∈ F2, that is, (x2 → z) Ã (x → z) ∈ F2

(1).
Analogously from z ≤ xn−1 → z and z ∈ F1 we deduce that xn−1 → z ∈ F1, so

x ∨ (xn−1 → z) ∈ F2, hence (xn → z) Ã (xn−1 → z) ∈ F2. Since xn ≤ z we deduce
that xn−1 → z ∈ F2.

More generally if k ≥ 1 we deduce that if xk → z ∈ F2, then xk−1 → z ∈ F2

(because we obtain that (xk → z) Ã (xk−1 → z) ∈ F2). Recursively we obtain that
x2 → z ∈ F2. By (1) we deduce that x → z ∈ F2. Since z ∈ F1 we deduce that
x ∨ z ∈ F2, hence (x → z) Ã z ∈ F2. Thus z ∈ F2, hence [x) ∩ F1 ⊆ F2, that is,
x ∈ F1 → F2.

Thus F1 ∗ F2 ⊆ F1 → F2.
Let now x ∈ F1 → F2. Thus [x) ∩ F1 ⊆ F2, so if y ∈ F1 then x ∨ y ∈ [x) ∩ F1,

hence x ∨ y ∈ F2. We deduce that x ∈ F1 ∗ F2, so F1 → F2 ⊆ F1 ∗ F2. Since
F1 ∗ F2 ⊆ F1 → F2 we deduce that F1 ∗ F2 = F1 → F2. ¥

Corollary 5.28. (F(A),∨,∧,→, {1}) is a Heyting algebra, where for F ∈
F(A),

F ∗ = F → 0 = F → {1} = {x ∈ A : [x) ∩ F = {1}},
hence for every x ∈ F and y ∈ F ∗, x ∨ y = 1. In particular, for every a ∈ A,

[a)∗ = {x ∈ A : x ∨ a = 1}.
Proof. By Lemma 5.26 we deduce that (F(A),∨,∧,→, {1}, A) is a Heyting

algebra. For every F ∈ F(A) and y ∈ F ∗, then [y)∩F = {1}. Since for every x ∈ F,
x ∨ y ∈ [y) ∩ F = {1} we deduce that x ∨ y = 1. For every a ∈ A,

[a)∗ = {x ∈ A : [x) ∩ [a) = {1}} = {x ∈ A : [x ∨ a) = {1}}
= {x ∈ A : x ∨ a = 1}, (by Proposition 5.18, (vii)).¥

Corollary 5.29. If a ∈ A,F = [a)∗, then

F (a) = {x ∈ A : x ≥ f ¯ an, for some n ≥ 1 and f ∈ F}.
Proof. By Proposition 5.18, (iv),

F (a) = {x ∈ A : x ≥ (f1 ¯ an1)¯ ...¯ (fm ¯ anm) ,

for some f1, ..., fm ∈ F and m ≥ 1, n1, ..., nm ≥ 0}.
But for every f ∈ F we have a ∨ f = 1. By psbl− c34 we obtain an ∨ fn = 1, for all
n ≥ 1. We have an ∨ f ≥ an ∨ fn and an ∨ fn = 1, so an ∨ f = 1, for all n ≥ 1.

By psbl− c33 we deduce that f ¯an = f ∧an = an ∧ f = an¯ f, for every f ∈ F
and n ≥ 1.

Then (f1¯ an1)¯ ...¯ (fm¯ anm) = (f1¯ ...¯ fm)¯ (an1 ¯ ...¯ anm) = f ¯ an,
where f = f1 ¯ ... ¯ fm ∈ F (since F is a filter) and n = n1 + ... + nm ≥ 1, so
F (a) = {x ∈ A : x ≥ f ¯ an, for some n ≥ 1 and f ∈ F}. ¥

Proposition 5.30. If x, y ∈ A, then [x¯ y)∗ = [x)∗ ∩ [y)∗.
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Proof. See the proof of Proposition 3.19. ¥
Let A be a pseudo BL−algebra. We define two distance function on A by:

d1(x, y) = (x → y)¯ (y → x) and d2(x, y) = (x Ã y)¯ (y Ã x).

The two distance functions fulfil some properties (see [53]).

Proposition 5.31. ([53]) Let us consider a filter F of A. Define two binary
relations on A by:

≡L(F ): x ≡L(F ) y iff d1(x, y) = (x → y)¯ (y → x) ∈ F,

≡R(F ): x ≡R(F ) y iff d2(x, y) = (x Ã y)¯ (y Ã x) ∈ F.

For a given filter F, the relations ≡L(F ) and ≡R(F ) are equivalence relations on A;
moreover we have F = {x ∈ A : x ≡L(F ) 1} = {x ∈ A : x ≡R(F ) 1}.

We shall denote by A/L(F ) (A/R(F ), respectively) the quotient set associated
with ≡L(F ) ( ≡R(F ), respectively); x/L(F ) (x/R(F ), respectively) will denote the
equivalence class of x ∈ A with respect to ≡L(F ) ( ≡R(F ),respectively).

Let us define the binary relation ≤L(F ) on A/L(F ) by: x/L(F ) ≤L(F ) y/L(F )
⇔ x → y ∈ F.

It is straightforward to prove that ≤L(F ) is an order on A/L(F ).
Similarly, we define an order ≤R(F ) on A/R(F ) by: x/R(F ) ≤R(F ) y/R(F )

⇔ x Ã y ∈ F.
We have the following result (see [53]):

Proposition 5.32. (A/L(F ),∨,∧, 0/L(F ), 1/L(F )) ((A/R(F ),∨,∧, 0/R(F ), 1/R(F ))
respectively) is a bounded distributive lattice, such that ≤L(F ) (≤R(F ), respectively)
is the induced order relation.

In [54], A. Di Nola, G. Georgescu and A. Iorgulescu introduce the normal filters
in order to characterize the congruence of a pseudo BL−algebra.

Definition 5.5. A filter H of A will be called a normal filter iff

(N) for every x, y ∈ A, x → y ∈ H iff x Ã y ∈ H.

Remark 5.9. Clearly, {1} and A are normal filters. If f : A → B is a morphism
of pseudo BL− algebras, then that f−1(1B) is a normal filter of A.

We denote by Fn(A) the set of all normal filters of A.

Proposition 5.33. If a ∈ G(A), then [a) = {x ∈ A : a ≤ x} ∈ Fn(A) .

Proof. If x, y ∈ A such that x → y ∈ [a), then a ≤ x → y ⇔ a ¯ x ≤ y (since
a¯ x = x¯ a) ⇔ x¯ a ≤ y ⇔ a ≤ x Ã y ⇔ x Ã y ∈ [a), that is, [a) ∈ Fn(A). ¥

Remark 5.10. Let H ∈ Fn(A). Then
(i) x− ∈ H iff xs ∈ H;

(ii) x ∈ H implies x=, xt ∈ H.

Proof. (i). Take y = 0 in (N).
(ii). Indeed, if x ∈ H, then (xs)− ∈ H, because x ≤ (xs)−, then by (i), xt ∈ H.

Similarly, x ∈ H implies x= ∈ H.¥
For a filter H of A and x ∈ A denote x ¯H = {x ¯ h : h ∈ H} and H ¯ x =

{h¯ x : h ∈ H}.
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Proposition 5.34. For a filter H of A the following are equivalent:
(i) H ∈ Fn(A);

(ii) x¯H = H ¯ x, for all x ∈ A.

Proof. (i) ⇒ (ii). Let x ∈ A and h ∈ H. Consider y = x¯ h.
Then x ¯ h = y = x ∧ y = (x → y) ¯ x. If we denote x → y = h′, we obtain

x¯ h = h′ ¯ x.
We prove that h′ = x → y ∈ H.
Since h ≤ x Ã (x ¯ h) = x Ã h and h ∈ H, we deduce that x Ã h ∈ H and,

therefore, x → y = h′ ∈ H, by (N).
(ii) ⇒ (i). Assume x Ã y ∈ H. Thus, x ∧ y = x ¯ (x Ã y) = h ¯ x, for some

h ∈ H. We have x → y = x → (x ∧ y) = x → (h¯ x). But h ≤ x → (h¯ x), hence
x → y ∈ H.¥

If H is a normal filter in a pseudo BL− algebra A, then d1(x, y) = (x →
y) ¯ (y → x) ∈ H iff d2(x, y) = (x Ã y) ¯ (y Ã x) ∈ H, for any x, y ∈ A; hence
≡L(H) and ≡R(H) coincide. Denote by ≡H this equivalence relation and by x/H be
the equivalence class of x ∈ A. Hence x ≡H y iff d1(x, y) ∈ H iff d2(x, y) ∈ H

Remark that x ≡H y iff x → y, y → x ∈ H iff x Ã y, y Ã x ∈ H.
We have the following results:

Proposition 5.35. ([54]) ≡H is a congruence on A and H = {x ∈ A : x ≡H

1} = 1/ ≡H .

Conversely,

Proposition 5.36. ([54]) Let ≡ be a congruence on A and let H = {x ∈ A :
x ≡ 1}. Then

(i) H is a normal filter of A;
(ii) x ≡ y iff d1(x, y) ≡ 1 or, equivalently, iff d2(x, y) ≡ 1.

Proposition 5.37. ([54]) The congruence relations ≡H of A and normal filters
H are in one-to-one correspondence.

Starting from a normal filter H, the quotient algebra A/H becomes a pseudo -
BL algebra with the natural operations induced from those of A.

Then the function pH : A → A/H defined by pH(x) = x/H, for all x ∈ A is
a homomorphism from the pseudo BL− algebra A, onto the pseudo BL− algebra
A/H.

For x, y ∈ A, x/H ≤ y/H iff x → y ∈ H iff x Ã y ∈ H and x/H = 1 = 1/H iff
x ∈ H. If x ∈ B(A), then x/H ∈ B(A/H).

Proposition 5.38. Let H be a normal filter of A and a ∈ A\H. Then

[H ∪ {a}) = {x ∈ A : h¯ an ≤ x, for some n ≥ 0 and h ∈ H}
= {x ∈ A : an ¯ h ≤ x, for some n ≥ 0 and h ∈ H}

= {x ∈ A : an → x ∈ H, for some n ≥ 1}
= {x ∈ A : an Ã x ∈ H, for some n ≥ 1}.

Proof. For the first two equalities, see the proof of Lemma 4.23, for the case of
pseudo MV -algebras.

If x ∈ [H ∪ {a}) then an ¯ h ≤ x, for some n ≥ 0 and h ∈ H. Thus, h ≤ an → x
so an → x ∈ H. Conversely, assume that h = an → x ∈ H. for some n ≥ 1. We
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have (an ¯ h) → x = h → (an → x) = h → h = 1, hence an ¯ h ≤ x. Therefore
x ∈ [H ∪ {a}). ¥

Corollary 5.39. ([94]) If F1or F2 ∈ Fn(A), then

[F1 ∪ F2) = {x ∈ A : x ≥ f1 ¯ f2, for some f1 ∈ F1 and f2 ∈ F2}.
Proof. Obviously by Proposition 5.19 and Proposition 5.34. ¥
Open problem: Characterize the normal filter generated by a non-empty set.

Proposition 5.40. If F1, F2 ∈ Fn(A), then
(i) F1 ∧ F2 ∈ Fn(A);

(ii) F1 ∨ F2 ∈ Fn(A).

Proof. (i). Let x, y ∈ A such that x → y ∈ F1 ∧ F2 = F1 ∩ F2. Then x → y ∈
F1, F2.

Since F1, F2 ∈ Fn(A) we deduce that x Ã y ∈ F1, F2, hence x Ã y ∈ F1 ∩ F2.
Analogous x Ã y ∈ F1 ∩ F2 implies x → y ∈ F1 ∩ F2, hence F1 ∩ F2 ∈ Fn(A).
(ii). Let x, y ∈ A such that x → y ∈ F1 ∨ F2. By Corollary 5.39 there exist

f1 ∈ F1, f2 ∈ F2 such that f1¯ f2 ≤ x → y ⇔ (f1¯ f2)¯x ≤ y ⇔ f1¯ (f2¯x) ≤ y.
Since f2 ∈ F2 ∈ Fn(A) there exists f ′2 ∈ F2 such that x¯ f ′2 = f2¯x. We obtain

f1 ¯ (x¯ f ′2) ≤ y ⇔ (f1 ¯ x)¯ f ′2 ≤ y.

Since f1 ∈ F1 ∈ Fn(A) there exists f ′1 ∈ F1 such that x¯ f ′1 = f1¯x. It follows that

(x¯ f ′1)¯ f ′2 ≤ y ⇔ x¯ (f ′1 ¯ f ′2) ≤ y ⇔ f ′1 ¯ f ′2 ≤ x Ã y,

so x Ã y ∈ F1 ∨ F2.
Analogous x Ã y ∈ F1 ∨ F2 implies x → y ∈ F1 ∨ F2, hence F1 ∨ F2 ∈ Fn(A). ¥
Proposition 5.41. If (Fi)i∈I is a family of normal filters of A, then
(i) ∧

i∈I
Fi ∈ Fn(A),

(ii) ∨
i∈I

Fi ∈ Fn(A).

Proof. (i). Clearly, ∧
i∈I

Fi = ∩
i∈I

Fi ∈ Fn(A).

(ii). We have ∨
i∈I

Fi = [ ∪
i∈I

Fi), so, to prove that ∨
i∈I

Fi ∈ Fn(A), let x, y ∈ A such

that x → y ∈ [ ∪
i∈I

Fi). By Proposition 5.18, (ii), there exist {i1, ..., im} ⊆ I and

xj ∈ Fij (1 ≤ j ≤ m) such that x1 ¯ ...¯ xm ≤ x → y ⇔ (x1 ¯ ...¯ xm)¯ x ≤ y ⇔
(x1 ¯ ....¯ xm−1)¯ (xm ¯ x) ≤ y.

Since Fim ∈ Fn(A) and xm ∈ Fim , there exists x′m ∈ Fim such that xm ¯ x =
x¯ x′m. So, we obtain that

(x1 ¯ ...¯ xm−1)¯ (x¯ x′m) ≤ y.

Successively we obtain x′j ∈ Fij , 1 ≤ j ≤ m− 1 such that

x¯ (x′1 ¯ ...¯ x′m) ≤ y ⇔ x′1 ¯ ...¯ x′m ≤ x Ã y,

hence x Ã y ∈ [ ∪
i∈I

Fi) = ∨
i∈I

Fi.

Analogous x Ã y ∈ ∨
i∈I

Fi implies x → y ∈ ∨
i∈I

Fi, that is ∨
i∈I

Fi ∈ Fn(A). ¥

Corollary 5.42. Fn(A) is a complete sublattice of (F(A),∨,∧).
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Definition 5.6. For a nonempty subset X ⊆ A, the smallest normal filter of A
which contains X, i.e. ∩{F ∈ Fn(A) : X ⊆ F}, is said to be the normal filter of A
generated by X and will be denoted by < X > . Obviously

[X) ⊆< X >,

so, if F is a filter, then F ⊆< F > .

Proposition 5.43. If H ∈ Fn(A) and a ∈ G(A), then H(a) ∈ Fn(A).

Proof. Since a ∈ G(A), a¯ a = a, so, by Proposition 5.38,

H(a) = [H ∪ {a}) = {x ∈ A : h¯ a ≤ x, for h ∈ H}
= {x ∈ A : a¯ h ≤ x, for h ∈ H}.

By Proposition 5.10, since a ∈ G(A), we deduce that a¯ b = b¯ a, for all b ∈ A.
To prove H(a) ∈ Fn(A) let x, y ∈ A such that x → y ∈ H(a). There exists

h ∈ H such that
h¯ a ≤ x → y ⇔ (h¯ a)¯ x ≤ y ⇔

⇔ h¯ (a¯ x) ≤ y ⇔ h¯ (x¯ a) ≤ y ⇔ (h¯ x)¯ a ≤ y.

Since h ∈ H ∈ Fn(A) there exists h′ ∈ H such that x¯ h′ = h¯ x. We obtain

(x¯ h′)¯ a ≤ y ⇔ x¯ (h′ ¯ a) ≤ y ⇔ h′ ¯ a ≤ x Ã y,

so x Ã y ∈ H(a).
Analogous x Ã y ∈ H(a) implies x → y ∈ H(a), hence H(a) ∈ Fn(A). ¥

Proposition 5.44. For a ∈ A and n ≥ 1, the following assertions are equivalent:
(i) an ∈ B(A);

(ii) a ∨ (an)− = 1;
(iii) a ∨ (an)s = 1.

Proof. (i) ⇒ (ii). Since an ∈ B(A), by Proposition 5.12 we deduce that
an ∨ (an)− = 1. But an ≤ a, so 1 = an ∨ (an)− ≤ a ∨ (an)−. We obtain that
a ∨ (an)− = 1.

(ii) ⇒ (i). Since a∨ (an)− = 1
psbl−c34⇒ an∨ [(an)−]n = 1. Since [(an)−]n ≤ (an)−,

we obtain 1 = an ∨ [(an)−]n ≤ an ∨ (an)−, so an ∨ (an)− = 1. By Proposition 5.12
we deduce that an ∈ B(A).

(i) ⇔ (iii). Analogously. ¥
Theorem 5.45. The following assertions are equivalent:
(i) (F(A),∨,∧,∗ , {1}, A) is a Boolean algebra;

(ii) Every filter of A is principal and for every a ∈ A there exists n ≥ 1 such
that an ∈ B(A).

Proof. (i) ⇒ (ii). Let F ∈ F(A) ; since F(A) is Boolean algebra, then F ∨F ∗ =
A. Since 0 ∈ A, by Corollary 5.20, there exist m ≥ 1, f1, ..., fm ∈ F, f ′1, ..., f

′
m ∈ F ∗

such that (f1 ¯ f ′1) ¯ ... ¯ (fm ¯ f ′m) = 0. We consider f = f1 ¯ ... ¯ fm ∈ F,
f ′ = f ′1 ¯ ....¯ f ′m ∈ F ∗ and a = fm ∈ F, b = (f ′)m ∈ F ∗

Clearly, f ≤ fi and f ′ ≤ f ′i , for every 1 ≤ i ≤ m, hence f ¯ f ′ ≤ fi ¯ f ′i , for
every 1 ≤ i ≤ m.

We deduce that (f ¯ f ′)m ≤ (f1¯ f ′1)¯ ...¯ (fm¯ f ′m) = 0, hence (f ¯ f ′)m = 0.
But for f ∈ F and f ′ ∈ F ∗ we deduce by Corollary 5.28 that f∨f ′ = 1, hence, by c33,
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f∧f ′ = f¯f ′ = f ′¯f. Then we obtain that fm¯(f ′)m = 0 ⇔ a¯b = 0 ⇔ a∧b = 0
(by psbl − c33 , since a ∈ F and b ∈ F ∗, implies a ∨ b = 1, so a ¯ b = a ∧ b). So
a ∨ b = 1 and a ∧ b = 0, hence we deduce that b is the complement of a in L(A).

If x ∈ F, since b ∈ F ∗ we have b ∨ x = 1. Since a = a ∧ 1 = a ∧ (b ∨ x) =
(a ∧ b) ∨ (a ∧ x) = 0 ∨ (a ∧ x) = a ∧ x, we deduce that a ≤ x, so x ∈ [a), hence
F ⊆ [a).

Since a ∈ F we deduce that [a) ⊆ F, that is, F = [a). Hence every filter of A is
principal.

Let now a ∈ A; since F(A) is Boolean algebra, then [a) ∨ [a)∗ = A ⇔ [a)∗(a) =
A ⇔ {x ∈ A : x ≥ (f1 ¯ an1)¯ ...¯ (fm ¯ anm), for some m ≥ 1, n1, ..., nm ≥ 0 and
f1, ..., fm ∈ [a)∗} = A. For 0 ∈ A we deduce that there exist m ≥ 1, n1, ..., nm ≥ 0
and f1, ..., fm ∈ [a)∗ such that (f1 ¯ an1)¯ ....¯ (fm ¯ anm) = 0. By Corollary 5.28,
fi ∨ a = 1, for every 1 ≤ i ≤ m, so fi ¯ a = a¯ fi = fi ∧ a, for every 1 ≤ i ≤ m.

Then we obtain that (f1¯ ...¯fm)¯an1+...+nm = an1+...+nm¯(f1¯ ...¯fm) = 0.
If consider f = f1 ¯ ...¯ fm ∈ [a)∗ and n = n1 + ... + nm then f ¯ an = an ¯ f = 0.

So f ≤ an → 0 = (an)− ⇒ a ∨ f ≤ a ∨ (an)−. But a ∨ f = 1 (since f ∈ [a)∗), so
we obtain that a ∨ (an)− = 1 and by Proposition 5.44 we deduce that an ∈ B(A).

(ii) ⇒ (i). By Corollary 5.28, F(A) is a Heyting algebra. To prove that F(A)
is a Boolean algebra, we must show that for F ∈ F(A) , F ∗ = {1} only for F = A
([2], p. 175). By hypothesis, every filter of A is principal, so we have a ∈ A such
that F = [a).

Also, by hypothesis, for a ∈ A, there is n ≥ 1 such that an ∈ B(A), equivalent
by Proposition 5.44 with a ∨ (an)− = 1.

By Corollary 5.28, (an)− ∈ [a)∗ = {1}, hence (an)− = 1 ⇒ [(an)−]s = 1s = 0.
Since an ≤ [(an)−]s = 0 (by psbl − c42) we deduce that an = 0, so 0 ∈ F , hence
F = A. ¥

Theorem 5.46. The following assertions are equivalent:

(i) (Fn(A),∨,∧,∗ , {1}, A) is a Boolean algebra;
(ii) Every normal filter of A is principal and for every a ∈ A there is n ≥ 1

such that an ∈ B(A).

Proof. (i) ⇒ (ii). Let F ∈ Fn(A) ; since F(A) is Boolean algebra, then
F ∨ F ∗ = A. So, by Corollary 5.39, for 0 ∈ A, there exist a ∈ F, b ∈ F ∗ such that
a¯ b = 0.

Since b ∈ F ∗ , by Corollary 5.28, it follow that a∨b = 1. By psbl−c33 we deduce
that a ∧ b = a ¯ b = 0, that is, b is the complement of a in L(A). If x ∈ F, since
b ∈ F ∗ we have b∨x = 1. Since a = a∧(b∨x) = (a∧b)∨(a∧x) = 0∨(a∧x) = a∧x,
we deduce that a ≤ x, that is F = [a). Hence every normal filter of A is principal.

For the last assertions see the proof of Theorem 5.45.
(ii) ⇒ (i). See the proof of Theorem 5.45. ¥

Corollary 5.47. If pseudo - BL algebra A is a BL algebra, then the following
assertions are equivalent:

(i) (F(A),∨,∧,∗ , {1}, A) is a Boolean algebra,
(ii) Every filter of A is principal and for every x ∈ A, there is n ∈ ω such that

x ∨ (xn)− = 1.
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3. The spectrum of a pseudo - BL algebra

This section contains characterization for prime and completely inf-irreducible filters
(normal filters) of a pseudo BL-algebra.

For the lattice F(A) (which is distributive) we denote by Spec(A) the set of all
meet-irreducible elements (see Definition 1.10) (Spec(A) is called the spectrum of
A) and by Irc(A) the set of all completely meet-irreducible elements of the lattice
F(A).

Definition 5.7. A proper filter P of A is called prime if, for any x, y ∈ A, the
condition x ∨ y ∈ P implies x ∈ P or y ∈ P.

Proposition 5.48. If P is a proper filter, then the following are equivalent:
(i) P is prime filter;

(ii) For all x, y ∈ A, x → y ∈ P or y → x ∈ P ;
(iii) For all x, y ∈ A, x Ã y ∈ P or y Ã x ∈ P ;
(iv) A/ ≡L(P ) is a chain;
(v) A/ ≡R(P ) is a chain.

Proof. (i) ⇒ (ii). Obviously, since (x → y) ∨ (y → x) = 1.
(ii) ⇒ (i). Assume that x ∨ y ∈ P and, for example, x → y ∈ P . But

x ∨ y = [(x → y) Ã y] ∧ [(y → x) Ã x] ∈ P, so (x → y) Ã y ∈ P ; then y ∈ P.
The rest of the proof is straightforward. ¥
Proposition 5.49. Let H be a normal filter of A. Then H is a prime filter iff

A/H is a pseudo - BL chain.

Proof. Similarly with the proof of Theorem 3.23 for the case of BL-algebras.
¥

Remark 5.11. If A is a pseudo - BL chain, then the set of normal filters of
A is totally ordered by inclusion. Indeed, if H1,H2 were normal filters of A such
that H1 * H2 and H2 * H1, then there would be elements h1, h2 ∈ A such that
h1 ∈ H1\H2 and h2 ∈ H2\H1. Whence h1 � h2 and h2 � h1, which is impossible.

Corollary 5.50. If P is a prime filter and Q is a proper filter such that P ⊆ Q,
then Q is a prime filter.

Proof. Follows by Proposition 5.48. ¥
Remark 5.12. If P is a prime filter of A, then A\P is an ideal in L(A).

Proof. Since P is proper, 0 /∈ P, hence we have 0 ∈ A\P. If a ≤ b and b ∈ A\P,
then a ∈ A\P, since P is a filter of A. If a, b ∈ A\P, then a ∨ b ∈ A\P, since P is a
prime filter. ¥

Theorem 5.51. (Prime filter theorem ) If F ∈ F(A) and I is an ideal of the
lattice L(A) such that F ∩I = ∅, then there is a prime filter P of A such that F ⊆ P
and P ∩ I = ∅.

Proof. ([53]) Let H = {H ∈ F(A) : F ⊆ H and H ∩ I = ∅}. A routine
application of Zorn’s Lemma shows that H has a maximal element, P. Suppose that
P is not a prime filter of A. Then there are a, b ∈ A such that a Ã b /∈ P and
b Ã a /∈ P. It follows that the filters [P ∪ {a Ã b}) and [P ∪ {b Ã a}) are not in H
. Hence, there are c ∈ I ∩ [P ∪ {a Ã b}) and d ∈ I ∩ [P ∪ {b Ã a}). By Proposition
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5.18, (iv), c ≥ (s1¯(a Ã b)p1)¯ ...¯(sm¯(a Ã b)pm),for some m ≥ 1, p1, ..., pm ≥ 0
and s1, ..., sm ∈ P and d ≥ (t1 ¯ (b Ã a)q1) ¯ ... ¯ (tn ¯ (b Ã a)qn),for some
n ≥ 1, q1, ..., qn ≥ 0 and t1, ..., tn ∈ P. Let s = s1¯ ...¯ sm and t = t1¯ ...¯ tn; then
s, t ∈ P.

Let p = max
i=1,m

{pi} and q = max
i=1,n

{qi}; then c ≥
m∏

i=1
(s¯(a Ã b)p) = [s¯(a Ã b)p]m

and d ≥
n∏

i=1
(t¯ (b Ã a)q) = [t¯ (b Ã a)q]n . Let now u = s¯ t and r = max{p, q};

then u ∈ P and c ≥ [u¯ (a Ã b)r]m and d ≥ [u¯ (b Ã a)r]n .
By ...... we get x = c ∨ d ≥ [u ¯ (a Ã b)r]m ∨ [u ¯ (b Ã a)r]n ≥ (([u ¯ (a Ã

b)r]∨ [u¯(b Ã a)r])m)n = ([u¯(a Ã b)r]∨ [u¯(b Ã a)r])mn = (u¯ [(a Ã b)r∨(b Ã
a)r])mn = (u¯ 1)mn = umn ∈ P.

Thus, x ∈ P , but x ∈ I also, since I is an ideal. We have that P ∩ I 6= ∅, a
contradiction. ¥

Corollary 5.52. If F ∈ F(A) is proper and a ∈ A\F, then there is a prime
filter P of A such that F ⊆ P and a /∈ P. In particular, for F = {1} we deduce that
for any a ∈ A, a 6= 1, there is a prime filter Pa such that a /∈ Pa.

Proposition 5.53. The set of proper filters including a prime filter P of A is a
chain.

Proof. Let P1, P2 be to proper filters of A such that P ⊆ P1 and P ⊆ P2.
Assume there exist x ∈ P1\P2 and y ∈ P2\P1; then x ∨ y ∈ P1 ∩ P2. Hence P1 ∩ P2

is a prime filter of A. So, x ∈ P1 ∩ P2 or y ∈ P1 ∩ P2. This contradiction shows that
P1 ⊆ P2 or P2 ⊆ P1. ¥

Corollary 5.54. Every proper filter F is the intersection of those filters which
contain F. In particular, ∩Spec(A) = {1}.

Proposition 5.55. For a proper filter P ∈ F(A) the following are equivalent:
(i) P is prime;

(ii) P ∈ Spec(A);
(iii) If a, b ∈ A and a ∨ b = 1, then a ∈ P or b ∈ P.

Proof. (i) ⇒ (ii). Let F1, F2 ∈ F(A) such that F1 ∩ F2 = P.
Since P ⊆ F1, P ⊆ F2, by Proposition 5.53, F1 ⊆ F2 or F2 ⊆ F1, hence P = F1

or P = F2.
(ii) ⇒ (i). Let a, b ∈ A, such that a ∨ b ∈ P.
Since P (a)∩P (b) = (P ∨ [a))∩ (P ∨ [b)) = P ∨ ([a)∩ [b)) = P ∨ [a∨ b) = P, then

P = P (a) or P = P (b), hence a ∈ P or b ∈ P, that is, P is prime.
(i) ⇒ (iii). Clearly, since 1 ∈ P.
(iii) ⇒ (i). Clearly by Proposition 5.48, (ii) (since (a → b) ∨ (b → a) = 1 for

every a, b ∈ A).¥
Proposition 5.56. For a proper filter P ∈ F(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) For every x, y ∈ A\P there is z ∈ A\P such that x ≤ z and y ≤ z.

Proof. (i) ⇒ (ii). Let P ∈ Spec(A) and x, y ∈ A\P . If by contrary, for every
a ∈ A with x ≤ a and y ≤ a then a ∈ P, since x, y ≤ x ∨ y we deduce that x ∨ y
∈ P, hence, x ∈ P or y ∈ P, a contradiction.
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(ii) ⇒ (i). I suppose by contrary that there exist F1, F2 ∈ F(A) such that
F1 ∩ F2 = P and P 6= F1, P 6= F2. So, we have x ∈ F1\P and y ∈ F2\P. By
hypothesis there is z ∈ A\P such that x ≤ z and y ≤ z.

We deduce z ∈ F1 ∩ F2 = P, a contradiction. ¥
Corollary 5.57. For a proper filter P ∈ F(A) the following are equivalent:
(i) P ∈ Spec(A);

(ii) If x, y ∈ A and [x) ∩ [y) ⊆ P, then x ∈ P or y ∈ P.

Proof. (i) ⇒ (ii). Let x, y ∈ A such that [x)∩ [y) ⊆ P and suppose by contrary
that x, y /∈ P. Then by Proposition 5.56 there is z ∈ A\P such that x ≤ z and
y ≤ z. Hence z ∈ [x) ∩ [y) ⊆ P, so z ∈ P , a contradiction.

(ii) ⇒ (i). Let x, y ∈ A such that x ∨ y ∈ P. Then [x ∨ y ) ⊆ P .
Since [x∨ y) = [x)∩ [y) (by Proposition 5.18, (v)) we deduce that [x)∩ [y) ⊆ P,

hence, by hypothesis, x ∈ P or y ∈ P, that is, P ∈ Spec(A). ¥
We make the following notation:

Specn(A) = {F : F is a normal prime filter of A}.
Remark 5.13. Specn(A) ⊆ Spec(A); if A is a BL algebra, then Specn(A) =

Spec(A).

Corollary 5.58. For a proper normal filter P ∈ Fn(A) the following are equiv-
alent:

(i) P ∈ Specn(A);
(ii) For every x, y ∈ A/P, x 6= 1, y 6= 1 there is z ∈ A/P, z 6= 1 such that x ≤ z,

y ≤ z.

Proof. (i) ⇒ (ii). Clearly, by Proposition 5.56, since if x = a/P, with a ∈ A,
then the condition x 6= 1 is equivalent with a /∈ P.

(ii) ⇒ (i). Let x, y ∈ A/P. Then in A/P, x = a/P 6= 1 and y = b/P 6= 1. By
hypothesis there is z = c/P 6= 1 (that is, c /∈ P ) such that x, y ≤ z equivalent with
a → c, b → c ∈ P. If consider d = (b → c) Ã ((a → c) Ã c), then by psbl − c9,
(a → c) Ã c ≤ d and a ≤ (a → c) Ã c (because it is equivalent with,(a →
c) ¯ a = a ∧ c ≤ c). So a ≤ d. By psbl− c22, d = ((a → c) ¯ (b → c)) Ã c

psbl−c5≥
(b → c) Ã c ≥ b (because it is equivalent with (b → c)¯ b = b ∧ c ≤ b).

We deduce that a, b ≤ d. Since c /∈ P, by Remark 5.6 we deduce that d /∈ P ,
hence by Proposition 5.56, we deduce that P ∈ Specn(A). ¥

Remark 5.14. From Corollary 5.54 we deduce that for every F ∈ F(A),

F = ∩{P ∈ Spec(A) : F ⊆ P} and ∩ {P ∈ Spec(A)} = {1}.
Relative to the uniqueness of filters as intersection of primes we have as in the

case of BL−algebras:

Theorem 5.59. If every F ∈ F(A) has a unique representation as an intersec-
tion of elements of Spec(A), then (F(A),∨,∧,∗ , {1}, A) is a Boolean algebra.

Also, as in the case of BL−algebras, for pseudo BL−algebras we have the fol-
lowing results:

Lemma 5.60. If F ∈ F(A), F 6= A and a /∈ F, then there exists Fa ∈ F(A)
maximal with the property that F ⊆ Fa and a /∈ Fa.
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Corollary 5.61. For any a ∈ A, a 6= 1, there is a filter Fa maximal relative to
a.

Theorem 5.62. For F ∈ F(A), F 6= A the following are equivalent:
(i) F ∈ Irc(A);

(ii) There is a ∈ A such that F is maximal relative to a.

Theorem 5.63. Let F ∈ Fn(A) be a normal filter, F 6= A and a ∈ A\F. Then
the following are equivalent:

(i) F is maximal relative to a,
(ii) For every x ∈ A\F there is n ≥ 1 such that xn → a ∈ F,

(iii) For every x ∈ A\F there is n ≥ 1 such that xn Ã a ∈ F.

Proof. Since F ∈ Fn(A), it is sufficient to prove (i) ⇔ (ii).
(i) ⇒ (ii). Let x ∈ A\F. If a /∈ F (x) = F ∨ [x), since F ⊂ F (x) then F (x) = A

(by the maximality of F ) hence a ∈ F (x), a contradiction. We deduce that a ∈ F (x),
hence a ≥ f ¯ xn, with f ∈ F and n ≥ 1. Then f ≤ xn → a, hence xn → a ∈ F.

(ii) ⇒ (i). We suppose by contrary that there is F ′ ∈ F(A), F ′ 6= A such that
a /∈ F ′ and F ⊂ F ′. Then there is x0 ∈ F ′ such that x0 /∈ F, hence by hypothesis
there is n ≥ 1 such that xn

0 → a ∈ F ⊂ F ′. Thus from xn
0 → a ∈ F ′ and xn

0 ∈ F ′, we
deduce that a ∈ F ′ , by Remark 5.6, a contradiction. ¥

Corollary 5.64. For a normal filter F ∈ Fn(A), F 6= A the following are
equivalent:

(i) F ∈ Irc(A),
(ii) In the set A/F\{1} we have an element p 6= 1 with the property that for

every x ∈ A/F\{1} there is n ≥ 1 such that xn ≤ p.

Proof.(i) ⇒ (ii). By Theorem 5.62, F is maximal relative to an element a /∈ F ;
then, if denote p = a/F ∈ A/F, p 6= 1 (since a /∈ F ) and for every x = b/F, x 6= 1
(that is b /∈ F ) by Theorem 5.63 there is n ≥ 1 such that bn → a ∈ F, that is,
xn ≤ p.

(ii) ⇒ (i). Let p = a/F ∈ A/F\{1}, (that is, a /∈ F ) and x = b/F ∈ A/F\{1},
(that is, b /∈ F ). By hypothesis there is n ≥ 1 such that xn ≤ p equivalent with
bn → a ∈ F. Then, by Theorem 5.63, we deduce that F ∈ Irc(A). ¥

We recall that a filter P of A is a minimal prime filter if P ∈ Spec(A) and,
whenever Q ∈ Spec(A) and Q ⊆ P, we have P = Q.

Proposition 5.65. If P is a minimal prime filter, then for any a ∈ P there is
b ∈ A\P such that a ∨ b = 1.

Proof. See the proof of Proposition 1.56. ¥
Remark 5.15. For the case of BL-algebras we have an analogous result (more

general; see [99], p.54).

4. Maximal filters. Archimedean and hyperarchimedean pseudo
BL-algebras

In this section we introduce the notions of archimedean and hyperarchimedean
pseudo - BL algebra and we will prove a theorem of Nachbin type for pseudo - BL
algebras.
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Definition 5.8. A filter of A is maximal (ultrafilter) if it is proper and it is
not contained in any other proper filter.

We shall denote by Max(A) the set of all maximal filters of A and by Maxn(A)
the set of all maximal normal filters of A; it is obvious that Maxn(A) ⊆ Max(A) ⊆
Spec(A) and Maxn(A) ⊆ Specn(A) ⊆ Spec(A).

Indeed, let M ∈ Max(A)(Maxn(A)); because M is a proper filter of A, then by
Corollary 5.54, there is a prime filter P of A such that M ⊆ P. Since P is proper, it
follows that M = P. Hence, M is prime (normal prime).

We have:

Theorem 5.66. If F is a proper filter of A, then the following are equivalent:
(i) F is a maximal filter;

(ii) For any x /∈ F there exist f ∈ F, n, m ≥ 1 such that (f ¯ xn)m = 0.

Proof. (i) ⇒ (ii). If x /∈ F, then [F ∪ {x}) = A, hence 0 ∈ [F ∪ {x}). By
Proposition 5.18, (iv), there exists m, n1, ..., nm ∈ ω and f1, ..., fm ∈ F such that
(f1 ¯ xn1) ¯ ... ¯ (fm ¯ xnm) ≤ 0. Thus (f1 ¯ xn1) ¯ ... ¯ (fm ¯ xnm) = 0 and if
consider f = f1 ¯ ... ¯ fm ∈ F (since F is a filter) and n = max{n1, ..., nm}, then
f ¯ xn ≤ fi ¯ xni for every 1 ≤ i ≤ m, hence

(f ¯ xn)m ≤ (f1 ¯ xn1)¯ ...¯ (fm ¯ xnm) = 0,

that is, (f ¯ xn)m = 0.
(ii) ⇒ (i). Assume there is a proper filter F ′ such that F ⊂ F ′. Then there

exists x ∈ F ′ such that x /∈ F. By hypothesis there exist f ∈ F, n, m ∈ ω such that
(f ¯ xn)m = 0. But x, f ∈ F ′ hence we obtain 0 ∈ F ′, a contradiction. ¥

Corollary 5.67. If H is a normal proper filter of A, then the following are
equivalent:

(i) H is a maximal filter;
(ii) For any x ∈ A, x /∈ H iff (xn)− ∈ H, for some n ≥ 1;

(iii) For any x ∈ A, x /∈ H iff (xn)s ∈ H, for some n ≥ 1.

Proof. From Theorem 5.66, for any x ∈ A, x /∈ H iff there exist f ∈ H and
n,m ≥ 1 such that (f ¯ xn)m = 0. Since H is normal, from (f ¯ xn)m = 0 we
deduce that there exist f ′, f ′′ ∈ H such that f ′ ¯ xnm = 0 and xnm ¯ f ′′ = 0. Thus,
(xnm)−, (xnm)s ∈ H.¥

Theorem 5.68. If H ∈ Fn(A),H 6= A, then the following are equivalent:
(i) H ∈ Maxn(A);

(ii) For any x ∈ A, x /∈ H iff (xn)− ∈ H, for some n ≥ 1;
(iii) For any x ∈ A, x /∈ H iff (xn)s ∈ H, for some n ≥ 1;
(iv) A/H is locally finite.

Proof. (i) ⇔ (iii). Follows by Corollary 5.67.
(i) ⇔ (iv). It follows by observing that the condition (iii) in Corollary 5.67 can

be reformulated in the following way: for any x ∈ A, x/H 6= 1/H iff (xn)s/H = 1/H,
for some n ≥ 1 iff (x/H)n = 0/H,for some n ≥ 1 . ¥

Proposition 5.69. Let H be a normal proper filter of A. For an element x ∈ A,
the following properties are equivalent:

(i) There exists h ∈ H such that x ≤ hs;



134 5. PSEUDO BL-ALGEBRAS

(ii) There exists h ∈ H such that h¯ x = 0;
(i′) There exists h ∈ H such that x ≤ h−;

(ii′) There exists h ∈ H such that x¯ h = 0.

Proof. (i) ⇔ (ii) and (i′) ⇔ (ii′) follows by psBL3.
(ii) ⇔ (ii′) follows by Proposition 5.34. ¥
For a pseudo - BL algebra A we make the following notations:

U(A) = {a ∈ A : (an)s ≤ a, for every n ∈ N}
V (A) = {a ∈ A : (an)− ≤ a, for every n ∈ N}.

Remark 5.16. If A is a BL algebra, then Maxn(A) = Max(A) and U(A) =
V (A).

Definition 5.9. The intersection of the maximal filters (normal filters) of A is
called the radical (normal radical ) of A and will be denoted by Rad(A) (Radn(A)).
It is obvious that Rad(A) and Radn(A) are filters of A and Rad(A) ⊆ Radn(A).

Proposition 5.70. Rad(A) ⊆ U(A) ∩ V (A) ⊆ U(A) ∪ V (A) ⊆ Radn(A).

Proof.([54]) Let a /∈ U(A); there exists n ∈ N such that (an)s � a; it follows
that (an)s Ã a 6= 1. Hence, there exists a prime filter P such that (an)s Ã a /∈ P.
But P is prime, hence a Ã (an)s ∈ P. By Zorn Lemma, there exists a maximal
filter M such that P ⊆ M , hence a Ã (an)s ∈ M. If a ∈ M , then an ∈ M ; it follows
that (an)s ∈ M, too, since a, a Ã (an)s ∈ M imply (an)s ∈ M ; we thus obtain a
contradiction: 0 = an¯ (an)s ∈ M. It follows that a /∈ M, hence a /∈ ∩Max(A).
Thus we have proved that ∩Max(A) ⊆ U(A). Analogously, ∩Max(A) ⊆ V (A).
Hence we have proved the first inclusion.

Let now a /∈ ∩Maxn(A), hence, there exists a normal maximal filter M such that
a /∈ M. Then (an)s ∈ M, by Theorem 5.68. If (an)s ≤ a, then a ∈ M contradiction.
Hence (an)s � a, so a /∈ U(A), hence U(A) ⊆ ∩Maxn(A). Analogously, we have
V (A) ⊆ ∩Maxn(A). ¥

Remark 5.17. (i) If M ∈ Maxn(A), then < M >= M,
(ii) If M ∈ Max(A)\ Maxn(A), then < M >= A.

Proposition 5.71. For any a, b ∈ Rad(A), a− ¯ b− = as ¯ bs = 0.

Proof. Let a, b ∈ Rad(A); to prove that a− ¯ b− = 0 is equivalent with (a− ¯
b−)s = 1. Suppose that (a− ¯ b−)s 6= 1. By Corollary 5.52, there is a prime filter
P such that (a− ¯ b−)s /∈ P. By c48 we have (a− ¯ b−)s = b− → (a−)s /∈ P, so by
Proposition 5.48, (a−)s → b− ∈ P, that is, [(a−)s ¯ b]− ∈ P.

There is a maximal filter M such that P ⊆ M. Then (a−)s¯b /∈ M. By Theorem
5.68, there is n ≥ 1 such that [((a−)s ¯ b)n]− ∈ M ; so, if denote c = ((a−)s ¯ b)n,
we have c− ∈ M . Since a, b ∈ Rad(A) then we deduce that a, b ∈ M, hence
(a−)s, b ∈ M, so c = ((a−)s¯ b)n ∈ M . Hence c and c− are in M which contradicts
the fact that M is a proper filter of A.

Analogous we deduce that as ¯ bs = 0. ¥
We recall that a pseudo - BL algebra A is called semisimple if the intersection

of all congruences of A is the congruence ∆A (where for all x, y ∈ A, x∆Ay iff
x = y) and a pseudo - BL algebra is representable if it can be represented as a
subdirect product of pseudo - BL chains.
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Remark 5.18. A is semisimple iff Radn(A) = {1}.
Indeed, since in a pseudo BL-algebra A, the congruences are in bijective core-

spondence with the normal filters, it follows that A is semisimple iff ∩Maxn(A) =
{1} (see [54]).

Proposition 5.72. If A is semisimple, then A is representable.

Proof. Since A is semisimple, we have that ∩Maxn(A) = {1}. But any normal
maximal filter H is a normal prime filter and, hence by Proposition 5.49, A/H is
a pseudo BL-chain. Then, by standard techniques of universal algebra, we obtain
that A is representable. ¥

Proposition 5.73. If A is semisimple, then for every a, b ∈ A,

(psbl − c78) (a → b)¯ b = b¯ (a Ã b).

Proof. By Proposition 5.72, it is sufficient to consider the case in which A is a
pseudo - BL chain. If a ≤ b, then a → b = a Ã b = 1, so (a → b)¯ b = 1¯ b = b =
b ¯ 1 = b ¯ (a Ã b). If b ≤ a, the equality (a → b) ¯ b = b ¯ (a Ã b) follows from
psbl − c77. ¥

Corollary 5.74. If A is semisimple, then for every a, b ∈ A,

[a → b) ∨ [b) = [a Ã b) ∨ [b).

Definition 5.10. An element a of A is called infinitesimal if a 6= 1 and an ≥
a− ∨ as for any n ∈ N.

We denote by In(A) the set of all infinitesimals of A.

Proposition 5.75. For every nonunit element a of A, a is infinitesimal implies
a ∈ Radn(A).

Proof. Let a 6= 1 be an infinitesimal and suppose a /∈ Radn(A). Thus, there is
a maximal normal filter M of A such that a /∈ M. By Theorem 5.68, there is n ≥ 1
such that (an)− ∈ M . By hypothesis an ≥ a− ∨ as ≥ a− hence (an)− ≤ a=, so
a= ∈ M. By psbl − c64 we deduce that (a=)n ≤ (an)=, hence (an)= ∈ M. If denote
b = (an)− we conclude that b, b− ∈ M, hence 0 = b−¯b ∈ M, that is, M = A, which
contradicts the fact that M is a proper filter. ¥

Proposition 5.76. For every nonunit element a ∈ A, a ∈ Rad(A) implies a is
infinitesimal.

Proof. Let a ∈ Rad(A) ⊆ U(A)∩V (A), a 6= 1; then (an)− ≤ a and (an)s ≤ a for
any n ∈ N. For n = 1 we obtain that a−, as ≤ a. Since for any n ∈ ω, an ∈ Rad(A)
we deduce that (an)−, (an)s ≤ an. Since a− ¯ an = an ¯ as = 0 for any n ≥ 1,
then by psbl − c39 and psbl − c40 we obtain that an ≤ (a−)s and an ≤ (as)− for
any n ≥ 1. So, for any n ≥ 1, a− = [(a−)s]− ≤ (an)−, as = [(as)−]s ≤ (an)s and
(an)−, (an)s ≤ an, hence a−, as ≤ an, which implies an ≥ a− ∨ as, that is, a is an
infinitesimal. For n = 0 the inequalities are trivial. ¥

Corollary 5.77. Rad(A)\{1} ⊆ In(A) ⊆ Radn(A).

Corollary 5.78. ([70]) If A is a BL algebra, then Rad(A)\{1} = In(A).

Lemma 5.79. If a ∈ A and n ∈ N, n ≥ 1 then the following hold: an ∈ B(A)
and an ≥ a− ∨ as, implies a = 1.
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Proof. By Proposition 5.44, an ∈ B(A) ⇔ a ∨ (an)− = 1 ⇔ a ∨ (an)s = 1.
By hypothesis, an ≥ a− ∨ as implies an ≥ a− and an ≥ as. By psbl − c5 we
obtain (an)− ≤ (as)− and (an)s ≤ (a−)s so 1 = a ∨ (an)− ≤ a ∨ (as)− = (as)−,
1 = a∨ (an)s ≤ a∨ (a−)s = (a−)s hence (as)− = (a−)s = 1, that is, a− = as = 0.

Then (a¯ a) → 0 = a → (a → 0) = a → 0 = a− = 0, (a¯ a) Ã 0 = a Ã (a Ã
0) = a Ã 0 = as = 0, so we deduce that (a2)− = (a2)s = 0. Recursively we obtain
that (an)− = (an)s = 0. Then a ∨ (an)− = a ∨ 0 = 1, a ∨ (an)s = a ∨ 0 = 1, hence
a = 1.¥

Lemma 5.80. In any pseudo - BL algebra A the following are equivalent:
(i) For every a ∈ A, an ≥ a− ∨ as for any n ∈ N implies a = 1;

(ii) For every a, b ∈ A, an ≥ b− ∨ bs for any n ∈ N implies a ∨ b = 1.

Proof. (i) ⇒ (ii). Let a, b ∈ A such that an ≥ b− ∨ bs for any n ∈ ω. We get
(a ∨ b)− = a− ∧ b− ≤ b− ≤ an ≤ (a ∨ b)n, (a ∨ b)s = as ∧ bs ≤ bs ≤ an ≤ (a ∨ b)n,
hence (a ∨ b)n ≥ (a ∨ b)−∨ (a ∨ b)s, for any n ∈ ω. By hypothesis, a ∨ b = 1.

(ii) ⇒ (i). Let a ∈ A such that an ≥ a− ∨ as for any n ∈ ω. If consider b = a we
obtain a ∨ b = 1 ⇔ a ∨ a = 1 ⇔ a = 1.¥

Definition 5.11. A pseudo - BL algebra A is called archimedean if the equiv-
alent conditions from Lemma 5.80 are satisfied.

One can easily remark that a pseudo - BL algebra is archimedean iff it has no
infinitesimals.

Definition 5.12. Let A be a pseudo - BL algebra. An element a ∈ A is called
archimedean if it satisfy the condition:

there is n ∈ N, n ≥ 1, such that an ∈ B(A),

equivalent by Proposition 5.44 with a ∨ (an)− = 1 and a ∨ (an)s = 1. A pseudo -
BL algebra A is called hyperarchimedean if all its elements are archimedean.

From Lemma 5.79 we deduce:

Corollary 5.81. Every hyperarchimedean pseudo - BL algebra is archimedean.

We recall a theorem of Nachbin type for lattices (see [2], p.73):

Theorem 5.82. A distributive lattice is relatively complemented iff every prime
ideal is maximal.

Now, we present a theorem of Nachbin type for pseudo - BL algebras:

Theorem 5.83. For a pseudo - BL algebra A, the following are equivalent:
(i) A is hyperarchimedean;

(ii) For any normal filter F , the quotient pseudo - BL algebra A/F is an
archimedean pseudo - BL algebra;

(iii) Specn(A) = Maxn(A);
(iv) Any prime normal filter is minimal prime.

Proof. (i) ⇒ (ii). To prove A/F is archimedean, let x = a/F ∈ A/F such
that xn ≥ x− ∨ xs for any n ∈ N. By hypothesis, there is m ∈ N, m ≥ 1 such that
am ∈ B(A). It follows that xm ∈ B(A/F ). In particular we have xm ≥ x− ∨ xs so
by Lemma 5.79 we deduce that x = 1. It follows that A/F is archimedean.
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(ii) ⇒ (iii). Since Maxn(A) ⊆ Specn(A), we only have to prove that any prime
normal filter of A is maximal. If P ∈ Specn(A), then A/P is a chain (see Proposition
5.49). By hypothesis A/P is archimedean. By Theorem 5.68 to prove P ∈ Maxn(A)
is suffice to prove that A/P is locally finite.

Let x = a/P ∈ A/P, x 6= 1. Then there is n ∈ N, n ≥ 1, such that xn � x− ∨ xs

. Since A/P is chain we have xn ≤ x− ∨ xs. Thus xn+2 ≤ x ¯ (x− ∨ xs) ¯ x =
(x¯x−¯x)∨ (x¯xs¯x) = 0∨0 = 0, hence xn+2 = 0, that is, o(x) < ∞. It follows
that A/P is locally finite.

(iii) ⇒ (iv). Let P, Q prime normal filter such that P ⊆ Q. By hypothesis, P is
maximal, so P = Q. Thus Q is minimal prime.

(iv) ⇒ (i). Let a be a nonunit element from A. We shall prove that a is an
archimedean element.

If we denote

F = [a)∗ = {x ∈ A : a ∨ x = 1} (by Corollary 5.28),

then F ∈ F(A). Since a 6= 1, then a /∈ F and we consider

F ′ = F (a) = {x ∈ A : x ≥ f ¯ an, for some n ≥ 1 and f ∈ F},
(see Corollary 5.29).

If we suppose that F ′ is a proper filter of A, then by Corollary 5.52, there is a
prime filter P such that F ′ ⊆ P, so a ∈ P. But P ⊆< P >, and by Corollary 5.50,
< P > is prime; by hypothesis, < P > is a minimal (normal) prime filter. Since
a ∈< P >, by Proposition 5.65, we infer that there is x ∈ A\ < P > such that
a ∨ x = 1. It follows that x ∈ [a)∗ = F ⊆ F ′ ⊆ P ⊆< P >, hence x ∈< P >, a
contradiction.

Thus F ′ is not proper, so 0 ∈ F ′, hence (by Corollary 5.29) there exist n ≥ 1
and f ∈ F such that f ¯ an = 0.

Thus f ≤ (an)−. We get a ∨ f ≤ a ∨ (an)−. But a ∨ f = 1 (since f ∈ F ), so we
obtain that a∨ (an)− = 1, that is a is an archimedean element, by Proposition 5.44.
¥

As in the case of above implication (iv) ⇒ (i) we have:

Corollary 5.84. Let A be a pseudo - BL algebra. If any prime filter of A is
minimal prime, then A is hyperarchimedean.

Theorem 5.85. If pseudo - BL algebra A is a BL algebra, the following are
equivalent:

(i) A is hyperarchimedean;
(ii) For any filter F , the quotient BL algebra A/F is an archimedean BL al-

gebra;
(iii) Spec(A) = Max(A);
(iv) Any prime filter is minimal prime.

Remark 5.19. In this case we obtain the Theorem 3.56.





CHAPTER 6

Localization of BL(MV)-algebras

In the first part of this Chapter we introduce the notions of BL(MV)-algebra of fractions
relative to ∧-closed system ( Section 1), BL(MV)-algebra of fractions and maximal BL(MV)-
algebra of quotients for a BL(MV)-algebra (Section 3). In Section 2 we define the notion of
strong multiplier for a BL(MV)-algebra.

In Section 3 it is proved the existence of a maximal BL(MV)-algebra of quotients for a
BL(MV)-algebra (Theorem 6.19). We study a maximal BL-algebra of quotients and we give
an explicit descriptions of this BL-algebra for some classes of BL-algebras.

In the next Sections (4 and 5) we define the localization (strong localization) BL(MV)
- algebra of a BL(MV)- algebra A with respect to a topology F on A. In Section 6 we
prove that the maximal BL(MV) - algebra of quotients Q(A) (defined in Section 3) and the
BL(MV) - algebra of fractions relative to an ∧− closed system (defined in Section 1) are
strong BL(MV) - algebra of localization (see Proposition 6.33 and Proposition 6.34).

In Section 7 we define and prove analogous results for lu-groups.
In particular, we take on the task of translating the theory of localization of MV-

algebras defined in Sections 5 into the language of localization of abelian lu-groups. Thus,
this Section is very much in the spirit of [3], in which Ball, Georgescu and Leustean translate
the theory of convergence and Cauchy completion of lu-groups into the language of MV-
algebras.

Historical remarks: The concept of maximal lattice of quotients for a distributive lattice
was defined by J.Schmid in [121], [122] taking as a guide-line the construction of complete
ring of quotients by partial morphisms introduced by G. Findlay and J. Lambek (see [96],
p.36). The central role in this constructions is played by the concept of multiplier (defined for
a distributive lattice by W. H. Cornish in [47], [48]). J. Schmid used the multipliers in order
to give a non–standard construction of the maximal lattice of quotients for a distributive
lattice (see [121]). A direct treatment of the lattices of quotients can be found in [122].
In [64], G. Georgescu exhibited the localization lattice LF of a distributive lattice L with
respect to a topology F on L in a similar way as for rings (see [113]) or monoids (see [124]).

For the case of Hilbert and Heyting algebras see [20], [21] and respectively [49].

1. BL(MV)-algebra of fractions relative to an ∧−closed system

Definition 6.1. As in the case of residuated lattices, a nonempty subset S of
a BL− algebra A is called an ∧−closed system in A if 1 ∈ S and x, y ∈ S implies
x ∧ y ∈ S.

We denote by S(A) the set of all ∧−closed systems of A (clearly {1}, A ∈ S(A)).
For S ∈ S(A), on the BL-algebra A we consider the relation θS defined by

(x, y) ∈ θS iff there exists e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

Lemma 6.1. θS is a congruence on A.

139
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Proof. The reflexivity (since 1 ∈ S ∩ B(A)) and the symmetry of θS are
immediate. To prove the transitivity of θS , let (x, y), (y, z) ∈ θS . Thus there exists
e, f ∈ S ∩B(A) such that x ∧ e = y ∧ e and y ∧ f = z ∧ f.

If denote g = e ∧ f ∈ S ∩B(A), then

g ∧ x = (e ∧ f) ∧ x = (e ∧ x) ∧ f = (y ∧ e) ∧ f = (y ∧ f) ∧ e =

= (z ∧ f) ∧ e = z ∧ (f ∧ e) = z ∧ g,

hence (x, z) ∈ θS .
To prove the compatibility of θS with the operations ∧,∨,¯ and→ , let x, y, z, t ∈

A such that (x, y) ∈ θS and (z, t) ∈ θS . Thus there exists e, f ∈ S ∩B(A) such that
x ∧ e = y ∧ e and z ∧ f = t ∧ f ; we denote g = e ∧ f ∈ S ∩B(A).

We obtain:

(x ∧ z) ∧ g = (x ∧ z) ∧ (e ∧ f) = (x ∧ e) ∧ (z ∧ f) =

= (y ∧ e) ∧ (t ∧ f) = (y ∧ t) ∧ g,

hence (x ∧ z, y ∧ t) ∈ θS and

(x ∨ z) ∧ g = (x ∨ z) ∧ (e ∧ f) = [(e ∧ f) ∧ x] ∨ [(e ∧ f) ∧ z] =

= [(e ∧ x) ∧ f ] ∨ [e ∧ (f ∧ z)] = [(e ∧ y) ∧ f ] ∨ [e ∧ (f ∧ t)] =

= [(e ∧ f) ∧ y] ∨ [(e ∧ f) ∧ t] = (y ∨ t) ∧ (e ∧ f) = (y ∨ t) ∧ g,

hence (x ∨ z, y ∨ t) ∈ θS .
By Remark 3.8 we obtain:

(x¯ z) ∧ g = (x¯ z)¯ g = (x¯ e)¯ (z ¯ f) =

= (y ¯ e)¯ (t¯ f) = (y ¯ t)¯ g = (y ¯ t) ∧ g,

hence (x¯ z, y ¯ t) ∈ θS and by bl − c42:

(x → z) ∧ g = (x → z)¯ g = g ¯ [(g ¯ x) → (g ¯ z)] =

= g ¯ [(g ¯ y) → (g ¯ t)] = (y → t)¯ g = (y → t) ∧ g,

hence (x → z, y → t) ∈ θS .¥
For x we denote by x/S the equivalence class of x relative to θS and by

A[S] = A/θS .

By pS : A → A[S] we denote the canonical map defined by pS(x) = x/S, for every
x ∈ A. Clearly, in A[S], 0 = 0/S, 1 = 1/S and for every x, y ∈ A,

x/S ∧ y/S = (x ∧ y)/S,

x/S ∨ y/S = (x ∨ y)/S,

x/S ¯ y/S = (x¯ y)/S,

x/S → y/S = (x → y)/S.

So, pS is an onto morphism of BL-algebras.

Remark 6.1. Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1 we deduce that
s/S = 1/S = 1, hence pS(S ∩B(A)) = {1}.

Proposition 6.2. If a ∈ A, then a/S ∈ B(A[S]) iff there exists e ∈ S ∩ B(A)
such that e ∧ a ∈ B(A). So, if e ∈ B(A), then e/S ∈ B(A[S]).
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Proof. For a ∈ A, we have a/S ∈ B(A[S]) ⇔ a/S ¯ a/S = a/S and (a/S)∗∗ =
a/S .

From a/S ¯ a/S = a/S we deduce that (a ¯ a)/S = a/S ⇔ there exists g ∈
S ∩B(A) such that

(a¯ a) ∧ g = a ∧ g ⇔ (a¯ a)¯ g = a ∧ g ⇔
⇔ (a¯ g)¯ (a¯ g) = a ∧ g ⇔ (a ∧ g)¯ (a ∧ g) = a ∧ g.

From (a/S)∗∗ = a/S we deduce that exists f ∈ S∩B(A) such that a∗∗∧f = a∧f.
If denote e = g ∧ f ∈ S ∩B(A), then

(a ∧ e)¯ (a ∧ e) = (a ∧ g ∧ f)¯ (a ∧ g ∧ f) =

= (a¯ g)¯ f ¯ (a¯ g)¯ f = a¯ g ¯ f = a ∧ g ∧ f = a ∧ e

and
a∗∗ ∧ e = a∗∗ ∧ g ∧ f = (a∗∗ ∧ f) ∧ g = (a ∧ f) ∧ g = a ∧ e,

hence a ∧ e ∈ B(A).
If e ∈ B(A), since 1 ∈ S ∩ B(A) and 1 ∧ e = e ∈ B(A) we deduce that e/S ∈

B(A[S]). ¥
Theorem 6.3. If A′ is a BL-algebra and f : A → A′ is a morphism of BL-

algebras such that f(S ∩ B(A)) = {1}, then there exists an unique morphism of
BL-algebras f ′ : A[S] → A′ such that the diagram

A
pS−→ A[S]

↘
f

↙
f ′

A′

is commutative (i.e. f ′ ◦ pS = f).

Proof. If x, y ∈ A and pS(x) = pS(y), then (x, y) ∈ θS , hence there exists
e ∈ S ∩ B(A) such that x ∧ e = y ∧ e. Since f is a morphism of BL-algebras, we
obtain that

f(x ∧ e) = f(y ∧ e) ⇔ f(x) ∧ f(e) = f(y) ∧ f(e) ⇔
f(x) ∧ 1 = f(y) ∧ 1 ⇔ f(x) = f(y).

From this observation we deduce that the map f ′ : A[S] → A′ defined for x ∈ A
by f ′(x/S) = f(x) is correctly defined. Clearly, f ′ is a morphism of BL-algebras.
The unicity of f ′ follows from the fact that pS is an onto map.¥

Remark 6.2. Theorem 6.3 allows us to call A[S] the BL-algebra of fractions
relative to the ∧−closed system S.

Remark 6.3. If BL− algebra A is an MV− algebra (i.e. x∗∗ = x, for all
x ∈ A), then (x/S)∗∗ = x∗∗/S = x/S, so A[S] is an MV− algebra. Called A[S] the
MV -algebra of fractions relative to the ∧−closed system S.

Example 6.1. If A is a BL− algebra and S = {1} or S is such that 1 ∈ S and
S ∩ (B(A)\{1}) = ∅, then for x, y ∈ A, (x, y) ∈ θS ⇐⇒ x ∧ 1 = y ∧ 1 ⇐⇒ x = y,
hence in this case A[S] = A.

Example 6.2. If A is a BL− algebra and S is an ∧−closed system such that
0 ∈ S (for example S = A or S = B(A)), then for every x, y ∈ A, (x, y) ∈ θS (since
x ∧ 0 = y ∧ 0 and 0 ∈ S ∩B(A)), hence in this case A[S] = 0.
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Example 6.3. We consider BL− algebra A = {0, a, b, c, 1} from Example 3.11:
i). The ∧−closed systems of A which contain 0 are:

S = A,B(A) = L2, {0, c, 1}, {0, c, a, 1}, {0, c, b, 1}, {0, a, 1} and {0, b, 1}.
In all these cases A[S] = 0 (see Example 6.2).

ii). The ∧−closed systems of A which do not contain 0 are:

S = {1}, {a, 1}, {b, 1}, {c, 1}, {a, c, 1}, {b, c, 1} and {a, b, c, 1}.
In all these cases A[S] = A (because S ∩ B(A) = {1}, hence θS is the
identity; see Example 6.1).

Example 6.4. We consider MV− algebra L3×2 = {0, a, b, c, d, 1} from Example
3.12:

i). The ∧−closed systems of L3×2 which contain 0 are:

S = L3×2, {0, 1}, {0, a, 1}, {0, b, 1}, {0, c, 1},
{0, d, 1}, {0, a, b, 1}, {0, a, c, 1}, {0, a, d, 1} = B(L3×2),

{0, b, c, 1}, {0, b, d, 1}, {0, a, b, c, 1}, {0, a, b, d, 1}, {0, b, c, d, 1}.
In all these cases L3×2[S] = 0 (see Example 6.2).

ii). The ∧−closed systems of L3×2 which do not contain 0 are:

S = {1}, {a, 1}, {b, 1}, {c, 1}, {d, 1}, {a, c, 1}, {b, c, 1} and {b, c, d, 1}.
In the cases S = {1}, {b, 1}, {c, 1}, {b, c, 1}, L3×2[S] = L3×2 (because S ∩
B(L3×2) = {1}, hence θS is the identity; see Example 6.1). In the cases
S = {a, 1}, {a, c, 1} we obtain

0/S = b/S = d/S = {0, b, d},
1/S = a/S = c/S = {a, c, 1},

so L3×2[S] ≈ L2, and for S = {d, 1}, {b, d, 1}, {b, c, d, 1} we obtain

0/S = a/S = {0, a},
b/S = c/S = {b, c},
d/S = 1/S = {1, d}.

L3×2[S] is not a Boolean algebra because b/S⊕b/S = (b⊕b)/S = d/S 6= b/S.

Example 6.5. Suppose that A is a boolean algebra. Clearly, A is an MV -
algebra. Then every ideal of the underlying lattice L(A) is an ideal of A (every
ideal of an MV -algebra A is also an ideal of the underlying lattice L(A) - see [45],
p. 112). If P is a prime ideal of A (that is P 6= A and if x ∧ y ∈ P implies
x ∈ P or y ∈ P), then S = A\P is an ∧−closed system. We denote A[S] by AP .
The set M = {x/S : x ∈ P} is a maximal ideal of AP . Indeed, if x, y ∈ P, then
x/S ⊕ y/S = (x ⊕ y)/S ∈ M (since x ⊕ y ∈ P). If x, y ∈ A such that x ∈ P and
y/S ≤ x/S then there exists e ∈ S ∩B(A) such that y∧ e ≤ x∧ e. Since x ∈ P, then
y∧e ∈ P, hence y ∈ P (since e /∈ P), so y/S ∈ M. To prove the maximality of M let
I an ideal of AP such that M ⊆ I and M 6= I. Then there exists x/S ∈ I such that
x/S /∈ M, (that is x /∈ P ⇐⇒ x ∈ S), hence x/S = 1 (see Remark 6.1) so I = AP .
Moreover, M is the only maximal ideal of AP (since if we have another maximal
ideal M ′ of AP, then M ′ * M hence there exists x/S ∈ M ′ such that x/S /∈ M,
so x/S = 1 and M ′ = AP , a contradiction!). In other words AP is a local MV
-algebra. The process of passing from A to AP is called localization at P.
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2. Strong multipliers on a BL(MV)-algebra

Definition 6.2. Let (P,≤) be an ordered set and I ⊆ P a non-empty set. I
is an order ideal (alternative terms include down-set or decreasing set) if, whenever
x ∈ I, y ∈ P and y ≤ x, we have y ∈ I. We denote by I(P ) the set of all order
ideals of P ; clearly, I(P ) is closed under arbitrary intersections. For a nonempty set
M ⊆ P we denote by < M >P the order ideal of P generated by M .

Remark 6.4. It is eassy to prove that for a nonempty set M ⊆ P,

< M >P = {x ∈ P : there exists a ∈ M such that x ≤ a}.
Let A be a BL− algebra. We denote by I(A) the set of all order ideals of A

(see Definition 6.2):

I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈ I},
and by Id(A) the set of all ideals of the lattice L(A).

Remark 6.5. Clearly, I(A) ⊆ Id(A) and if I1, I2 ∈ I(A), then I1 ∩ I2 ∈ I(A).
Also, if I ∈ I(A), then 0 ∈ I.

Definition 6.3. By partial strong multiplier of A we mean a map f : I → A,
where I ∈ I(A), which verifies the next conditions:

(sm−BL1) f(e¯ x) = e¯ f(x), for every e ∈ B(A) and x ∈ I;
(sm−BL2) f(x) ≤ x, for every x ∈ I;
(sm−BL3) If e ∈ I ∩B(A), then f(e) ∈ B(A);
(sm−BL4) x ∧ f(e) = e ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I (note that e¯ x ∈ I

since e¯ x ≤ e ∧ x ≤ x).

Remark 6.6. If A is an MV− algebra the definition of strong multiplier on A
is the same as Definition 6.3 for the case of BL− algebras (we recall that in this
case, for x, y ∈ A, x¯ y = (x∗ ⊕ y∗)∗).

Clearly, f(0) = 0.
By dom(f) ∈ I(A) we denote the domain of f ; if dom(f) = A, we called f total.
To simplify the language, we will use strong multiplier instead of partial strong

multiplier, using total to indicate that the domain of a certain multiplier is A.

Example 6.6. The map 0 : A → A defined by 0(x) = 0, for every x ∈ A is a total
strong multiplier of A; indeed if x ∈ A and e ∈ B(A), then 0(e¯ x) = 0 = e¯ 0 =
e¯ 0(x) and 0(x) ≤ x. Clearly, if e ∈ A∩B(A) = B(A), then 0(e) = 0 ∈ B(A) and
for x ∈ A, x ∧ 0(e) = e ∧ 0(x) = 0.

Example 6.7. The map 1 : A → A defined by 1(x) = x, for every x ∈ A is also
a total strong multiplier of A; indeed if x ∈ A and e ∈ B(A), then 1(e¯x) = e¯x =
e ¯ 1(x) and 1(x) = x ≤ x. The conditions sm − BL3 − sm − BL4 are obviously
verified.

Example 6.8. For a ∈ B(A) and I ∈ I(A), the map fa : I → A defined
by fa(x) = a ∧ x, for every x ∈ I is a strong multiplier of A (called principal).
Indeed, for x ∈ I and e ∈ B(A), we have fa(e ¯ x) = a ∧ (e ¯ x) = a ∧ (e ∧ x) =
e ∧ (a ∧ x) = e ¯ (a ∧ x) = e ¯ fa(x) and clearly fa(x) ≤ x. Also, if e ∈ I ∩ B(A),
fa(e) = e ∧ a ∈ B(A) and x ∧ (a ∧ e) = e ∧ (a ∧ x), for every x ∈ I.



144 6. LOCALIZATION OF BL(MV)-ALGEBRAS

Remark 6.7. The condition sm−BL4 is not a consequence of sm−BL1−sm−
BL3. As example, f : I → A, f(x) = x∧x∗ for every x ∈ I, verify sm−BL1−sm−
BL3, but if e ∈ I ∩B(A) and x ∈ I, then

x ∧ f(e) = x ∧ 0 6= e ∧ (x ∧ x∗) = e ∧ f(x).

Remark 6.8. In general, if we consider a ∈ A, then fa : I → A verifies only
sm−BL1, sm−BL2 and sm−BL4 but does not verify sm−BL3.

If dom(fa) = A, we denote fa by fa ; clearly, f0 = 0.
For I ∈ I(A), we denote

M(I,A) = {f : I → A | f is a strong multiplier on A}
and

M(A) = ∪
I∈I(A)

M(I, A).

If necessary, we denote M(A) by MBL(A) to indicate that we work in BL−
algebras; for the case of MV− algebras we denote M(A) by MMV(A).

Remark 6.9. From Propositions 3.8 and 3.9 we deduce that for every I ∈ I(A)
the algebra of multipliers MBL(I, A) for a BL− algebras is in fact a generalization
of the algebra of multipliers MMV(I, A) for MV− algebras, defined in [26]. Also,
we deduce that if BL− algebra A is an MV− algebra (that is A = MV (A)), then
MBL(I, A) = MMV(I,A) for every I ∈ I(A).

Definition 6.4. If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we define f1 ∧ f2,
f1 ∨ f2, f1 ¡ f2, f1 → f2 : I1 ∩ I2 → A by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x),

(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ¡ f2)(x) = f1(x)¯ [x → f2(x)] bl−c45= f2(x)¯ [x → f1(x)],

(f1 → f2)(x) = x¯ [f1(x) → f2(x)],

for every x ∈ I1∩ I2.

Lemma 6.4. f1 ∧ f2 ∈ M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then (f1∧f2)(e¯x) = f1(e¯x)∧f2(e¯x) =
(e¯f1(x))∧(e¯f2(x)) = (e∧f1(x))∧(e∧f2(x)) = e∧[f1(x)∧f2(x)] = e¯(f1∧f2)(x).

Since fi ∈ M(Ii, A), i = 1, 2, we have (f1 ∧ f2)(x) = f1(x) ∧ f2(x) ≤ x ∧ x = x,
for every x ∈ I1∩ I2 and if e ∈ I1 ∩ I2 ∩B(A), then

(f1 ∧ f2)(e) = f1(e) ∧ f2(e) ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2 we have:

x ∧ (f1 ∧ f2)(e) = x ∧ f1(e) ∧ f2(e) = [x ∧ f1(e)] ∧ [x ∧ f2(e)] =

= [e ∧ f1(x)] ∧ [e ∧ f2(x)] = e ∧ (f1 ∧ f2)(x),

that is f1 ∧ f2 ∈ M(I1 ∩ I2, A). ¥

Lemma 6.5. f1 ∨ f2 ∈ M(I1 ∩ I2, A).
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Proof. If x ∈ I1∩ I2 and e ∈ B(A), then (f1∨f2)(e¯x) = f1(e¯x)∨f2(e¯x) =

(e¯ f1(x)) ∨ (e¯ f2(x)) bl−c31= e¯ [f1(x) ∨ f2(x)] = e¯ (f1 ∨ f2)(x).
Since fi ∈ M(Ii, A), i = 1, 2, we have (f1 ∨ f2)(x) = f1(x) ∨ f2(x) ≤ x ∨ x = x,

for every x ∈ I1∩ I2 and if e ∈ I1 ∩ I2 ∩B(A), then

(f1 ∨ f2)(e) = f1(e) ∨ f2(e) ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2 we have:

x∧(f1∨f2)(e) = x∧[f1(e)∨f2(e)] = [x∧f1(e)]∨[x∧f2(e)] = [e∧f1(x)]∨[e∧f2(x)] =

= e ∧ [f1(x) ∨ f2(x)] = e ∧ (f1 ∨ f2)(x),
that is f1 ∨ f2 ∈ M(I1 ∩ I2, A). ¥
Lemma 6.6. f1 ¡ f2 ∈ M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1¡f2)(e¯x) = f1(e¯x)¯[(e¯x) → f2(e¯x)] = [e¯f1(x)]¯[(e¯x) → (e¯f2(x))] =

= f1(x)¯ [e¯ ((e¯ x) → (e¯ f2(x)))] bl−c42= f1(x)¯ [e¯ (x → f2(x))] =
= e¯ [f1(x)¯ (x → f2(x))] = e¯ (f1 ¡ f2)(x).

Clearly, (f1 ¡ f2)(x) = f1(x) ¯ [x → f2(x)] ≤ f1(x) ≤ x, for every x ∈ I1∩ I2

and if e ∈ I1 ∩ I2 ∩B(A), then by Remark 3.8 we have

(f1 ¡ f2)(e) = f1(e)¯ [e → f2(e)] = f1(e)¯ (e∗ ∨ f2(e)) ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2 we have:

x∧(f1¡f2)(e) = x∧[f1(e)¯(e → f2(e)] = x¯[f1(e)¯(e → f2(e)] = f1(e)¯[x¯(e → f2(e))]
bl−c43= f1(e)¯ [x¯ ((x¯ e) → (x¯ f2(e)))] = (f1(e)¯ x)¯ [(x¯ e) → (x¯ f2(e))] =

= (e¯ f1(x))¯ [(e¯ x) → (e¯ f2(x))] = f1(x)¯ [e¯ ((e¯ x) → (e¯ f2(x)))]
bl−c42= f1(x)¯[e¯(x → f2(x))] = e¯[f1(x)¯(x → f2(x))] = e¯(f1¡f2)(x) = e∧(f1¡f2)(x),

hence
x ∧ (f1 ¡ f2)(e) = e ∧ (f1 ¡ f2)(x),

that is f1 ¡ f2 ∈ M(I1 ∩ I2, A). ¥
Lemma 6.7. f1 → f2 ∈ M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 → f2)(e¯x) = (e¯x)¯[f1(e¯x) → f2(e¯x)] = (e¯x)¯[(e¯f1(x)) → (e¯f2(x))] =

= x¯ [e¯ ((e¯ f1(x)) → (e¯ f2(x)))] bl−c42= x¯ [e¯ (f1(x) → f2(x))] =
= e¯ [x¯ (f1(x) → f2(x))] = e¯ (f1 → f2)(x).

Clearly, (f1 → f2)(x) = x ¯ [f1(x) → f2(x)] ≤ x, for every x ∈ I1∩ I2 and if
e ∈ I1 ∩ I2 ∩B(A), then by Remark 3.8 we have

(f1 → f2)(e) = e¯ [f1(e) → f2(e)] = e¯ [(f1(e))∗ ∨ f2(e)] ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2 we have:

e ∧ (f1 → f2)(x) = e ∧ [x¯ (f1(x) → f2(x))] =

= (e¯ x)¯ [f1(x) → f2(x)] = x¯ [e¯ (f1(x) → f2(x))] =
bl−c42= x¯ [e¯ ((e¯ f1(x)) → (e¯ f2(x)))] = x¯ [e¯ ((x¯ f1(e)) → (x¯ f2(e)))] =
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= e¯ [x¯ ((x¯ f1(e)) → (x¯ f2(e)))]
bl−c43= e¯ [x¯ (f1(e) → f2(e))] =

= x¯ [e¯ (f1(e) → f2(e))] = x¯ (f1 → f2)(e) = x ∧ (f1 → f2)(e)
hence

x ∧ (f1 → f2)(e) = e ∧ (f1 → f2)(x),
that is f1 → f2 ∈ M(I1 ∩ I2, A). ¥

Proposition 6.8. (M(A),∧,∨,¡,→,0,1) is a BL-algebra.

Proof. We verify the axioms of BL-algebras.
(BL1). Obviously (M(A),∧,∨,0,1) is a bounded lattice.
(BL2). Let fi ∈ M(Ii, A) where Ii ∈ I(A), i = 1, 2, 3.
Clearly, f1 ¡ f2 ∈ M(A) (see Lemma 6.6).
Thus, for x ∈ I1 ∩ I2 ∩ I3 we have

[f1 ¡ (f2 ¡ f3)](x) = ((f2 ¡ f3)(x))¯ (x → f1(x)) =

= [f2(x)¯ (x → f3(x))]¯ (x → f1(x)) = f2(x)¯ [(x → f3(x))¯ (x → f1(x))] =
= f2(x)¯ [(x → f1(x))¯ (x → f3(x))] = [f2(x)¯ (x → f1(x))]¯ (x → f3(x)) =

= ((f1 ¡ f2)(x))¯ (x → f3(x)) = [(f1 ¡ f2) ¡ f3](x),
that is the operation ¡ is associative.
By definition

(f1 ¡ f2)(x) = f1(x)¯ [x → f2(x)] bl−c45= f2(x)¯ [x → f1(x)] = (f2 ¡ f1)(x),

that is the operation ¡ is commutative.
Let f ∈ M(I, A) with I ∈ I(A). If x ∈ I, then

(f ¡ 1)(x) = f(x)¯ (x → 1(x)) = f(x)¯ (x → x) = f(x)¯ 1 = f(x),

and

(1 ¡ f)(x) = 1(x)¯ (x → f(x)) = x¯ (x → f(x)) = x ∧ f(x) = f(x),

hence
f ¡ 1 = 1 ¡ f = f,

that is (M(A), ¡,1) is a commutative monoid.
(BL3). Let fi ∈ M(Ii, A) where Ii ∈ I(A), i = 1, 2, 3.
Since f1 ≤ f2 → f3 for x ∈ I1 ∩ I2 ∩ I3 we have

f1(x) ≤ (f2 → f3)(x) ⇔ f1(x) ≤ x¯ [f2(x) → f3(x)].
So, by bl − c2,

f1(x)¯ [x → f2(x)] ≤ x¯ (x → f2(x))¯ (f2(x) → f3(x)) ⇔
f1(x)¯ [x → f2(x)] ≤ (x ∧ f2(x))¯ (f2(x) → f3(x)) ⇔

f1(x)¯ [x → f2(x)] ≤ f2(x)¯ (f2(x) → f3(x)) ⇔
f1(x)¯ [x → f2(x)] ≤ f2(x) ∧ f3(x) ≤ f3(x) ⇔

(f2 ¡ f1)(x) ≤ f3(x),
for every x ∈ I1 ∩ I2 ∩ I3, that is

f2 ¡ f1 ≤ f3.

Conversely if (f2 ¡ f1)(x) ≤ f3(x) we have

f1(x)¯ [x → f2(x)] ≤ f3(x),
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for every x ∈ I1 ∩ I2 ∩ I3.
Obviously,

f2(x)¯ [x → f1(x)] ≤ f1(x)¯ [x → f2(x)]
(see Lemma 3.6)

⇔ x → f1(x) ≤ f2(x) → [f1(x)¯ (x → f2(x))]
bl−c11≤ f2(x) → f3(x)

bl−c2⇔ x¯ (x → f1(x)) ≤ x¯ (f2(x) → f3(x))
⇔ x ∧ f1(x) ≤ x¯ (f2(x) → f3(x))

⇔ f1(x) ≤ (f2 → f3)(x).
So f1 ≤ f2 → f3 iff f2 ¡ f1 ≤ f3 for all f1, f2, f3 ∈ M(A).

(BL4). Let fi ∈ M(Ii, A) where Ii ∈ I(A), i = 1, 2.
Thus, for x ∈ I1 ∩ I2 we have

[f1 ¡ (f1 → f2)](x) = [(f1 → f2)(x)]¯ [x → f1(x)]

= x¯ [f1(x) → f2(x)]¯ [x → f1(x)] = (x¯ [x → f1(x)])¯ [f1(x) → f2(x)] =
= [x∧f1(x)]¯[f1(x) → f2(x)] = f1(x)¯[f1(x) → f2(x)] = f1(x)∧f2(x) = (f1∧f2)(x).
So,

f1 ∧ f2 = f1 ¡ (f1 → f2).
(BL5). We have

[(f1 → f2) ∨ (f2 → f1)](x) = [(f1 → f2)(x)] ∨ [(f2 → f1)(x)] =

= [x¯ (f1(x) → f2(x))] ∨ [x¯ (f2(x) → f1(x))] =
bl−c31= x¯ [(f1(x) → f2(x)) ∨ (f2(x) → f1(x))] BL5= x¯ 1 = x = 1(x),

hence
(f1 → f2) ∨ (f2 → f1) = 1.¥

Remark 6.10. To prove that (M(A),∧,∨,¡,→,0,1) is a BL-algebra it is suf-
ficient to ask for multipliers to verify only the axioms sm−BL1 and sm−BL2.

Proposition 6.9. If BL− algebra (A,∧,∨,¯,→, 0, 1) is an MV− algebra (A,⊕,∗ , 0)
(i.e. x∗∗ = x, for all x ∈ A), then BL− algebra (M(A),∧,∨, ¡,→,0,1) is an
MV− algebra (M(A),¢,∗ ,0). If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we have
f1 ¢ f2 : I1 ∩ I2 → A,

(f1 ¢ f2)(x) = (f1(x)⊕ f2(x)) ∧ x,

for every x ∈ I1∩ I2; for I ∈ I(A) and f ∈ M(I,A) we have f∗ : I → A

f∗(x) = (f → 0)(x) = x¯ (f(x) → 0(x)) = x¯ (f(x) → 0) = x¯ (f(x))∗,

for every x ∈ I.

Proof. To prove that BL− algebra M(A) is an MV− algebra let f ∈ M(I, A)
with I ∈ I(A).

Then

f∗∗(x) = [(f → 0) → 0](x) = x¯ [(f → 0)(x)]∗ = x¯ [x¯ (f(x))∗]∗

= x¯ [(x¯ (f(x))∗) → 0] bl−c8= x¯ [x → (f(x))∗∗] = x∧ (f(x))∗∗ = x∧ f(x) = f(x),
(since f(x) ∈ A which is an MV− algebra), for all x ∈ I.

So, f∗∗ = f and BL− algebra M(A) is an MV -algebra.
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We have f1 ¢ f2 = (f∗1 ¡ f∗2 )∗ and f∗ = f → 0.
Clearly,

(f1 ¢ f2)(x) = x¯ [f∗1 (x)¯ (x → f∗2 (x))]∗

= x¯ [x¯ (f1(x))∗¯ (x → x¯ (f2(x))∗)]∗ = x¯ [(f1(x))∗¯x¯ (x → x¯ (f2(x))∗)]∗

BL4= x¯ [(f1(x))∗ ¯ (x ∧ x¯ (f2(x))∗)]∗ = x¯ [(f1(x))∗ ¯ x¯ (f2(x))∗]∗

= x¯ [x¯ (f1(x))∗ ¯ (f2(x))∗]∗ bl−c37= x¯ [x → ((f1(x))∗ ¯ (f2(x))∗)∗]
BL4= x ∧ (f1(x)⊕ f2(x)),

for all x ∈ I1 ∩ I2. Then (M(A), ¢,∗ ,0) is an MV -algebra.¥

Lemma 6.10. The map vA : B(A) → M(A) defined by vA(a) = fa for every
a ∈ B(A), is a monomorphism of BL-algebras.

Proof. Clearly, vA(0) = f0 = 0. Let a, b ∈ B(A) and x ∈ A. We have:

(vA(a) ¡ vA(b))(x) = vA(a)(x)¯ (x → vA(b)(x)) = (a ∧ x)¯ (x → (b ∧ x))

= (a¯ x)¯ (x → (b ∧ x)) = a¯ [x¯ (x → (b ∧ x))] = a¯ [x ∧ (b ∧ x)]

= a ∧ [x ∧ (b ∧ x)] = a ∧ (b ∧ x) = (a ∧ b) ∧ x = (vA(a ∧ b))(x) = (vA(a¯ b))(x),

hence
vA(a¯ b) = vA(a) ¡ vA(b).

Also,

(vA(a) → vA(b))(x) = x¯ [vA(a)(x) → vA(b)(x)] = x¯ [(a ∧ x) → (b ∧ x)]

= x¯ [(x¯ a) → (x¯ b)] bl−c43= x¯ (a → b) = x ∧ (a → b)

(since a → b ∈ B(A))
= vA(a → b)(x),

hence
vA(a) → vA(b) = vA(a → b),

that is vA is a morphism of BL-algebras.
To prove the injectivity of vA let a, b ∈ B(A) such that vA(a) = vA(b). Then

a∧x = b∧x, for every x ∈ A, hence for x = 1 we obtain that a∧1 = b∧1 ⇒ a = b.¥

Definition 6.5. A nonempty set I ⊆ A is called regular if for every x, y ∈ A
such that x ∧ e = y ∧ e for every e ∈ I ∩B(A), then x = y.

For example A is a regular subset of A (since if x, y ∈ A and x ∧ e = y ∧ e for
every e ∈ A ∩B(A) = B(A), then for e = 1 we obtain x ∧ 1 = y ∧ 1 ⇔ x = y).

More generally, every subset of A which contains 1 is regular, hence all the filters
of A are regular sets.

We denote
R(A) = {I ⊆ A : I is a regular subset of A}.

Remark 6.11. The condition I ∈ R(A) is equivalent with the condition: for
every x, y ∈ A, if fx|I∩B(A) = fy|I∩B(A), then x = y.

Lemma 6.11. If I1, I2 ∈ I(A) ∩R(A), then I1 ∩ I2 ∈ I(A) ∩R(A).
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Proof. By Remark 6.5, I1 ∩ I2 ∈ I(A). To prove I1 ∩ I2 ∈ R(A) let x, y ∈ A
such that x ∧ e = y ∧ e for every e ∈ (I1 ∩ I2) ∩B(A). If ei ∈ Ii ∩B(A), i = 1, 2 are
arbitrary, then e1 ∧ e2 ∈ I1 ∩ I2 ∩B(A) so, we have

(e1 ∧ e2) ∧ x = (e1 ∧ e2) ∧ y ⇔ e1 ∧ (e2 ∧ x) = e1 ∧ (e2 ∧ y).

Since e1 ∈ I1 ∩ B(A) are arbitrary and I1 ∈ I(A) ∩ R(A), then we obtain e2 ∧ x =
e2 ∧ y.

Since e2 ∈ I2∩B(A) are arbitrary and I2 ∈ I(A)∩R(A), we obtain x = y, hence
I1 ∩ I2 ∈ I(A) ∩R(A).¥

Remark 6.12. By Lemma 6.11, we deduce that

Mr(A) = {f ∈ M(A) : dom(f) ∈ I(A) ∩R(A)}
is a BL-subalgebra of M(A).

Proposition 6.12. Mr(A) is a Boolean subalgebra of M(A).

Proof. Let f : I → A be a strong multiplier on A with I ∈ I(A) ∩R(A). Then

e ∧ [f ∨ f∗](x) = e ∧ [f(x) ∨ (x¯ (f(x))∗)] = [e ∧ f(x)] ∨ [e ∧ (x¯ (f(x))∗)]

sm−BL4= [x¯ f(e)] ∨ [x¯ e¯ (f(x))∗] bl−c42= [x¯ f(e)] ∨ [x¯ e¯ (e¯ f(x))∗]

sm−BL4= [x¯ f(e)] ∨ [x¯ e¯ (x¯ f(e))∗] = [x¯ f(e)] ∨ [x¯ e¯ (x ∧ f(e))∗]

bl−c33= [x¯f(e)]∨ [x¯e¯(x∗∨(f(e))∗)] bl−c13= [x¯f(e)]∨ [e¯((x¯x∗)∨(x¯(f(e))∗))]

bl−c5= [x¯ f(e)] ∨ [e¯ (0 ∨ (x¯ (f(e))∗))] = [x¯ f(e)] ∨ [e¯ x¯ (f(e))∗]

= [x¯ f(e)] ∨ [x¯ (e¯ (f(e))∗)] bl−c13= x¯ [f(e) ∨ (e¯ (f(e))∗)]

= x¯ [f(e) ∨ (e ∧ (f(e))∗)] = x¯ [(f(e) ∨ e) ∧ (f(e) ∨ (f(e))∗)]

sm−BL3= x¯ (e ∧ 1) = x¯ e = x ∧ e = 1(x) ∧ e,

hence (f ∨ f∗)(x) = 1(x), since I ∈ R(A), hence f ∨ f∗ = 1, that is Mr(A) is a
Boolean algebra. ¥

Remark 6.13. The axioms smBL3, smBL4 is necessary in the proof of Propo-
sition 6.12.

Definition 6.6. Given two strong multipliers f1, f2 on A, we say that f2 extends
f1 if dom(f1) ⊆ dom(f2) and f2|dom(f1) = f1; we write f1 ≤ f2 if f2 extends f1. A
strong multiplier f is called maximal if f can not be extended to a strictly larger
domain.

Lemma 6.13. (i) If f1, f2 ∈ M(A), f ∈ Mr(A) and f ≤ f1, f ≤ f2, then f1

and f2 coincide on the dom(f1) ∩ dom(f2);
(ii) Every strong multiplier f ∈ Mr(A) can be extended to a maximal strong

multiplier. More precisely, each principal strong multiplier fa with a ∈
B(A) and dom(fa) ∈ I(A)∩R(A) can be uniquely extended to a total strong
multiplier fa and each non-principal strong multiplier can be extended to a
maximal non-principal one.
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Proof. (i). Assume, to the contrary that there exists x ∈ dom(f1) ∩ dom(f2)
such that f1(x) 6= f2(x). Since dom(f) ∈ R(A), there is e ∈ dom(f)∩B(A) such that
e∧f1(x) 6= e∧f2(x). But e∧fi(x) = fi(e¯x) for i = 1, 2, thus f1(e¯x) 6= f2(e¯x).
Since e¯ x ≤ e, we have e¯ x ∈ dom(f), contradicting f ≤ f1, f ≤ f2.

(ii).We first prove that fa with a ∈ B(A) can not be extended to a non-principal
strong multiplier. Let I = dom(fa) ∈ I(A) ∩ R(A), fa : I → A and suppose by
absurdum hypothesis that there exists I ′ ∈ I(A), I ⊆ I ′ (hence I ′ ∈ I(A) ∩ R(A))
and a non-principal strong multiplier f ∈ M(I ′, A) which extends fa. Since f is
non-principal, there exists x0 ∈ I ′, x0 /∈ I such that f(x0) 6= x0 ∧ a (see Remark
6.11). Since I ∈ R(A), there exists e ∈ I ∩B(A) such that e∧f(x0) 6= e∧ (a∧x0) ⇔
f(e¯ x0) 6= e ∧ (a ∧ x0) ⇔ f(e¯ x0) 6= a ∧ (e¯ x0).

Denoting x1 = e¯ x0 ∈ I (since x1 ≤ e), we obtain that f(x1) 6= a ∧ x1, which
is contradiction (since fa ≤ f).

Hence fa is uniquely extended by fa.
Now, let f ∈ Mr(A) be non-principal and

Mf = {(I, g) : I ∈ I(A), g ∈ M(I, A), dom(f) ⊆ I and g|dom(f) = f}
(clearly, if (I, g) ∈ Mf , then I ∈ I(A) ∩R(A)).
The set Mf is ordered by (I1, g1) ≤ (I2, g2) iff I1 ⊆ I2 and g2|I1 = g1. Let

{(Ik, gk) : k ∈ K}
be a chain in Mf . Then I ′ = ∪

k∈K
Ik ∈ I(A) and dom(f) ⊆ I ′ . So, g′ : I ′ → A

defined by g′(x) = gk(x) if x ∈ Ik is correctly defined (since if x ∈ Ik ∩ It with
k, t ∈ K, then by (i), gk(x) = gt(x)).

Clearly, g′ ∈ M(I ′, A) and g′|dom(f) = f (since if x ∈ dom(f) ⊆ I ′ , then x ∈ I ′

and so there exists k ∈ K such that x ∈ Ik, hence g′(x) = gk(x) = f(x)).
So, (I ′, g′) is an upper bound for the family {(Ik, gk) : k ∈ K}, hence by Zorn’s

lemma, Mf contains at least one maximal strong multiplier h which extends f. Since
f is non-principal and h extends f, h is also non-principal. ¥

On the Boolean algebra Mr(A) we consider the relation ρA defined by

(f1, f2) ∈ ρA iff f1 and f2 coincide on the intersection of their domains.

Lemma 6.14. ρA is a congruence on Boolean algebra Mr(A).

Proof. The reflexivity and the symmetry of ρA are immediately; to prove

the transitivity of ρA let (f1, f2), (f2, f3) ∈ ρA. Therefore f1, f2 and respectively
f2, f3 coincide on the intersection of their domains. If by contrary, there exists
x0 ∈ dom(f1) ∩ dom(f3) such that f1(x0) 6= f3(x0), since dom(f2) ∈ R(A), there
exists e ∈ dom(f2)∩B(A) such that e∧f1(x0) 6= e∧f3(x0) ⇔ f1(e¯x0) 6= f3(e¯x0)
which is contradictory, since e¯ x0 = e ∧ x0 ∈ dom(f1) ∩ dom(f2) ∩ dom(f3).

To prove the compatibility of ρA with the operations ∧,∨ and ∗ on Mr(A), let
(f1, f2), (g1, g2) ∈ ρA. So, we have f1, f2 and respectively g1, g2 coincide on the
intersection of their domains.

Let x ∈ dom(f1) ∩ dom(f2) ∩ dom(g1) ∩ dom(g2). Then f1(x) = f2(x) and
g1(x) = g2(x), hence

(f1 ∧ g1)(x) = f1(x) ∧ g1(x) = f2(x) ∧ g2(x) = (f2 ∧ g2)(x),

(f1 ∨ g1)(x) = f1(x) ∨ g1(x) = f2(x) ∨ g2(x) = (f2 ∨ g2)(x),
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and

f∗1 (x) = (f1 → 0)(x) = x¯[f1(x) → 0(x)] = x¯[f2(x) → 0(x)] = (f2 → 0)(x) = f∗2 (x),

that is the pairs (f1∧g1, f2∧g2), (f1∨g1, f2∨g2), (f∗1 , f∗2 ) coincide on the intersection
of their domains, hence ρA is compatible with the operations ∧,∨ and ∗. ¥

For f ∈ Mr(A) with I = dom(f) ∈ I(A) ∩ R(A), we denote by [f, I] the
congruence class of f modulo ρA and Q(A) = Mr(A)/ρA .

Remark 6.14. From Proposition 6.12 we deduce that Q(A) is a Boolean algebra.

Remark 6.15. If we denote by F = I(A) ∩ R(A) and consider the partially
ordered systems {δI,J}I,J∈F ,I⊆J (where for I, J ∈ F , I ⊆ J, δI,J : M(J,A) →
M(I, A) is defined by δI,J(f) = f|I), then by above construction of Q(A) we deduce
that Q(A) is the inductive limit

Q(A) = lim−→
I∈F

M(I,A).

Lemma 6.15. Let the map vA : B(A) → Q(A) defined by vA(a) = [fa, A] for
every a ∈ B(A). Then

(i) vA is an injective morphism of Boolean algebras,
(ii) vA(B(A)) ∈ R(Q(A)).

Proof. (i). Follows from Lemma 6.10.
(ii). To prove vA(B(A)) ∈ R(Q(A)), if by contrary there exist f1, f2 ∈ Mr(A)

such that [f1, dom(f1)] 6= [f2, dom(f2)] (that is there exists x0 ∈ dom(f1) ∩ dom(f2)
such that f1(x0) 6= f2(x0)) and [f1, dom(f1)] ∧ [fa, A] = [f2, dom(f2)] ∧ [fa, A] for
every [fa, A] ∈ vA(B(A)) ∩ B(Q(A)) (that is for every [fa, A] ∈ vA(B(A)) with
a ∈ B(A)), then (f1 ∧ fa)(x) = (f2 ∧ fa)(x) for every x ∈ dom(f1) ∩ dom(f2) and
every a ∈ B(A) ⇔ f1(x)∧a∧x = f2(x)∧a∧x for every x ∈ dom(f1)∩dom(f2) and
every a ∈ B(A). For a = 1 and x = x0 we obtain that f1(x0) ∧ x0 = f2(x0) ∧ x0 ⇔
f1(x0) = f2(x0) which is contradictory. ¥

Remark 6.16. Since for every a ∈ B(A), fa is the unique maximal strong mul-
tiplier on [fa, A] (by Lemma 6.13) we can identify [fa, A] with fa. So, since vA is
injective map, the elements of B(A) can be identified with the elements of the set {
fa : a ∈ B(A)}.

Lemma 6.16. In view of the identifications made above, if [f, dom(f)] ∈ Q(A)
(with f ∈ Mr(A) and I = dom(f) ∈ I(A) ∩R(A)), then

I ∩B(A) ⊆ {a ∈ B(A) : fa ∧ [f, dom(f)] ∈ B(A)}.
Proof. Let a ∈ I ∩ B(A). Then for every x ∈ I, (fa ∧ f)(x) = fa(x) ∧ f(x) =

a ∧ x ∧ f(x) = a ∧ f(x) = a ¯ f(x) = f(a ¯ x) = x ¯ f(a) (by BL16) = x ∧ f(a),
that is fa ∧ f is principal. ¥

Remark 6.17. The axiom smBL4 is necessary in the proof of Lemma 6.16.

3. Maximal BL(MV)-algebra of quotients

Definition 6.7. Let A be a BL(MV )-algebra. A BL(MV )-algebra F is called
BL(MV )-algebra of fractions of A if:
(BLfr1) B(A) is a BL(MV )-subalgebra of F ;
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(BLfr2) For every a′, b′, c′ ∈ F, a′ 6= b′, there exists e ∈ B(A) such that e∧a′ 6= e∧b′
and e ∧ c′ ∈ B(A).

So, BL(MV )-algebra B(A) is a BL(MV )-algebra of fractions of itself (since
1 ∈ B(A)).

As a notational convenience, we write A ¹ F to indicate that F is a BL(MV )-
algebra of fractions of A.

Definition 6.8. A BL(MV )− algebra AM is a maximal BL(MV )-algebra of
quotients of A if A ¹ AM and for every BL(MV )-algebra F with A ¹ F there exists
a monomorphism of BL(MV )-algebras i : F → AM .

Remark 6.18. Let A be a BL− algebra. If A ¹ F , then F is a Boolean algebra,
hence AM is a Boolean algebra. Indeed, if by contrary, then there exists a′ ∈ F such
that a′ 6= a′ ¯ a′ or (a′)∗∗ 6= a′. If a′ 6= a′ ¯ a′, since A ¹ F , then there exists
e ∈ B(A) such that e ∧ a′ ∈ B(A) and

e ∧ a′ 6= e ∧ (a′ ¯ a′) = (e ∧ a′)¯ (e ∧ a′),

which is contradictory!.
If (a′)∗∗ 6= a′, since A ¹ F , then there exists f ∈ B(A) such that f ∧ a′ ∈ B(A)

and
f ∧ a′ 6= f ∧ (a′)∗∗ = (f ∧ a′)∗∗

which is contradictory!.

Remark 6.19. If A is a Boolean algebra, then B(A) = A. By Remark 6.18, AM

is a Boolean algebra and the axioms (sm−BL1)− (sm−BL4) are equivalent with
(sm − BL1), hence AM is in this case just the classical Dedekind-MacNeille com-
pletion of A (see [122], p.687). In contrast to the general situation, the Dedekind-
MacNeille completion of a Boolean algebra is again distributive and, in fact, is a
Boolean algebra [2], p.239.

Lemma 6.17. Let A be a BL− algebra, A ¹ F ; then for every a′, b′ ∈ F, a′ 6= b′,
and any finite sequence c′1, ..., c

′
n ∈ F, there exists e ∈ B(A) such that e ∧ a′ 6= e ∧ b′

and e ∧ c′i ∈ B(A) for i = 1, 2, ..., n (n ≥ 2).

Proof. Assume lemma holds true for n−1. So we may find f ∈ B(A) such that
f ∧a′ 6= f ∧b′ and f ∧c′i ∈ B(A) for i = 1, 2, ..., n−1. Since A ¹ F , we find g ∈ B(A)
such that g∧ (f ∧a′) 6= g∧ (f ∧ b′) and g∧ c′n ∈ B(A). The element e = f ∧g ∈ B(A)
has the required properties. ¥

Lemma 6.18. Let A be a BL− algebra, A ¹ F and a′ ∈ F. Then

Ia′ = {e ∈ B(A) : e ∧ a′ ∈ B(A)} ∈ I(B(A)) ∩R(A).

Proof. Clearly, Ia′ ∈ I(B(A)).
To prove Ia′ ∈ R(A), let x, y ∈ A such that e∧x = e∧y for every e ∈ Ia′ ∩B(A).

If by contrary, x 6= y, since A ¹ F , there exists e0 ∈ B(A) such that e0 ∧ a′ ∈ B(A)
(that is e0 ∈ Ia′) and e0 ∧ x 6= e0 ∧ y, which is contradictory. ¥

Theorem 6.19. Let A be a BL− algebra. Q(A) is a maximal BL-algebra of
quotients of A. If BL− algebra A is an MV− algebra, then Q(A) is a maximal
MV -algebra of quotients of A.
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Proof. Let A be a BL− algebra. The facts that B(A) is a BL-subalgebra of
Q(A) follows from Lemma 6.15, (i). To prove BLfr2, let [f, dom(f)], [g, dom(g)],
[h, dom(h)] ∈ Q(A) with f, g, h ∈ Mr(A) such that [g, dom(g)] 6= [h, dom(h)] (that
is there exists x0 ∈ dom(g) ∩ dom(h) such that g(x0) 6= h(x0)).

Put I = dom(f) ∈ I(A) ∩R(A) and

I[f,dom(f)] = {a ∈ B(A) : fa ∧ [f, dom(f)] ∈ B(A)}
(by Lemma 6.15, fa ∈ B(M(A)) if a ∈ B(A)). Then by Lemma 6.16,

I ∩B(A) ⊆ I[f,dom(f)].

If suppose that for every a ∈ I ∩B(A), fa ∧ [g, dom(g)] = fa ∧ [h, dom(h)], then
[fa ∧ g, dom(g)] = [fa ∧ h, dom(h)], hence for every x ∈ dom(g) ∩ dom(h) we have
(fa ∧ g)(x) = (fa ∧ h)(x) i.e. a ∧ g(x) = a ∧ h(x).

Since I ∈ R(A) we deduce that g(x) = h(x) for every x ∈ dom(g) ∩ dom(h) so
[g, dom(g)] = [h, dom(h)], which is contradictory.

Hence, if [g, dom(g)] 6= [h, dom(h)], then there exists a ∈ I ∩ B(A), such that
fa ∧ [g, dom(g)] 6= fa ∧ [h, dom(h)]. But for this a ∈ I ∩B(A) we have

fa ∧ [f, dom(f)] ∈ B(A)

(since by Lemma 6.16, I ∩B(A) ⊆ I[f,dom(f)]).
To prove the maximality of Q(A), let F be a BL-algebra such that A ¹ F ; thus

B(A) ⊆ B(F )
A ¹ F

↙i

Q(A)
For a′ ∈ F, Ia′ = {e ∈ B(A) : e ∧ a′ ∈ B(A)} ∈ I(B(A)) ∩ R(A) (by Lemma

6.18).
Thus fa′ : Ia′ → A defined by fa′(x) = x ∧ a′ is a strong multiplier. Indeed, if

e ∈ B(A) and x ∈ Ia′ , then

fa′(e¯ x) = (e¯ x) ∧ a′ = (e ∧ x) ∧ a′ = e ∧ (x ∧ a′) = e¯ (x ∧ a′) = e¯ fa′(x),

and
fa′(x) ≤ x,

hence sm−BL1 and sm−BL2 are verified.
To verify sm−BL3, let e ∈ Ia′ ∩B(A) = Ia′ . Thus, fa′(e) = e∧a′ ∈ B(A) (since

e ∈ Ia′).
The condition sm−BL4 is obviously verified, hence [fa′ , Ia′ ] ∈ Q(A).
We define i : F → Q(A) by i(a′) = [fa′ , Ia′ ], for every a′ ∈ F. Clearly i(0) = 0.
For a′, b′ ∈ F and x ∈ Ia′ ∩ Ib′ , we have

(i(a′)¡i(b′))(x) = (a′∧x)¯[x → (b′∧x)] = (a′¯x)¯[x → (b′∧x)] = a′¯[x¯(x → (b′∧x))]

= a′¯[x∧(b′∧x)] = a′¯(b′∧x) = a′¯(b′¯x) = (a′¯b′)¯x = (a′¯b′)∧x = i(a′¯b′)(x),
hence i(a′) ¡ i(b′) = i(a′ ¯ b′) and

(i(a′) → i(b′))(x) = x¯ [i(a′)(x) → i(b′)(x)] =

= x¯ [(a′ ∧ x) → (b′ ∧ x)] = x¯ [(x¯ a′) → (x¯ b′)] =
bl−c43= x¯ (a′ → b′) = x ∧ (a′ → b′) = i(a′ → b′)(x),

hence i(a′) → i(b′) = i(a′ → b′), that is i is a morphism of BL-algebras.
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If BL− algebra A is an MV− algebra, then for a′, b′ ∈ F and x ∈ Ia′ ∩ Ib′ , we
have

(i(a′) ¢ i(b′))(x) = [(a′ ∧ x)⊕ (b′ ∧ x)] ∧ x
mv−c27= (a′ ⊕ b′) ∧ x = i(a′ ⊕ b′)(x),

hence i(a′) ¢ i(b′) = i(a′ ⊕ b′).
Also, for x ∈ Ia′ we have

(i(a′))∗(x) = x¯ [i(a′)(x)]∗ = x¯ (a′ ∧ x)∗ = x¯ (a′ ¯ x)∗ =

= x¯ [x∗ ⊕ (a′)∗] = x ∧ (a′)∗ = f(a′)∗(x) = i((a′)∗)(x),
hence

i((a′)∗) = (i(a′))∗,
that is i is a morphism of MV -algebras.

To prove the injectivity of i, let a′, b′ ∈ F such that i(a′) = i(b′). It follows that
[fa′ , Ia′ ] = [fb′ , Ib′ ] so fa′(x) = fb′(x) for every x ∈ Ia′ ∩ Ib′ . We get a′ ∧x = b′ ∧x for
every x ∈ Ia′ ∩ Ib′ . If a′ 6= b′, by Lemma 6.17 (since A ¹ F ), there exists e ∈ B(A)
such that e ∧ a′, e ∧ b′ ∈ B(A) and e ∧ a′ 6= e ∧ b′ which is contradictory (since
e ∧ a′, e ∧ b′ ∈ B(A) implies e ∈ Ia′ ∩ Ib′). ¥

Proposition 6.20. Let A be a BL - algebra. Then the following statements are
equivalent:

(i) Every maximal strong multiplier on A has domain A;
(ii) For every strong multiplier f ∈ M(I, A) there is a ∈ B(A) such that f = fa

(that is f(x) = a ∧ x for every x ∈ I);
(iii) Q(A) ≈ B(A).

Proof. (i) ⇒ (ii). Assume (i) and for f ∈ M(I,A) let f ′ its the maximal
extension (by Lemma 6.13). By (i), we have f ′ : A → A. Put a = f ′(1) ∈ B(A) (by
sm−BL3), then for every x ∈ I , f(x) = f(x)∧ 1 sm−BL4= x∧ f(1) = x∧ a = fa(x),
that is f = fa.

(ii) ⇒ (iii). Follow from Lemma 6.15.
(iii) ⇒ (i). Follow from Lemma 6.13 and Lemma 6.15.¥

Definition 6.9. If A verify one of conditions of Proposition 6.20, we call A
rationnaly complete.

Remark 6.20. 1. If A is a BL(MV )− algebra with B(A) = {0, 1} = L2

and A ¹ F then F = {0, 1}, hence Q(A) ≈ L2. Indeed, if a, b, c ∈ F with
a 6= b, then by BLfr2 there exists e ∈ B(A) such e∧a 6= e∧b (hence e 6= 0)
and e ∧ c ∈ B(A). Clearly, e = 1, hence c ∈ B(A), that is F = B(A). As
examples of BL− algebras with this property we have local BL− algebras
and BL− chains (see [99], p.33).

2. More general, if A is a BL(MV )− algebra such that B(A) is finite, if A ¹ F
then F = B(A), hence Q(A) = B(A). Indeed, consider a ∈ F. B(A) being
finite, there exists a largest element ea ∈ B(A) such ea∧a ∈ B(A). Suppose
ea ∨ a 6= ea, then there would exists e ∈ B(A) such that e∧ (ea ∨ a) 6= e∧ ea

and e∧ a ∈ B(A). But e∧ a ∈ B(A) implies e ≤ ea and thus we obtain e =
e ∧ (ea ∨ a) 6= e ∧ ea = e, a contradiction. Hence ea ∨ a = ea, so a ≤ ea,
consequently a = a∧ ea ∈ B(A), that is F ⊆ B(A). Then F = B(A), hence
Q(A) = B(A).
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Example 6.9. 1. We consider BL− algebra A = {0, a, b, c, 1} from Ex-
ample 3.11, then B(A) = {0, 1} = L2, F = {0, 1}, hence Q(A) ≈ L2.

2. If L3×2 is MV− algebra from Example 3.12, then B(A) = {0, a, d, 1} is
finite, so F = B(A) and Q(A) = B(A) = {0, a, d, 1}.

Remark 6.21. B(A) is a BL - subalgebra of A and a BL− subalgebra B of A
is a Boolean algebra iff B ⊆ B(A). So, in Sections 2 and 3 of this chapter, we can
replace the Boolean algebra B(A) with a Boolean subalgebra B ⊆ B(A) and finally
we obtain that Q(A) is just Q(B) = the MacNeille completion of B. In particular
for B = B(A) we obtain the results of this chapter. This idea will be used in a new
paper.

4. Topologies on a BL(MV)-algebra

Let A be a BL− algebra.

Definition 6.10. A non-empty set F of elements I ∈ I(A) will be called a
topology on A if the following properties hold:

(top1) If I1 ∈ F , I2 ∈ I(A) and I1 ⊆ I2, then I2 ∈ F (hence A ∈ F );
(top2) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F .

Remark 6.22. 1. F is a topology on A iff F is a filter of the lattice of
power set of A; for this reason a topology on A is usually called a Gabriel
filter on I(A).

2. Clearly, if F is a topology on A, then (A,F ∪{∅}) is a topological space.

Any intersection of topologies on A is a topology; hence the set T (A) of all
topologies of A is a complete lattice with respect to inclusion.

Example 6.10. If I ∈ I(A), then the set

F(I) = {I ′ ∈ I(A) : I ⊆ I ′}
is clearly a topology on A.

Remark 6.23. If in particular, A is the BL -algebra from Example 3.11 (A =
{0, c, a, b, 1}), then I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈
I} = {I1, I2,I3,I4, I5, I6} where I1 = {0}, I2 = {0, c} I3 = {0, c, a} I4 = {0, c, b},
I5 = {0, c, a, b} and I6 = A. So, F(I1) = I(A), F(I2) = {I2,I3,I4, I5, I6}, F(I3) =
{I3,I5, I6}, F(I4) = {I4, I5, I6}, F(I5) = {I5, I6} and F(I6) = {I6}.

Remark 6.24. In particular, if L3×2 is the MV -algebra from Example 3.12
(L3×2 = {0, a, b, c, d, 1}), then I(A) = {I ⊆ A :if x, y ∈ A, x ≤ y and y ∈ I, then
x ∈ I} = {I1, I2,I3,I4, I5, I6, I7, I8, I9} where I1 = {0}, I2 = {0, a} I3 = {0, b} I4 =
{0, a, b}, I5 = {0, b, d}, I6 = {0, a, b, c}, I7 = {0, a, b, d}, I8 = {0, a, b, c, d} and I9 =
L3×2. So, F(I1) = I(L3×2), F(I2) = {I2,I4,I6, I7, I8, I9}, F(I3) = {I3,I4, I5, I6, I7, I8, I9},
F(I4) = {I4, I6, I7, I8, I9}, F(I5) = {I5, I7, I8, I9}, F(I6) = {I6, I8, I9},F(I7) =
{I7, I8, I9},F(I8) = {I8, I9} and F(I9) = {I9}.

Example 6.11. If we denote R(A) = {I ⊆ A : I is a regular subset of A}, then
I(A) ∩R(A) is a topology on A.

Remark 6.25. Clearly, if A is the BL -algebra from Example 3.11, since B(A) =
{0, 1} = L2 then I6 = A is the only regular subset of A (I1, I2,I3,I4, I5 are non regular
because contain 0 and for example we have 0∧ c = 0∧ a and a 6= c). So, in this case
F = I(A) ∩R(A) = {A}.
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Remark 6.26. If L3×2 is the MV -algebra from Example 3.12 then I9 = L3×2 is
the only regular subset of L3×2 (I1, I2,I3,I4, I5, I6,I7,I8 are non regular; for example
I2 is non regular because 0 ∧ a = 0 ∧ c, a ∧ a = a ∧ c and a 6= c). So, in this case
F = I(L3×2) ∩R(L3×2) = {L3×2}.

Example 6.12. A nonempty set I ⊆ A will be called dense (see [64]) if for every
x ∈ A such that e∧ x = 0 for every e ∈ I ∩B(A), then x = 0. If we denote by D(A)
the set of all dense subsets of A, then R(A) ⊆ D(A) and F = I(A) ∩ D(A) is a
topology on A.

Remark 6.27. As above, for BL− algebra A = {0, c, a, b, 1}, from Example 3.11,
D(A) = {A} (because I ∈ D(A) if 1 ∈ I).

Example 6.13. For any ∧− closed subset S of A we set FS = {I ∈ I(A) :
I ∩ S ∩ B(A) 6= ®}. Then FS is a topology on A . Clearly, if I ∈ FS and I ⊆ J
(with J ∈ I(A)), then I ∩ S ∩B(A) 6= ®, hence J ∩ S ∩B(A) 6= ®, that is J ∈ FS .
If I1, I2 ∈ FS then there exist si ∈ Ii ∩ S ∩B(A), i = 1, 2. If we set s = s1 ∧ s2, then
s ∈ (I1 ∩ I2) ∩ S ∩B(A), hence I1 ∩ I2 ∈ FS .

Remark 6.28. In the case A = {0, c, a, b, 1}, from Example 3.11, since B(A) =
{0, 1} = L2 then for S ⊆ A an ∧− closed system, FS = {I ∈ I(A) : I ∩ S ∩ {0, 1} 6=
®}.

1. If S is an ∧−closed system of A such that 0 ∈ S (that is S = A,B(A) =
L2, {0, c, 1}, {0, c, a, 1}, {0, c, b, 1}, {0, a, 1} and {0, b, 1} then: for S = A,FS =
I(A); for S = B(A) = L2,FS = I(A); Also, for S = {0, c, 1}, {0, c, a, 1},
{0, c, b, 1}, {0, a, 1} and {0, b, 1} we have I ∩S ∩B(A) = {0} 6= ® for every
I ∈ I(A), so FS = I(A).

2. If 0 /∈ S (that is S = {1}, {a, 1}, {b, 1}, {c, 1}}, {a, c, 1}, {b, c, 1} and {a, b, c, 1}),
then FS = {A} (because, if I ∈ I(A) and 1 ∈ I implies I = A).

Remark 6.29. If L3×2 is the MV -algebra from Example 3.12, since B(L3×2) =
{0, a, d, 1} then for S ⊆ L3×2 an ∧− closed system, FS = {I ∈ I(L3×2) : I ∩ S ∩
{0, a, d, 1} 6= ®}.

1. If S is an ∧−closed system of L3×2 such that 0 ∈ S:

S = L3×2, {0, 1}, {0, a, 1}, {0, b, 1}, {0, c, 1}, {0, d, 1},
{0, a, b, 1}, {0, a, c, 1}, {0, a, d, 1} = B(L3×2),

{0, b, c, 1}, {0, b, d, 1}, {0, a, b, c, 1}, {0, a, b, d, 1}, {0, b, c, d, 1}.
then FS = I(L3×2).

2. If 0 /∈ S but a ∈ S (that is S = {a, 1}, {a, c, 1}) we have I∩S∩{0, a, d, 1} =
{a} 6= ® so FS = {I2, I4, I6, I7, I8, I9}.

3. If 0 /∈ S but d ∈ S (that is S = {d, 1}, {b, c, d, 1}) we have I∩S∩{0, a, d, 1} =
{d} 6= ® so FS = {I5, I7, I8, I9}.

4. If 0, a, d /∈ S (that is S = {1}, {b, 1}, {c, 1}, {b, c, 1}) then FS = {I9 =
L3×2}.

5. Localization BL(MV)-algebras

5.1. F-multipliers and localization BL(MV)-algebras. Let A be a BL−
algebra and let F a topology on A. Let us consider the relation θF of A defined in
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the following way:

(x, y) ∈ θF ⇔ there exists I ∈ F such that e ∧ x = e ∧ y for any e ∈ I ∩B(A).

Lemma 6.21. θF is a congruence on A.

Proof. The reflexivity and the symmetry of θF are immediately; to prove the
transitivity of θF let (x, y), (y, z) ∈ θF . Then there exists I1, I2 ∈ F such that
e∧x = e∧y for every e ∈ I1∩B(A), and f ∧y = f ∧z for every f ∈ I2∩B(A). If the
set I = I1 ∩ I2 ∈ F , then for every g ∈ I ∩B(A), g ∧ x = g ∧ z, hence (x, z) ∈ θF .

To prove the compatibility of θF with the operations ∧,∨,¯ and →, let (x, y),
(z, t) ∈ θF , that is there exists I, J ∈ F such that e∧x = e∧y for every e ∈ I∩B(A)
and f ∧ z = f ∧ t for every f ∈ J ∩B(A). If denote K = I ∩ J , then K ∈ F and for
every g ∈ K ∩B(A), g ∧ x = g ∧ y and g ∧ z = g ∧ t.

We obtain

g ∧ (x ∧ z) = (g ∧ x) ∧ (g ∧ z) = (g ∧ y) ∧ (g ∧ t) = g ∧ (y ∧ t),

g ∧ (x ∨ z) = (g ∧ x) ∨ (g ∧ z) = (g ∧ y) ∨ (g ∧ t) = g ∧ (y ∨ t),
hence (x ∧ z, y ∧ t), (x ∨ z, y ∨ t) ∈ θF , that is θF is compatible with the operations
∧ and ∨.

By bl − c41 we deduce that for every g ∈ K ∩B(A) :

g ∧ (x¯ z) bl−c41= (g ∧ x)¯ (g ∧ z) =

= (g ∧ y)¯ (g ∧ t) bl−c41= g ∧ (y ¯ t),
hence (x¯ z, y ¯ t) ∈ θF , that is θF is compatible with the operation ¯.

Also, by bl − c42 we deduce that for every g ∈ K ∩B(A) :

g ∧ (x → z) = g ¯ (x → z) bl−c42= g ¯ [(g ¯ x) → (g ¯ z)] =

= g ¯ [(g ∧ x) → (g ∧ z)] = g ¯ [(g ∧ y) → (g ∧ t)] =

= g ¯ [(g ¯ y) → (g ¯ t)] bl−c42= g ¯ (y → t) = g ∧ (y → t),
hence (x → z, y → t) ∈ θF , that is θF is compatible with the operation →, so θF is
a congruence on A. ¥

We shall denote by x/θF the congruence class of an element x ∈ A and

A/θF = {x/θF : x ∈ A}
Then, A/θF is a BL− algebra with the natural defined operations and

pF : A → A/θF
is the canonical onto morphism of BL-algebras.

Proposition 6.22. For a ∈ A, a/θF ∈ B(A/θF ) iff there exists I ∈ F such that
a ∧ e ∈ B(A) for every e ∈ I ∩B(A). So, if a ∈ B(A), then a/θF ∈ B(A/θF ).

Proof. For a ∈ A, we have a/θF ∈ B(A/θF ) ⇔ a/θF ¯ a/θF = a/θF and
(a/θF )∗∗ = a/θF ⇔ (a¯a)/θF = a/θF and a∗∗/θF = a/θF ⇔ there exists J,K ∈ F
such that (a¯ a) ∧ f = a ∧ f, for every f ∈ J ∩B(A) and a∗∗ ∧ g = a ∧ g, for every
g ∈ K ∩B(A).

From bl− c41, we deduce that (a∧ f)¯ (a∧ f) = a∧ f, for every f ∈ J ∩B(A).
If denote I = J ∩K, then I ∈ F and for every e ∈ I ∩B(A),

(a ∧ e)¯ (a ∧ e) = a ∧ e,
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and
(a ∧ e)∗∗ bl−c34= a∗∗ ∧ e∗∗ = a∗∗ ∧ e = a ∧ e,

so, a ∧ e ∈ B(A) for every e ∈ I ∩B(A).
So, if a ∈ B(A), then for every I ∈ F , a ∧ e ∈ B(A) for every e ∈ I ∩ B(A),

hence a/θF ∈ B(A/θF ).¥
Corollary 6.23. If F = I(A) ∩R(A), then a ∈ B(A) iff a/θF ∈ B(A/θF ).

Definition 6.11. Let F be a topology on A. An F− partial multiplier is a
mapping f : I → A/θF , where I ∈ F and for every x ∈ I and e ∈ B(A) the
following axioms are fulfilled:

(m−BL1) f(e¯ x) = e/θF ∧ f(x) = e/θF ¯ f(x);
(m−BL2) f(x) ≤ x/θF .

By dom(f) ∈ F we denote the domain of f ; if dom(f) = A, we called f total.
To simplify language, we will use F− multiplier instead partial F− multiplier,

using total to indicate that the domain of a certain F− multiplier is A.
The maps 0,1 : A → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every

x ∈ A are F− multipliers in the sense of Definition 6.11.
Also for a ∈ B(A) and I ∈ F , fa : I → A/θF defined by fa(x) = a/θF ∧ x/θF

for every x ∈ I, is an F− multiplier. If dom(fa) = A, we denote fa by fa ; clearly,
f0 = 0.

We shall denote by M(I, A/θF ) the set of all F− multipliers having the domain
I ∈ F and

M(A/θF ) = ∪
I∈F

M(I,A/θF ).

If I1, I2 ∈ F , I1 ⊆ I2 we have a canonical mapping

ϕI1,I2 : M(I2, A/θF ) → M(I1, A/θF )

defined by
ϕI1,I2(f) = f|I1 for f ∈ M(I2, A/θF ).

Let us consider the directed system of sets〈{M(I, A/θF )}I∈F , {ϕI1,I2}I1,I2∈F ,I1⊆I2

〉

and denote by AF the inductive limit (in the category of sets):

AF = lim−→
I∈F

M(I, A/θF ).

For any F− multiplier f : I → A/θF we shall denote by (̂I, f) the equivalence
class of f in AF .

Remark 6.30. If fi : Ii → A/θF , i = 1, 2, are F−multipliers, then (̂I1, f1) =
(̂I2, f2) (in AF) iff there exists I ∈ F , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Let fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2), F−multipliers. Let us consider the
mappings

f1 ∧ f2 : I1 ∩ I2 → A/θF
f1 ∨ f2 : I1 ∩ I2 → A/θF
f1 ¡ f2 : I1 ∩ I2 → A/θF
f1 → f2 : I1 ∩ I2 → A/θF



5. LOCALIZATION BL(MV)-ALGEBRAS 159

defined by
(f1 ∧ f2)(x) = f1(x) ∧ f2(x),
(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ¡ f2)(x) = f1(x)¯ [x/θF → f2(x)] bl−c45= f2(x)¯ [x/θF → f1(x)],
(f1 → f2)(x) = x/θF ¯ [f1(x) → f2(x)]

for any x ∈ I1 ∩ I2, and let

(̂I1, f1) f (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2),

(̂I1, f1) g (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),

(̂I1, f1) · (̂I2, f2) = ̂(I1 ∩ I2, f1 ¡ f2),

(̂I1, f1) 7−→ (̂I2, f2) = ̂(I1 ∩ I2, f1 → f2).
Clearly the definitions of the operations f, g, · and 7−→ on AF are correct.

Lemma 6.24. f1 ∧ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 ∧ f2)(e¯ x) = f1(e¯ x) ∧ f2(e¯ x) =

= (e/θF ¯ f1(x)) ∧ (e/θF ¯ f2(x)) =
= (e/θF ∧ f1(x)) ∧ (e/θF ∧ f2(x)) =

= e/θF ∧ [f1(x) ∧ f2(x)] = e/θF ¯ (f1 ∧ f2)(x).
Since fi ∈ M(Ii, A/θF ), i = 1, 2, we have (f1 ∧ f2)(x) = f1(x) ∧ f2(x) ≤ x/θF ∧

x/θF = x/θF , for every x ∈ I1∩ I2, that is f1 ∧ f2 ∈ M(I1 ∩ I2, A/θF ). ¥
Lemma 6.25. f1 ∨ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 ∨ f2)(e¯ x) = f1(e¯ x) ∨ f2(e¯ x) =

= (e/θF ¯ f1(x)) ∨ (e/θF ¯ f2(x)) bl−c31=
bl−c31= e/θF ¯ [f1(x) ∨ f2(x)] = e/θF ¯ (f1 ∨ f2)(x).

Since fi ∈ M(Ii, A/θF ), i = 1, 2, we have (f1 ∨ f2)(x) = f1(x) ∨ f2(x) ≤ x/θF ∨
x/θF = x/θF , for every x ∈ I1∩ I2, that is f1 ∨ f2 ∈ M(I1 ∩ I2, A/θF ). ¥

Lemma 6.26. f1 ¡ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 ¡ f2)(e¯ x) = f1(e¯ x)¯ [(e¯ x)/θF → f2(e¯ x)] =

= [e/θF ¯ f1(x)]¯ [(e¯ x)/θF → (e/θF ¯ f2(x))] =
= f1(x)¯ [e/θF ¯ ((e¯ x)/θF → (e/θF ¯ f2(x)))] =

bl−c42= f1(x)¯ [e/θF ¯ (x/θF → f2(x))] =
= e/θF ¯ [f1(x)¯ (x/θF → f2(x))] = e/θF ¯ (f1 ¡ f2)(x).

Clearly, (f1¡f2)(x) = f1(x)¯[x/θF → f2(x)] ≤ f1(x) ≤ x/θF , for every x ∈ I1∩
I2, that is f1 ¡ f2 ∈ M(I1 ∩ I2, A/θF ). ¥

Lemma 6.27. f1 → f2 ∈ M(I1 ∩ I2, A/θF ).
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Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 → f2)(e¯ x) = (e¯ x)/θF ¯ [f1(e¯ x) → f2(e¯ x)]

= (e¯ x)/θF ¯ [(e/θF ¯ f1(x)) → (e/θF ¯ f2(x))] =
= x/θF ¯ [e/θF ¯ ((e/θF ¯ f1(x)) → (e/θF ¯ f2(x)))] =

bl−c42= x/θF ¯ [e/θF ¯ (f1(x) → f2(x))] =
= e/θF ¯ [x/θF ¯ (f1(x) → f2(x))] = e/θF ¯ (f1 → f2)(x).

Clearly, (f1 → f2)(x) = x/θF ¯ [f1(x) → f2(x)] ≤ x/θF , for every x ∈ I1∩ I2,
that is f1 → f2 ∈ M(I1 ∩ I2, A/θF ). ¥

Proposition 6.28. (M(A/θF ),∧,∨, ¡,→,0,1) is a BL-algebra.

Proof. We verify the axioms of BL-algebras.
BL1). Obviously (M(A/θF ),∧,∨,¡,→,0,1) is a bounded lattice.
BL2). Let fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2, 3.
Clearly, f1 ¡ f2 ∈ M(A/θF ) (see Lemma 6.26) and

(̂I1, f1) · (̂I2, f2) = ̂(I1 ∩ I2, f1 ¡ f2) ∈ AF .

Thus, for x ∈ I1 ∩ I2 ∩ I3 we have

[f1 ¡ (f2 ¡ f3)](x) = ((f2 ¡ f3)(x))¯ (x/θF → f1(x)) =

= [f2(x)¯ (x/θF → f3(x))]¯ (x/θF → f1(x)) =
= f2(x)¯ [(x/θF → f3(x))¯ (x/θF → f1(x))] =
= f2(x)¯ [(x/θF → f1(x))¯ (x/θF → f3(x))] =
= [f2(x)¯ (x/θF → f1(x))]¯ (x/θF → f3(x)) =

= ((f1 ¡ f2)(x))¯ (x/θF → f3(x)) = [(f1 ¡ f2) ¡ f3](x),
so

f1 ¡ (f2 ¡ f3) = (f1 ¡ f2) ¡ f3

and
(̂I1, f1) · [(̂I2, f2) · (̂I3, f3)] = [(̂I1, f1) · (̂I2, f2)] · (̂I3, f3),

that is the operation ¡ is associative on M(A/θF ) and the operation · is associative
on AF .

By definition

(f1 ¡ f2)(x) = f1(x)¯ [x/θF → f2(x)] bl−c45=
bl−c45= f2(x)¯ [x/θF → f1(x)] = (f2 ¡ f1)(x),

so
f1 ¡ f2 = f2 ¡ f1

and
(̂I1, f1) · (̂I2, f2) = (̂I2, f2) · (̂I1, f1),

that is the operation ¡ is commutative on M(A/θF ) and the operation · is commu-
tative on AF .

Let f ∈ M(I, A/θF ) with I ∈ F . If x ∈ I, then

(f ¡ 1)(x) = f(x)¯ (x/θF → 1(x)) =

= f(x)¯ (x/θF → x/θF ) = f(x)¯ 1/θF = f(x),
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and
(1 ¡ f)(x) = 1(x)¯ (x/θF → f(x)) =

= x/θF ¯ (x/θF → f(x)) = x/θF ∧ f(x) = f(x),
hence

f ¡ 1 = 1 ¡ f = f,

that is
(̂I, f) · (̂A,1) = (̂A,1) · (̂I, f) = (̂I, f),

and (M(A/θF ),¡,1) is a commutative monoid. Clearly, (AF , ·,1 = (̂A,1)) is a
commutative monoid.

BL3). Let fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2, 3.
Since f1 ≤ f2 → f3 for x ∈ I1 ∩ I2 ∩ I3 we have

f1(x) ≤ (f2 → f3)(x) ⇔ f1(x) ≤ x/θF ¯ [f2(x) → f3(x)].

So, by bl − c2,

f1(x)¯ [x/θF → f2(x)] ≤ x/θF ¯ (x/θF → f2(x))¯ (f2(x) → f3(x)) ⇔
f1(x)¯ [x/θF → f2(x)] ≤ (x/θF ∧ f2(x))¯ (f2(x) → f3(x)) ⇔

f1(x)¯ [x/θF → f2(x)] ≤ f2(x)¯ (f2(x) → f3(x)) ⇔
f1(x)¯ [x/θF → f2(x)] ≤ f2(x) ∧ f3(x) ≤ f3(x) ⇔

(f2 ¡ f1)(x) ≤ f3(x),
for every x ∈ I1 ∩ I2 ∩ I3, that is

f2 ¡ f1 ≤ f3.

Conversely if (f2 ¡ f1)(x) ≤ f3(x) we have

f1(x)¯ [x/θF → f2(x)] ≤ f3(x),

for every x ∈ I1 ∩ I2 ∩ I3.
Obviously,

f2(x)¯ [x/θF → f1(x)] ≤ f1(x)¯ [x/θF → f2(x)] ⇔
⇔ x/θF → f1(x) ≤ f2(x) → [f1(x)¯ (x/θF → f2(x))].

So,

x/θF → f1(x) ≤ f2(x) → [f1(x)¯ (x/θF → f2(x))]
bl−c11≤ f2(x) → f3(x)

bl−c2⇒ x/θF ¯ (x/θF → f1(x)) ≤ x/θF ¯ (f2(x) → f3(x))
⇒ x/θF ∧ f1(x) ≤ x/θF ¯ (f2(x) → f3(x))

⇒ f1(x) ≤ (f2 → f3)(x).
So, f1 ≤ f2 → f3 iff f2 ¡ f1 ≤ f3 for all f1, f2, f3 ∈ M(A/θF ) and so

(̂I1, f1) ≤ (̂I2, f2) 7−→ (̂I3, f3) iff (̂I2, f2) · (̂I1, f1) ≤ (̂I3, f3).

BL4). Let fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2.
Thus, for x ∈ I1 ∩ I2 we have

[f1 ¡ (f1 → f2)](x) = [(f1 → f2)(x)]¯ [x/θF → f1(x)]

= x/θF ¯ [f1(x) → f2(x)]¯ [x/θF → f1(x)] =
= (x/θF ¯ [x/θF → f1(x)])¯ [f1(x) → f2(x)] =

= [x/θF ∧ f1(x)]¯ [f1(x) → f2(x)] = f1(x)¯ [f1(x) → f2(x)] =
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= f1(x) ∧ f2(x) = (f1 ∧ f2)(x).
So,

f1 ∧ f2 = f1 ¡ (f1 → f2)
and

(̂I1, f1) f (̂I2, f2) = (̂I1, f1) · [(̂I1, f1) 7−→ (̂I2, f2)].
BL5). We have

[(f1 → f2) ∨ (f2 → f1)](x) = [(f1 → f2)(x)] ∨ [(f2 → f1)(x)] =

= [x/θF ¯ (f1(x) → f2(x))] ∨ [x/θF ¯ (f2(x) → f1(x))] =
bl−c31= x/θF ¯ [(f1(x) → f2(x)) ∨ (f2(x) → f1(x))] =

BL5= x/θF ¯ 1/θF = x/θF = 1(x),
hence

(f1 → f2) ∨ (f2 → f1) = 1
and

[(̂I1, f1) 7−→ (̂I2, f2)] g [(̂I2, f2) 7−→ (̂I1, f1)] = (̂A,1).¥

Corollary 6.29. (AF , f, g, ·, 7−→,0 = (̂A,0),1 = (̂A,1)) is a BL-algebra (see
the proof of Proposition 6.28).

Definition 6.12. The BL-algebra AF will be called the localization BL-algebra
of A with respect to the topology F .

Proposition 6.30. If BL− algebra (A,∧,∨,¯,→, 0, 1) is an MV− algebra
(A,⊕,∗ , 0) (i.e. x∗∗ = x, for all x ∈ A), then BL− algebra (M(A/θF ),∧,∨,¡,→
,0,1) is an MV− algebra (M(A/θF ), ¢,∗ ,0) , where for fi : Ii → A/θF , (with
Ii ∈ F , i = 1, 2), F−multipliers we have the mapping

f1 ¢ f2 : I1 ∩ I2 → A/θF ,

(f1 ¢ f2)(x) = (f1(x)⊕ f2(x)) ∧ x/θF
for any x ∈ I1 ∩ I2, and for any F−multiplier f : I → A/θF (with I ∈ F ) we have
the mapping

f∗ = f → 0 : I → A/θF ,

f∗(x) = (f → 0)(x) = x/θF ¯ (f(x))∗

for any x ∈ I .

Proof. To prove that BL− algebra M(A/θF ) is an MV− algebra let f ∈
M(I, A/θF ), where I ∈ F .

Then

f∗∗(x) = [(f → 0) → 0](x) = x/θF ¯ [(f → 0)(x)]∗ = x/θF ¯ [x/θF ¯ (f(x))∗]∗

= x/θF ¯ [x/θF ¯ (f(x))∗ → 0/θF )] bl−c8= x/θF ¯ [x/θF → (f(x))∗∗] =
= x/θF ∧ (f(x))∗∗ = x/θF ∧ f(x) = f(x),

(since A is an MV− algebra then A/θF is an MV− algebra and f(x) ∈ A/θF , for
all x ∈ I).

So, f∗∗ = f and BL− algebra M(A/θF ) is an MV -algebra.
We have f1 ¢ f2 = (f∗1 ¡ f∗2 )∗.
Clearly,

(f1 ¢ f2)(x) = x/θF ¯ [f∗1 (x)¯ (x/θF → f∗2 (x))]∗
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= x/θF ¯ [x/θF ¯ (f1(x))∗ ¯ (x/θF → x/θF ¯ (f2(x))∗)]∗ =
= x/θF ¯ [(f1(x))∗ ¯ x/θF ¯ (x/θF → x/θF ¯ (f2(x))∗)]∗

BL4= x/θF¯[(f1(x))∗¯(x/θF∧x/θF¯(f2(x))∗)]∗ = x/θF¯[(f1(x))∗¯x/θF¯(f2(x))∗]∗

= x/θF ¯ [x/θF ¯ (f1(x))∗¯ (f2(x))∗]∗ bl−c37= x/θF ¯ [x/θF → ((f1(x))∗¯ (f2(x))∗)∗]
BL4= x/θF ∧ (f1(x)⊕ f2(x)),

for all x ∈ I1 ∩ I2.¥
Corollary 6.31. If BL− algebra A is an MV− algebra then BL− algebra

(AF , f, g, ·, 7−→,0 = (̂A,0),1 = (̂A,1)) is an MV− algebra (AF , +,∗ ,0 = (̂A,0)),
where

(̂I1, f1) + (̂I2, f2) = ̂(I1 ∩ I2, f1 ¢ f2).
and

(̂I, f)∗ = (̂I, f∗).

Lemma 6.32. If A be a BL− algebra, the map vF : B(A) → AF defined by

vF (a) = (̂A, fa) for every a ∈ B(A). Then:
(i) vF is a morphism of BL-algebras;

(ii) For a ∈ B(A), (̂A, fa) ∈ B(AF );
(iii) vF (B(A)) ∈ R(AF ).

Proof. (i). We have vF (0) = (̂A, f0) = (̂A,0) = 0.
For a, b ∈ B(A) and x ∈ A we have

(a ∧ x)¯ (x → (b ∧ x)) = (a¯ x)¯ (x → (b ∧ x)) =

= a¯ [x¯ (x → (b ∧ x))] = a¯ [x ∧ (b ∧ x)]
= a ∧ [x ∧ (b ∧ x)] = a ∧ (b ∧ x) = (a ∧ b) ∧ x = (a¯ b) ∧ x

and

x¯ [(a ∧ x) → (b ∧ x)] = x¯ [(x¯ a) → (x¯ b)] =
bl−c43= x¯ (a → b) = x ∧ (a → b),

hence
vF (a) · vF (b) = (̂A, fa) · (̂A, fb) =

= ̂(A, fa ¡ fb) = ̂(A, fa¯b) = vF (a¯ b)
and

vF (a) 7−→ vF (b) = (̂A, fa) 7−→ (̂A, fb) =

= ̂(A, fa → fb) = ̂(A, fa→b) = vF (a → b)
hence vF is a morphism of BL-algebras.

(ii). For a ∈ B(A) we have a¯ a = a and a∗∗ = a, hence

(a ∧ x)¯ [x → (a ∧ x)] = (a¯ x)¯ [x → (a ∧ x)] =

= a¯ [x¯ (x → (a ∧ x))] = a¯ [x ∧ (a ∧ x)] =
= a¯ (a ∧ x) = a ∧ (a ∧ x) = (a ∧ x),

and
x¯ [x¯ (a ∧ x)∗]∗ bl−c33= x¯ [x¯ (a∗ ∨ x∗)]∗ =
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bl−c31= x¯ [(x¯ a∗) ∨ (x¯ x∗)]∗ =
bl−c5= x¯ [(x¯ a∗) ∨ 0]∗ = x¯ (x¯ a∗)∗ =

= x¯ (x ∧ a∗)∗ bl−c33= x¯ (x∗ ∨ a) =
bl−c31= (x¯ x∗) ∨ (x¯ a) bl−c5= 0 ∨ (x¯ a) = x¯ a = x ∧ a

for every x ∈ A.
Since A ∈ F we deduce that

(a ∧ x)/θF ¯ [x/θF → (a ∧ x)/θF ] = (a ∧ x)/θF
and

x/θF ¯ [x/θF ¯ ((a ∧ x)/θF )∗]∗ = (a ∧ x)/θF ,

hence fa ¡ fa = fa and (fa)∗∗ = fa , that is

(̂A, fa) ∈ B(AF ).

(iii). To prove that vF (B(A)) is a regular subset of AF , let (̂Ii, fi) ∈ AF , Ii ∈ F ,

i = 1, 2, such that (̂A, fa) f (̂I1, f1) = (̂A, fa) f (̂I2, f2) for every a ∈ B(A). By

(ii), (̂A, fa) ∈ B(AF ).
Then (f1 ∧ fa)(x) = (f2 ∧ fa)(x) for every x ∈ I1 ∩ I2 and a ∈ B(A) ⇔ f1(x) ∧

x/θF ∧ a/θF = f2(x) ∧ x/θF ∧ a/θF for every x ∈ I1 ∩ I2 and a ∈ B(A) ⇔ f1(x) ∧
a/θF = f2(x) ∧ a/θF for every x ∈ I1 ∩ I2 and a ∈ B(A) .

In particular for a = 1, a/θF = 1 ∈ B(A/θF ) we obtain that f1(x) = f2(x) for
every x ∈ I1 ∩ I2, hence (̂I1, f1) = (̂I2, f2), that is vF (B(A)) ∈ R(AF ). ¥

5.2. Strong F-multipliers and strong localization BL(MV)-algebras.
To obtain the maximal BL(MV ) -algebra of quotients Q(A) as a localization relative
to a topology F we will develope another theory of F− multipliers (meaning we add
new axioms for F-multipliers).

Let A be a BL− algebra.

Definition 6.13. Let F be a topology on A. A strong - F− multiplier is a
mapping f : I → A/θF (where I ∈ F) which verifies the axioms m − BL1 and
m−BL2 (see Definition 6.11) and

(m−BL3) If e ∈ I ∩B(A), then f(e) ∈ B(A/θF );
(m−BL4) (x/θF ) ∧ f(e) = (e/θF ) ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.

If F = {A}, then θF is the identity congruence of A so an strong F− multiplier
is a strong total multiplier.

Remark 6.31. If (A,∧,∨,¯,→, 0, 1) is a BL− algebra, the maps 0,1 : A →
A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every x ∈ A are strong -
F− multipliers. We recall that if fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2) are
F−multipliers we consider the mappings f1 ∧ f2, f1 ∨ f2, f1 ¡ f2, f1 → f2 : I1 ∩ I2 →
A/θF defined by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x),
(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ¡ f2)(x) = f1(x)¯ [x/θF → f2(x)] bl−c45= f2(x)¯ [x/θF → f1(x)],
(f1 → f2)(x) = x/θF ¯ [f1(x) → f2(x)]
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for any x ∈ I1 ∩ I2. If f1, f2 are strong - F− multipliers, then the multipliers f1 ∧
f2, f1 ∨ f2, f1 ¡ f2, f1 → f2 are also strong - F− multipliers. Indeed, if e ∈ I1 ∩ I2 ∩
B(A), then

(f1 ∧ f2)(e) = f1(e) ∧ f2(e) ∈ B(A/θF ),
(f1 ∨ f2)(e) = f1(e) ∨ f2(e) ∈ B(A/θF ).

By Remark 3.8 we have

(f1 ¡ f2)(e) = f1(e)¯ [e/θF → f2(e)] =

= f1(e)¯ ((e/θF )∗ ∨ f2(e)) ∈ B(A/θF )
and

(f1 → f2)(e) = e/θF ¯ [f1(e) → f2(e)] = e/θF ¯ [(f1(e))∗ ∨ f2(e)] ∈ B(A/θF ).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2 we have:

x/θF ∧ (f1 ∧ f2)(e) = x/θF ∧ f1(e) ∧ f2(e) =

= [x/θF ∧ f1(e)] ∧ [x/θF ∧ f2(e)] =
= [e/θF ∧ f1(x)] ∧ [e/θF ∧ f2(x)] = e/θF ∧ (f1 ∧ f2)(x),

and
x/θF ∧ (f1 ∨ f2)(e) = x/θF ∧ [f1(e) ∨ f2(e)] =

= [x/θF ∧ f1(e)] ∨ [x/θF ∧ f2(e)] =
= [e/θF ∧ f1(x)] ∨ [e/θF ∧ f2(x)] =

= e/θF ∧ [f1(x) ∨ f2(x)] = e/θF ∧ (f1 ∨ f2)(x),
and

x/θF ∧ (f1 ¡ f2)(e) = x/θF ∧ [f1(e)¯ (e/θF → f2(e))]
= x/θF ¯ [f1(e)¯ (e/θF → f2(e))] = f1(e)¯ [x/θF ¯ (e/θF → f2(e))]

bl−c43= f1(e)¯ [x/θF ¯ ((x¯ e)/θF → (x/θF ¯ f2(e)))]
= (f1(e)¯ x/θF )¯ ((x¯ e)/θF → (x/θF ¯ f2(e)))
= (e/θF ¯ f1(x))¯ ((e¯ x)/θF → (e/θF ¯ f2(x)))

= f1(x)¯ [e/θF ¯ ((e/θF ¯ x/θF ) → (e/θF ¯ f2(x)))]
bl−c42= f1(x)¯ [e/θF ¯ (x/θF → f2(x))] =

= e/θF ¯ [f1(x)¯ (x/θF → f2(x))]
= e/θF ¯ (f1 ¡ f2)(x) = e/θF ∧ (f1 ¡ f2)(x),

hence
x/θF ∧ (f1 ¡ f2)(e) = e/θF ∧ (f1 ¡ f2)(x).

Also:
e/θF ∧ (f1 → f2)(x) = e/θF ∧ [x/θF ¯ (f1(x) → f2(x))]

= (e¯ x)/θF ¯ [f1(x) → f2(x)] = x/θF ¯ [e/θF ¯ (f1(x) → f2(x))]
bl−c42= x/θF ¯ [e/θF ¯ ((e/θF ¯ f1(x)) → (e/θF ¯ f2(x)))]
= x/θF ¯ [e/θF ¯ ((x/θF ¯ f1(e)) → (x/θF ¯ f2(e)))] =
= e/θF ¯ [x/θF ¯ ((x/θF ¯ f1(e)) → (x/θF ¯ f2(e)))] =

bl−c43= e/θF ¯ [x/θF ¯ (f1(e) → f2(e))] =
= x/θF ¯ [e/θF ¯ (f1(e) → f2(e))] =

= x/θF ¯ (f1 → f2)(e) = x/θF ∧ (f1 → f2)(e)
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hence
x/θF ∧ (f1 → f2)(e) = e/θF ∧ (f1 → f2)(x).

If BL−algebra (A,∧,∨,¯,→, 0, 1) is an MV− algebra (A,⊕,∗ , 0) we recall that
if fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2), are F− multipliers, we consider the
mapping f1 ¢ f2 : I1 ∩ I2 → A/θF defined by

(f1 ¢ f2)(x) = (f1(x)⊕ f2(x)) ∧ x/θF
for any x ∈ I1 ∩ I2, and for any F− multiplier f : I → A/θF (with I ∈ F ) we
consider the mapping f∗ : I → A/θF defined by

f∗(x) = x/θF ¯ (f(x))∗

for any x ∈ I. If f1, f2 and f are strong - F− multipliers, then the multipliers
f1 ¢ f2, f

∗ are also strong - F− multipliers. Indeed, if e ∈ I1 ∩ I2 ∩B(A), then

(f1 ¢ f2)(e) = [f1(e)⊕ f2(e)] ∧ e/θF ∈ B(A/θF ),

and if e ∈ I ∩B(A), then

f∗(e) = e/θF ¯ [f(e)]∗ ∈ B(A/θF ).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1 ∩ I2 we have:

x/θF ∧ (f1 ¢ f2)(e) = x/θF ∧ [(f1(e)⊕ f2(e))∧ e/θF ] = (f1(e)⊕ f2(e))∧x/θF ∧ e/θF
mv−c30= (f1(e)⊕ f2(e)) ∧ x/θF ,

and
e/θF ∧ (f1 ¢ f2)(x) = e/θF ∧ [(f1(x)⊕ f2(x)) ∧ x/θF ] =

= e/θF ¯ [(f1(x)⊕ f2(x)) ∧ x/θF ]
mv−c20= [e/θF ¯ (f1(x)⊕ f2(x))] ∧ (e¯ x)/θF

mv−c30=
mv−c30= [(e/θF ¯ f1(x))⊕ (e/θF ¯ f2(x))] ∧ (e¯ x)/θF

= [x/θF ¯ f1(e)⊕ x/θF ¯ f2(e)] ∧ (e¯ x)/θF =
= [(f1(e) ∧ x/θF )⊕ (f2(e) ∧ x/θF )] ∧ (e ∧ x)/θF

= [[(f1(e) ∧ x/θF )⊕ (f2(e) ∧ x/θF )] ∧ x/θF ] ∧ e/θF
mv−c27= ((f1(e)⊕ f2(e)) ∧ x/θF ) ∧ e/θF

mv−c30= (f1(e)⊕ f2(e)) ∧ x/θF
hence

x/θF ∧ (f1 ¢ f2)(e) = e/θF ∧ (f1 ¢ f2)(x).
Since f ∈ M(I,A/θF ), for e ∈ I ∩B(A) and x ∈ I we have:

x/θF ∧ f(e) = e/θF ∧ f(x) ⇒ (x/θF )∗ ∨ (f(e))∗ = (e/θF )∗ ∨ (f(x))∗

⇒ (x/θF )∗ ⊕ (f(e))∗ = (e/θF )∗ ⊕ (f(x))∗

⇒ e/θF ¯ x/θF ¯ [(x/θF )∗ ⊕ (f(e))∗] = x/θF ¯ e/θF ¯ [(e/θF )∗ ⊕ (f(x))∗] ⇒
⇒ e/θF ¯ [x/θF ∧ (f(e))∗] = x/θF ¯ [e/θF ∧ (f(x))∗]
⇒ e/θF ¯ x/θF ¯ (f(e))∗ = x/θF ¯ e/θF ¯ (f(x))∗

⇒ x/θF ¯ [e/θF ¯ (f(e))∗] = e/θF ¯ [x/θF ¯ (f(x))∗]
⇒ x/θF ∧ [e/θF¯(f(e))∗] = e/θF ∧ [x/θF¯(f(x))∗] ⇒ x/θF ∧f∗(e) = e/θF ∧f∗(x).

Remark 6.32. Analogous as in the case of F− multipliers if we work with strong-
F− multipliers we obtain a BL− subalgebra of AF denoted by s−AF which will be
called the strong-localization BL− algebra of A with respect to the topology F .
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6. Applications

If A is a BL -algebra, in the following we describe the localization BL-algebra
AF in some special instances.

1. If I ∈ I(A) and F is the topology

F(I) = {I ′ ∈ I(A) : I ⊆ I ′}
(see Example 6.10), then AF is isomorphic with M(I, A/θF ) and vF : B(A) → AF
is defined by vF (a) = fa|I for every a ∈ B(A).

If I is a regular subset of A, then θF is the identity, hence AF is isomorphic with
M(I, A).

If, for example, I = A = [0, 1] (see Example 3.1) then AF is not a Boolean
algebra. We recall that B(A) = {0, 1}. Indeed if consider f : [0, 1] → [0, 1], f(x) =
x ∧ x∗ for every x ∈ [0, 1], then f is not a Boolean element in M(I, A)(For x = 3

4 ,

then (f ¡ f)(3
4) = f(3

4) ¯ [34 → f(3
4)] = (3

4 ∧ 1
4) ¯ [34 → (3

4 ∧ 1
4)] = 1

4 ¯ [34 → 1
4 ] =

1
4 ¯ 1

2 = 0 6= 3
4 ∧ 1

4 = 1
4 = f(3

4), hence f is not a Boolean element in M(I, A)). Also,
f is not a principal multiplier. Indeed, if by contrary then there exist a ∈ [0, 1] such
that x ∧ x∗ = a ∧ x for every x ∈ [0, 1] then:

1. if a = 0, then for x = 1
2 , x∗ = 1

2 and x ∧ x∗ = 1
2 6= 0 ∧ 1

2 = 0,
2. if a = 1, then for x = 1, 1 ∧ 1∗ = 1 ∧ 0 = 0 6= 1 ∧ 1 = 1,
3. if a ∈ (0, 1

2), then for x = 1
2 , x∗ = 1

2 and x ∧ x∗ = 1
2 6= a ∧ 1

2 = a,

4. if a ∈ [12 , 1), then for x = 3
4 , x∗ = 1

4 and x ∧ x∗ = 3
4 ∧ 1

4 6= a ∧ 3
4 .

Remark 6.33. If consider BL−algebra A = {0, c, a, b, 1} from Example 3.11,
then

1. If I = {0}, then F({0}) = I(A) (see Remark 6.23 ), so AF ≈M(I, A/θF ) =
M({0}, A/θF ) = 0.

2. If I = A, then F(A) = {A} and θF is the identity, so AF ≈ M(A,A).
Since B(A) = L2 = {0, 1}, then f ∈ M(A,A) iff f(x) ≤ x for every
x ∈ A (because the condition sm−BL1 is verifyed for e = 0, 1). So, f(0) =
0, f(a) ≤ a implies f(a) ∈ {0, c, a}, f(b) ≤ b implies f(b) ∈ {0, c, b}, f(c) ≤
c implies f(c) ∈ {0, c} and f(1) ≤ 1 implies f(1) ∈ {0, c, a, b, 1}. So, if
consider f ∈ AF = M(A,A) such that f(a) = c, then f∗∗(a) = a¯[a¯c∗]∗ =
a ¯ [a ¯ 0]∗ = a ¯ 0∗ = a ¯ 1 = a 6= c = f(a), hence f is not an boolean
element in AF (hence in this case AF is not a Boolean algebra). Also, f is
not a principal multiplier (because B(A) = {0, 1} hence the only principal
multipliers are f0 = 0 and f1 = 1).

3. If for example I = I3 = {0, c, a}, F(I) = {I3, I5, I6}. Since 0 ∈ I3, I5, I6

and 0 ∧ x = 0 ∧ y, then (x, y) ∈ θF for every x, y ∈ A, hence in this case
AF ≈M(I,0) = 0. Analogously for I = I2, I4,I5.

Remark 6.34. We obtain analogous results if we consider MV− algebra L3×2

from Example 3.12.

2. If F = I(A) ∩ R(A) is the topology of regular ordered ideals (see Example
6.11), then θF is the identity congruence of A and we obtain the Definition 6.3 for
strong multipliers on A, so

s−AF = lim−→
I∈F

M(I, A),
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where M(I, A) is the set of multipliers of A having the domain I (in the sense of
Definition 6.3).

In this situation we obtain:

Proposition 6.33. In the case F = I(A)∩R(A), s−AF is exactly the maximal
BL-algebra Q(A) of quotients of A introduced in [33] and which is a Boolean algebra.

Remark 6.35. If BL− algebra A is an MV− algebra, s − AF is exactly the
maximal MV -algebra Q(A) of quotients of A introduced in [26].

Remark 6.36. If consider in particular BL- algebra A = {0, c, a, b, 1} from
Example 3.11, then F = {A} (see Remark 6.25 ), hence s−AF ≈ M(A,A). Consider
f ∈ M(A,A). Clearly, f(0) = 0 and by sm − BL3 we obtain that f(1) ∈ {0, 1}. If
f(1) = 0, then by sm−BL4 we deduce that for every x ∈ A , x∧ f(1) = 1∧ f(x) ⇔
x ∧ f(1) = f(x) ⇔ f(x) = 0 ⇔ f = 0. If f(1) = 1, f(x) = x = 1(x), hence f = 1.
So, in this case s−AF ≈M(A,A) = L2.

3. Denoting by D the topology of dense ordered ideals of A (that is D = I(A)∩
D(A) - see Example 6.12), then (since R(A) ⊆ D(A)) there exists a morphism of
BL -algebras α : Q(A) → s−AD such that the diagrame

B(A) vA−→ Q(A)
↘
vD

↙
α

s−AD

is commutative (i.e. α ◦ vA = vD). Indeed, if [f, I] ∈ Q(A) (with I ∈ I(A) ∩ R(A)
and f : I → A is a strong multiplier in the sense of Definition 6.3) we denote by
fD the strong - D−multiplier fD : I → A/θD defined by fD(x) = f(x)/θD for every
x ∈ I. Thus, α is defined by α([f, I]) = [fD, I].

4. Let S ⊆ A an ∧−closed system of BL(MV )−algebra A.

Proposition 6.34. If FS is the topology associated with an ∧−closed system
S ⊆ A (see Example 6.13), then the BL(MV )-algebra s − AFS

is isomorphic with
B(A[S]).

Proof. Let A be a BL(MV )-algebra. For x, y ∈ A we have (x, y) ∈ θFS
⇔

there exists I ∈ FS (hence I ∩ S ∩ B(A) 6= ®) such that x ∧ e = y ∧ e for any
e ∈ I ∩ B(A). Since I ∩ S ∩ B(A) 6= ® there exists e0 ∈ I ∩ S ∩ B(A) such that
x ∧ e0 = y ∧ e0, hence (x, y) ∈ θS . So, θFS

⊆ θS .
If (x, y) ∈ θS , there exists e0 ∈ S ∩ B(A) such that x ∧ e0 = y ∧ e0. If we

set I = (e0] = {a ∈ A : a ≤ e0}, then I ∈ I(A); since e0 ∈ I ∩ S ∩ B(A), then
I ∩ S ∩B(A) 6= ®, that is I ∈ FS . For every e ∈ I ∩B(A), e ≤ e0, hence e = e ∧ e0

and x ∧ e = x ∧ (e0 ∧ e) = (x ∧ e0) ∧ e = (y ∧ e0) ∧ e = y ∧ (e0 ∧ e) = y ∧ e, hence
(x, y) ∈ θFS

, that is θFS
= θS .

Then A[S] = A/θS ; therefore a strong FS−multiplier can be considered in this
case (see m−BL1,m−BL2,m−BL3,m−BL4) as a mapping f : I → A[S] (I ∈ FS)
having the properties f(e ¯ x) = e/S ¯ f(x) and f(x) ≤ x/S, for every x ∈ I, and
if e ∈ I ∩B(A), then f(e) ∈ B(A[S]) and for every e ∈ I ∩B(A) and x ∈ I,

(e/S) ∧ f(x) = (x/S) ∧ f(e)

(x/S denotes the congruence class of x relative to θS).
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We recall that for x ∈ A, x/S ∈ B(A[S]) iff there is e0 ∈ S ∩ B(A) such that
e0 ∧ x ∈ B(A). In particular if e ∈ B(A), then e/S ∈ B(A[S]).

If (̂I1, f1), (̂I2, f2) ∈ s−AFS
= lim−→

I∈FS

M(I, A[S]), and (̂I1, f1) = (̂I2, f2) then there

exists I ∈ FS such that I ⊆ I1 ∩ I2 and f1|I = f2|I . Since I, I1, I2 ∈ FS , there exist
e ∈ I ∩ S ∩ B(A), e1 ∈ I1 ∩ S ∩ B(A) and e2 ∈ I2 ∩ S ∩ B(A). We shall prove that
f1(e1) = f2(e2). If denote f = e ∧ e1 ∧ e2, then f ∈ I ∩ S ∩ B(A), and f ≤ e1, e2.
Since e1 ∧ f = e2 ∧ f then f1(e1 ∧ f) = f1(e2 ∧ f) = f2(e2 ∧ f) ⇔ f1(e1) ∧ f/S =
f2(e2) ∧ f/S ⇔ f1(e1) ∧ 1 = f2(e2) ∧ 1 (since f ∈ S ⇒ f/S = 1) ⇔ f1(e1) = f2(e2).
In a similar way can show that f1(s1) = f2(s2) for any s1, s2 ∈ I ∩ S ∩B(A).

In accordance with these considerations we can define the mapping:

α : s−AFS
= lim−→

I∈FS

M(I,A[S]) → B(A[S])

by putting
α((̂I, f)) = f(s) ∈ B(A[S])

where s ∈ I ∩ S ∩B(A).
This mapping is a morphism of BL-algebras, if A is a BL−algebra.
Indeed, α(0) = α((̂A,0)) = 0(e) = 0/S = 0 for every e ∈ S ∩ B(A). For every

(̂Ii, fi) ∈ s−AFS
, i = 1, 2 we have:

α[(̂I1, f1) · (̂I2, f2)] = α[ ̂(I1 ∩ I2, f1 ¡ f2).] =

= (f1 ¡ f2)(e) = f1(e)¯ [e/S → f2(e)] =
= f1(e)¯ [1 → f2(e)] = f1(e)¯ f2(e) =

= α[(̂I1, f1)]¯ α[(̂I2, f2)]
and

α[(̂I1, f1) 7−→ (̂I2, f2)] = α[ ̂(I1 ∩ I2, f1 → f2).] =
= (f1 → f2)(e) = e/S ¯ [f1(e) → f2(e)] =
= 1¯ [f1(e) → f2(e)] = f1(e) → f2(e) =

= α[(̂I1, f1)] → α[(̂I2, f2)]
(with e ∈ I1 ∩ I2 ∩ S ∩B(A)).

Clearly, if A is an MV−algebra this mapping is a morphism of MV -algebras.
Indeed, α(0) = α((̂A,0)) = 0(e) = 0/S = 0 for every e ∈ S ∩ B(A). If (̂I, f) ∈

s− AFS
, we have α((̂I, f)∗) = α((̂I, f∗)) = f∗(e) = (e/S)¯ [f(e)]∗ = 1¯ (f(e))∗ =

(f(e))∗ = (α((̂I, f)))∗ (with e ∈ I ∩S ∩B(A)). Also, for every (̂Ii, fi) ∈ s−AFS
, i =

1, 2 we have: α[(̂I1, f1) + (̂I2, f2)] = α[ ̂(I1 ∩ I2, f1 ¢ f2).] = (f1 ¢ f2)(e) = (f1(e) ⊕
f2(e))∧ (e/S) = f1(e)⊕f2(e) = α[(̂I1, f1)]⊕α[(̂I2, f2)] (with e ∈ I1∩ I2∩S ∩B(A)).

We shall prove that α is injective and surjective. To prove the injectivity of
α let (̂I1, f1), (̂I2, f2) ∈ s − AFS

such that α((̂I1, f1)) = α((̂I2, f2)). Then for any
e1 ∈ I1 ∩ S ∩ B(A), e2 ∈ I2 ∩ S ∩ B(A) we have f1(e1) = f2(e2). If f1(e1) =
x/S, f2(e2) = y/S with x, y ∈ A, since x/S = y/S, there exists e ∈ S ∩ B(A) such
that x ∧ e = y ∧ e.

If we consider e′ = e ∧ e1 ∧ e2 ∈ I1 ∩ I2 ∩ S ∩B(A), we have x ∧ e′ = y ∧ e′ and
e′ ≤ e1, e2. It follows that f1(e′) = f1(e′ ∧ e1) = f1(e1) ∧ (e′/S) = x/S ∧ 1 = x/S =
y/S = f2(e2) = f2(e2) ∧ (e′/S) = f2(e2 ∧ e′) = f2(e′). If denote I = (e′] then we
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obtained that I ∈ FS , I ⊆ I1 ∩ I2 and f1|I = f2|I , hence (̂I1, f1) = (̂I2, f2), that is
α is injective.

To prove the surjectivity of α, let a/S ∈ B(A[S]) (hence there exists e0 ∈
S ∩ B(A) such that a ∧ e0 ∈ B(A)). We consider I0 = (e0] = {x ∈ A : x ≤ e0}
(since e0 ∈ I0 ∩ S ∩ B(A), then I0 ∈ FS) and define fa : I0 → A[S] by putting
fa(x) = x/S ∧ a/S = (x ∧ a)/S for every x ∈ I0.

We shall prove that fa is an strong FS−multiplier. Indeed, if e ∈ B(A) and
x ∈ I0, since e/S ∈ B(A[S]), then

fa(e¯ x) = fa(e ∧ x) = (e/S) ∧ (x/S) ∧ (a/S)

= (e/S) ∧ ((x/S) ∧ (a/S)) = (e/S) ∧ fa(x) = (e/S)¯ fa(x);
Clearly, fa(x) ≤ x/S. Also, if e ∈ I0 ∩B(A), then fa(e) = e/S ∧ a/S ∈ B(A[S]).
Clearly if for every e ∈ I0 ∩B(A) and x ∈ I0,

(e/S) ∧ fa(x) = (x/S) ∧ fa(e),

hence fa is a strong-FS−multiplier and we shall prove that α((̂I0, fa)) = a/S.

Indeed, since e0 ∈ S we have α((̂I0, fa)) = fa(e0) = (e0∧a)/S = (e0/S)∧(a/S) =
1 ∧ (a/S) = a/S.

So, we proved that α is an isomorphism of BL(MV )-algebras. ¥
Remark 6.37. In the proof of Proposition 6.34 the axiom m−BL4 is not nec-

essarily.

Remark 6.38. If A is BL− algebra A = {0, c, a, b, 1}, since B(A) = {0, 1} = L2

then for S ⊆ A an ∧− closed system, FS = {I ∈ I(A) : I ∩ S ∩ {0, 1} 6= ®} and
s−AFS

is isomorphic with B(A[S]).
1. If S is an ∧−closed systems of A such that 0 ∈ S , then FS = I(A) (see

Remark 6.28 ) and s−AFS
= AI(A) ≈ B(A[S]) = B(0) = 0.

2. If 0 /∈ S, FS = A (see Remark 6.28) and s − AFS
= AA ≈ B(A[S]) =

B(A) = {0, 1} = L2.

Remark 6.39. If L3×2 is MV− algebra from Example 3.12, since B(L3×2) =
{0, a, d, 1} then for S ⊆ A an ∧− closed system, FS = {I ∈ I(L3×2) : I ∩ S ∩
{0, a, d, 1} 6= ®} and s− (L3×2)FS

is isomorphic with B(L3×2[S]).
1. If S is an ∧−closed system of L3×2 such that 0 ∈ S , then FS = I(L3×2)

(see Remark 6.29 ) and s − (L3×2)FS
= (L3×2)I(L3×2) ≈ B(L3×2[S]) =

B(0) = 0.
2. If 0, a, d /∈ S, FS = L3×2 (see Remark 6.29) and s−(L3×2)FS

≈ B(L3×2[S]) =
B(L3×2) = {0, a, d, 1}.

3. If 0 /∈ S but a ∈ S then FS = {I2, I4, I6, I7, I8, I9} (see Remark 6.29) and
s− (L3×2)FS

≈ B(L3×2[S]) ≈ B(L2) = L2.
4. If 0 /∈ S but d ∈ S then FS = {I5, I7, I8, I9} (see Remark 6.29) and s −

(L3×2)FS
≈ B(L3×2[S]) = {0/S, 1/S} ≈ L2.

7. Localization of abelian lu-groups

MV- algebras can be studied within the context of abelian lattice-ordered groups with
strong units (abelian lu-groups), and this viewpoint plays a crucial role in this section. This
viewpoint is made possible by the fundamental result of Mundici (Theorem 2.60) [105] that
the category of MV-algebras is equivalent to the category of abelian lu-groups ([3], [45],
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[105]). The starting point of the above mentioned categorical equivalence is the remark
that any interval in the positive cone of an abelian l-group can be endowed with a structure
of MV- algebra.

In particular, we take on the task of translating the theory of localization of MV−
algebras defined in Sections 5 and 6 into the language of abelian lu-groups. This Section is
very much in the spirit of [3], in which Ball, Georgescu and Leustean translate the theory
of convergence and Cauchy completion of abelian lu-groups into the language of MV−
algebras.

Proposition 6.35. (i) If H ∈ I(G), then H = H ∩A ∈ I(A),
(ii) If H ∈ I(A), then HI = {g ∈ G : πk(g) ∈ I for all k ≥ 0} is the order ideal

of G generated by I in G ( that is HI ∈ I(G) and HI =< I >G). Moreover,
HI = HI ∩A = I,

(iii) For every K ∈ I(G),K = HI where I = K ∩A ∈ I(A),
(iii) There is a bijective correspondence between I(G) and I(A).

Proof. (i). Let x, y ∈ A such that x ≤ y and y ∈ H. Thus y ∈ H, hence x ∈ H.
Since x ∈ A we deduce that x ∈ H ∩A = H, hence H = H ∩A ∈ I(A).

(ii). Let I ∈ I(A); to prove HI ∈ I(G) let x, y ∈ G such that x ≤ y and y ∈ HI .
By mv − c34 we deduce that for every k ≥ 0, πk(x) ≤ πk(y), hence πk(x) ∈ I for
every k ≥ 0, that is x ∈ HI . We recall that

< I >G= ∩
H′∈I(G),I⊆H′

H ′

For x ∈ I and k ≥ 0, by mv−c33 we deduce that πk(x) ≤ π0(x) = x, hence πk(x) ∈ I,
that is I ⊆ HI . Since HI ∈ I(G) and I ⊆ HI we deduce that < I >G⊆ HI . Let
now x ∈ HI , k ≥ 0 and H ′ ∈ I(G) such that I ⊆ H ′. Thus πk(x) ∈ I ⊆ H ′, hence
πk(x) ∈ H ′. In particular for k = 0 we deduce that x = π0(x) ∈ H ′, hence HI ⊆ H ′.
We deduce that HI ⊆ ∩H ′ =< I >G, that is HI =< I >G . To prove the equality
HI = I (where HI = HI ∩A ) let x ∈ HI ∩A. Then x ∈ HI , hence in particular for
k = 0, x = π0(x) ∈ I, that is HI ∩A ⊆ I . If x ∈ I and k ≥ 0, then by mv − c33 we
deduce that πk(x) ≤ π0(x) = x, hence πk(x) ∈ I, so x ∈ HI , hence I ⊆ HI ∩A that
is HI ∩A = I.

(iii). Follow from (ii).
(iv). Is straightforward by (i)− (iii). ¥

Definition 6.14. Let (G, u) be an abelian lu-group. A nonempty set F of
elements I ∈ I(G) will be called a topology on G (or a Gabriel filter on I(G)) if
the following properties hold:

(top′1) If I1 ∈ F , I2 ∈ I(G) and I1 ⊆ I2, then I2 ∈ F (hence G ∈ F ),
(top′2) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F .

For an abelian lu-group (G, u) we define the boolean center B(G, u) of G by

B(G, u) = B(A)

(where A = Γ(G, u)). Hence

B(G, u) = {x ∈ [0, u] : (x + x) ∧ u = x}.
Clearly, 0, u ∈ B(G) and by [45], Corollary 7.1.6, we deduce that B(G, u) ≈
B(GA, uA) = B(Ξ(A)).
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Clearly, in an lu-group G is possible to have more strong units. So, is necessary
to write for example (G, u) to mention that u ∈ G is a strong unit. Although, if
theare is no confusion, to simplify the language, we will use B(G) instead B(G, u)
(for example G instead (G, u), B(G) instead B(G, u))

We recall that for every MV− algebra A, B(A) is a subalgebra of A, see Corollary
2.10.

Remark 6.40. If A,B are MV− algebras, ϕ : A → B is an isomorphism of
MV− algebras and F isa topology on A, then ϕ(F) = {ϕ(I) : I ∈ F} is a topology
on B and AF ≈ Bϕ(F).

Example 6.14. If H ∈ I(G), then the set

F(H) = {H ′ ∈ I(G) : H ⊆ H ′}
is a topology on G.

Example 6.15. A non-empty set H ⊆ G will be called regular if for every x, y ∈
G such that e ∧ x = e ∧ y for every e ∈ H ∩ B(G), we have x = y. If we denote
R(G) = {H ⊆ G : H is a regular subset of G}, then I(G) ∩ R(G) is a topology on
G.

Example 6.16. A subset S ⊆ G is called ∧− closed if u ∈ S and if x, y ∈ S
implies x ∧ y ∈ S. For any ∧− closed subset S of G we set FS = {H ∈ I(G) :
H ∩ S ∩B(G) 6= ®}. Then FS is a topology on G . Clearly, if H ∈ FS and H ⊆ H ′
(with H ∈ I(G)), then H∩S∩B(G) 6= ®, hence H ′∩S∩B(G) 6= ®, that is H ′ ∈ FS .
If H1,H2 ∈ FS then there exist si ∈ Hi ∩ S ∩ B(G), i = 1, 2. If we set s = s1 ∧ s2,
then s ∈ (H1 ∩H2) ∩ S ∩B(G), hence H1 ∩H2 ∈ FS .

Proposition 6.36. Let (G, u) be an abelian lu-group and A = Γ(G, u) = [0, u].
(i) If F is a topology on G, then FA = {H ∩A : H ∈ F} is a topology on A,

(ii) If F is a topology on A, then FG = {HI : I ∈ F} is a topology on G (where
HI is defined by Proposition 6.35, (ii)); if denote FG ∩ A = {H ∩ A : H ∈
FG}, then FG ∩A = FA,

(iii) There is a bijective correspondence between the topologies on G and the
topologies on A.

Proof. (i). Let F be a topology on G, H ∈ F and K ∈ I(A) such that H = H∩
A ⊆ K. By Proposition 6.35, (ii) , there is HK ∈ I(G) such that K = HK = HK∩A,
hence H ∩A ⊆ HK ∩A. We want to prove the inclusion H ⊆ HK . Indeed, if x ∈ H
and k ≥ 0, then by mv − c33, πk(x) ≤ π0(x) = x, hence πk(x) ∈ H. We deduce that
πk(x) ∈ H ∩ A ⊆ K, hence πk(x) ∈ K, that is x ∈ HK . So, H ⊆ HK . Since H ∈ F
and F is a topology on G we deduce that HK ∈ F , hence K ∈ FA.

Clearly, if H1, H2 ∈ F , then H1 ∩H2 = (H1 ∩A)∩ (H2 ∩A) = (H1 ∩H2)∩A ∈
FA (since H1 ∩H2 ∈ F ).

(ii). Let F a topology on A, I ∈ F and K ∈ I(G) such that HI ⊆ K. Then
I = A ∩HI ⊆ A ∩K, hence A ∩K ∈ F . Since K = HA∩K (by Proposition 6.35,
(iii) ) and A ∩K ∈ F we deduce that K ∈ FG . Let now Ii ∈ F , i = 1, 2.

Then HIi ∩A = Ii (i = 1, 2), hence (HI1 ∩HI2)∩A = I1∩I2, that is HI1 ∩HI2 =
HI1∩I2 ∈ FG (since H1 ∩H2 ∈ F ).

(iii). Is straightforward by (i)− (ii). ¥
In the sequel (G, u) is an abelian lu-group, A = Γ(G, u) = [0, u] and F is a

topology on G.
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Now we are in the situation to define the notion of abelian lu-group of localization
of G with respect to the topology F .

By Proposition 6.36, (i), FA = {H ∩ A : H ∈ F} is a topology on A. As in
Section 5 we can construct the MV− algebra of localization of A with respect to
the topology FA, denoted by AFA .

Definition 6.15. We denote the abelian lu-group Ξ(AFA) by GF and will be
called the localization abelian lu-group of G with respect to the topology F .

Let now A be an MV− algebra and F a topology on A. We consider Ξ(A) =
(GA, uA) and the isomorphism of MV− algebras ϕA : A → B = [0, uA] = Γ(GA, uA).
By Remark 6.40, ϕA(F) = {ϕA(I) : I ∈ F} is a topology on B and AF ≈ BϕA(F).
Then Ξ(AF ) ≈ Ξ(BϕA(F)) = Ξ(A)ϕA(F) (see Definition 6.15).

So, we obtain:

Theorem 6.37. Let A be an MV− algebra and F a topology on A. Then

Ξ(A)ϕA(F) ≈ Ξ(AF ).

If A is an MV− algebra and S ⊆ A is a ∧− closed system, then in Section 1
we have defined the notion of MV− algebra of fraction relative to S (denoted by
A[S] ). Also in Section 3 we have defined for an MV− algebra A, a maximal MV−
algebra of quotients of A (denoted by AM ) and we construct the maximal MV−
algebra of quotients of A, denoted by Q(A).

We shall now define the analogous notions for abelian lu-groups using the functor
Ξ.

We continue the running assumption that (G, u) is an abelian lu-group with unit
interval A = [0, u].

If S ⊆ G is an ∧− closed system in G (that is u ∈ S and x, y ∈ S implies
x∧ y ∈ S ), then S = S ∩A is an ∧− closed system in A. So, we consider the MV−
algebra of fractions relative to S (denoted by A[S] ).

Definition 6.16. We denote the abelian lu-group Ξ(A[S]) by G[S] and will be
called the abelian lu-group of fraction of G relative to the ∧− closed system S. Also,
we denote the abelian lu-group Ξ(Q(A)) by Q(G) and will be called the maximal
abelian lu-group of quotients of G.

Example 6.17. For the case of G[S] :
1. For G = (Z, +) with u = 1, and S = Z, then A = Γ(Z, 1) = {0, 1},

S = Z ∩ {0, 1} = {0, 1} hence A[S] = 0 (since 0 ∈ S), so G[S] = 0.
Analogous for the case of (Q,+), (R, +) with u = 1 and (Z, +) with u = n,
and for the case S = B(G).

2. For G = (R, +) with u = 1, and S = {1}, then A = [0, 1], S = S ∩ A =
{1}, hence A[S] = A (see Example 6.1). So G[S] = Ξ(A[S]) = Ξ(A) =
Ξ([0, 1]) = Z× [0, 1] (because [0, 1] is chain - see Example 2.21). Analogous
for the case of (Q,+), G[S] = Ξ(A[S]) = Ξ(A) = Ξ(Q∩ [0, 1]) = Z×([0, 1]∩
Q) and for the case of (Z, +) with u = 1 we obtain G[S] = (Z, +).

Example 6.18. For the case of Q(G) :
1. For G = (Z, +) with u = 1, then A = L2, Q(G) = Ξ(L2) = (Z, +). Analo-

gous for the case of (Q,+), (R, +) with u = 1 and (Z, +) with u = n.
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2. If consider the abelian lu-group G = Z×lexZ with u = (1, 0), then Γ(G, u) =
C (see Example 2.6). Since C is a chain, then B(C) = L2, so Q(G) =
Ξ(B(C)) = Ξ(L2) = (Z, +) with u = 1.

3. If G is an abelian lu-group and A = [0, u] is such that B(A) is finite
(|B(A)| = 2n), then Q(G) = Ξ(Q(A)) = Ξ(B(A)) = Zn (see Example
2.20).

As in the case of MV− algebras in the following we describe for an abelian
lu-group (G, u) the localization abelian lu-group GF in some special instances.

We recall that for the next two examples we work with strong-F− multipliers
(see Definition 6.13).

1. If F = I(G) ∩R(G), then FA = I(A) ∩R(A) (where we recall that A is the
MV− algebra [0, u]) and FA = F∩A = {H ∩A : H ∈ F}. Then s−AFA = Q(A) so

GF = Ξ(s−AFA) = Ξ(Q(A)) = Q(G)

(that is GF is the maximal abelian lu-group of quotients of G).

Since Q(A) is a Boolean algebra, to describe Q(G) = Ξ(Q(A)) we can use
Example 2.20.

2. If S ⊆ G is an ∧− closed system of G and FS is a topology FS = {H ∈
I(G) : H ∩ S ∩ B(G) 6= ∅}, then S = S ∩ A is an ∧− closed system of A and
FS = {I ∈ I(A) : I ∩ S ∩B(A) 6= ∅} (since B(G) = B(A)).

Thus by Proposition 6.34, s−AFS ≈ B(A[S]), hence

GFS = Ξ(s−AFS ) ≈ Ξ(B(A[S])) ≈ Ξ(B(Ξ(A[S]))) = B(G[S]).



CHAPTER 7

Localization of Pseudo MV - algebras

In this chapter, by A we denote a pseudo MV-algebra. We define the localization (strong
localization) pseudo MV - algebra of a pseudo MV- algebra A with respect to a topology F
on A. If pseudo MV-algebra A is an MV- algebra we deduce in particular the localization
of MV - algebras obtained in Chapter 6.

We introduce the notions of pseudo MV-algebra of fractions relative to an ∧-closed
system, pseudo MV-algebra of fractions and maximal pseudo MV-algebra of quotients for a
pseudo MV-algebra, taking as a guide-line the case of MV-algebras.

We prove the existence of a maximal pseudo MV- algebra of quotients for a pseudo
MV-algebra (Theorem 7.26) and we give explicit descriptions of this pseudo MV-algebra for
some classes of pseudo MV-algebras. Also, we prove that the maximal pseudo MV - algebra
of quotients Q(A) and the pseudo MV - algebra of fractions relative to an ∧− closed system
are strong pseudo MV - algebra of localization (see Proposition 7.27 and Proposition 7.31).

Following the categorical equivalence between the category of unital l-groups with a
strong unit u (lu−groups) and the category of pseudo MV- algebras, we define and prove
the analogous notions and results for lu-groups. Using this categorical equivalence we take
on the task of translating the theory of localization pseudo MV- algebras into the language
of localization lu−groups.

1. F-multipliers and localization of pseudo MV - algebras

We recall that by Id(A) we denote the set of all ideals of the lattice L(A) and
by I(A) the set of all order ideals of a pseudo MV -algebra A (see Definition 6.2) :

I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈ I}.
Remark 7.1. Clearly, Id(A) ⊆ I(A) and if I1, I2 ∈ I(A), then I1 ∩ I2 ∈ I(A).

Also, if I ∈ I(A), then 0 ∈ I.

Let A be a pseudo MV− algebra. A non-empty set F of elements I ∈ I(A)
will be called a topology on A if verifies the properties of Definition 6.10. F is a
topology on A iff F is a filter of the lattice of power set of A; for this reason a
topology on A is usually called a Gabriel filter on I(A).

Example 7.1. If I ∈ I(A), then the set

F(I) = {I ′ ∈ I(A) : I ⊆ I ′}
is clearly a topology on A.

Example 7.2. If we denote R(A) = {I ⊆ A : I is a regular subset (see Definition
6.5) of A} then I(A) ∩R(A) is a topology on A.

Example 7.3. For any ∧− closed subset S of A (see Definition 6.1) we set
FS = {I ∈ I(A) : I ∩ S ∩B(A) 6= ®}. Then FS is a topology on A.

175
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Let F be a topology on a pseudo MV -algebra A. Let us consider the relation
θF of A defined in the following way:

(x, y) ∈ θF ⇔ there exists I ∈ F such that e ∧ x = e ∧ y for any e ∈ I ∩B(A).

Lemma 7.1. θF is a congruence on A.

Proof. The reflexivity and the symmetry of θF are immediate; in order to prove
the transitivity of θF let (x, y), (y, z) ∈ θF . Then there exists I1, I2 ∈ F such that
e∧x = e∧y for every e ∈ I1∩B(A), and f ∧y = f ∧z for every f ∈ I2∩B(A). If we
set I = I1 ∩ I2 ∈ F , then for every g ∈ I ∩B(A), g ∧ x = g ∧ z, hence (x, z) ∈ θF .

To prove the compatibility of θF with the operations⊕,− and s, let (x, y), (z, t) ∈
θF , that is there exists I, J ∈ F such that e∧ x = e∧ y for every e ∈ I ∩B(A), and
f ∧ z = f ∧ t for every f ∈ J ∩B(A). If we denote K = I ∩ J , then K ∈ F and for
every g ∈ K ∩B(A), g ∧ x = g ∧ y and g ∧ z = g ∧ t.

By psmv − c43 we deduce that for every g ∈ K ∩B(A) :

g ∧ (x⊕ z) = (g ∧ x)⊕ (g ∧ z) = (g ∧ y)⊕ (g ∧ t) = g ∧ (y ⊕ t),

hence (x⊕ z, y ⊕ t) ∈ θF , that is θF is compatible with the operation ⊕.
Also, since e∧x = e∧y for every e ∈ I∩B(A) we deduce that x−∨e− = y−∨e−,

hence

e¯ (x− ∨ e−) = e¯ (y− ∨ e−) ⇔ e¯ (e− ⊕ x−) = e¯ (e− ⊕ y−)

(since e− ∈ B(A))⇔ e ∧ x− = e ∧ y− for every e ∈ I ∩ B(A), and xs ∨ es =
ys ∨ es ⇔ (xs ∨ es) ¯ e = (ys ∨ es) ¯ e ⇔ (xs ⊕ es) ¯ e = (ys ⊕ es) ¯ e (since
es ∈ B(A))⇔ xs∧ e = ys∧ e for every e ∈ I ∩B(A), hence (x−, y−), (xs, ys),∈ θF
that is θF is compatible with the operations − and s, so θF is a congruence on A.¥

We shall denote by x/θF the congruence class of an element x ∈ A and by

A/θF = {x/θF : x ∈ A}
Then, A/θF is a pseudo MV− algebra with the natural defined operations and

pF : A → A/θF
is the canonical onto morphism of pseudo MV -algebras.

Proposition 7.2. For a ∈ A, a/θF ∈ B(A/θF ) iff there exists I ∈ F such that
a ∧ e ∈ B(A) for every e ∈ I ∩B(A). So, if a ∈ B(A), then a/θF ∈ B(A/θF ).

Proof. For a ∈ A, we have a/θF ∈ B(A/θF ) ⇔ a/θF ⊕ a/θF = a/θF ⇔
(a ⊕ a)/θF = a/θF ⇔ there exists I ∈ F such that (a ⊕ a) ∧ e = a ∧ e for every
e ∈ I ∩B(A)

psmv−c43⇔ (a∧ e)⊕ (a∧ e) = a∧ e for every e ∈ I ∩B(A) ⇔ a∧ e ∈ B(A)
for every e ∈ I ∩B(A). So, if a ∈ B(A), then for every I ∈ F , a∧ e ∈ B(A) for every
e ∈ I ∩B(A), hence a/θF ∈ B(A/θF ).¥

Corollary 7.3. If F = I(A) ∩R(A), then a ∈ B(A) iff a/θF ∈ B(A/θF ).

Definition 7.1. Let A be a pseudo MV− algebra and F be a topology on A.
An partial F− multiplier is a mapping f : I → A/θF , where I ∈ F and for every
x ∈ I and e ∈ B(A) the following axioms are fulfilled:

(m− psMV1) f(e¯ x) = e/θF ∧ f(x) = e/θF ¯ f(x);
(m− psMV2) f(x) ≤ x/θF .
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By dom(f) ∈ F we denote the domain of f ; if dom(f) = A, we called f total.
To simplify language, we will use F− multiplier instead partial F− multiplier,

using total to indicate that the domain of a certain multiplier is A.
The maps 0,1 : A → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every

x ∈ A are F-multipliers in the sense of Definition 7.1.
Also, for a ∈ B(A) and I ∈ F , fa : I → A/θF defined by fa(x) = a/θF ∧ x/θF

for every x ∈ I, is an F− multiplier. If dom(fa) = A, we denote fa by fa ; clearly,
f0 = 0.

We shall denote by M(I, A/θF ) the set of all the F− multipliers having the
domain I ∈ F and

M(A/θF ) = ∪
I∈F

M(I,A/θF ).

If I1, I2 ∈ F , I1 ⊆ I2 we have a canonical mapping

ϕI1,I2 : M(I2, A/θF ) → M(I1, A/θF )

defined by
ϕI1,I2(f) = f|I1 for f ∈ M(I2, A/θF ).

Let us consider the directed system of sets
〈{M(I, A/θF )}I∈F , {ϕI1,I2}I1,I2∈F ,I1⊆I2

〉

and denote by AF the inductive limit (in the category of sets):

AF = lim−→
I∈F

M(I, A/θF ).

For any F− multiplier f : I → A/θF we shall denote by (̂I, f) the equivalence
class of f in AF .

Remark 7.2. If fi : Ii → A/θF , i = 1, 2, are F− multipliers, then (̂I1, f1) =
(̂I2, f2) (in AF) iff there exists I ∈ F , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Let fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2), F−multipliers. Let us consider the
mappings

f1 ¢ f2 : I1 ∩ I2 → A/θF
defined by

(f1 ¢ f2)(x) = (f1(x)⊕ f2(x)) ∧ x/θF

for any x ∈ I1 ∩ I2, and let (̂I1, f1) + (̂I2, f2) = ̂(I1 ∩ I2, f1 ¢ f2).
Also, for any F− multiplier f : I → A/θF (with I ∈ F ) let us consider the

mapping
f−, fs : I → A/θF

defined by
f−(x) = x/θF ¯ (f(x))−

and
fs(x) = (f(x))s ¯ x/θF

for any x ∈ I and let (̂I, f)− = (̂I, f−) respectively (̂I, f)s = (̂I, fs) .
Clearly the definitions of the operations +, − and s on AF are correct.

Lemma 7.4. f1 ¢ f2 ∈ M(I1 ∩ I2, A/θF ).
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Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 ¢ f2)(e¯ x) = [f1(e¯ x)⊕ f2(e¯ x)] ∧ (e¯ x)/θF =

= [(e/θF ¯ f1(x))⊕ (e/θF ¯ f2(x))] ∧ (e/θF ¯ x/θF ) =

= [(e/θF ∧ f1(x))⊕ (e/θF ∧ f2(x))] ∧ (e/θF ∧ x/θF )
psmv−c43=

psmv−c43= [e/θF ∧ (f1(x)⊕ f2(x))] ∧ (e/θF ∧ x/θF ) =
= e/θF ∧ [(f1(x)⊕ f2(x)) ∧ x/θF ] = e/θF ¯ (f1 ¢ f2)(x).

Clearly, (f1 ¢ f2)(x) ≤ x/θF for every x ∈ I1∩ I2, that is, f1 ¢ f2 ∈ M(I1 ∩
I2, A/θF ). ¥

Lemma 7.5. f−, fs ∈ M(I,A/θF ).

Proof. If x ∈ I and e ∈ B(A), then

f−(e¯ x) = (e¯ x)/θF ¯ (f(e¯ x))− = e/θF ¯ x/θF ¯ (e/θF ¯ f(x))− =

= e/θF ¯ x/θF ¯ [(e/θF )− ⊕ (f(x))−] = x/θF ¯ (e/θF ¯ ((e/θF )− ⊕ (f(x))−)) =
= x/θF ¯ (e/θF ∧ (f(x))−) = x/θF ¯ (e/θF ¯ (f(x))−) =

= e/θF ¯ (x/θF ¯ (f(x))−) = e/θF ¯ f−(x)
and

fs(e¯ x) = (f(e¯ x))s ¯ (e¯ x)/θF = (e/θF ¯ f(x))s ¯ (e¯ x)/θF =

= ((f(x))s ⊕ (e/θF )s)¯ e/θF ¯ x/θF = ((f(x))s ∧ e/θF )¯ x/θF =
((f(x))s ¯ e/θF )¯ x/θF = ((f(x))s ¯ x/θF )¯ e/θF =

= fs(x)¯ e/θF = e/θF ¯ fs(x)
Clearly, f−(x) ≤ x/θF and fs(x) ≤ x/θF for every x ∈ I, that is f−, fs ∈

M(I, A/θF ).¥
Lemma 7.6. Let f, g ∈ M(A/θF ) with f ∈ M(I, A/θF ) and g ∈ M(J,A/θF ),

I, J ∈ F . Then for every x ∈ I ∩ J :

(f ¡ g)(x) = (f(x)⊕ (x/θF )s)¯ g(x) = f(x)¯ ((x/θF )− ⊕ g(x)).

Proof. For x ∈ I ∩ J we denote a = f(x), b = g(x); clearly a, b ≤ x/θF . So:

(f ¡ g)(x) = (g− ¢ f−)s(x) = [(g−(x)⊕ f−(x)) ∧ x/θF ]s ¯ x/θF =

= [(x/θF ¯ (g(x))− ⊕ x/θF ¯ (f(x))−) ∧ x/θF ]s ¯ x/θF =
= [(x/θF ¯ b− ⊕ x/θF ¯ a−) ∧ x/θF ]s ¯ x/θF =

= [(x/θF ¯ b− ⊕ x/θF ¯ a−)s ∨ (x/θF )s]¯ x/θF =
psmv−c30= [(x/θF ¯ b− ⊕ x/θF ¯ a−)s ¯ x/θF ] ∨ ((x/θF )s ¯ x/θF ) =

= [(x/θF ¯ b− ⊕ x/θF ¯ a−)s ¯ x/θF ] ∨ 0/θF =
= (x/θF ¯ b− ⊕ x/θF ¯ a−)s ¯ x/θF = (x/θF ¯ a−)s ¯ (x/θF ¯ b−)s ¯ x/θF =

= ((a−)s ⊕ (x/θF )s)¯ ((b−)s ⊕ (x/θF )s)¯ x/θF =
= (a⊕ (x/θF )s)¯ (b⊕ (x/θF )s)¯ x/θF = (a⊕ (x/θF )s)¯ (b ∧ x/θF ) =

= (a⊕ (x/θF )s)¯ b = (f(x)⊕ (x/θF )s)¯ g(x).
Now we shall prove that (f(x)⊕ (x/θF )s)¯ g(x) = f(x)¯ ((x/θF )− ⊕ g(x)).
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Indeed,

(f(x)⊕ (x/θF )s)¯ g(x) = (f(x)⊕ (x/θF )s)¯ (g(x) ∧ x/θF ) =

= (f(x)⊕ (x/θF )s)¯ [x/θF ¯ ((x/θF )− ⊕ g(x))] =
= [(f(x)⊕ (x/θF )s)¯ x/θF ]¯ ((x/θF )− ⊕ g(x)) =

= (f(x) ∧ x/θF )¯ ((x/θF )− ⊕ g(x)) = f(x)¯ ((x/θF )− ⊕ g(x)).¥

Remark 7.3. For two elements (̂I1, f1), (̂I2, f2) in AF we have

(̂I1, f1) · (̂I2, f2) = ̂(I1 ∩ I2, f1 ¡ f2)

where f1 ¡ f2 are characterized as in Lemma 7.6.

Proposition 7.7. (M(A/θF ), ¢, ¡,− ,s ,0,1) is a pseudo MV− algebra.

Proof. We verify the axioms of pseudo MV− algebras.
(psMV1). Let fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2, 3 and denote I =

I1 ∩ I2 ∩ I3 ∈ F .
Also, denote f = f1 ¢ (f2 ¢ f3), g = (f1 ¢ f2) ¢ f3 and for x ∈ I, a = f1(x), b =

f2(x), c = f3(x).
Clearly a, b, c ≤ x/θF . Thus, for x ∈ I :

f(x) = (f1(x)⊕ (f2 ¢ f3)(x)) ∧ x/θF =

= (f1(x)⊕ ((f2(x)⊕ f3(x)) ∧ x/θF )) ∧ x/θF =
= (a⊕ ((b⊕ c) ∧ x/θF )) ∧ x/θF = ((a ∧ x/θF )⊕ ((b⊕ c) ∧ x/θF )) ∧ x/θF

psmv−c40= (a⊕ (b⊕ c)) ∧ x/θF .

Analogously, g(x) = ((a⊕ b)⊕ c) ∧ x/θF , hence f = g, so

(̂I1, f1) + [(̂I2, f2) + (̂I3, f3)] = [(̂I1, f1) + (̂I2, f2)] + (̂I3, f3),

that is the operation + is associative on AF .
(psMV2). Let f ∈ M(I, A/θF ) with I ∈ F . If x ∈ I, then

(f ¢ 0)(x) = (f(x)⊕ 0(x)) ∧ x/θF = f(x) ∧ x/θF = f(x),

(0 ¢ f)(x) = (0(x)⊕ f(x)) ∧ x/θF = f(x) ∧ x/θF = f(x),
hence f ¢ 0 = 0 ¢ f = f, so

(̂I, f) + (̂A,0) = (̂A,0) + (̂I, f) = (̂I, f).

(psMV3). For f ∈ M(I, A/θF ) (with I ∈ F) and x ∈ I, we have:

(f ¢ 1)(x) = (f(x)⊕ 1(x)) ∧ x/θF = (f(x)⊕ x/θF ) ∧ x/θF = x/θF = 1(x),

(1 ¢ f)(x) = (1(x)⊕ f(x)) ∧ x/θF = (x/θF ⊕ f(x)) ∧ x/θF = x/θF = 1(x),
hence f ¢ 1 = 1 ¢ f = 1, so

(̂I, f) + (̂A,1) = (̂A,1) + (̂I, f) = (̂A,1).

(psMV4). For x ∈ A, we have

1−(x) = x/θF ¯ (1(x))− = x/θF ¯ (x/θF )− = 0/θF = 0(x),

1s(x) = (1(x))s ¯ x/θF = (x/θF )s ¯ x/θF = 0/θF = 0(x).
So, 1s = 0, and 1− = 0, that is

(̂A,1)s = (̂A,0)



180 7. LOCALIZATION OF PSEUDO MV - ALGEBRAS

(̂A,1)− = (̂A,0).
(psMV5). Let f ∈ M(I, A/θF ), g ∈ M(J,A/θF ) (with I, J ∈ F) and x ∈ I ∩ J.
If denote a = f(x), b = g(x), then a, b ≤ x/θF and from Lemma 7.6,
(g− ¢ f−)s = (f(x)⊕ (x/θF )s)¯ g(x) = f(x)¯ ((x/θF )− ⊕ g(x)).
We have:

(gs ¢ fs)−(x) = x/θF ¯ [((g(x))s ¯ x/θF ⊕ (f(x))s ¯ x/θF ) ∧ x/θF ]− =

= x/θF ¯ [(bs ¯ x/θF ⊕ as ¯ x/θF ) ∧ x/θF ]− =

= x/θF ¯ [(bs ¯ x/θF ⊕ as ¯ x/θF )− ∨ (x/θF )−]
psmv−c20=

= [x/θF ¯ (bs ¯ x/θF ⊕ as ¯ x/θF )−] ∨ (x/θF ¯ (x/θF )−) =
= [x/θF ¯ (bs ¯ x/θF ⊕ as ¯ x/θF )−] ∨ 0/θF =

= x/θF ¯ (as ¯ x/θF )− ¯ (bs ¯ x/θF )− =
= x/θF ¯ ((x/θF )− ⊕ a)¯ ((x/θF )− ⊕ b) =

= (x/θF ∧ a)¯ ((x/θF )− ⊕ b) = a¯ ((x/θF )− ⊕ b) =
= f(x)¯ ((x/θF )− ⊕ g(x)),

and by Lemma 7.6, we deduce that

(g− ¢ f−)s = (gs ¢ fs)−,

so
((̂J, g)− + (̂I, f)−)s = ((̂J, g)s + (̂I, f)s)−.

(psMV6). Let f ∈ M(I, A/θF ), g ∈ M(J,A/θF ) (with I, J ∈ F) and x ∈ I ∩ J.
We have:

(f ¢ fs ¡ g)(x) = [f(x)⊕ ((f(x))s ¯ x/θF ⊕ (x/θF )s)¯ g(x)] ∧ x/θF =

= [f(x)⊕ ((f(x))s ¯ ((x/θF )s)− ⊕ (x/θF )s)¯ g(x)] ∧ x/θF =
= [f(x)⊕ ((f(x))s ∨ (x/θF )s)¯ g(x)] ∧ x/θF =

= [f(x)⊕ (f(x) ∧ x/θF )s ¯ g(x)] ∧ x/θF = [f(x)⊕ (f(x))s ¯ g(x)] ∧ x/θF =
= [f(x) ∨ g(x)] ∧ x/θF = f(x) ∨ g(x);

Analogously, (g ¢ gs ¡ f)(x) = g(x) ∨ f(x);

(f ¡ g− ¢ g)(x) = [f(x)¯ ((x/θF )− ⊕ x/θF ¯ (g(x))−)⊕ g(x)] ∧ x/θF =

= [f(x)¯ ((x/θF )− ⊕ ((x/θF )−)s ¯ (g(x))−)⊕ g(x)] ∧ x/θF =
= [f(x)¯ ((x/θF )− ∨ (g(x))−)⊕ g(x)] ∧ x/θF =

= [f(x)¯ (x/θF ∧ g(x))− ⊕ g(x)] ∧ x/θF = [f(x)¯ (g(x))− ⊕ g(x)] ∧ x/θF =
= [f(x) ∨ g(x)] ∧ x/θF = f(x) ∨ g(x);

Analogously, (g ¡ f− ¢ f)(x) = g(x) ∨ f(x);
So,

f ¢ fs ¡ g = g ¢ gs ¡ f = f ¡ g− ¢ g = g ¡ f− ¢ f,

that is
(̂I, f) + (̂I, f)s · (̂J, g) = (̂J, g) + (̂J, g)s · (̂I, f) =

= (̂I, f) · (̂J, g)− + (̂J, g) = (̂J, g) · (̂I, f)− + (̂I, f).
(psMV7). Let f ∈ M(I, A/θF ), g ∈ M(J,A/θF ) where I, J ∈ F . Thus, for

x ∈ I ∩ J :

(f ¡ (f− ¢ g))(x) = f(x)¯ [(x/θF )− ⊕ (x/θF ¯ (f(x))− ⊕ g(x)) ∧ x/θF ] =
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= f(x)¯ ([(x/θF )− ⊕ (x/θF ¯ (f(x))− ⊕ g(x))] ∧ [(x/θF )− ⊕ x/θF ]) =

= f(x)¯ ([(x/θF )− ⊕ (x/θF ¯ (f(x))− ⊕ g(x))] ∧ 1/θF ) =

= f(x)¯ [((x/θF )− ⊕ x/θF ¯ (f(x))−)⊕ g(x)] =

= f(x)¯ [((x/θF )− ⊕ ((x/θF )−)s ¯ (f(x))−)⊕ g(x)] =

= f(x)¯ [((x/θF )− ∨ (f(x))−)⊕ g(x)] = f(x)¯ [(x/θF ∧ f(x))− ⊕ g(x)] =

= f(x)¯ [(f(x))− ⊕ g(x)] = f(x) ∧ g(x),

and

((f ¢ gs) ¡ g)(x) = [(f(x)⊕ (g(x))s ¯ x/θF ) ∧ x/θF ⊕ (x/θF )s]¯ g(x) =

= [((f(x)⊕ (g(x))s ¯ x/θF )⊕ (x/θF )s) ∧ (x/θF ⊕ (x/θF )s)]¯ g(x) =

= [((f(x)⊕ (g(x))s ¯ x/θF )⊕ (x/θF )s) ∧ 1/θF ]¯ g(x) =

= [f(x)⊕ ((g(x))s ¯ x/θF ⊕ (x/θF )s)]¯ g(x) =

= [f(x)⊕ ((g(x))s ¯ ((x/θF )s)− ⊕ (x/θF )s)]¯ g(x) =

= [f(x)⊕ ((g(x))s ∨ (x/θF )s)]¯ g(x) = [f(x)⊕ (g(x) ∧ x/θF )s]¯ g(x) =

= [f(x)⊕ (g(x))s]¯ g(x) = f(x) ∧ g(x),

so,
f ¡ (f− ¢ g) = (f ¢ gs) ¡ g,

that is
(̂I, f) · [(̂I, f)− + (̂J, g)] = [(̂I, f) + (̂J, g)s] · (̂J, g).

(psMV8). For f ∈ M(I, A/θF ) (with I ∈ F) and x ∈ I, we have:

(f−)s(x) = (x/θF ¯ (f(x))−)s ¯ x/θF = [((f(x))−)s ⊕ (x/θF )s]¯ x/θF =

= (f(x)⊕ (x/θF )s)¯ x/θF = f(x) ∧ x/θF = f(x).

So, (f−)s = f, that is

[(̂I, f)−]s = (̂I, f).¥

Corollary 7.8. (AF , +, ·,− ,s ,0 = (̂A,0),1 =(̂A,1)) is a pseudo MV− alge-
bra.

Remark 7.4. If pseudo MV -algebra (A,⊕,¯,− ,s , 0, 1) is an MV -algebra (i.e
x⊕y = y⊕x for all x, y ∈ A), then pseudo MV -algebra (M(A/θF ), ¢, ¡,− ,s ,0,1)
is an MV -algebra (M(A/θF ),¢,− not= ∗,0). Indeed if I1, I2 ∈ F and fi ∈ M(Ii, A/θF ),
i = 1, 2 we have

(f1 ¢ f2)(x) = [f1(x)⊕ f2(x)] ∧ x/θF = [f2(x)⊕ f1(x)] ∧ x/θF = (f2 ¢ f1)(x),

for all x ∈ I1∩I2, then f1¢f2 = f2¢f1, so pseudo MV -algebra (M(A/θF ), ¢,¡,− ,s ,0,1)
is commutative, so is an MV -algebra.

Lemma 7.9. Let f1, f2 ∈ M(A/θF ) with fi ∈ M(Ii, A/θF ), (Ii ∈ F), i = 1, 2.
Then for every x ∈ I1 ∩ I2:

(i) (f1 ∧ f2)(x) = f1(x) ∧ f2(x);
(ii) (f1 ∨ f2)(x) = f1(x) ∨ f2(x).
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Proof. We recall that in pseudo MV− algebra M(A/θF ) we have:

f ∧ g = f ¡ (f− ¢ g) = g ¡ (g− ¢ f) = (f ¢ gs) ¡ g = (g ¢ fs) ¡ f,

and
f ∨ g = f ¢ fs ¡ g = g ¢ gs ¡ f = f ¡ g− ¢ g = g ¡ f− ¢ f.

So: (i). Follow immediately from Proposition 7.7, psMV7).
(ii). Follow immediately from Proposition 7.7, psMV6).¥

Corollary 7.10. (AF , +, ·,− ,s ,0 = (̂A,0),1 = (̂A,1)) is a pseudo MV− al-
gebra, where 0 = (̂A,0) and 1 = 0− = (̂A,1). Also, for two elements (̂I1, f1), (̂I2, f2)
in AF we have

(̂I1, f1) f (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2),

(̂I1, f1) g (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),
where f1 ∧ f2, f1 ∨ f2 are characterized as in Lemma 7.9. If pseudo MV− algebra A

is an MV− algebra, then (AF , +, ·,− ,s ,0 = (̂A,0),1 = (̂A,1)) is an MV− algebra
(AF , +,− not= ∗,0 = (̂A,0)).

Definition 7.2. The pseudo MV− algebra AF will be called the localization
pseudo MV− algebra of A with respect to the topology F .

Clearly, the localization pseudo MV− algebra is a non-commutative generaliza-
tion of localization MV− algebra obtained in Chapter 6.

We also have for pseudo MV− algebras the next analogous result as for MV−
algebras:

Lemma 7.11. Let the map vF : B(A) → AF defined by vF (a) = (̂A, fa) for every
a ∈ B(A). Then:

(i) vF is a morphism of pseudo MV− algebras;

(ii) For a ∈ B(A), (̂A, fa) ∈ B(AF );
(iii) vF (B(A)) ∈ R(AF ).

Proof. (i). We have vF (0) = (̂A, f0) = (̂A,0) = 0.

For a, b ∈ B(A), we have vF (a)+vF (b) = (̂A, fa)+̂(A, fb) = ̂(A, fa ¢ fb)
psmv−c40=

̂(A, fa⊕b) = vF (a⊕ b) and for x ∈ A, since

(fa)−(x) = x/θF ¯ [(a ∧ x)/θF ]− = x/θF ¯ ((x/θF )− ∨ (a/θF )−)

= x/θF ¯ ((x/θF )− ⊕ (a/θF )−) = x/θF ∧ (a/θF )− = fa−(x),
that is (fa)− = fa− we deduce that

vF (a−) = ̂(A, fa−) =(̂A, fa)
−

= (vF (a))−,

and
(fa)s(x) = [(a ∧ x)/θF ]s ¯ x/θF = ((a/θF )s ∨ (x/θF )s)¯ x/θF
= ((a/θF )s ⊕ (x/θF )s)¯ x/θF = (a/θF )s ∧ (x/θF ) = fas(x),

that is (fa)s = fas we deduce that

vF (as) = ̂(A, fas) =(̂A, fa)
s

= (vF (a))s,
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hence vF is a morphism of pseudo MV− algebras.
(ii). For a ∈ B(A) we have a⊕a = a, hence by psmv−c43, ((a∧x)⊕(a∧x))∧x =

a ∧ x for every x ∈ A.
Since A ∈ F we deduce that ((a ∧ x)/θF ⊕ (a ∧ x)/θF ) ∧ x/θF = (a ∧ x)/θF

hence fa ¢ fa = fa, that is

(̂A, fa) ∈ B(AF ).

(iii). To prove that vF (B(A)) is a regular subset of AF , let (̂Ii, fi) ∈ AF , Ii ∈ F ,

i = 1, 2, such that (̂A, fa) f (̂I1, f1) = (̂A, fa) f (̂I2, f2) for every a ∈ B(A). By

(ii), (̂A, fa) ∈ B(AF ). Then (f1 ∧ fa)(x) = (f2 ∧ fa)(x) for every x ∈ I1 ∩ I2 and
a ∈ B(A) ⇔ f1(x) ∧ x/θF ∧ a/θF = f2(x) ∧ x/θF ∧ a/θF for every x ∈ I1 ∩ I2 and
a ∈ B(A) ⇔ f1(x) ∧ a/θF = f2(x) ∧ a/θF for every x ∈ I1 ∩ I2 and a ∈ B(A) .

In particular for a = 1, a/θF = 1 ∈ B(A/θF ) we obtain that f1(x) = f2(x) for
every x ∈ I1 ∩ I2, hence (̂I1, f1) = (̂I2, f2), that is vF (B(A)) ∈ R(AF ). ¥

2. Applications

In the following we describe the localization pseudo MV− algebra AF in some
special instances.

2.1. Application 1. If I ∈ I(A) and F is the topology

F(I) = {I ′ ∈ I(A) : I ⊆ I ′}
(see Example 7.1), then AF is isomorphic with M(I, A/θF ) and vF : B(A) → AF is
defined by vF (a) = fa|I for every a ∈ B(A).

2.2. Application 2: Maximal pseudo MV-algebra of quotients. As for
MV− algebras we have:

Definition 7.3. By a partial strong multiplier of a pseudo MV -algebra A we
mean a map f : I → A, where I ∈ I(A), which verify the following conditions:

(sm− psMV1) f(e¯ x) = e¯ f(x), for every e ∈ B(A) and x ∈ I;
(sm− psMV2) f(x) ≤ x, for every x ∈ I;
(sm− psMV3) If e ∈ I ∩B(A), then f(e) ∈ B(A);
(sm− psMV4) x ∧ f(e) = e ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I (note that e¯ x ∈ I

as e¯ x ≤ e ∧ x ≤ x).

Remark 7.5. The condition sm− psMV4 is not a consequence of sm− psMV1,
sm−psMV2 and sm−psMV3. As example, f : I → A, where I ∈ I(A), f(x) = x∧x−
for every x ∈ I, verify sm − psMV1, sm − psMV1 and sm − psMV3. Indeed, for
x ∈ I and e ∈ B(A), we have

f(e¯ x) = (e¯ x) ∧ (e¯ x)− = (e ∧ x) ∧ (e ∧ x)− = x ∧ [e ∧ (e ∧ x)−] =

= x ∧ [e ∧ (e− ∨ x−)] = x ∧ [e¯ (e− ∨ x−)] = x ∧ [e¯ (e− ⊕ x−)] =

= x ∧ (e ∧ x−) = e ∧ (x ∧ x−) = e ∧ f(x) = e¯ f(x).
Clearly, f(x) ≤ x for every x ∈ I and for e ∈ I ∩ B(A), f(e) = e ∧ e− = 0 ∈ B(A).
But if e ∈ I ∩B(A) and x ∈ I, then

x ∧ f(e) = x ∧ 0 = 0 6= e ∧ (x ∧ x−).



184 7. LOCALIZATION OF PSEUDO MV - ALGEBRAS

By dom(f) ∈ I(A) we denote the domain of f ; if dom(f) = A, we called f total.
To simplify language, we will use strong multiplier instead partial strong multi-

plier using total to indicate that the domain of a certain multiplier is A.

We also have for strong multipliers on a pseudo MV -algebra the next analogous
examples as for MV -algebras:

Example 7.4. The map 0 : A → A defined by 0(x) = 0, for every x ∈ A is a total
strong multiplier of A; indeed if x ∈ A and e ∈ B(A), then 0(e¯ x) = 0 = e¯ 0 =
e¯ 0(x) and 0(x) ≤ x. Clearly, if e ∈ A∩B(A) = B(A), then 0(e) = 0 ∈ B(A) and
for x ∈ A, x ∧ 0(e) = e ∧ 0(x) = 0.

Example 7.5. The map 1 : A → A defined by 1(x) = x, for every x ∈ A is
also a total strong multiplier of A; indeed if x ∈ A and e ∈ B(A), then 1(e ¯ x) =
e ¯ x = e ¯ 1(x) and 1(x) = x ≤ x. The condition sm − psMV3 and sm − psMV4

is obviously verified.

Example 7.6. For a ∈ B(A) and I ∈ I(A), the map fa : I → A defined
by fa(x) = a ∧ x, for every x ∈ I is a strong multiplier of A (called principal).
Indeed, for x ∈ I and e ∈ B(A), we have fa(e ¯ x) = a ∧ (e ¯ x) = a ∧ (e ∧ x) =
e ∧ (a ∧ x) = e ¯ (a ∧ x) = e ¯ fa(x) and clearly fa(x) ≤ x. Also, if e ∈ I ∩ B(A),
fa(e) = e ∧ a ∈ B(A) and x ∧ (a ∧ e) = e ∧ (a ∧ x), for every x ∈ I.

Remark 7.6. In general, if we consider any a ∈ A, then fa : I → A verifies
only sm− psMV1, sm− psMV2 and sm− psMV4 but does not verify sm− psMV3.

If dom(fa) = A, we denote fa by fa ; clearly, f0 = 0.
For I ∈ I(A), we denote

M(I,A) = {f : I → A | f is a strong multiplier on A}
and

M(A) = ∪
I∈I(A)

M(I, A).

If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we define f1 ¢ f2 : I1 ∩ I2 → A by

(f1 ¢ f2)(x) = (f1(x)⊕ f2(x)) ∧ x,

for every x ∈ I1∩ I2.

Lemma 7.12. f1 ¢ f2 ∈ M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 ¢ f2)(e¯ x) = [f1(e¯ x)⊕ f2(e¯ x)] ∧ (e¯ x) =

= [(e¯ f1(x))⊕ (e¯ f2(x))] ∧ (e ∧ x) = [(e ∧ f1(x))⊕ (e ∧ f2(x))] ∧ (e ∧ x)
psmv−c43=

psmv−c43= [e ∧ (f1(x)⊕ f2(x))] ∧ (e ∧ x) = e ∧ [(f1(x)⊕ f2(x)) ∧ x] = e¯ (f1 ¢ f2)(x).
Clearly, (f1 ¢ f2)(x) ≤ x for every x ∈ I1∩ I2 and if e ∈ I1 ∩ I2 ∩B(A) then

(f1 ¢ f2)(e) = [f1(e)⊕ f2(e)] ∧ e ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩I2 we have:

x ∧ (f1 ¢ f2)(e) = x ∧ [(f1(e)⊕ f2(e)) ∧ e] = (f1(e)⊕ f2(e)) ∧ x ∧ e,

and

e ∧ (f1 ¢ f2)(x) = e ∧ [(f1(x)⊕ f2(x)) ∧ x] = e¯ [(f1(x)⊕ f2(x)) ∧ x]
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psmv−c26= [e¯ (f1(x)⊕ f2(x))] ∧ (e¯ x)
psmv−c43= [(e¯ f1(x))⊕ (e¯ f2(x))] ∧ (e¯ x)

= [x¯ f1(e)⊕ x¯ f2(e)] ∧ (e¯ x) = [(f1(e) ∧ x)⊕ (f2(e) ∧ x)] ∧ (e ∧ x)

= [[(f1(e) ∧ x)⊕ (f2(e) ∧ x)] ∧ x] ∧ e
psmv−c40= ((f1(e)⊕ f2(e)) ∧ x) ∧ e

= (f1(e)⊕ f2(e)) ∧ x ∧ e,

hence
x ∧ (f1 ¢ f2)(e) = e ∧ (f1 ¢ f2)(x),

that is f1 ¢ f2 ∈ M(I1 ∩ I2, A).¥
For I ∈ I(A) and f ∈ M(I,A) we define f−, fs : I → A by

f−(x) = x¯ (f(x))−,

and
fs(x) = (f(x))s ¯ x,

for every x ∈ I.

Lemma 7.13. f−, fs ∈ M(I, A).

Proof. If x ∈ I and e ∈ B(A), then

f−(e¯ x) = (e¯ x)¯ (f(e¯ x))− = e¯ x¯ (e¯ f(x))−

= e¯ x¯ (e− ⊕ (f(x))−) = x¯ (e¯ (e− ⊕ (f(x))−)) =

= x¯ (e ∧ (f(x))−) = x¯ (e¯ (f(x))−) = e¯ (x¯ (f(x))−) = e¯ f−(x)
and

fs(e¯ x) = (f(e¯ x))s ¯ (e¯ x) = (e¯ f(x))s ¯ (e¯ x) =

= ((f(x))s ⊕ es)¯ e¯ x = ((f(x))s ∧ e)¯ x = ((f(x))s ¯ e)¯ x =

= ((f(x))s ¯ x)¯ e = fs(x)¯ e = e¯ fs(x).
Clearly, f−(x) ≤ x and fs(x) ≤ x for every x ∈ I.
Clearly, if e ∈ I ∩B(A), then

f−(e) = e¯ [f(e)]− ∈ B(A)

and
fs(e) = [f(e)]s ¯ e ∈ B(A)

Since f ∈ M(I,A), for e ∈ I ∩B(A) and x ∈ I we have:

x∧ f(e) = e∧ f(x) ⇒ x− ∨ (f(e))− = e− ∨ (f(x))− ⇒ x− ⊕ (f(e))− = e− ⊕ (f(x))−

⇒ e¯x¯[x−⊕(f(e))−] = x¯e¯[e−⊕(f(x))−] ⇒ e¯[x∧(f(e))−] = x¯[e∧(f(x))−]

⇒ e¯ x¯ (f(e))− = x¯ e¯ (f(x))− ⇒ x¯ [e¯ (f(e))−] = e¯ [x¯ (f(x))−]

⇒ x ∧ [e¯ (f(e))−] = e ∧ [x¯ (f(x))−] ⇒ x ∧ f−(e) = e ∧ f−(x),
and

x∧ f(e) = e∧ f(x) ⇒ xs ∨ (f(e))s = es ∨ (f(x))s ⇒ (f(e))s ⊕ xs = (f(x))s ⊕ es

⇒ [(f(e))s⊕xs]¯x¯e = [(f(x))s⊕es]¯e¯x ⇒ [(f(e))s∧x]¯e = [(f(x))s∧e]¯x

⇒ (f(e))s ¯ x¯ e = (f(x))s ¯ e¯ x ⇒ [(f(e))s ¯ e]¯ x = [(f(x))s ¯ x]¯ e

⇒ [(f(e))s ¯ e] ∧ x = [(f(x))s ¯ x] ∧ e ⇒ x ∧ fs(e) = e ∧ fs(x),
hence f− and fs verify sm− psMV4, that is f−, fs ∈ M(I,A).¥
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For f ∈ M(I1, A) and g ∈ M(I2, A) with I1, I2 ∈ I(A) we define f ¡ g on I1 ∩ I2

by
f ¡ g = (g− ¢ f−)s.

Lemma 7.14. For every x ∈ I1 ∩ I2:

(f ¡ g)(x) = (f(x)⊕ xs)¯ g(x) = f(x)¯ (x− ⊕ g(x)).

Proof. For x ∈ I1 ∩ I2 we denote a = f(x), b = g(x); clearly a, b ≤ x.
So:

(f ¡ g)(x) = [(g−(x)⊕ f−(x))∧ x]s ¯ x = [(x¯ (g(x))− ⊕ x¯ (f(x))−)∧ x]s ¯ x =

= [(x¯ b− ⊕ x¯ a−) ∧ x]s ¯ x = [(x¯ b− ⊕ x¯ a−)s ∨ xs]¯ x
psmv−c21=

= [(x¯ b− ⊕ x¯ a−)s ¯ x] ∨ (xs ¯ x) = [(x¯ b− ⊕ x¯ a−)s ¯ x] ∨ 0 =
= (x¯b−⊕x¯a−)s¯x = (x¯a−)s¯(x¯b−)s¯x = ((a−)s⊕xs)¯((b−)s⊕xs)¯x =
= (a⊕ xs)¯ (b⊕ xs)¯ x = (a⊕ xs)¯ (b∧ x) = (a⊕ xs)¯ b = (f(x)⊕ xs)¯ g(x).

Now we shall prove that (f(x)⊕ xs)¯ g(x) = f(x)¯ (x− ⊕ g(x)).
Indeed,

(f(x)⊕ xs)¯ g(x) = (f(x)⊕ xs)¯ (g(x) ∧ x) = (f(x)⊕ xs)¯ [x¯ (x− ⊕ g(x))] =

= [(f(x)⊕xs)¯x]¯ (x−⊕ g(x)) = (f(x)∧x)¯ (x−⊕ g(x)) = f(x)¯ (x−⊕ g(x)).¥
Proposition 7.15. (M(A), ¢, ¡,− ,s ,0,1) is a pseudo MV− algebra.

Proof. We verify the axioms of pseudo MV− algebras.
(psMV1). Let fi ∈ M(Ii, A) where Ii ∈ I(A), i = 1, 2, 3 and denote I = I1 ∩ I2 ∩

I3 ∈ I(A).
Also, denote f = f1 ¢ (f2 ¢ f3), g = (f1 ¢ f2) ¢ f3 and for x ∈ I, a = f1(x), b =

f2(x), c = f3(x).
Clearly a, b, c ≤ x. Thus, for x ∈ I :

f(x) = (f1(x)⊕ (f2 ¢ f3)(x)) ∧ x = (f1(x)⊕ ((f2(x)⊕ f3(x)) ∧ x)) ∧ x =

= (a⊕ ((b⊕ c) ∧ x)) ∧ x = ((a ∧ x)⊕ ((b⊕ c) ∧ x)) ∧ x
psmv−c40= (a⊕ (b⊕ c)) ∧ x.

Analogously, g(x) = ((a ⊕ b) ⊕ c) ∧ x, hence f = g, that is the operation ¢ is
associative.

(psMV2). Let f ∈ M(I, A) with I ∈ I(A). If x ∈ I, then

(f ¢ 0)(x) = (f(x)⊕ 0(x)) ∧ x = f(x) ∧ x = f(x),

and
(0 ¢ f)(x) = (0(x)⊕ f(x)) ∧ x = f(x) ∧ x = f(x),

hence f ¢ 0 = 0 ¢ f = f.
(psMV3). For f ∈ M(I, A) (with I ∈ I(A)) and x ∈ I, we have:

(f ¢ 1)(x) = (f(x)⊕ 1(x)) ∧ x = (f(x)⊕ x) ∧ x = x = 1(x),

and
(1 ¢ f)(x) = (1(x)⊕ f(x)) ∧ x = (x⊕ f(x)) ∧ x = x = 1(x),

hence f ¢ 1 = 1 ¢ f = 1.
(psMV4). For x ∈ A, we have

1−(x) = x¯ (1(x))− = x¯ x− = 0 = 0(x),



2. APPLICATIONS 187

and
1s(x) = (1(x))s ¯ x = xs ¯ x = 0 = 0(x).

So, 1s = 0, and 1− = 0.
(psMV5). Let f ∈ M(I, A), g ∈ M(J,A) (with I, J ∈ I(A)) and x ∈ I ∩ J.
If denote a = f(x), b = g(x), then a, b ≤ x and from Lemma 7.14,
(g− ¢ f−)s = (f(x)⊕ xs)¯ g(x) = f(x)¯ (x− ⊕ g(x)).
We have:

(gs ¢ fs)−(x) = x¯ [((g(x))s ¯ x⊕ (f(x))s ¯ x) ∧ x]− =

= x¯ [(bs ¯ x⊕ as ¯ x) ∧ x]− = x¯ [(bs ¯ x⊕ as ¯ x)− ∨ x−]
psmv−c20= [x¯ (bs ¯ x⊕ as ¯ x)−] ∨ (x¯ x−) = [x¯ (bs ¯ x⊕ as ¯ x)−] ∨ 0 =

= x¯ (as ¯ x)− ¯ (bs ¯ x)− = x¯ (x− ⊕ a)¯ (x− ⊕ b) =
= (x ∧ a)¯ (x− ⊕ b) = a¯ (x− ⊕ b) = f(x)¯ (x− ⊕ g(x)),

and by Lemma 7.14, we deduce that

(g− ¢ f−)s = (gs ¢ fs)−.

(psMV6). Let f ∈ M(I, A), g ∈ M(J,A) (with I, J ∈ I(A)) and x ∈ I ∩ J.
We have:

(f ¢ fs ¡ g)(x) = [f(x)⊕ ((f(x))s ¯ x⊕ xs)¯ g(x)] ∧ x =

= [f(x)⊕ ((f(x))s ¯ (xs)− ⊕ xs)¯ g(x)] ∧ x =
= [f(x)⊕ ((f(x))s ∨ xs)¯ g(x)] ∧ x =

= [f(x)⊕ (f(x) ∧ x)s ¯ g(x)] ∧ x = [f(x)⊕ (f(x))s ¯ g(x)] ∧ x =
= [f(x) ∨ g(x)] ∧ x = f(x) ∨ g(x);

Analogously, (g ¢ gs ¡ f)(x) = g(x) ∨ f(x);

(f ¡ g− ¢ g)(x) = [f(x)¯ (x− ⊕ x¯ (g(x))−)⊕ g(x)] ∧ x =

= [f(x)¯ (x− ⊕ (x−)s ¯ (g(x))−)⊕ g(x)] ∧ x =
= [f(x)¯ (x− ∨ (g(x))−)⊕ g(x)] ∧ x = [f(x)¯ (x ∧ g(x))− ⊕ g(x)] ∧ x =

= [f(x)¯ (g(x))− ⊕ g(x)] ∧ x = [f(x) ∨ g(x)] ∧ x = f(x) ∨ g(x);
Analogously, (g ¡ f− ¢ f)(x) = g(x) ∨ f(x);
So,

f ¢ fs ¡ g = g ¢ gs ¡ f = f ¡ g− ¢ g = g ¡ f− ¢ f.

(psMV7). Let f ∈ M(I,A), g ∈ M(J,A) where I, J ∈ I(A). Thus, for x ∈ I ∩J :

(f ¡ (f− ¢ g))(x) = f(x)¯ [x− ⊕ [(x¯ (f(x))− ⊕ g(x)) ∧ x]] =
= f(x)¯ ([x− ⊕ (x¯ (f(x))− ⊕ g(x))] ∧ [x− ⊕ x]) =

= f(x)¯ ([x− ⊕ (x¯ (f(x))− ⊕ g(x))] ∧ 1) =
= f(x)¯ [(x− ⊕ x¯ (f(x))−)⊕ g(x)] =

= f(x)¯ [(x− ⊕ (x−)s ¯ (f(x))−)⊕ g(x)] =
= f(x)¯ [(x− ∨ (f(x))−)⊕ g(x)] = f(x)¯ [(x ∧ f(x))− ⊕ g(x)] =

= f(x)¯ [(f(x))− ⊕ g(x)] = f(x) ∧ g(x).
And

((f ¢ gs) ¡ g)(x) = [(f(x)⊕ (g(x))s ¯ x) ∧ x⊕ xs]¯ g(x) =

= [((f(x)⊕ (g(x))s ¯ x)⊕ xs) ∧ (x⊕ xs)]¯ g(x) =
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= [((f(x)⊕ (g(x))s ¯ x)⊕ xs) ∧ 1]¯ g(x) =
= [f(x)⊕ ((g(x))s ¯ x⊕ xs)]¯ g(x) = [f(x)⊕ ((g(x))s ¯ (xs)− ⊕ xs)]¯ g(x) =

= [f(x)⊕ ((g(x))s ∨ xs)]¯ g(x) = [f(x)⊕ (g(x) ∧ x)s]¯ g(x) =
= [f(x)⊕ (g(x))s]¯ g(x) = f(x) ∧ g(x).

So,
f ¡ (f− ¢ g) = (f ¢ gs) ¡ g.

psMV8). For f ∈ M(I,A) (with I ∈ I(A)) and x ∈ I, we have:

(f−)s(x) = (x¯ (f(x))−)s ¯ x = [((f(x))−)s ⊕ xs]¯ x =

= (f(x)⊕ xs)¯ x = f(x) ∧ x = f(x).
So, (f−)s = f.¥
Remark 7.7. To prove that (M(A), ¢, ¡,− ,s ,0,1) is a pseudo MV -algebra is

suffice to ask for multipliers only the axioms sm− psMV1 and sm− psMV2.

Remark 7.8. If pseudo MV -algebra (A,⊕,¯,− ,s , 0, 1) is an MV -algebra (i.e
x ⊕ y = y ⊕ x for all x, y ∈ A), then pseudo MV -algebra (M(A), ¢, ¡,− ,s ,0,1)
is an MV -algebra (M(A), ¢,− not= ∗,0). Indeed if I1, I2 ∈ I(A) and fi ∈ M(Ii, A),
i = 1, 2 we have

(f1 ¢ f2)(x) = [f1(x)⊕ f2(x)] ∧ x = [f2(x)⊕ f1(x)] ∧ x = (f2 ¢ f1)(x),

for all x ∈ I1∩I2, then f1¢f2 = f2¢f1, so pseudo MV -algebra (M(A), ¢, ¡,− ,s ,0,1)
is commutative, so is an MV -algebra.

Lemma 7.16. Let f, g ∈ M(A). Then for every x ∈ dom(f) ∩ dom(g):
(i) (f ∧ g)(x) = f(x) ∧ g(x);

(ii) (f ∨ g)(x) = f(x) ∨ g(x).

Proof. We recall that in pseudo MV− algebra M(A) we have:

f ∧ g = f ¡ (f− ¢ g) = g ¡ (g− ¢ f) = (f ¢ gs) ¡ g = (g ¢ fs) ¡ f,

f ∨ g = f ¢ fs ¡ g = g ¢ gs ¡ f = f ¡ g− ¢ g = g ¡ f− ¢ f.

So: (i). Follow immediately from Proposition 7.15, psMV7).
(ii). Follow immediately from Proposition 7.15, psMV6).¥

Lemma 7.17. Let the map vA : B(A) → M(A) defined by vA(a) = fa for every
a ∈ B(A). Then vA is an injective morphism of pseudo MV− algebras.

Proof. Clearly, vA(0) = f0 = 0. Let a, b ∈ B(A). We have:

(vA(a) ¢ vA(b))(x) = (vA(a)(x)⊕ vA(b)(x)) ∧ x = ((a ∧ x)⊕ (b ∧ x)) ∧ x

psmv−c40= (a⊕ b) ∧ x = (vA(a⊕ b))(x),
hence

vA(a⊕ b) = vA(a) ¢ vA(b).
Also,

(vA(a))−(x) = x¯ (vA(a)(x))− = x¯ (a∧ x)− = x¯ (a− ∨ x−) = x¯ (x−⊕ a−) =

(since a− ∈ B(A))
= x ∧ a− = vA(a−)(x),
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hence
vA(a−) = (vA(a))−,

and

(vA(a))s(x) = (vA(a)(x))s¯ x = (a∧ x)s¯ x = (as ∨ xs)¯ x = (as⊕ xs)¯ x =

(since as ∈ B(A))
= as ∧ x = vA(as)(x),

hence
vA(as) = (vA(a))s,

that is vA is a morphism of pseudo-MV algebras.
To prove the injectivity of vA let a, b ∈ B(A) such that vA(a) = vA(b). Then

a∧x = b∧x, for every x ∈ A, hence for x = 1 we obtain that a∧1 = b∧1 ⇒ a = b.¥
We denote R(A) = {I ⊆ A : I is a regular subset of pseudo MV−algebra A}

(see Definition 6.5).

Remark 7.9. The condition I ∈ R(A) is equivalent with the condition: for every
x, y ∈ A, if fx|I∩B(A) = fy|I∩B(A), then x = y.

Lemma 7.18. If I1, I2 ∈ I(A) ∩R(A), then I1 ∩ I2 ∈ I(A) ∩R(A).

Remark 7.10. By Lemma 7.18, we deduce that

Mr(A) = {f ∈ M(A) : dom(f) ∈ I(A) ∩R(A)}
is a pseudo-MV subalgebra of M(A).

Proposition 7.19. Mr(A) is a Boolean subalgebra of M(A).

Proof. Let f : I → A be a strong multiplier on A with I ∈ I(A) ∩R(A). Then

e ∧ [f ¢ f ](x) = e ∧ [f(x)⊕ f(x)] ∧ x =

= [e ∧ (f(x)⊕ f(x))] ∧ x
psmv−c40= [(e ∧ f(x))⊕ (e ∧ f(x))] ∧ x

sm−psMV4=
sm−psMV4= [(x ∧ f(e))⊕ (x ∧ f(e))] ∧ x = [(x⊕ x) ∧ f(e)] ∧ x =

= (x⊕ x) ∧ x ∧ f(e) = x ∧ f(e) = e ∧ f(x),

so (f(x) ⊕ f(x)) ∧ x = f(x) (since I ∈ R(A)), hence f ¢ f = f, that is Mr(A) is a
Boolean subalgebra of M(A). ¥

Definition 7.4. Given two strong multipliers f1, f2 on A, we say that f2 extends
f1 if dom(f1) ⊆ dom(f2) and f2|dom(f1) = f1; we write f1 ≤ f2 if f2 extended f1.
A strong multiplier f is called maximal if f can not be extended to a strictly larger
domain.

Lemma 7.20. (i) If f1, f2 ∈ M(A), f ∈ Mr(A) and f ≤ f1, f ≤ f2, then f1

and f2 coincide on dom(f1) ∩ dom(f2);
(ii) Every strong multiplier f ∈ Mr(A) can be extended to a maximal strong

multiplier. Moreover, each principal strong multiplier fa with a ∈ B(A)
and dom(fa) ∈ I(A) ∩ R(A) can be uniquely extended to a total strong
multiplier fa and each non-principal strong multiplier can be extended to a
maximal non-principal one.
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Proof. See the proof of Lemma 6.13. ¥
On the boolean algebra Mr(A) we consider the relation ρA defined by

(f1, f2) ∈ ρA iff f1 and f2 coincide on the intersection of their domains.

Lemma 7.21. ρA is a congruence on Mr(A).

Proof. The reflexivity and the symmetry of ρA are immediately; to prove
the transitivity of ρA let (f1, f2), (f2, f3) ∈ ρA. Therefore f1, f2 and respectively
f2, f3 coincide on the intersection of their domains. If by contrary, there exists
x0 ∈ dom(f1) ∩ dom(f3) such that f1(x0) 6= f3(x0), since dom(f2) ∈ R(A), there
exists e ∈ dom(f2) ∩ B(A) such that e ∧ f1(x0) 6= e ∧ f3(x0) ⇔ e ¯ f1(x0) 6=
e¯f3(x0) ⇔ f1(e¯x0) 6= f3(e¯x0) which is contradictory, since e¯x0 ∈ dom(f1)∩
dom(f2) ∩ dom(f3).

To prove the compatibility of ρA with the operations ¢,− and s on Mr(A),
let (f1, f2), (g1, g2) ∈ ρA. So, we have f1, f2 and respectively g1, g2 coincide on the
intersection of their domains.

To prove (f1 ¢ g1, f2 ¢ g2) ∈ ρA let x ∈ dom(f1)∩ dom(f2)∩ dom(g1)∩ dom(g2).
Then f1(x) = f2(x) and g1(x) = g2(x), hence (f1 ¢ g1)(x) = [f1(x) ⊕ g1(x)] ∧ x =
[f2(x)⊕ g2(x)]∧x = (f2 ¢ g2)(x), that is f1 ¢ g1, f2 ¢ g2 coincide on the intersection
of their domains, hence ρA is compatible with the operation ¢.

If x ∈ dom(f1) ∩ dom(f2) then f1(x) = f2(x) and f−1 (x) = x ¯ (f1(x))− =
x¯ (f2(x))− = f−2 (x), and fs1 (x) = (f1(x))s¯x = (f2(x))s¯x = fs2 (x), hence f−1 ,
f−2 and fs1 , fs2 coincide on the intersection of their domains, hence ρA is compatible
with the operations − and s. ¥

Remark 7.11. We denote by Q(A) the quotient pseudo MV− algebra Mr(A)/ρA;
this algebra will have a very important role for this paper (see Theorem 7.26).

For f ∈ Mr(A) with I = dom(f) ∈ I(A) ∩ R(A), we denote by [f, I] the
congruence class of f modulo ρA.

Lemma 7.22. Let the map vA : B(A) → Q(A) defined by vA(a) = [fa, A] for
every a ∈ B(A). Then

(i) vA is an injective morphism of Boolean algebras,
(ii) vA(B(A)) ∈ R(Q(A)).

Proof. (i). Follow from Lemma 7.17.
(iii). To prove vA(B(A)) ∈ R(Q(A)), if by contrary there exist f1, f2 ∈ Mr(A)

such that [f1, dom(f1)] 6= [f2, dom(f2)] (that is there exists x0 ∈ dom(f1) ∩ dom(f2)
such that f1(x0) 6= f2(x0)) and [f1, dom(f1)] ∧ [fa, A] = [f2, dom(f2)] ∧ [fa, A] for
every [fa, A] ∈ vA(B(A)) ∩ B(Q(A)) (that is by (ii) for every [fa, A] ∈ vA(B(A))
with a ∈ B(A)), then (f1∧fa)(x) = (f2∧fa)(x) for every x ∈ dom(f1)∩dom(f2) and
every a ∈ B(A) ⇔ f1(x)∧a∧x = f2(x)∧a∧x for every x ∈ dom(f1)∩dom(f2) and
every a ∈ B(A). For a = 1 and x = x0 we obtain that f1(x0) ∧ x0 = f2(x0) ∧ x0 ⇔
f1(x0) = f2(x0) which is contradictory. ¥

Remark 7.12. Since for every a ∈ B(A), fa is the unique maximal strong mul-
tiplier on [fa, A] (by Lemma 7.20) we can identify [fa, A] with fa. So, since vA is
injective map, the elements of B(A) can be identified with the elements of the set {
fa : a ∈ B(A)}.
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Lemma 7.23. In view of the identifications made above, if [f, dom(f)] ∈ Q(A)
(with f ∈ Mr(A) and I = dom(f) ∈ I(A) ∩R(A)), then

I ∩B(A) ⊆ {a ∈ B(A) : fa ∧ [f, dom(f)] ∈ B(A)}.
Proof. Let a ∈ I ∩ B(A). Since for every x ∈ I, (fa ∧ f)(x) = fa(x) ∧ f(x) =

a ∧ x ∧ f(x) = a ∧ f(x) = a¯ f(x) = f(a¯ x) = x¯ f(a) (by psMV19) = x ∧ f(a),
we deduce that fa ∧ f is principal. ¥

Definition 7.5. Let A be a pseudo MV− algebra. A pseudo MV− algebra F
is called pseudo MV− algebra of fractions of A if:

(psMV fr1) B(A) is a pseudo MV− subalgebra of F (that is B(A) ≤ F );
(psMV fr2) For every a′, b′, c′ ∈ F, a′ 6= b′, there exists e ∈ B(A) such that e∧a′ 6= e∧b′

and e ∧ c′ ∈ B(A).

So, pseudo MV− algebra B(A) is a pseudo MV− algebra of fractions of itself
(since 1 ∈ B(A)).

As a notational convenience, we write A ¹ F to indicate that F is a pseudo
MV− algebra of fractions for A.

Definition 7.6. A pseudo MV−algebra AM is a maximal pseudo MV− algebra
of quotients of A if A ¹ AM and for every pseudo MV− algebra F with A ¹ F
there exists an injective morphism of pseudo MV− algebras i : F → AM .

Remark 7.13. If A ¹ F , then F is a Boolean algebra hence AM is a Boolean
algebra. Indeed, if a′ ∈ F such that a′ 6= a′ ⊕ a′, then there exists e ∈ B(A) such
that e ∧ a′ ∈ B(A) and e ∧ a′ 6= e ∧ (a′ ⊕ a′) psmv−c43= (e ∧ a′) ⊕ (e ∧ a′), which is
contradictory!

Lemma 7.24. Let A ¹ F ; then for every a′, b′ ∈ F, a′ 6= b′, and any finite
sequence c′1, ..., c

′
n ∈ F, there exists e ∈ B(A) such that e∧a′ 6= e∧b′ and e∧c′i ∈ B(A)

for i = 1, 2, ..., n (n ≥ 2).

Lemma 7.25. Let A ¹ F and a′ ∈ F. Then

Ia′ = {e ∈ B(A) : e ∧ a′ ∈ B(A)} ∈ I(B(A)) ∩R(A).

Theorem 7.26. Q(A) is a maximal pseudo MV− algebra of quotients of A.

Proof. The fact that B(A) is a pseudo MV− subalgebra of Q(A) follows from
Lemma 7.22, (i). To prove psMV fr2 see the proof of Theorem 6.19).

To prove the maximality of Q(A), let F be a pseudo MV−algebra such that
A ¹ F ; thus B(A) ⊆ B(F )

A ¹ F
↙i

Q(A)
For a′ ∈ F, Ia′ = {e ∈ B(A) : e ∧ a′ ∈ B(A)} ∈ I(B(A)) ∩ R(A) (by Lemma

7.25).
Thus fa′ : Ia′ → A defined by fa′(x) = x∧a′ is a strong multiplier (see the proof

of Theorem 6.19).
We define i : F → Q(A) , by i(a′) = [fa′ , Ia′ ], for every a′ ∈ F. Clearly i(0) = 0.

For a′, b′ ∈ F and x ∈ Ia′ ∩ Ib′ , we have

(i(a′) ¢ i(b′))(x) = [(a′ ∧ x)⊕ (b′ ∧ x)] ∧ x
psmv−c40=
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= (a′ ⊕ b′) ∧ x = i(a′ ⊕ b′)(x),
hence i(a′) ¢ i(b′) = i(a′ ⊕ b′).

Also, for x ∈ Ia′ we have

(i(a′))−(x) = x¯ [i(a′)(x)]− = x¯ (a′ ∧ x)− =

= x¯ (a′ ¯ x)− = x¯ [x− ⊕ (a′)−] = x ∧ (a′)− =

= f(a′)−(x) = i((a′)−)(x),
and

(i(a′))s(x) = [i(a′)(x)]s ¯ x = (a′ ∧ x)s ¯ x =

= (x¯ a′)s ¯ x = [(a′)s ⊕ xs]¯ x = (a′)s ∧ x =

= f(a′)s(x) = i((a′)s)(x),
hence

i((a′)−) = (i(a′))−,

and
i((a′)s) = (i(a′))s,

that is i is a morphism of pseudo MV− algebras.
To prove the injectivity of i, let a′, b′ ∈ F such that i(a′) = i(b′). It follow that

[fa′ , Ia′ ] = [fb′ , Ib′ ] so fa′(x) = fb′(x) for every x ∈ Ia′ ∩ Ib′ . We get a′ ∧x = b′ ∧x for
every x ∈ Ia′ ∩ Ib′ . If a′ 6= b′, by Lemma 7.24 (since A ¹ F ), there exists e ∈ B(A)
such that e ∧ a′, e ∧ b′ ∈ B(A) and e ∧ a′ 6= e ∧ b′ which is contradictory (since
e ∧ a′, e ∧ b′ ∈ B(A) implies e ∈ Ia′ ∩ Ib′).¥

Remark 7.14. 1. If A is a pseudo MV− algebra with B(A) = {0, 1} = L2

and A ¹ F then F = {0, 1}, hence Q(A) ≈ L2. Indeed, if a, b, c ∈ F
with a 6= b, then by psMV fr2 there exists e ∈ B(A) such e ∧ a 6= e ∧ b
(hence e 6= 0) and e ∧ c ∈ B(A). Clearly, e = 1, hence c ∈ B(A), that is
F = B(A). As examples of pseudo MV− algebras with this property we
have local pseudo MV− algebras and pseudo MV− chain.

2. If A is an MV -algebra, then Q(A) is the maximal MV-algebra of quotients
obtained in Section 3 for MV− algebras.

3. If A is an Boolean algebra, then B(A) = A and Q(A) is the classical
Dedekind-MacNeille completion of A (see [122], p.687).

4. In [58] is proved that:
(i) Any archimedean pseudo MV− algebra is commutative i.e. an MV

algebra.
(ii) A pseudo MV− algebra has the Dedekind-MacNeille completion as

a pseudo MV− algebra iff A is archimedean.

As in the case of MV and BL− algebras, to obtain the maximal pseudo MV
-algebra of quotients Q(A) as a localization relative to a topology F we develope
another theory of multipliers (meaning we add new axioms for F-multipliers).

Definition 7.7. Let F be a topology on a pseudo MV-algebra A. A strong -
F− multiplier is a mapping f : I → A/θF (where I ∈ F) which verifies the axioms
m− psMV1 and m− psMV2 (see Definition 7.1) and

(m− psMV3) If e ∈ I ∩B(A), then f(e) ∈ B(A/θF );
(m− psMV4) (x/θF ) ∧ f(e) = (e/θF ) ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.
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Remark 7.15. If F = {A}, then θF is the identity congruence of A so an strong
F− multiplier is a strong total multiplier.

Remark 7.16. The maps 0,1 : A → A/θF defined by 0(x) = 0/θF and 1(x) =
x/θF for every x ∈ A are strong - F− multipliers. We recall that if fi : Ii → A/θF ,
(with Ii ∈ F , i = 1, 2) are F− multipliers, we consider the mapping f1¢f2 : I1∩I2 →
A/θF defined by

(f1 ¢ f2)(x) = (f1(x)⊕ f2(x)) ∧ x/θF
for any x ∈ I1 ∩ I2, and for any F− multiplier f : I → A/θF (with I ∈ F ) we
consider the mappings

f−, fs : I → A/θF
defined by

f−(x) = x/θF ¯ (f(x))−

and
fs(x) = (f(x))s ¯ x/θF

for any x ∈ I. If f1, f2 and f are strong - F− multipliers, then the multipliers
f1 ¢ f2, f

−, fs are also strong - F− multipliers. Clearly, if e ∈ I ∩B(A), then

(f1 ¢ f2)(e) = [f1(e)⊕ f2(e)] ∧ e/θF ∈ B(A/θF )

f−(e) = e/θF ¯ [f(e)]− ∈ B(A/θF )
fs(e) = [f(e)]s ¯ e/θF ∈ B(A/θF ).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1 ∩ I2 we have:

x/θF ∧ (f1 ¢ f2)(e) = x/θF ∧ [(f1(e)⊕ f2(e))∧ e/θF ] = (f1(e)⊕ f2(e))∧x/θF ∧ e/θF
psmv−c43= (f1(e)⊕ f2(e)) ∧ x/θF ,

and

e/θF ∧(f1¢f2)(x) = e/θF ∧[(f1(x)⊕f2(x))∧x/θF ] = e/θF¯[(f1(x)⊕f2(x))∧x/θF ]
psmv−c26= [e/θF ¯ (f1(x)⊕ f2(x))] ∧ (e¯ x)/θF

psmv−c43=
psmv−c43= [(e/θF ¯ f1(x))⊕ (e/θF ¯ f2(x))] ∧ (e¯ x)/θF

= [x/θF¯f1(e)⊕x/θF¯f2(e)]∧(e¯x)/θF = [(f1(e)∧x/θF )⊕(f2(e)∧x/θF )]∧(e∧x)/θF
= [[(f1(e) ∧ x/θF )⊕ (f2(e) ∧ x/θF )] ∧ x/θF ] ∧ e/θF

psmv−c40= ((f1(e)⊕ f2(e)) ∧ x/θF ) ∧ e/θF = ((f1(e)⊕ f2(e)) ∧ e/θF ) ∧ x/θF
psmv−c43= (f1(e)⊕ f2(e)) ∧ x/θF

hence
x/θF ∧ (f1 ¢ f2)(e) = e/θF ∧ (f1 ¢ f2)(x).

Since f ∈ M(I,A/θF ), for e ∈ I ∩B(A) and x ∈ I we have:

x/θF ∧ f(e) = e/θF ∧ f(x) ⇒ (x/θF )− ∨ (f(e))− = (e/θF )− ∨ (f(x))−

⇒ (x/θF )− ⊕ (f(e))− = (e/θF )− ⊕ (f(x))−

⇒ e/θF ¯ x/θF ¯ [(x/θF )− ⊕ (f(e))−] = x/θF ¯ e/θF ¯ [(e/θF )− ⊕ (f(x))−] ⇒
⇒ e/θF ¯ [x/θF ∧ (f(e))−] = x/θF ¯ [e/θF ∧ (f(x))−]
⇒ e/θF ¯ x/θF ¯ (f(e))− = x/θF ¯ e/θF ¯ (f(x))−

⇒ x/θF ¯ [e/θF ¯ (f(e))−] = e/θF ¯ [x/θF ¯ (f(x))−]
⇒ x/θF∧[e/θF¯(f(e))−] = e/θF∧[x/θF¯(f(x))−] ⇒ x/θF∧f−(e) = e/θF∧f−(x),
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and

x/θF ∧ f(e) = e/θF ∧ f(x) ⇒ (x/θF )s ∨ (f(e))s = (e/θF )s ∨ (f(x))s

⇒ (f(e))s ⊕ (x/θF )s = (f(x))s ⊕ (e/θF )s

⇒ [(f(e))s ⊕ (x/θF )s]¯ x/θF ¯ e/θF = [(f(x))s ⊕ (e/θF )s]¯ e/θF ¯ x/θF ⇒
⇒ [(f(e))s ∧ x/θF ]¯ e/θF = [(f(x))s ∧ e/θF ]¯ x/θF
⇒ (f(e))s ¯ x/θF ¯ e/θF = (f(x))s ¯ e/θF ¯ x/θF
⇒ [(f(e))s ¯ e/θF ]¯ x/θF = [(f(x))s ¯ x/θF ]¯ e/θF
⇒ [(f(e))s ¯ e/θF ] ∧ x/θF = [(f(x))s ¯ x/θF ] ∧ e/θF

⇒ x/θF ∧ fs(e) = e/θF ∧ fs(x).

Remark 7.17. Analogous as in the case of F− multipliers if we work with strong
-F− multipliers we obtain a pseudo MV− subalgebra of AF denoted by s−AF which
will be called the strong -localization pseudo MV− algebra of A with respect to the
topology F .

Remark 7.18. If F = I(A)∩R(A) is the topology of regular ordered ideals (see
Example 7.2), then θF is the identity congruence of A and

s−AF = lim−→
I∈F

M(I, A),

where M(I, A) is the set of multipliers of A having the domain I (in the sense of
Definitions 7.3).

In these situations we obtain:

Proposition 7.27. In the case F = I(A)∩R(A), s−AF is exactly a maximal
pseudo MV− algebra Q(A) of quotients of A.

2.3. Application 3: Pseudo MV algebra of frations relative to a ∧−closed
system. Let A be a pseudo MV -algebra. We denote by S(A) the set of all ∧−closed
system of A (see Definition 6.1). Clearly {1}, A ∈ S(A).

For S ∈ S(A), on the pseudo MV− algebra A we consider the relation θS defined
by

(x, y) ∈ θS iff there exists e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

Lemma 7.28. θS is a congruence on A.

Proof. The reflexivity (since 1 ∈ S ∩ B(A)) and the symmetry of θS are
immediately. To prove the transitivity of θS , let (x, y), (y, z) ∈ θS . Thus there exists
e, f ∈ S∩B(A) such that x∧e = y∧e and y∧f = z∧f. If denote g = e∧f ∈ S∩B(A),
then g ∧ x = (e ∧ f)∧ x = (e ∧ x) ∧ f = (y ∧ e) ∧ f = (y ∧ f) ∧ e = (z ∧ f)∧
e = z ∧ (f ∧ e) = z ∧ g, hence (x, z) ∈ θS .

To prove the compatibility of θS with the operations ⊕,− and s , let x, y, z, t ∈ A
such that (x, y) ∈ θS and (z, t) ∈ θS . Thus there exists e, f ∈ S ∩ B(A) such that
x ∧ e = y ∧ e and z ∧ f = t ∧ f ; we denote g = e ∧ f ∈ S ∩B(A).

By psmv − c43 we obtain:

(x⊕ z) ∧ g = (g ∧ x)⊕ (g ∧ z) = (e ∧ f ∧ x)⊕ (e ∧ f ∧ z) =

= (y ∧ e ∧ f)⊕ (e ∧ t ∧ f) = (g ∧ y)⊕ (g ∧ t) = (y ⊕ t) ∧ g,

hence (x⊕ z, y ⊕ t) ∈ θS
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From x ∧ e = y∧ e we deduce

x¯ e = y ¯ e ⇒ (x¯ e)− = (y ¯ e)− ⇒ e− ⊕ x− = e− ⊕ y−,

so e¯ (e− ⊕ x−) = e¯ (e− ⊕ y−), hence x− ∧ e = y− ∧ e, that is (x−, y−) ∈ θS .
From x∧ e = y∧ e we deduce es⊕xs = es⊕ ys. Since e ∈ B(A) it follows that

xs ⊕ es = ys ⊕ es. So, (xs ⊕ es)¯ e = (ys ⊕ es)¯ e, hence xs ∧ e = ys ∧ e, that
is (xs, ys) ∈ θS .¥

For x we denote by x/S the equivalence class of x relative to θS and by

A[S] = A/θS .

By pS : A → A[S] we denote the canonical map defined by pS(x) = x/S, for every
x ∈ A. Clearly, in A[S], 0 = 0/S, 1 = 1/S and for every x, y ∈ A,

x/S ⊕ y/S = (x⊕ y)/S,

(x/S)− = x−/S,

(x/S)s = xs/S,

So, pS is an onto morphism of pseudo MV− algebras.

Remark 7.19. Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1 we deduce that
s/S = 1/S = 1, hence pS(S ∩B(A)) = {1}.

Proposition 7.29. If a ∈ A, then a/S ∈ B(A[S]) iff there exists e ∈ S ∩ B(A)
such that e ∧ a ∈ B(A). So, if e ∈ B(A), then e/S ∈ B(A[S]).

Proof. For a ∈ A, we have a/S ∈ B(A[S]) ⇔ a/S ⊕ a/S = a/S ⇔ (a⊕ a)/S =
a/S ⇔ there exists e ∈ S∩B(A) such that (a⊕a)∧e = a∧e

psmv−c43⇔ (a∧e)⊕(a∧e) =
a ∧ e ⇔ a ∧ e ∈ B(A).

If e ∈ B(A), since 1 ∈ S ∩ B(A) and 1 ∧ e = e ∈ B(A) we deduce that e/S ∈
B(A[S]). ¥

Theorem 7.30. If A′ is a pseudo MV− algebra and f : A → A′ is a morphism
of pseudo MV− algebras such that f(S ∩ B(A)) = {1}, then there exists a unique
morphism of pseudo MV− algebras f ′ : A[S] → A′ such that the diagram

A
pS−→ A[S]

↘
f

↙
f ′

A′

is commutative (i.e. f ′ ◦ pS = f).

Proof. If x, y ∈ A and pS(x) = pS(y), then (x, y) ∈ θS , hence there exists
e ∈ S∩B(A) such that x∧ e = y∧ e. Since f is morphism of pseudo MV− algebras,
we obtain that f(x ∧ e) = f(y ∧ e) ⇔ f(x) ∧ f(e) = f(y) ∧ f(e) ⇔ f(x) ∧ 1 =
f(y) ∧ 1 ⇔ f(x) = f(y).

From this observation we deduce that the map f ′ : A[S] → A′ defined for x ∈ A
by f ′(x/S) = f(x) is correctly defined. Clearly, f ′ is a morphism of pseudo MV−
algebras. The unicity of f ′ follows from the fact that pS is a onto map.¥

Remark 7.20. Theorem 7.30 allows us to call A[S] the pseudo MV− algebra of
fractions relative to the ∧−closed system S .
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Remark 7.21. If pseudo MV− algebra (A,⊕,¯,− ,s , 0, 1) is an MV− algebra
(i.e. x⊕y = y⊕x, for all x, y ∈ A), then x/S⊕y/S = (x⊕y)/S = (y⊕x)/S = y/S⊕
x/S, for all x, y ∈ A. So, in this case, pseudo MV− algebra (A[S],⊕,¯,− ,s ,0,1)
is an MV− algebra. In Chapter 2 us to call A[S] the MV− algebra of fractions
relative to the ∧−closed system S.

Example 7.7. If S = {1} or S is such that 1 ∈ S and S∩(B(A)\{1}) = ∅, then
for x, y ∈ A, (x, y) ∈ θS ⇐⇒ x ∧ 1 = y ∧ 1 ⇐⇒ x = y, hence in this case A[S] = A.

Example 7.8. If S is an ∧−closed system such that 0 ∈ S (for example S = A
or S = B(A)), then for every x, y ∈ A, (x, y) ∈ θS (since x ∧ 0 = y ∧ 0 and
0 ∈ S ∩B(A)), hence in this case A[S] = 0.

If FS is the topology associated with an ∧−closed system S ⊆ A (see Example
7.3), then:

Proposition 7.31. The pseudo MV− algebra s−AFS
is isomorphic with B(A[S]).

Proof. For x, y ∈ A we have (x, y) ∈ θFS
⇔ there exists I ∈ FS (hence

I ∩ S ∩B(A) 6= ®) such that x ∧ e = y ∧ e for any e ∈ I ∩B(A). Since θFS
= θS we

have A[S] = A/θS ; therefore an strong FS−multiplier can be considered in this case
as a mapping f : I → A[S] (I ∈ FS) having the properties f(e ¯ x) = e/S ¯ f(x),
f(x) ≤ x/S, for every x ∈ I, and if e ∈ I ∩B(A), then f(e) ∈ B(A[S]) and for every
e ∈ I ∩B(A) and x ∈ I,

(e/S) ∧ f(x) = (x/S) ∧ f(e)

(x/S denotes the congruence class of x relative to θS).
We can define the mapping injective and surjective (see the proof of Proposition

6.34):
α : s−AFS

= lim−→
I∈FS

M(I,A[S]) → B(A[S])

by putting
α((̂I, f)) = f(s) ∈ B(A[S])

where s ∈ I ∩ S ∩B(A).
This mapping is a morphism of pseudo MV− algebras.
Indeed, α(0) = α((̂A,0)) = 0(e) = 0/S = 0 for every e ∈ S ∩ B(A). If (̂I, f) ∈

s−AFS
, we have

α((̂I, f)−) = α((̂I, f−)) = f−(e) = (e/S)¯ [f(e)]− =

= 1¯ (f(e))− = (f(e))− = (α((̂I, f)))−

and
α((̂I, f)s) = α((̂I, fs)) = fs(e) = [f(e)]s ¯ (e/S) = (f(e))s ¯ 1

= (f(e))s = (α((̂I, f)))s

(with e ∈ I ∩ S ∩B(A)). Also, for every (̂Ii, fi) ∈ s−AFS
, i = 1, 2 we have:

α[(̂I1, f1) + (̂I2, f2)] = α[ ̂(I1 ∩ I2, f1 ¢ f2).] =

= (f1 ¢ f2)(e) = (f1(e)⊕ f2(e)) ∧ (e/S) = f1(e)⊕ f2(e) =

= α[(̂I1, f1)]⊕ α[(̂I2, f2)]
(with e ∈ I1 ∩ I2 ∩ S ∩B(A)).
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So, α is an isomorphism of pseudo MV− algebras.¥
Remark 7.22. In the proof of Proposition 7.31 the axiom m − psMV4 is not

necessarily.

2.4. Application 4: Localization of lu-groups. Pseudo MV− algebras can
be studied within the context of lattice-ordered groups with strong units (lu-groups).
This viewpoint is made possible by the fundamental result of Dvurečenskij [58].

We shall often write (G, u) to indicate that G is an lu-group (with strong unit
u). If (G, u) is an lu-group then the unit interval of G is

[0, u]G = {g ∈ G : 0 ≤ g ≤ u}.
It has a canonical pseudo MV− algebra structure given by the Example 4.2. Dvurečenskij’s
result says that for any pseudo MV− algebra A there is an lu-group (GA, u) such
that A and [0, u]GA

are isomorphic. The categorical equivalence means that the
entire theory of lu-groups applies to pseudo MV− algebras. The main work in-
volved has the flavor of translation. We take on the task of translating the theory
of localization pseudo MV− algebras into the language of localization lu-groups .

If (G, u) and (H, v) are lu-groups, then an lu-groups morphism is an l -groups
morphism f : G → H such that f(u) = v.

We denote by PMV the category of pseudo MV− algebras and by LUG the
category of lu-groups. The definition of the Dvurečenskij functor

Γ : LUG → PMV
is strainghtforward (see [58]):

Γ(G, u) := [0, u]G,

Γ(h) := h|[0,u],

if h : (G, u) → (H, v) is an lu-groups morphism.

Example 7.9. [58] Let G = (Z×Z×Z, +, (0, 0, 0),≤) be the Scrimger 2-group:
the group operation + is defined by

(x1, y1, n1) + (x2, y2, n2) :=
{

(y1 + x2, y2 + x1, n1 + n2), if n2 is odd
(x1 + x2, y1 + y2, n1 + n2), if n2 is even,

the order relation is (x1, y1, n1) ≤ (x2, y2, n2) iff (n1 < n2) or (n1 = n2, x1 ≤ x2, y1 ≤
y2). We remark that G is a non-abelian l-group which is not linearly ordered and that
u = (1, 1, 1) is a strong unit of G. The corresponding interval pseudo MV -algebra
has the form

M = Γ(G, u) = (Z+ × Z+ × {0}) ∪ (Z≤1 × Z≤1 × {1}),
where Z≤1 := {x ∈ Z : x ≤ 1}. The pseudo MV - algebra operations are defined as
follows:

(x, y, 0)− = (1− x, 1− y, 1), (x, y, 0)s = (1− y, 1− x, 1),
(x, y, 1)− = (1− y, 1− x, 0), (x, y, 1)s = (1− x, 1− y, 0),

(x1, y1, 0)⊕ (x2, y2, 0) = (x1 + x2, y1 + y2, 0),
(x1, y1, 0)⊕ (x2, y2, 1) = ((y1 + x2) ∧ 1, (x1 + y2) ∧ 1, 1),
(x1, y1, 1)⊕ (x2, y2, 0) = ((x1 + x2) ∧ 1, (y1 + y2) ∧ 1, 1),

(x1, y1, 1)⊕ (x2, y2, 1) = (1, 1, 1),
One can see [58] for more details on G and M.
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For the definition of the functor

Ξ : PMV → LUG
(the inverse of the functor Γ which together with Γ determine a categorical equiva-
lence) see [58], (where for the pseudo MV− algebra A, Ξ(A) is denoted by (GA, uA)).
With the notations of [58] we have:

Theorem 7.32. ([58])For every pseudo MV− algebra A there exists an lu-group
GA with strong unit uA and an isomorphism of pseudo MV− algebras ϕA : A →
Γ(GA, uA) = [0, uA].

In the sequel G will designate an lu-group with strong unit u and A will designate
[0, u]G.

As in abelian case (see Definition 2.15) we define:

Definition 7.8. For any integer k, let πk : G → A be defined by

πk(g) = ((g − ku) ∧ u) ∨ 0.

From Remark 2.22 we deduce:

Proposition 7.33. The maps πk have the following properties for all f, g ∈ G :
(psmv − c45) π0|A = 1A;
(psmv − c46) πk(g) ≥ πk+1(g), for all k ∈ Z;
(psmv − c47) πk(f ∨ g) = πk(f) ∨ πk(g) and πk(f ∧ g) = πk(f) ∧ πk(g), for all k ∈ Z,

(hence πk is an increasing map for all k ∈ Z ).

As for abelian lu-groups, we have for non-commutative case (lu- groups) the next
analogous definitions and results:

Proposition 7.34. (i) If H ∈ I(G), then H = H ∩A ∈ I(A),
(ii) If I ∈ I(A), then

HI = {g ∈ G : πk(g) ∈ I for all k ≥ 0}
is the order ideal of G generated by I in G (that is HI ∈ I(G) and HI =<
I >G). Moreover, HI = HI ∩A = I,

(iii) For every K ∈ I(G),K = HI where I = K ∩A ∈ I(A),
(iii) There is a bijective correspondence between I(G) and I(A).

The proof of Proposition 7.34 is analogous to the proof of Proposition 6.35 for
commutative case.

Let (G, u) be an lu-group. A nonempty set F of elements I ∈ I(G) will be called
a topology on G (or a Gabriel filter on I(G)) if verify the properties from Definition
6.14.

For an lu-group (G, u) we define the boolean center B(G) of G by

B(G, u) = B(A)

(where A = Γ(G, u)). Hence

B(G, u) = {x ∈ [0, u] : (x + x) ∧ u = x}.
Clearly, 0, u ∈ B(G, u) and we deduce that B(G, u) ≈ B(GA, uA) = B(Ξ(A)).

We recall ([68]) that for every pseudo MV− algebra A, B(A) is a subalgebra of
A.
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Remark 7.23. If A,B are pseudo MV− algebras, ϕ : A → B an isomorphism
of pseudo MV− algebras and F a topology on A, then ϕ(F) = {ϕ(I) : I ∈ F} is a
topology on B and AF ≈ Bϕ(F).

Example 7.10. If H ∈ I(G), then the set

F(H) = {H ′ ∈ I(G) : H ⊆ H ′}
is a topology on G.

Example 7.11. A non-empty set H ⊆ G will be called regular if for every x, y ∈
G such that e ∧ x = e ∧ y for every e ∈ H ∩ B(G), we have x = y. If we denote
R(G) = {H ⊆ G : H is a regular subset of G}, then I(G) ∩ R(G) is a topology on
G .

Example 7.12. A subset S ⊆ G is called ∧− closed if u ∈ S and if x, y ∈ S
implies x ∧ y ∈ S. For any ∧− closed subset S of G we set FS = {H ∈ I(G) :
H ∩ S ∩B(G) 6= ®}. Then FS is a topology on G .

Proposition 7.35. Let (G, u) an lu-group and A = Γ(G, u) = [0, u]G.

(i) If F is a topology on G, then FA = {H ∩A : H ∈ F} is a topology on A,
(ii) If F is a topology on A, then FG = {HI : I ∈ F} is a topology on G (where

HI is defined by Proposition 7.34, (ii)); if denote FG ∩ A = {H ∩ A : H ∈
FG}, then FG ∩A = FA,

(iii) There is a bijective correspondence betwen the topologies on G and the
topologies on A.

Proof. See the proof of Proposition 6.36.
In the sequel (G, u) is an lu-group, A = Γ(G, u) = [0, u]G and F is a topology

on G.
Now we are in the situation to define the notion of lu-group of localization of G

with respect to the topology F .
By Proposition 7.35, (i), FA = {H ∩ A : H ∈ F} is a topology on A. We can

construct the pseudo MV− algebra of localization of A with respect to the topology
FA, denoted by AFA .

Definition 7.9. We denote the lu-group Ξ(AFA) by GF and will be called the
localization lu-group of G with respect to the topology F .

Let now A be a pseudo MV− algebra and F a topology on A. We consider
Ξ(A) = (GA, uA) and the isomorphism of pseudo MV− algebras ϕA : A → B =
[0, uA] = Γ(GA, uA). By Remark 7.23, ϕA(F) = {ϕA(I) : I ∈ F} is a topology on B
and AF ≈ BϕA(F). Then Ξ(AF ) ≈ Ξ(BϕA(F)) = Ξ(A)ϕA(F) (see Definition 7.9).

So, we obtain:

Theorem 7.36. Let A be a pseudo MV− algebra and F a topology on A. Then

Ξ(A)ϕA(F) ≈ Ξ(AF ).

If A is a pseudo MV− algebra and S ⊆ A is a ∧− closed system, then we define
the notion of pseudo MV− algebra of fraction relative to S (denoted by A[S]) and
the maximal pseudo MV− algebra of quotients of A (denoted by Q(A)).

We shall now define the analogous notions for lu-groups using the functor Ξ.
We continue the running assumption that (G, u) is an lu-group with unit interval

A = [0, u].
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If S ⊆ G is an ∧− closed system in G, then S = S∩A is an ∧− closed system in
A. So, we can consider the pseudo MV− algebra of fractions relative to S (denoted
by A[S] ).

Definition 7.10. We denote the lu-group Ξ(A[S]) by G[S] and will be called
the lu-group of fraction of G relative to the ∧− closed system S. Also, we denote
the lu-group Ξ(Q(A)) by Q(G) and will be called a maximal lu-group of quotients
of G.

As in the case of pseudo MV− algebras in the following we describe for an
lu-group (G, u) the localization lu-group GF in some special instances.

We recall that for the next two examples we work with strong-F− multipliers
(see Definitions 7.7).

1. If F = I(G) ∩ R(G), then FA = I(A) ∩ R(A) where we recall that A
is the pseudo MV− algebra [0, u] and FA = F∩A = {H ∩ A : H ∈ F}. Then
s − AFA = Q(A), so GF = Ξ(s − AFA) = Ξ(Q(A)) = Q(G) (that is GF is the
maximal lu-group of quotients of G).

2. If S ⊆ G is an ∧− closed system of and FS is the topology FS = {H ∈
I(G) : H ∩ S ∩ B(G) 6= ∅}, then S = S ∩ A is an ∧− closed system of A and
FS = {I ∈ I(A) : I ∩ S ∩B(A) 6= ∅} (since B(G, u) = B(A)).

Thus by Proposition 7.31, s−AFS ≈ B(A[S]), hence

GFS = Ξ(s−AFS ) ≈ Ξ(B(A[S])) ≈ Ξ(B(Ξ(A[S]))) = B(G[S]).



CHAPTER 8

Localization of pseudo BL-algebras

The aim of this chapter is to define the localization (strong localization) pseudo BL-
algebra of a pseudo BL -algebra A with respect to a topology F on A and to prove that the
maximal pseudo BL - algebra of quotients and the pseudo BL- algebra of fractions relative
to an ∧− closed system are strong pseudo BL -algebras of localization (see Proposition 8.39
and Proposition 8.40).

The concepts of pseudo BL -algebra of localization was defined in [39].
If the pseudo BL- algebra A is a pseudo MV- algebra or a BL- algebra then we obtain

the results from Chapter 7 and 6; so, the results of this chapter are generalizations of the
results for MV, pseudo MV and BL- algebras.

1. Pseudo-BL algebra of fractions relative to an ∧− closed system

As in the case of BL we denote by S(A) the set of all ∧−closed system of A,
(see Definition 6.1).

For S ∈ S(A), on the pseudo - BL algebra A we consider the relation θS defined
by

(x, y) ∈ θS iff there exists e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

Lemma 8.1. θS is a congruence on A.

Proof. The reflexivity, symmetry and transitivity of θS are immediately. To
prove the compatibility of θS with the operations ∧,∨,¯ see the proof of Lemma
6.1.

To prove the compatibility of θS with the operations → and Ã, let x, y, z, t ∈ A
such that (x, y) ∈ θS and (z, t) ∈ θS . Thus there exists e, f ∈ S ∩ B(A) such that
x ∧ e = y ∧ e and z ∧ f = t ∧ f ; we denote g = e ∧ f ∈ S ∩B(A).

By psbl − c61 we obtain :

(x → z) ∧ g = (x → z)¯ g = [(x¯ g) → (z ¯ g)]¯ g

= [(y ¯ g) → (t¯ g)]¯ g = (y → t)¯ g = (y → t) ∧ g,

hence (x → z, y → t) ∈ θS and

(x Ã z) ∧ g = g ¯ (x Ã z) = g ¯ [(g ¯ x) Ã (g ¯ z)]
= g ¯ [(g ¯ y) Ã (g ¯ t)] = g ¯ (y Ã t) = (y Ã t) ∧ g,

hence (x Ã z, y Ã t) ∈ θS .¥
For x we denote by x/S the equivalence class of x relative to θS and by

A[S] = A/θS .

By pS : A → A[S] we denote the canonical map defined by pS(x) = x/S, for every
x ∈ A. Clearly, in A[S], 0 = 0/S, 1 = 1/S and for every x, y ∈ A,

x/S ∧ y/S = (x ∧ y)/S, x/S ∨ y/S = (x ∨ y)/S, x/S ¯ y/S = (x¯ y)/S,

201
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x/S → y/S = (x → y)/S, x/S Ã y/S = (x Ã y)/S.

So, pS is an onto morphism of pseudo-BL algebras.

Remark 8.1. Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1 we deduce that
s/S = 1/S = 1, hence pS(S ∩B(A)) = {1}.

Proposition 8.2. If a ∈ A, then a/S ∈ B(A[S]) iff there exists e ∈ S ∩ B(A)
such that e ∧ a ∈ B(A). So, if e ∈ B(A), then e/S ∈ B(A[S]).

Proof. For a ∈ A, we have a/S ∈ B(A[S]) ⇔ a/S¯a/S = a/S and ((a/S)−)s =
((a/S)s)− = a/S .

From a/S ¯ a/S = a/S we deduce that (a ¯ a)/S = a/S ⇔ there exists g ∈
S ∩B(A) such that (a¯ a) ∧ g = a ∧ g ⇔ (a¯ a)¯ g = a ∧ g ⇔ (a¯ g)¯ (a¯ g) =
a ∧ g ⇔ (a ∧ g)¯ (a ∧ g) = a ∧ g.

From ((a/S)−)s = ((a/S)s)− = a/S we deduce that exists f, h ∈ S∩B(A) such
that (a−)s ∧ f = a ∧ f and (as)− ∧ h = a ∧ h. If denote e = g ∧ f ∧ h ∈ S ∩B(A),
then

(a ∧ e)¯ (a ∧ e) = (a ∧ g ∧ f ∧ h)¯ (a ∧ g ∧ f ∧ h) =
(a¯ g)¯ f ¯ h¯ (a¯ g)¯ f ¯ h = a¯ g ¯ f ¯ h = a ∧ g ∧ f ∧ h = a ∧ e

and

((a ∧ e)−)s
psbl−c50= (a− ∨ e−)s

psbl−c49= (a−)s ∧ (e−)s = (a−)s ∧ e

= (a−)s ∧ g ∧ f ∧ h = [(a−)s ∧ f ] ∧ g ∧ h = (a ∧ f) ∧ g ∧ h = a ∧ e

and
((a ∧ e)s)− psbl−c49= (as ∨ es)− psbl−c50= (as)− ∧ (es)− = (as)− ∧ e

= (as)− ∧ g ∧ f ∧ h = [(as)− ∧ h] ∧ g ∧ f = (a ∧ h) ∧ g ∧ f = a ∧ e,

so,
((a ∧ e)s)− = ((a ∧ e)−)s = a ∧ e,

hence a ∧ e ∈ B(A).
If e ∈ B(A), since 1 ∈ S ∩ B(A) and 1 ∧ e = e ∈ B(A) we deduce that e/S ∈

B(A[S]). ¥
As in the case of BL− algebras we have the following result :

Theorem 8.3. If A′ is a pseudo-BL algebra and f : A → A′ is an morphism
of pseudo-BL algebras such that f(S ∩ B(A)) = {1}, then there exists an unique
morphism of pseudo-BL algebras f ′ : A[S] → A′ such that the diagram

A
pS−→ A[S]

↘
f

↙
f ′

A′

is commutative (i.e. f ′ ◦ pS = f).

Remark 8.2. Theorem 8.3 allows us to call A[S] the pseudo-BL algebra of
fractions relative to the ∧−closed system S.

Remark 8.3. If pseudo BL− algebra A is a BL− algebra (i.e. x → y = x Ã y,
for all x, y ∈ A, see Remark 5.1), then (x/S) → (y/S) = (x → y)/S = (x Ã y)/S =
(x/S) Ã (y/S), so A[S] is a BL− algebra, called the BL-algebra of fractions relative
to the ∧−closed system S (see Chapter 6).
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Remark 8.4. If pseudo BL− algebra A is a pseudo MV− algebra (i.e. (x−)s =
x = (xs)−, for all x ∈ A, see Corollary 6.31), then [(x/S)−]s = (x−)s/S = x/S =
(xs)−/S = [(x/S)s]−, so A[S] is a pseudo MV− algebra, called the pseudo MV -
algebra of fractions relative to the ∧−closed system S (see Chapter 7).

Example 8.1. If A is a pseudo BL− algebra and S = {1} or S is such that 1 ∈ S
and S∩ (B(A)\{1}) = ∅, then for x, y ∈ A, (x, y) ∈ θS ⇐⇒ x∧1 = y∧1 ⇐⇒ x = y,
hence in this case A[S] = A.

Example 8.2. If A is a pseudo BL− algebra and S is an ∧−closed system such
that 0 ∈ S (for example S = A or S = B(A)), then for every x, y ∈ A, (x, y) ∈ θS

(since x ∧ 0 = y ∧ 0 and 0 ∈ S ∩B(A)), hence in this case A[S] = 0.

2. Pseudo-BL algebra of fractions and maximal pseudo BL-algeba of
quotients

2.1. Strong multipliers on a pseudo-BL algebra. We denote by I(A) the
set of all order ideals of A (see Definition 6.2) and by Id(A) the set of all ideals of
the lattice L(A).

Definition 8.1. By partial strong multiplier of A we mean a map f : I → A,
where I ∈ I(A), which verifies the next conditions:

(sm− psBL1) f(e¯ x) = e¯ f(x), for every e ∈ B(A) and x ∈ I;
(sm− psBL2) f(x) ≤ x, for every x ∈ I;
(sm− psBL3) If e ∈ I ∩B(A), then f(e) ∈ B(A);
(sm− psBL4) x ∧ f(e) = e ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.

Remark 8.5. If A is a BL− algebra or a pseudo MV− algebra the definition of
strong multiplier on A is the same as Definitions 6.3 for the case of BL− algebras
and Definition 7.3 for pseudo MV− algebras.

Clearly, f(0) = 0.
As in the case of BL− algebras, by dom(f) ∈ I(A) we denote the domain of f ;

if dom(f) = A, we called f total.
To simplify the language, we will use strong multiplier instead partial strong

multiplier using total to indicate that the domain of a certain multiplier is A.

Example 8.3. The map 0 : A → A defined by 0(x) = 0, for every x ∈ A is a
total strong multiplier on A;

Example 8.4. The map 1 : A → A defined by 1(x) = x, for every x ∈ A is also
a total strong multiplier on A;

Example 8.5. For a ∈ B(A) and I ∈ I(A), the map fa : I → A defined by
fa(x) = a ∧ x, for every x ∈ I is a strong multiplier on A (called principal).

Remark 8.6. The condition sm−psBL4 is not a consequence of sm−psBL1, sm−
psBL2 and sm − psBL3. As example, f : I → A, f(x) = x ∧ x− for every x ∈ I,
verify sm− psBL1, sm− psBL2 and sm− psBL3.

Remark 8.7. In general, if consider a ∈ A, then fa : I → A verifies only
sm− psBL1, sm− psBL2 and sm− psBL4 but does not verify sm− psBL3.
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If dom(fa) = A, we denote fa by fa ; clearly, f0 = 0.
For I ∈ I(A), we denote

M(I,A) = {f : I → A : f is a strong multiplier on A}
and

M(A) = ∪
I∈I(A)

M(I, A).

Definition 8.2. If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we define f1 ∧ f2,
f1 ∨ f2, f1 ¡ f2, f1 → f2, f1 Ã f2 : I1 ∩ I2 → A by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x),

(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ¡ f2)(x) = [x → f1(x)]¯ f2(x)
psbl−c64= f1(x)¯ [x Ã f2(x)],

(f1 → f2)(x) = [f1(x) → f2(x)]¯ x,

(f1 Ã f2)(x) = x¯ [f1(x) Ã f2(x)],
for every x ∈ I1∩ I2.

Lemma 8.4. f1 ∧ f2 ∈ M(I1 ∩ I2, A).

Proof. See the proof of Lemma 6.4. ¥
Lemma 8.5. f1 ∨ f2 ∈ M(I1 ∩ I2, A).

Proof. See the proof of Lemma 6.5. ¥
Lemma 8.6. f1 ¡ f2 ∈ M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1¡f2)(e¯x) = [(e¯x) → f1(e¯x)]¯f2(e¯x) = [(e¯x) → (e¯f1(x))]¯[e¯f2(x)] =

= [((e¯ x) → (e¯ f1(x)))¯ e]¯ f2(x)
psbl−c74= [(x → f1(x))¯ e]¯ f2(x) =

= [(x → f1(x))¯ f2(x)]¯ e = (f1 ¡ f2)(x)¯ e.

Clearly, (f1 ¡ f2)(x) = [x → f1(x)] ¯ f2(x) ≤ f2(x) ≤ x, for every x ∈ I1∩ I2

and if e ∈ I1 ∩ I2 ∩B(A), then by Proposition 5.13, we have

(f1 ¡ f2)(e) = [e → f1(e)]¯ f2(e) = (e− ∨ f1(e))¯ f2(e) ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2, we have:

x ∧ (f1 ¡ f2)(e) = x ∧ [(e → f1(e))¯ f2(e)] =

= [(e → f1(e))¯ f2(e)]¯ x = [(e → f1(e))¯ x]¯ f2(e) =
psbl−c75= [((e¯ x) → (f1(e)¯ x))¯ x]¯ f2(e) = [(e¯ x) → (f1(e)¯ x)]¯ [x¯ f2(e)] =

[(e¯ x) → (e¯ f1(x))]¯ [e¯ f2(x)] = [((e¯ x) → (e¯ f1(x)))¯ e]¯ f2(x) =
psbl−c74= [(x → f1(x))¯ e]¯ f2(x) = [(x → f1(x))¯ f2(x)]¯ e =

= [(f1 ¡ f2)(x)]¯ e = e ∧ (f1 ¡ f2)(x),
hence, we have x∧ (f1 ¡ f2)(e) = e∧ (f1 ¡ f2)(x), that is, f1 ¡ f2 ∈ M(I1 ∩ I2, A). ¥

Lemma 8.7. f1 → f2 ∈ M(I1 ∩ I2, A).
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Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 → f2)(e¯x) = [f1(e¯x) → f2(e¯x)]¯(e¯x) = [(e¯f1(x)) → (e¯f2(x))]¯(e¯x) =

= [((e¯ f1(x)) → (e¯ f2(x)))¯ e]¯ x
psbl−c74= [(f1(x) → f2(x))¯ e]¯ x =

= [(f1(x) → f2(x))¯ x]¯ e = [(f1 → f2)(x)]¯ e.

Clearly, (f1 → f2)(x) = [f1(x) → f2(x)] ¯ x ≤ x, for every x ∈ I1∩ I2 and if
e ∈ I1 ∩ I2 ∩B(A), then by Proposition 5.13 we have

(f1 → f2)(e) = [f1(e) → f2(e)]¯ e = [(f1(e))− ∨ f2(e)]¯ e ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2, we have:

e ∧ (f1 → f2)(x) = [(f1(x) → f2(x))¯ x] ∧ e =

= [(f1(x) → f2(x))¯ x]¯ e = [(f1(x) → f2(x))¯ e]¯ x =

psbl−c74= [((f1(x)¯ e) → (f2(x)¯ e))¯ e]¯x = [((x¯ f1(e)) → (x¯ f2(e)))¯ e]¯x =

[((x¯ f1(e)) → (x¯ f2(e)))¯ x]¯ e
psbl−c75= [(f1(e) → f2(e))¯ x]¯ e =

= [(f1(e) → f2(e))¯ e]¯ x = [(f1 → f2)(e)]¯ x = x ∧ (f1 → f2)(e)

hence, we have x∧ (f1 → f2)(e) = e∧ (f1 → f2)(x), that is, f1 → f2 ∈ M(I1∩I2, A).
¥

Lemma 8.8. f1 Ã f2 ∈ M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 Ã f2)(e¯x) = (e¯x)¯[f1(e¯x) Ã f2(e¯x)] = (e¯x)¯[(e¯f1(x)) Ã (e¯f2(x))] =

= x¯ [e¯ ((e¯ f1(x)) Ã (e¯ f2(x)))]
psbl−c74= x¯ [e¯ (f1(x) Ã f2(x))] =

= e¯ [x¯ (f1(x) Ã f2(x))] = e¯ (f1 Ã f2)(x).

Clearly, (f1 Ã f2)(x) = x ¯ [f1(x) Ã f2(x)] ≤ x, for every x ∈ I1∩ I2 and if
e ∈ I1 ∩ I2 ∩B(A), then, by Proposition 5.13, we have

(f1 Ã f2)(e) = e¯ [f1(e) Ã f2(e)] = e¯ [(f1(e))s ∨ f2(e)] ∈ B(A).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2, we have:

e ∧ (f1 Ã f2)(x) = e ∧ [x¯ (f1(x) Ã f2(x))] =

= (e¯ x)¯ [f1(x) Ã f2(x)] = x¯ [e¯ (f1(x) Ã f2(x))] =

psbl−c74= x¯ [e¯ ((e¯ f1(x)) Ã (e¯ f2(x)))] = x¯ [e¯ ((x¯ f1(e)) Ã (x¯ f2(e)))] =

= e¯ [x¯ ((x¯ f1(e)) Ã (x¯ f2(e)))]
psbl−c75= e¯ [x¯ (f1(e) Ã f2(e))] =

= x¯ [e¯ (f1(e) Ã f2(e))] = x¯ (f1 Ã f2)(e) = x ∧ (f1 Ã f2)(e)

hence, we have x ∧ (f1 Ã f2)(e) = e ∧ (f1 Ã f2)(x), that is, f1 Ã f2 ∈
M(I1 ∩ I2, A). ¥

Proposition 8.9. (M(A),∧,∨,¡,→, Ã,0,1) is a pseudo - BL algebra.
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Proof. We now verify the axioms of pseudo BL-algebras.
(psBL1). It is obvious that (M(A),∧,∨,0,1) is a bounded lattice.
(psBL2). Let fi ∈ M(Ii, A) where Ii ∈ I(A), i = 1, 2, 3. Then, it is clear that

f1 ¡ f2 ∈ M(A) (see Lemma 8.6).
Thus, for x ∈ I1 ∩ I2 ∩ I3, we have

[(f1 ¡ f2) ¡ f3](x) = ((f1 ¡ f2)(x))¯ (x Ã f3(x)) =

= [(x → f1(x))¯ f2(x)]¯ (x Ã f3(x)) = (x → f1(x))¯ [f2(x)¯ (x Ã f3(x))] =
= (x → f1(x))¯ [(f2 ¡ f3)(x)] = [f1 ¡ (f2 ¡ f3)](x),

that is, the operation ¡ is associative.
Let f ∈ M(I, A) with I ∈ I(A). If x ∈ I, then

(f ¡ 1)(x) = f(x)¯ (x Ã 1(x)) = f(x)¯ (x Ã x) = f(x)¯ 1 = f(x),

(1 ¡ f)(x) = 1(x)¯ (x Ã f(x)) = x¯ (x Ã f(x)) = x ∧ f(x) = f(x),
hence, f ¡ 1 = 1 ¡ f = f, that is, (M(A), ¡,1) is a monoid.

(psBL3). Let fi ∈ M(Ii, A), where Ii ∈ I(A), i = 1, 2, 3.
Since f1 ≤ f2 → f3 for x ∈ I1 ∩ I2 ∩ I3, we have

f1(x) ≤ (f2 → f3)(x) ⇔ f1(x) ≤ [f2(x) → f3(x)]¯ x.

So, by psbl − c3,we derive that

f1(x)¯ [x Ã f2(x)] ≤ [f2(x) → f3(x)]¯ x¯ [x Ã f2(x)] ⇔
f1(x)¯ [x Ã f2(x)] ≤ (f2(x) → f3(x))¯ (x ∧ f2(x)) ⇔

f1(x)¯ [x Ã f2(x)] ≤ (f2(x) → f3(x))¯ f2(x) ⇔
f1(x)¯ [x Ã f2(x)] ≤ f2(x) ∧ f3(x) ≤ f3(x) ⇔

(f1 ¡ f2)(x) ≤ f3(x),
for every x ∈ I1 ∩ I2 ∩ I3, that is, f1 ¡ f2 ≤ f3.

Conversely, if (f1 ¡ f2)(x) ≤ f3(x), then we have [x → f1(x)]¯ f2(x) ≤ f3(x),for
every x ∈ I1 ∩ I2 ∩ I3.

Obviously,

[x → f1(x)] ≤ f2(x) → f3(x)
psbl−c3⇒ (x → f1(x))¯ x ≤ (f2(x) → f3(x))¯ x

⇒ x ∧ f1(x) ≤ (f2(x) → f3(x))¯ x ⇒ f1(x) ≤ (f2 → f3)(x).
Hence, f1 ≤ f2 → f3 iff f1 ¡ f2 ≤ f3, for all f1, f2, f3 ∈ M(A).

Since f2 ≤ f1 Ã f3 for x ∈ I1 ∩ I2 ∩ I3, we have

f2(x) ≤ (f1 Ã f3)(x) ⇔ f2(x) ≤ x¯ [f1(x) Ã f3(x)].
So, by psbl − c3, we have

[x → f1(x)]¯ f2(x) ≤ [x → f1(x)]¯ x¯ [f1(x) Ã f3(x)] ⇔
(f1¡f2)(x) ≤ (x∧f1(x))¯(f1(x) Ã f3(x)) ⇔ (f1¯f2)(x) ≤ f1(x)¯(f1(x) Ã f3(x)) ⇔

(f1 ¡ f2)(x) ≤ f1(x) ∧ f3(x) ≤ f3(x) ⇔ (f1 ¡ f2)(x) ≤ f3(x),
for every x ∈ I1 ∩ I2 ∩ I3, that is, f1 ¡ f2 ≤ f3.

Conversely if (f1 ¡ f2)(x) ≤ f3(x), then we have f1(x)¯ [x Ã f2(x)] ≤ f3(x),for
every x ∈ I1 ∩ I2 ∩ I3.

It is obvious that

(x Ã f2(x)) ≤ f1(x) Ã f3(x)
psbl−c3⇒ x¯ (x Ã f2(x)) ≤ x¯ (f1(x) Ã f3(x))
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⇒ x ∧ f2(x) ≤ x¯ (f1(x) Ã f3(x)) ⇒ f2(x) ≤ (f1 Ã f3)(x).
Hence, f2 ≤ f1 Ã f3 iff f1 ¡ f2 ≤ f3 for all f1, f2, f3 ∈ M(A).

(psBL4). Let fi ∈ M(Ii, A) where Ii ∈ I(A), i = 1, 2.
Then, for x ∈ I1 ∩ I2, we have

[(f1 → f2) ¡ f1](x) = [(f1 → f2)(x)]¯ [x Ã f1(x)]

= ([f1(x) → f2(x)]¯ x)¯ [x Ã f1(x)] = [f1(x) → f2(x)]¯ (x¯ [x Ã f1(x)]) =

= [f1(x) → f2(x)]¯[x∧f1(x)] = [f1(x) → f2(x)]¯f1(x) = f1(x)∧f2(x) = (f1∧f2)(x),
and

[f1 ¡ (f1 Ã f2)](x) = [x → f1(x)]¯ [(f1 Ã f2)(x)]

= [x → f1(x)]¯ (x¯ [f1(x) Ã f2(x)]) = ([x → f1(x)]¯ x)¯ [f1(x) Ã f2(x)] =

= [x∧f1(x)]¯[f1(x) Ã f2(x)] = f1(x)¯[f1(x) Ã f2(x)] = f1(x)∧f2(x) = (f1∧f2)(x).
So, f1 ∧ f2 = (f1 → f2) ¡ f1 = f1 ¡ (f1 Ã f2).

(psBL5). We have

[(f1 → f2) ∨ (f2 → f1)](x) = [(f1 → f2)(x)] ∨ [(f2 → f1)(x)] =

= [(f1(x) → f2(x))¯ x] ∨ [(f2(x) → f1(x))¯ x] =
psbl−c36= [(f1(x) → f2(x)) ∨ (f2(x) → f1(x))]¯ x = 1¯ x = x = 1(x),

and
[(f1 Ã f2) ∨ (f2 Ã f1)](x) = [(f1 Ã f2)(x)] ∨ [(f2 Ã f1)(x)] =

= [x¯ (f1(x) Ã f2(x))] ∨ [x¯ (f2(x) Ã f1(x))] =
psbl−c36= x¯ [(f1(x) Ã f2(x)) ∨ (f2(x) Ã f1(x))] = x¯ 1 = x = 1(x),

hence (f1 → f2) ∨ (f2 → f1) = (f1 Ã f2) ∨ (f2 Ã f1) = 1. ¥

Remark 8.8. To prove that (M(A),∧,∨, ¡,→,Ã,0,1) is a pseudo BL-algebra
it is sufficient to ask for multipliers only the axioms sm− psBL1 and sm− psBL2.

Proposition 8.10. If pseudo BL− algebra (A,∨,∧,¯,→, Ã, 0, 1) is a pseudo
MV− algebra (A,¯,⊕,− ,s , 0, 1) (i.e. (x−)s = (xs)− = x, for all x ∈ A), then
pseudo BL− algebra (M(A),∧,∨, ¡,→, Ã,0,1) is a pseudo MV− algebra (M(A), ¡, ¢,− ,s ,0,1).

Proof. To prove that pseudo BL− algebra M(A) is a pseudo MV− algebra let
f ∈ M(I, A) with I ∈ I(A).

Then

(f−)s(x) = x¯ [(f(x))− ¯ x]s
psbl−c48= x¯ [x Ã ((f(x))−)s]

= x¯ (x Ã f(x)) = x ∧ f(x) = f(x)
and

(fs)−(x) = [x¯ (f(x))s]− ¯ x
psbl−c48= [x → ((f(x))s)−]¯ x

= (x → f(x))¯ x = x ∧ f(x) = f(x)
(since f(x) ∈ A which is a pseudo MV− algebra), for all x ∈ I.

So, (f−)s = (fs)− = f, for all f ∈ M(A) and pseudo BL− algebra M(A) is a
pseudo MV -algebra (see Proposition 7.15). ¥
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Proposition 8.11. If pseudo BL -algebra (A,∨,∧,¯,→,Ã, 0, 1) is a BL -
algebra (i.e x ¯ y = y ¯ x for all x, y ∈ A and in particular x → y = x Ã y
for all x, y ∈ A), then pseudo BL -algebra (M(A),∧,∨,¡,→, Ã,0,1) is a BL -
algebra (M(A),∧,∨, ¡,→,0,1). Indeed if I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2
we have

(f1 → f2)(x) = [f1(x) → f2(x)]¯ x = x¯ [f1(x) Ã f2(x)] = (f1 Ã f2)(x),

for all x ∈ I1∩I2, then f1 → f2 = f1 Ã f2, so pseudo BL -algebra (M(A),∧,∨,¡,→
, Ã,0,1) is commutative (see Remark 5.1), so is a BL -algebra (see Proposition 6.8).

Remark 8.9. For every I ∈ I(A) the algebra of multipliers MpsBL(I, A) for a
pseudo BL− algebra is in fact a generalization of the algebra of multipliers MpsMV(I, A)
for pseudo MV− algebras, defined in Chapter 7 and algebra of multipliers MBL(I, A)
for BL− algebras, defined in Chapter 6.

Lemma 8.12. The map vA : B(A) → M(A) defined by vA(a) = fa for every
a ∈ B(A) is a monomorphism of pseudo BL-algebras.

Proof. Clearly, vA(0) = f0 = 0. Let a, b ∈ B(A) and x ∈ A. We have:

(vA(a) ¡ vA(b))(x) = vA(a)(x)¯ (x Ã vA(b)(x)) = (a ∧ x)¯ (x Ã (b ∧ x))

= (a¯ x)¯ (x Ã (b ∧ x)) = a¯ [x¯ (x Ã (b ∧ x))] = a¯ [x ∧ (b ∧ x)]

= a ∧ [x ∧ (b ∧ x)] = a ∧ (b ∧ x) = (a ∧ b) ∧ x = (vA(a ∧ b))(x) = (vA(a¯ b))(x),
hence vA(a¯ b) = vA(a) ¡ vA(b).
Also, we have

(vA(a) → vA(b))(x) = [vA(a)(x) → vA(b)(x)]¯ x = [(a ∧ x) → (b ∧ x)]¯ x

= [(x¯ a) → (x¯ b)]¯ x
psbl−c75= (a → b)¯ x = x ∧ (a → b)

(since a → b ∈ B(A))
= vA(a → b)(x),

and

(vA(a) Ã vA(b))(x) = x¯ [vA(a)(x) Ã vA(b)(x)] = x¯ [(a ∧ x) Ã (b ∧ x)]

= x¯ [(x¯ a) Ã (x¯ b)]
psbl−c75= x¯ (a Ã b) = x ∧ (a Ã b)

(since a Ã b ∈ B(A))
= vA(a Ã b)(x).

Consequently, we have

vA(a) → vA(b) = vA(a → b), vA(a) Ã vA(b) = vA(a Ã b).

This proves that vA is a morphism of pseudo BL-algebras.
The injectivity of vA is obviously. ¥
As in the case of BL-algebras, we denote by R(A) = {I ⊆ A : I is a regular

subset of A}, see Definition 6.5.

Remark 8.10. The condition I ∈ R(A) is equivalent with the condition: for
every x, y ∈ A, if fx|I∩B(A) = fy|I∩B(A), then x = y.

Lemma 8.13. If I1, I2 ∈ I(A) ∩R(A), then I1 ∩ I2 ∈ I(A) ∩R(A).
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Remark 8.11. By Lemma 8.13, we deduce that

Mr(A) = {f ∈ M(A) : dom(f) ∈ I(A) ∩R(A)}
is a pseudo BL - subalgebra of M(A).

Proposition 8.14. Mr(A) is a Boolean subalgebra of M(A).

Proof. Let f : I → A be a strong multiplier on A with I ∈ I(A) ∩R(A). Then
for all x ∈ I,

e ∧ [f ¡ f ](x) = e ∧ [(x → f(x))¯ f(x)] = e¯ [x → f(x)]¯ f(x) =
psbl−c74= [(x¯ e) → (f(x)¯ e)]¯ e¯ f(x) = [(e¯ x) → (f(x)¯ e)]¯ e¯ f(x) =

= [(e¯ x) → (f(e)¯ x)]¯ x¯ f(e) =
psbl−c75= [e → f(e)]¯ x¯ f(e) = [e → f(e)]¯ e¯ f(x) = [e ∧ f(e)]¯ f(x) =

= e¯ f(e)¯ f(x) = [e¯ f(x)]¯ f(e) = x¯ f(e)¯ f(e) = x¯ f(e) =
= e¯ f(x) = e ∧ f(x),

hence (x → f(x))¯ f(x) = f(x), (since I ∈ R(A)), hence f ¡ f = f.
We have

e ∧ (f−)s(x) = e ∧ x¯ [x Ã ((f(x))−)s] = e¯ x¯ [x Ã ((f(x))−)s] =

= x¯ e¯ [(e¯ x) Ã (e¯ ((f(x))−)s)] =
= x¯ e¯ [(e¯ x) Ã (e¯ [(f(x))− Ã 0])] =

= x¯ e¯ [(e¯ x) Ã (e¯ [(e¯ (f(x))−) Ã 0])] =
= x¯ e¯ [(e¯ x) Ã (e¯ [(e¯ (f(x))−)]s)] =
= x¯ e¯ [(e¯ x) Ã (e¯ [e¯ [f(x) → 0]]s)] =
= x¯ e¯ [(e¯ x) Ã (e¯ e¯ ([e¯ f(x)]−)s)] =

= x¯ e¯ [(e¯ x) Ã (e¯ ([x¯ f(e)]−)s)] =
= x¯ e¯ [x Ã ([x¯ f(e)]−)s] = x¯ e¯ [x Ã ([x ∧ f(e)]−)s] =
= x¯ e¯ [x Ã [x− ∨ (f(e))−]s] = x¯ e¯ [x Ã [(x−)s ∧ f(e)]] =

psbl−c36= x¯ e¯ ([x Ã (x−)s] ∧ [x Ã f(e)]) =
psbl−c42= x¯ e¯ (1 ∧ [x Ã f(e)]) = x¯ e¯ [x Ã f(e)] =

= e¯ x¯ [x Ã f(e)] = e¯ [x ∧ f(e)] = e ∧ x ∧ f(e) = x ∧ f(e) = e ∧ f(x),
and

e ∧ (fs)−(x) = e ∧ [x → ((f(x))s)−]¯ x = [x → ((f(x))s)−]¯ e¯ x =

= [(x¯ e) Ã (((f(x))s)− ¯ e)]¯ e¯ x =
= [(x¯ e) Ã (([e¯ f(x)]s)− ¯ e)]¯ e¯ x =
= [(x¯ e) Ã (([x¯ f(e)]s)− ¯ e)]¯ e¯ x =

= [x → ([x¯ f(e)]s)−]¯ x¯ e = [x → [(xs)− ∧ f(e)]]¯ x¯ e =
= ([x → (xs)−] ∧ [x → f(e)])¯ x¯ e =

= (1 ∧ [x → f(e)])¯ x¯ e = [x → f(e)]¯ x¯ e =
= [x ∧ f(e)]¯ e = e ∧ f(x) ∧ e = e ∧ f(x).

So, f ¡ f = f and f = (f−)s = (fs)−, that is, Mr(A) is a Boolean algebra. ¥
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Remark 8.12. The axioms sm − BL3, sm − BL4 are necessary in the proof of
Proposition 8.14.

We recall that for two strong multipliers f1, f2 on A, we say that f2 extends f1

if dom(f1) ⊆ dom(f2) and f2|dom(f1) = f1 and we write f1 ≤ f2 if f2 extends f1. A
strong multiplier f is called maximal if f can not be extended to a strictly larger
domain.

As in the case of BL− algebras we have the following results:

Lemma 8.15. If f1, f2 ∈ M(A), f ∈ Mr(A) and f ≤ f1, f ≤ f2, then f1 and f2

coincide on the dom(f1) ∩ dom(f2).

Lemma 8.16. Every strong multiplier f ∈ Mr(A) can be extended to a maximal
strong multiplier.

Lemma 8.17. Each principal strong multiplier fa with a ∈ B(A) and dom(fa) ∈
I(A)∩R(A) can be uniquely extended to a total multiplier fa and each non-principal
strong multiplier can be extended to a maximal non-principal one.

On the Boolean algebra Mr(A) we consider the relation ρA defined by

(f1, f2) ∈ ρA iff f1 and f2 coincide on the intersection of their domains.

Lemma 8.18. ρA is a congruence on Boolean algebra Mr(A).

Proof. See the proof of Lemma 6.14. ¥
Definition 8.3. For f ∈ Mr(A) with I = dom(f) ∈ I(A) ∩ R(A), we denote

by [f, I] the congruence class of f modulo ρA and Q(A) = Mr(A)/ρA.

Corollary 8.19. By Proposition 6.12 and Lemma 8.18 we deduce that Q(A)
is a Boolean algebra.

Lemma 8.20. Let the map vA : B(A) → Q(A) defined by vA(a) = [fa, A] for
every a ∈ B(A). Then

(i) vA is an injective morphism of Boolean algebras,
(ii) vA(B(A)) ∈ R(A′′).

Proof. See the proof of Lemma 6.15. ¥
Remark 8.13. Since for every a ∈ B(A), fa is the unique maximal strong mul-

tiplier on [fa, A] we can identify [fa, A] with fa. So, since vA is injective map, the
elements of B(A) can be identified with the elements of the set { fa : a ∈ B(A)}.

Lemma 8.21. In view of the identifications made above, if [f, dom(f)] ∈ Q(A)
(with f ∈ Mr(A) and I = dom(f) ∈ I(A) ∩R(A)), then

I ∩B(A) ⊆ {a ∈ B(A) : fa ∧ [f, dom(f)] ∈ B(A)}.
Remark 8.14. The axiom sm−BL4 is necessary in the proof of Lemma ??.

2.2. Maximal pseudo BL-algebra of quotients.

Definition 8.4. A pseudo BL -algebra F is called pseudo BL-algebra of frac-
tions of A if:

(psBLfr1) B(A) is a pseudo BL-subalgebra of F ;
(psBLfr2) For every a′, b′, c′ ∈ F, a′ 6= b′, there exists e ∈ B(A) such that e∧a′ 6= e∧b′

and e ∧ c′ ∈ B(A).
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So, pseudo - BL algebra B(A) is a pseudo BL - algebra of fractions of itself
(since 1 ∈ B(A)).

As a notational convenience, we write A ¹ F to indicate that F is a pseudo
BL-algebra of fractions of A.

Definition 8.5. A pseudo BL− algebra AM is a maximal pseudo BL-algebra
of quotients of A if A ¹ AM and for every pseudo BL-algebra F with A ¹ F there
exists a monomorphism of pseudo BL-algebras i : F → AM .

Remark 8.15. If A ¹ F , then F is a Boolean algebra. Indeed, if a′ ∈ F such
that a′ 6= a′ ¯ a′ or ((a′)−)s 6= a′ or ((a′)s)− 6= a′ then there exists e, f, g ∈ B(A)
such that e ∧ a′, f ∧ a′, g ∧ a′ ∈ B(A) and

e ∧ a′ 6= e ∧ (a′ ¯ a′) = (e ∧ a′)¯ (e ∧ a′) or

f ∧ a′ 6= f ∧ ((a′)−)s = ((f ∧ a′)−)s or

g ∧ a′ 6= g ∧ ((a′)s)− = ((g ∧ a′)s)−,

a contradiction !.

As in the case of BL− algebras we have:

Lemma 8.22. Let A ¹ F ; then for every a′, b′ ∈ F, a′ 6= b′, and any finite
sequence c′1, ..., c

′
n ∈ F, there exists e ∈ B(A) such that e∧a′ 6= e∧b′ and e∧c′i ∈ B(A)

for i = 1, 2, ..., n (n ≥ 2).

Lemma 8.23. Let A ¹ F and a′ ∈ F. Then

Ia′ = {e ∈ B(A) : e ∧ a′ ∈ B(A)} ∈ I(B(A)) ∩R(A).

Theorem 8.24. For every pseudo BL− algebra A, Q(A) is the maximal pseudo
BL-algebra of quotients of A.

Proof. See the proof of Theorem 6.19. ¥

Remark 8.16. If pseudo BL− algebra A is a BL− algebra, then Q(A) is the
maximal BL− algebra of quotients of A; if pseudo BL− algebra A is a pseudo MV−
algebra, then Q(A) is the maximal pseudo MV− algebra of quotients of A.

Remark 8.17. If A is a Boolean algebra, then B(A) = A. By Remark 8.15,
Q(A) is a Boolean algebra and the axioms sm − psBL1, sm − psBL2, sm − psBL3

and sm−psBL4 are equivalent with sm−psBL1, hence Q(A) is in this case just the
classical Dedekind-MacNeille completion of A (see [122], p.687). In contrast to the
general situation, the Dedekind-MacNeille completion of a Boolean algebra is again
distributive and, in fact, is a Boolean algebra ([2], p.239).

Proposition 8.25. Let A be a pseudo BL - algebra. Then the following state-
ments are equivalent:

(i) Every maximal strong multiplier on A has domain A;
(ii) For every strong multiplier f ∈ M(I,A) there is a ∈ B such that f = fa

(that is f(x) = a ∧ x for every x ∈ I);
(iii) Q(A) ≈ B(A).

Definition 8.6. If A verify one of condition of Proposition 8.25, we call A
rationnaly complete.
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Remark 8.18. 1. If A is a pseudo - BL algebra with B(A) = {0, 1} = L2

and A ¹ F then F = {0, 1}, hence Q(A) = A′′ ≈ L2. Indeed, if a, b, c ∈ F
with a 6= b, then by psBLfr2 there exists e ∈ B(A) such e∧a 6= e∧b (hence
e 6= 0) and e∧c ∈ B(A). Clearly, e = 1, hence c ∈ B(A), that is F = B(A).
As examples of pseudo BL-algebras with this property we have local pseudo
BL-algebras and pseudo - BL chains.

2. More general, if A is a pseudo BL− algebra, B(A) is a finite and A ¹ F,
then F = B(A), hence in this case Q(A) = A′′ ≈ B(A). Indeed, since
A ¹ F we have B(A) ⊆ B(F ) ⊆ F. If consider a ∈ F, then there exists
e ∈ B(A) such that e ∧ x ∈ B(A) (for example e = 0). B(A) being finite,
there exists a largest element ea ∈ B(A) such ea ∧ a ∈ B(A). Suppose
ea ∨ a 6= ea, then there would exists e ∈ B(A) such that e∧ (ea ∨ a) 6= e∧ ea

and e∧ a ∈ B(A). But e∧ a ∈ B(A) implies e ≤ ea and thus we obtain e =
e ∧ (ea ∨ a) 6= e ∧ ea = e, a contradiction. Hence ea ∨ a = ea, so a ≤ ea,
consequently a = a∧ea ∈ B(A), that is, F ⊆ B(A). Then F = B(A), hence
Q(A) ≈ B(A).

3. Localization of pseudo BL-algebras

3.1. Topologies on a pseudo BL-algebra. We recall that, as in the case of
BL− algebras, a non-empty set F of elements of I ∈ I(A) will be called a topology
on a pseudo BL− algebra A if verifies the conditions of Definition 6.10.

Example 8.6. If I ∈ I(A), then the set F(I) = {I ′ ∈ I(A) : I ⊆ I ′} is a
topology on A.

Example 8.7. If we denote R(A) = {I ⊆ A : I is a regular subset of A}, then
I(A) ∩R(A) is a topology on A.

Example 8.8. If we denote by D(A) the set of all dense subsets of A, then
R(A) ⊆ D(A) and F = I(A) ∩D(A) is a topology on A.

Example 8.9. For any ∧− closed subset S of A, we set FS = {I ∈ I(A) :
I ∩ S ∩B(A) 6= ®} is a topology on A.

3.2. F-multipliers and localization pseudo BL-algebras. Let F a topol-
ogy on A. As in the case of BL− algebras, the relation θF of A defined in the
following way:

(x, y) ∈ θF ⇔ there exists I ∈ F such that e ∧ x = e ∧ y for any e ∈ I ∩B(A),

is a congruence on A.
We denote by x/θF the congruence class of an element x ∈ A and by pF : A →

A/θF the canonical morphism of pseudo BL-algebras.

Proposition 8.26. For a ∈ A, a/θF ∈ B(A/θF ) iff there exists I ∈ F such that
a ∧ e ∈ B(A) for every e ∈ I ∩B(A). So, if a ∈ B(A), then a/θF ∈ B(A/θF ).

Proof. For a ∈ A, we have a/θF ∈ B(A/θF ) ⇔ a/θF ¯ a/θF = a/θF
and [(a/θF )s]− = [(a/θF )−]s = a/θF ⇔ (a ¯ a)/θF = a/θF and (as)−/θF =
(a−)s/θF = a/θF ⇔ there exists J,K, G ∈ F such that (a¯a)∧ j = a∧ j, for every
j ∈ J ∩B(A), (as)− ∧ k = a∧ k, for every k ∈ K ∩B(A) and (a−)s ∧ g = a∧ g, for
every g ∈ G ∩B(A).



3. LOCALIZATION OF PSEUDO BL-ALGEBRAS 213

From psbl− c73, we deduce that (a∧ j)¯ (a∧ j) = (a¯ a)∧ j = a∧ j, for every
j ∈ J ∩B(A).

If denote I = J ∩K ∩G, then I ∈ F and for every e ∈ I ∩B(A),

(a ∧ e)¯ (a ∧ e) = a ∧ e,

[(a ∧ e)s]− psbl−c49= (as ∨ es)− psbl−c50= (as)− ∧ (es)− = (as)− ∧ e = a ∧ e

and

[(a ∧ e)−]s
psbl−c50= (a− ∨ e−)s

psbl−c49= (a−)s ∧ (e−)s = (a−)s ∧ e = a ∧ e,

so, a ∧ e ∈ B(A) for every e ∈ I ∩B(A).
So, if a ∈ B(A), then for every I ∈ F , a ∧ e ∈ B(A) for every e ∈ I ∩ B(A),

hence a/θF ∈ B(A/θF ).¥

Corollary 8.27. If F = I(A) ∩ R(A), then for a ∈ A, a ∈ B(A) iff a/θF ∈
B(A/θF ).

Definition 8.7. Let F be a topology on A. A partial F−multiplier is a mapping
f : I → A/θF where I ∈ F and for every x ∈ I and e ∈ B(A) the following axioms
are fulfilled:

(m− psBL1) f(e¯ x) = e/θF ∧ f(x) = e/θF ¯ f(x);
(m− psBL2) f(x) ≤ x/θF .

By dom(f) ∈ F we denote the domain of f ; if dom(f) = A, we called f total.
To simplify language, we will use F−multiplier instead partial F−multiplier,

using total to indicate that the domain of a certain F−multiplier is A.
The maps 0,1 : A → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every

x ∈ A are multipliers in the sense of Definition 8.7.
Also for a ∈ B(A), fa : A → A/θF defined by fa(x) = a/θF ∧ x/θF for every

x ∈ A, is an F− multiplier. If dom(fa) = A, we denote fa by fa ; clearly, f0 = 0.

We shall denote by M(I, A/θF ) the set of all F− multipliers having the domain
I ∈ F and

M(A/θF ) = ∪
I∈F

M(I,A/θF ).

If I1, I2 ∈ F , I1 ⊆ I2 we have a canonical mapping

ϕI1,I2 : M(I2, A/θF ) → M(I1, A/θF )

defined by
ϕI1,I2(f) = f|I1 for f ∈ M(I2, A/θF ).

Let us consider the directed system of sets
〈{M(I, A/θF )}I∈F , {ϕI1,I2}I1,I2∈F ,I1⊆I2

〉

and denote by AF the inductive limit (in the category of sets):

AF = lim−→
I∈F

M(I, A/θF ).

For any F− multiplier f : I → A/θF we shall denote by (̂I, f) the equivalence
class of f in AF .
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Remark 8.19. If fi : Ii → A/θF , i = 1, 2, are F− multipliers, then (̂I1, f1) =
(̂I2, f2) (in AF) iff there exists I ∈ F , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Let fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2), F−multipliers. Let us consider the
mappings:

f1 ∧ f2 : I1 ∩ I2 → A/θF
f1 ∨ f2 : I1 ∩ I2 → A/θF
f1 ¡ f2 : I1 ∩ I2 → A/θF
f1 → f2 : I1 ∩ I2 → A/θF
f1 Ã f2 : I1 ∩ I2 → A/θF

defined by
(f1 ∧ f2)(x) = f1(x) ∧ f2(x),
(f1 ∨ f2)(x) = f1(x) ∨ f2(x)

(f1 ¡ f2)(x) = [x/θF → f1(x)]¯ f2(x)
psbl−c77= f1(x)¯ [x/θF Ã f2(x)],

(f1 → f2)(x) = [f1(x) → f2(x)]¯ x/θF ,

(f1 Ã f2)(x) = x/θF ¯ [f1(x) Ã f2(x)],
for any x ∈ I1 ∩ I2, and let

(̂I1, f1) f (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2),

(̂I1, f1) g (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),

(̂I1, f1) · (̂I2, f2) = ̂(I1 ∩ I2, f1 ¡ f2),

(̂I1, f1) 7−→ (̂I2, f2) = ̂(I1 ∩ I2, f1 → f2).

(̂I1, f1) ! (̂I2, f2) = ̂(I1 ∩ I2, f1 Ã f2).
Clearly the definitions of the operations f,g, ·, 7−→ and ! on AF are correct.

Lemma 8.28. f1 ∧ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. See the proof of Lemma 6.24. ¥
Lemma 8.29. f1 ∨ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. See the proof of Lemma 6.25. ¥
Lemma 8.30. f1 ¡ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 ¡ f2)(e¯ x) = [(e¯ x)/θF → f1(e¯ x)]¯ f2(e¯ x)

= [(e¯ x)/θF → (e/θF ¯ f1(x))]¯ [e/θF ¯ f2(x)] =

= [((e/θF¯x/θF ) → (e/θF¯f1(x)))¯e/θF ]¯f2(x)
psbl−c74= [(x/θF → f1(x))¯e/θF ]¯f2(x) =

= [(x/θF → f1(x))¯ f2(x)]¯ e/θF = (f1 ¡ f2)(x)¯ e/θF .

Clearly, (f1¡f2)(x) = [x/θF → f1(x)]¯f2(x) ≤ f2(x) ≤ x/θF , for every x ∈ I1∩
I2, that is f1 ¯ f2 ∈ M(I1 ∩ I2, A/θF ). ¥

Lemma 8.31. . f1 → f2 ∈ M(I1 ∩ I2, A/θF ).
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Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 → f2)(e¯ x) = [f1(e¯ x) → f2(e¯ x)]¯ (e¯ x)/θF =

= [(e/θF ¯ f1(x)) → (e/θF ¯ f2(x))]¯ (e¯ x)/θF =

= [((e/θF¯f1(x)) → (e/θF¯f2(x)))¯e/θF ]¯x/θF
psbl−c74= [(f1(x) → f2(x))¯e/θF ]¯x/θF =

= [(f1(x) → f2(x))¯ x/θF ]¯ e/θF = [(f1 → f2)(x)]¯ e/θF .

Clearly, (f1 → f2)(x) = [f1(x) → f2(x)] ¯ x/θF ≤ x/θF , for every x ∈ I1∩ I2,
that is f1 → f2 ∈ M(I1 ∩ I2, A/θF ). ¥

Lemma 8.32. . f1 Ã f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then

(f1 Ã f2)(e¯ x) = (e¯ x)/θF ¯ [f1(e¯ x) Ã f2(e¯ x)]

= (e¯ x)/θF ¯ [(e/θF ¯ f1(x)) Ã (e/θF ¯ f2(x))] =
= x/θF ¯ [e/θF ¯ ((e/θF ¯ f1(x)) Ã (e/θF ¯ f2(x)))]

psbl−c74= x/θF ¯ [e/θF ¯ (f1(x) Ã f2(x))] =
= e/θF ¯ [x/θF ¯ (f1(x) Ã f2(x))] = e/θF ¯ (f1 Ã f2)(x).

Clearly, (f1 Ã f2)(x) = x/θF ¯ [f1(x) Ã f2(x)] ≤ x/θF , for every x ∈ I1∩ I2,
that is f1 Ã f2 ∈ M(I1 ∩ I2, A/θF ). ¥

Proposition 8.33. (AF , f, g, ·, 7−→, !,0 = (̂A,0),1 = (̂A,1)) is a pseudo -
BL algebra.

Proof. We will verify the axioms of pseudo - BL algebras.
(psBL1). Obviously (AF , f, g,0 = (̂A,0),1 = (̂A,1)) is a bounded lattice.
(psBL2). Let fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2, 3.
Clearly, f1 ¡ f2 ∈ M(A/θF ) (see Lemma 8.30) and

(̂I1, f1) · (̂I2, f2) = ̂(I1 ∩ I2, f1 ¡ f2) ∈ AF .

Thus, for x ∈ I1 ∩ I2 ∩ I3 we have

[(f1 ¡ f2) ¡ f3](x) = ((f1 ¡ f2)(x))¯ (x/θF Ã f3(x)) =

= [(x/θF → f1(x))¯ f2(x)]¯ (x/θF Ã f3(x)) =
= (x/θF → f1(x))¯ [f2(x)¯ (x/θF Ã f3(x))] =

= (x/θF → f1(x))¯ [(f2 ¡ f3)(x)] = [f1 ¡ (f2 ¡ f3)](x),
so

(̂I1, f1) · [(̂I2, f2) · (̂I3, f3)] = [(̂I1, f1) · (̂I2, f2)] · (̂I3, f3),
that is the operation · is associative on AF .

Let f ∈ M(I, A/θF ) with I ∈ F . If x ∈ I, then

(f ¡1)(x) = f(x)¯ (x/θF Ã 1(x)) = f(x)¯ (x/θF Ã x/θF ) = f(x)¯1/θF = f(x),

and

(1¡f)(x) = 1(x)¯ (x/θF Ã f(x)) = x/θF ¯ (x/θF Ã f(x)) = x/θF ∧f(x) = f(x),

hence
f ¡ 1 = 1 ¡ f = f,
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that is
(̂I, f) · (̂A,1) = (̂A,1) · (̂I, f) = (̂I, f),

and (AF , ·,1 = (̂A,1)) is a monoid.
(psBL3). Let fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2, 3.
Since f1 ≤ f2 → f3 for x ∈ I1 ∩ I2 ∩ I3 we have

f1(x) ≤ (f2 → f3)(x) ⇔ f1(x) ≤ [f2(x) → f3(x)]¯ x/θF .

So, by psbl − c3

f1(x)¯ [x/θF Ã f2(x)] ≤ [f2(x) → f3(x)]¯ x/θF ¯ [x/θF Ã f2(x)] ⇔
f1(x)¯ [x/θF Ã f2(x)] ≤ (f2(x) → f3(x))¯ (x/θF ∧ f2(x)) ⇔

f1(x)¯ [x/θF Ã f2(x)] ≤ (f2(x) → f3(x))¯ f2(x) ⇔
f1(x)¯ [x/θF Ã f2(x)] ≤ f2(x) ∧ f3(x) ≤ f3(x) ⇔

(f1 ¡ f2)(x) ≤ f3(x),
for every x ∈ I1 ∩ I2 ∩ I3, that is

f1 ¡ f2 ≤ f3.

Conversely if (f1 ¡ f2)(x) ≤ f3(x) we have

[x/θF → f1(x)]¯ f2(x) ≤ f3(x),

for every x ∈ I1 ∩ I2 ∩ I3.
Obviously,

[x/θF → f1(x)] ≤ f2(x) → f3(x)
psbl−c3⇔ (x/θF → f1(x))¯ x/θF ≤ (f2(x) → f3(x))¯ x/θF

⇔ x/θF ∧ f1(x) ≤ (f2(x) → f3(x))¯ x/θF
⇔ f1(x) ≤ (f2 → f3)(x).

So f1 ≤ f2 → f3 iff f1 ¡ f2 ≤ f3 for all f1, f2, f3 ∈ M(A/θF ).
Since f2 ≤ f1 Ã f3 for x ∈ I1 ∩ I2 ∩ I3 we have

f2(x) ≤ (f1 Ã f3)(x) ⇔ f2(x) ≤ x/θF ¯ [f1(x) Ã f3(x)].
So, by psbl − c3

[x/θF → f1(x)]¯ f2(x) ≤ [x/θF → f1(x)]¯ x/θF ¯ [f1(x) Ã f3(x)] ⇔
(f1 ¡ f2)(x) ≤ (x/θF ∧ f1(x))¯ (f1(x) Ã f3(x)) ⇔

(f1 ¡ f2)(x) ≤ f1(x)¯ (f1(x) Ã f3(x)) ⇔
(f1 ¡ f2)(x) ≤ f1(x) ∧ f3(x) ≤ f3(x) ⇔

(f1 ¡ f2)(x) ≤ f3(x),
for every x ∈ I1 ∩ I2 ∩ I3, that is

f1 ¡ f2 ≤ f3.

Conversely if (f1 ¡ f2)(x) ≤ f3(x) we have

f1(x)¯ [x/θF Ã f2(x)] ≤ f3(x),

for every x ∈ I1 ∩ I2 ∩ I3.
Obviously,

(x/θF Ã f2(x)) ≤ f1(x) Ã f3(x)
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psbl−c3⇔ x/θF ¯ (x/θF Ã f2(x)) ≤ x/θF ¯ (f1(x) Ã f3(x))
⇔ x/θF ∧ f2(x) ≤ x/θF ¯ (f1(x) Ã f3(x))

⇔ f2(x) ≤ (f1 Ã f3)(x).
So, f2 ≤ f1 Ã f3 iff f1 ¡ f2 ≤ f3 for all f1, f2, f3 ∈ M(A/θF ). So,

(̂I1, f1) ≤ (̂I2, f2) 7−→ (̂I3, f3) iff (̂I1, f1) · (̂I2, f2) ≤ (̂I3, f3)

and
(̂I2, f2) ≤ (̂I1, f1) ! (̂I3, f3) iff (̂I1, f1) · (̂I2, f2) ≤ (̂I3, f3).

(psBL4). Let fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2.
Thus, for x ∈ I1 ∩ I2 we have

[(f1 → f2) ¡ f1](x) = [(f1 → f2)(x)]¯ [x/θF Ã f1(x)]
= ([f1(x) → f2(x)]¯ x/θF )¯ [x/θF Ã f1(x)] =
= [f1(x) → f2(x)]¯ (x/θF ¯ [x/θF Ã f1(x)]) =

= [f1(x) → f2(x)]¯ [x/θF ∧ f1(x)] = [f1(x) → f2(x)]¯ f1(x) =
= f1(x) ∧ f2(x) = (f1 ∧ f2)(x),

and
[f1 ¡ (f1 Ã f2)](x) = [x/θF → f1(x)]¯ [(f1 Ã f2)(x)]

= [x/θF → f1(x)]¯ (x/θF ¯ [f1(x) Ã f2(x)]) =
= ([x/θF → f1(x)]¯ x/θF )¯ [f1(x) Ã f2(x)] =

= [x/θF ∧ f1(x)]¯ [f1(x) Ã f2(x)] = f1(x)¯ [f1(x) Ã f2(x)] =
= f1(x) ∧ f2(x) = (f1 ∧ f2)(x).

So,
f1 ∧ f2 = (f1 → f2) ¡ f1 = f1 ¡ (f1 Ã f2)

and

(̂I1, f1) f (̂I2, f2) = [(̂I1, f1) 7−→ (̂I2, f2)] · (̂I1, f1) = (̂I1, f1) · [(̂I1, f1) ! (̂I2, f2)].

(psBL5). We have

[(f1 → f2) ∨ (f2 → f1)](x) = [(f1 → f2)(x)] ∨ [(f2 → f1)(x)] =
= [(f1(x) → f2(x))¯ x/θF ] ∨ [(f2(x) → f1(x))¯ x/θF ] =

psbl−c36= [(f1(x) → f2(x)) ∨ (f2(x) → f1(x))]¯ x/θF = 1/θF ¯ x/θF = x/θF = 1(x),
and

[(f1 Ã f2) ∨ (f2 Ã f1)](x) = [(f1 Ã f2)(x)] ∨ [(f2 Ã f1)(x)] =
= [x/θF ¯ (f1(x) Ã f2(x))] ∨ [x/θF ¯ (f2(x) Ã f1(x))] =

psbl−c36= x/θF ¯ [(f1(x) Ã f2(x)) ∨ (f2(x) Ã f1(x))] = x/θF ¯ 1/θF = x/θF = 1(x),
hence

(f1 → f2) ∨ (f2 → f1) = (f1 Ã f2) ∨ (f2 Ã f1) = 1
and

[(̂I1, f1) 7−→ (̂I2, f2)] g [(̂I2, f2) 7−→ (̂I1, f1)] =

= [(̂I1, f1) ! (̂I2, f2)] g [(̂I2, f2) ! (̂I1, f1)] = (̂A,1).¥
Remark 8.20. (M(A/θF ),∧,∨, ¡,→, Ã,0,1) is a pseudo - BL algebra.
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Definition 8.8. The pseudo - BL algebra AF will be called the localization
pseudo - BL algebra of A with respect to the topology F .

Proposition 8.34. If pseudo BL− algebra (A,∨,∧,¯,→, Ã, 0, 1) is a pseudo
MV− algebra (A,¯,⊕,− ,s , 0, 1) (i.e. (x−)s = (xs)− = x, for all x ∈ A), then
pseudo BL− algebra (M(A/θF ),∧,∨, ¡,→, Ã,0,1) is a pseudo MV− algebra

(M(A/θF ), ¡, ¢,− ,s ,0,1),

where for fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2), F−multipliers we have the
mapping

f1 ¢ f2 : I1 ∩ I2 → A/θF ,

(f1 ¢ f2)(x) = (f1(x)⊕ f2(x)) ∧ x/θF
for any x ∈ I1 ∩ I2, and for any F−multiplier f : I → A/θF (with I ∈ F ) we have
the mappings

f− = f → 0 : I → A/θF ,

f−(x) = (f → 0)(x) = [f(x) → 0(x)]¯x/θF = [f(x)]−¯x/θF
for any x ∈ I, and

fs = f Ã 0 : I → A/θF ,

fs(x) = (f Ã 0)(x) = x/θF ¯ [f(x) Ã 0(x)] =x/θF¯[f(x)]s

for any x ∈ I.

Proof. To prove that pseudo BL− algebra M(A/θF ) is a pseudo MV− algebra
let f ∈ M(I,A/θF ), where I ∈ F .

Then

(f−)s(x) = x/θF ¯ [(f(x))− ¯ x/θF ]s
psbl−c48= x/θF ¯ [x/θF Ã ((f(x))−)s]

= x/θF ¯ (x/θF Ã f(x)) = x/θF ∧ f(x) = f(x)

and

(fs)−(x) = [x/θF ¯ (f(x))s]− ¯ x/θF
psbl−c48= [x/θF → ((f(x))s)−]¯ x/θF

= (x/θF → f(x))¯ x/θF = x/θF ∧ f(x) = f(x)

(since A is a pseudo MV− algebra then A/θF is a pseudo MV− algebra and f(x) ∈
A/θF , for all x ∈ I).

So, (f−)s = (fs)− = f, for all f ∈ M(A/θF ) and pseudo BL− algebra
M(A/θF ) is a pseudo MV -algebra.

We have f1 ¢ f2 = (f−2 ¡ f−1 )s.
Clearly,

(f1 ¢ f2)(x) = x/θF ¯ [f−2 (x)¯ (x/θF Ã f−1 (x))]s

= x/θF ¯ [(f2(x))− ¯ x/θF ¯ (x/θF Ã (f1(x))− ¯ x/θF )]s =

= x/θF¯[(f2(x))−¯(x/θF∧[(f1(x))−¯x/θF ])]s = x/θF¯[(f2(x))−¯(f1(x))−¯x/θF ]s

psbl−c48= x/θF ¯ [x/θF Ã ((f2(x))− ¯ (f1(x))−)s]

= x/θF ∧ [(f2(x))− ¯ (f1(x))−]s = x/θF ∧ (f1(x)⊕ f2(x)),

for all x ∈ I1 ∩ I2.¥
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Corollary 8.35. If pseudo BL− algebra A is a pseudo MV− algebra then
pseudo BL− algebra (AF , f, g, ·, 7−→, !,0 = (̂A,0),1 = (̂A,1)) is a pseudo MV−
algebra (AF , ·, +,− ,s ,0 = (̂A,0),1 = (̂A,1)), where

(̂I1, f1) · (̂I2, f2) = ̂(I1 ∩ I2, f1 ¡ f2),

(̂I1, f1) + (̂I2, f2) = ̂(I1 ∩ I2, f1 ¢ f2),
and

(̂I, f)− = (̂I, f−),

(̂I, f)s = (̂I, fs).

In this case we obtain the results from Corollary 7.10.

Proposition 8.36. If pseudo BL -algebra (A,∨,∧,¯,→,Ã, 0, 1) is a BL -
algebra (i.e x ¯ y = y ¯ x for all x, y ∈ A and in particular x → y = x Ã y
for all x, y ∈ A), then pseudo BL -algebra (M(A/θF ),∧,∨, ¡,→, Ã,0,1) is a BL
-algebra (M(A/θF ),∧,∨,¡,→,0,1). Indeed if I1, I2 ∈ F and fi ∈ M(Ii, A/θF ),
i = 1, 2 we have

(f1 → f2)(x) = [f1(x) → f2(x)]¯ x/θF = x/θF ¯ [f1(x) Ã f2(x)] = (f1 Ã f2)(x),

for all x ∈ I1∩I2, then f1 → f2 = f1 Ã f2, so pseudo BL -algebra (M(A/θF ),∧,∨,¡,→
, Ã,0,1) is commutative (see Remark 5.1), so is a BL -algebra (see Proposition
6.28).

Corollary 8.37. If pseudo BL− algebra A is a BL− algebra then pseudo BL−
algebra (AF , f, g, ·, 7−→,!,0 = (̂A,0),1 = (̂A,1)) is a BL− algebra (AF ,f,g, ·, 7−→
,0 = (̂A,0),1 = (̂A,1)), where

(̂I1, f1) f (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2),

(̂I1, f1) g (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),

(̂I1, f1) · (̂I2, f2) = ̂(I1 ∩ I2, f1 ¡ f2),

(̂I1, f1) 7−→ (̂I2, f2) = ̂(I1 ∩ I2, f1 → f2).

In this case we obtain the results from Corollary 6.29.

Lemma 8.38. Let the map vF : B(A) → AF defined by vF (a) = (̂A, fa) for every
a ∈ B(A). Then:

(i) vF is a morphism of pseudo - BL algebras;

(ii) For a ∈ B(A), (̂A, fa) ∈ B(AF );
(iii) vF (B(A)) ∈ R(AF ).

Proof. (i). We have vF (0) = (̂A, f0) = (̂A,0) = 0.
For a, b ∈ B(A) and x ∈ A we have

(a ∧ x)¯ (x Ã (b ∧ x)) = (a¯ x)¯ (x Ã (b ∧ x)) =

= a¯ [x¯ (x Ã (b ∧ x))] = a¯ [x ∧ (b ∧ x)]

= a ∧ [x ∧ (b ∧ x)] = a ∧ (b ∧ x) = (a ∧ b) ∧ x = (a¯ b) ∧ x
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and

[(a ∧ x) → (b ∧ x)]¯ x = [(x¯ a) → (x¯ b)]¯ x
psbl−c75= (a → b)¯ x = x ∧ (a → b),

and

x¯ [(a ∧ x) Ã (b ∧ x)] = x¯ [(x¯ a) Ã (x¯ b)]
psbl−c75= x¯ (a Ã b) = x ∧ (a Ã b),

hence

vF (a) · vF (b) = (̂A, fa) · (A, fb) = ̂(A, fa ¡ fb) = ̂(A, fa¯b) = vF (a¯ b),

vF (a) 7−→ vF (b) = (̂A, fa) 7−→ (A, fb) = ̂(A, fa → fb) = ̂(A, fa→b) = vF (a → b),
and

vF (a) ! vF (b) = (̂A, fa) ! (A, fb) = ̂(A, fa Ã fb) = ̂(A, fa b) = vF (a Ã b),

hence vF is a morphism of pseudo - BL algebras.
(ii). For a ∈ B(A) we have a¯ a = a and (as)− = (a−)s = a, hence

(a ∧ x)¯ [x Ã (a ∧ x)] = (a¯ x)¯ [x Ã (a ∧ x)]

= a¯ [x¯ (x Ã (a ∧ x))] = a¯ [x ∧ (a ∧ x)] = a¯ (a ∧ x) = a ∧ (a ∧ x) = (a ∧ x),
and

[x¯(a∧x)s]−¯x
psbl−c49= [x¯(as∨xs)]−¯x

psbl−c36= [(x¯as)∨(x¯xs)]−¯x
psbl−c38=

psbl−c38= [(x¯ as) ∨ 0]− ¯ x = [(x¯ as)]− ¯ x =
(since a ∈ B(A))

= (x → a)¯ x = x ∧ a,

and

x¯[(a∧x)−¯x]s
psbl−c50= x¯[(a−∨x−)¯x]s

psbl−c36= x¯[(a−¯x)∨(x−¯x)]s
psbl−c38=

psbl−c38= x¯ [(a− ¯ x) ∨ 0]s = x¯ [(a− ¯ x)]s =
(since a ∈ B(A))

= x¯ (x Ã a) = x ∧ a,

for every x ∈ A.
Since A ∈ F we deduce that

(a/θF ∧ x/θF )¯ [x/θF Ã (a/θF ∧ x/θF )] = (a/θF ∧ x/θF )

and
[x/θF ¯ (a/θF ∧ x/θF )s]− ¯ x/θF = a/θF ∧ x/θF ,

x/θF ¯ [(a/θF ∧ x/θF )− ¯ x/θF ]s = a/θF ∧ x/θF ,

hence
fa ¡ fa = fa

and
[(fa)s]− = [(fa)−]s = fa,

that is,

(̂A, fa) ∈ B(AF ).
(iii). See the proof of Lemma 6.32, (iii). ¥
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3.3. Strong F-multipliers and strong localization pseudo BL-algebras.
As in the case of BL -algebras, to obtain the maximal pseudo BL -algebra of quo-
tients Q(A) as a localization relative to a topology F we will develope another theory
of F− multipliers.

Definition 8.9. Let F be a topology on A. A strong - F− multiplier is a
mapping f : I → A/θF ( where I ∈ F) which verifies the axioms m − psBL1,m −
psBL2 (see Definition 8.7) and

(m− psBL3) If e ∈ I ∩B(A), then f(e) ∈ B(A/θF );
(m− psBL4) (x/θF ) ∧ f(e) = (e/θF ) ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.

If F = {A}, then θF is the identity congruence of A so an strong F− multiplier
is a strong total multiplier.

Remark 8.21. If (A,∧,∨,¯,→, Ã, 0, 1) is a pseudo BL− algebra, the maps
0,1 : A → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every x ∈ A are
strong - F− multipliers. We recall that if fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2)
are F−multipliers we consider the mappings f1 ∧ f2, f1 ∨ f2, f1 ¡ f2, f1 → f2, f1 Ã
f2 : I1 ∩ I2 → A/θF defined by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x),

(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ¡ f2)(x) = [x/θF → f1(x)]¯ f2(x)
psbl−c77= f1(x)¯ [x/θF Ã f2(x)],

(f1 → f2)(x) = [f1(x) → f2(x)]¯ x/θF ,

(f1 Ã f2)(x) = x/θF ¯ [f1(x) Ã f2(x)],
for any x ∈ I1 ∩ I2. If f1, f2 are strong - F− multipliers, then the multipliers f1 ∧
f2, f1 ∨ f2, f1 ¡ f2, f1 → f2, f1 Ã f2 are also strong - F− multipliers. Indeed, if
e ∈ I1 ∩ I2 ∩B(A), then

(f1 ∧ f2)(e) = f1(e) ∧ f2(e) ∈ B(A/θF ),

(f1 ∨ f2)(e) = f1(e) ∨ f2(e) ∈ B(A/θF ).
By Proposition 5.13 we have

(f1 ¡ f2)(e) = [e/θF → f1(e)]¯ f2(e) = [(e−)/θF ∨ f1(e)]¯ f2(e) ∈ B(A/θF ),

(f1 → f2)(e) = [f1(e) → f2(e)]¯ e/θF = [(f1(e))− ∨ f2(e)]¯ e/θF ∈ B(A/θF ),
and

(f1 Ã f2)(e) = e/θF ¯ [f1(e) Ã f2(e)] = e/θF ¯ [(f1(e))s ∨ f2(e)] ∈ B(A/θF ).

For e ∈ I1 ∩ I2 ∩B(A) and x ∈ I1∩ I2 we have:

x/θF ∧ (f1 ∧ f2)(e) = x/θF ∧ f1(e) ∧ f2(e) =

= [x/θF ∧ f1(e)] ∧ [x/θF ∧ f2(e)] =
= [e/θF ∧ f1(x)] ∧ [e/θF ∧ f2(x)] = e/θF ∧ (f1 ∧ f2)(x)

and
x/θF ∧ (f1 ∨ f2)(e) = x/θF ∧ [f1(e) ∨ f2(e)] =

= [x/θF ∧ f1(e)] ∨ [x/θF ∧ f2(e)] =
= [e/θF ∧ f1(x)] ∨ [e/θF ∧ f2(x)] =

= e/θF ∧ [f1(x) ∨ f2(x)] = e/θF ∧ (f1 ∨ f2)(x)
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and
x/θF ∧ (f1 ¡ f2)(e) = x/θF ∧ [(e/θF → f1(e))¯ f2(e)]

= [(e/θF → f1(e))¯ f2(e)]¯ x/θF = [(e/θF → f1(e))¯ x/θF ]¯ f2(e)

psbl−c75= [((e¯ x)/θF → (f1(e)¯ x/θF ))¯ x/θF ]¯ f2(e)

= [(e¯ x)/θF → (f1(e)¯ x/θF )]¯ [x/θF ¯ f2(e)]

= [(e¯ x)/θF → (e/θF ¯ f1(x))]¯ [e/θF ¯ f2(x)]

= [((e/θF ¯ x/θF ) → (e/θF ¯ f1(x)))¯ e/θF ]¯ f2(x)

psbl−c74= [(x/θF → f1(x))¯ e/θF ]¯ f2(x) = [(x/θF → f1(x))¯ f2(x)]¯ e/θF

= [(f1 ¡ f2)(x)]¯ e/θF = e/θF ∧ (f1 ¡ f2)(x),

hence
x/θF ∧ (f1 ¡ f2)(e) = e/θF ∧ (f1 ¡ f2)(x).

Also
e/θF ∧ (f1 → f2)(x) = [(f1(x) → f2(x))¯ x/θF ] ∧ e/θF

= [(f1(x) → f2(x))¯ x/θF ]¯ e/θF = [(f1(x) → f2(x))¯ e/θF ]¯ x/θF
psbl−c74= [((f1(x)¯ e/θF ) → (f2(x)¯ e/θF ))¯ e/θF ]¯ x/θF

= [((x/θF ¯ f1(e)) → (x/θF ¯ f2(e)))¯ e/θF ]¯ x/θF =

= [((x/θF¯f1(e)) → (x/θF¯f2(e)))¯x/θF ]¯e/θF
psbl−c75= [(f1(e) → f2(e))¯x/θF ]¯e/θF =

= [(f1(e) → f2(e))¯ e/θF ]¯ x/θF = [(f1 → f2)(e)]¯ x/θF = x/θF ∧ (f1 → f2)(e),

hence
x/θF ∧ (f1 → f2)(e) = e/θF ∧ (f1 → f2)(x).

Also
e/θF ∧ (f1 Ã f2)(x) = e/θF ∧ [x/θF ¯ (f1(x) Ã f2(x))]

= (e¯ x)/θF ¯ [f1(x) Ã f2(x)] = x/θF ¯ [e/θF ¯ (f1(x) Ã f2(x))]

psbl−c74= x/θF ¯ [e/θF ¯ ((e/θF ¯ f1(x)) Ã (e/θF ¯ f2(x)))]

= x/θF ¯ [e/θF ¯ ((x/θF ¯ f1(e)) Ã (x/θF ¯ f2(e)))] =

= e/θF¯[x/θF¯((x/θF¯f1(e)) Ã (x/θF¯f2(e)))]
psbl−c75= e/θF¯[x/θF¯(f1(e) Ã f2(e))] =

= x/θF ¯ [e/θF ¯ (f1(e) Ã f2(e))] = x/θF ¯ (f1 Ã f2)(e) = x/θF ∧ (f1 Ã f2)(e),

hence
x/θF ∧ (f1 Ã f2)(e) = e/θF ∧ (f1 Ã f2)(x).

Remark 8.22. Analogous as in the case of F− multipliers if we work with strong-
F− multipliers we obtain a pseudo BL− subalgebra of AF denoted by s−AF which
will be called the strong-localization pseudo BL− algebra of A with respect to the
topology F .
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3.4. Applications. In the following we describe the localization (strong local-
ization) pseudo - BL algebra AF (s−AF ) in some special instances.

1. If I ∈ I(A) and F is the topology F(I) = {I ′ ∈ I(A) : I ⊆ I ′}, then AF is
isomorphic with M(I, A/θF ) and vF : B(A) → AF is defined by vF (a) = fa|I for
every a ∈ B(A).

If I is a regular subset of A, then θF is the identity, hence AF is isomorphic with
M(I, A).

2. If F = I(A) ∩R(A) is the topology of regular ideals, then θF is the identity
congruence of A and we obtain the Definition 8.9 for strong multipliers of A, so

s−AF = lim−→
I∈F

M(I, A),

where M(I,A) is the set of multipliers of A having the domain I in the sense of
Definition 8.9.

In this situation we obtain:

Proposition 8.39. In the case F = I(A)∩R(A), s−AF is exactly the maximal
pseudo BL-algebra Q(A) of quotients of A, which is a Boolean algebra.

Remark 8.23. If pseudo BL− algebra A is a pseudo MV− algebra, s − AF
is exactly the maximal pseudo MV -algebra Q(A) of quotients of A introduced in
Definition 7.6.

Remark 8.24. If pseudo BL− algebra A is a BL− algebra, s − AF is exactly
the maximal BL-algebra Q(A) of quotients of A introduced in Definition 6.8.

3. Denoting by D the topology of dense ordered ideals of A (that is D = I(A)∩
D(A) - see Example 10 from Subsection 5.1), then (since R(A) ⊆ D(A)) there exists
a morphism of pseudo BL -algebras α : Q(A) → s−AD such that the diagrame

B(A) vA−→ Q(A)
↘
vD

↙
α

s−AD
is commutative (i.e. α ◦ vA = vD). Indeed, if [f, I] ∈ Q(A) (with I ∈ I(A) ∩ R(A)
and f : I → A is a strong multiplier in the sense of Definition 8.9) we denote by
fD the strong - D−multiplier fD : I → A/θD defined by fD(x) = f(x)/θD for every
x ∈ I. Thus, α is defined by α([f, I]) = [fD, I].

4. Let S ⊆ A an ∧−closed system of A.

Proposition 8.40. If FS is the topology associated with an ∧−closed system
S ⊆ A (see Example 11 from Subsection 5.1), then the pseudo BL-algebra s− AFS

is isomorphic with B(A[S]).

Proof. See the proof of Proposition 6.34. ¥
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[70] G. Georgescu, L. Leuştean, Some classes of pseudo-BL algebras, J. Aust. Math. Soc. 73, No.1
(2002), 127-153.



228 BIBLIOGRAPHY
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physikalisch medizinischen Societäd der Erlangen 56 (1924), 47-63.
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