Approved with academic year 2008-2009

UNIVERSITY OF CRAIOVA Faculty of Mathematics and Informatics Departament of Mathematics Fundamental domain : MATHEMATICS Master 2: APPLIED MATHEMATICS Duration of studies : 2 years

Elements of cryptography

Instructor : Lector dr. Christina-Theresia Dan

Cod: MA 223 Cycle II: Master Second Year, Semester IV, Cours 28 hours, Seminar 28 hours Nr. of credits: 6 Domain: Mathematics Type : fundamental Category : specialized discipline Objectives: To have a knowledge of the basic notions and principles of cryptology; to know the major cryptosystems with secret key, DES and AES; to study the most popular public-key

major cryptosystems with secret key, DES and AES; to study the most popular public-key cryptosystems and their security; to apply mathematical notions in solving applicative problems. **Necessary background:** The courses of: elementary number theory, algorithms in number theory, algebra (I, II and III), computer programming.

Evaluation form : Exam (E)

Contents:

C ₁ :	<i>Basic notions</i> . Information security and cryptography. Basic concepts. Breaf history of cryptography.
C ₂ :	Special classes of functions: One way functions, trapdoor, hash. Detecting error and methods of correction. Generating random numbers.
C ₃ :	<i>Symmetric-key encryption</i> . Substitution cyphers: monoalphabetic (Cezar, affine), polialphabetic (Vigenere, Playfair, Hill). Cryptanalisis of such ciphers.
C ₄ :	<i>Data Encryption Standard (DES).</i> Product ciphers. Feistel cipher. Description of the cryptographic scheme DES. Utility of DES. Cryptosystems related with DES.
C ₅ :	Various attacks on DES. Meet in the middle, differential and linear cryptanalisis.
C ₆ :	Advanced Encryption Standard (AES). History. Description of the finalist crypto- systems for AES (Mars, RC6, Serpent, Twofish). AES.
C ₇ :	<i>Public-key cryptography</i> . Basic notions. The security of secret-key cryptosystems. Symmetric-key vs public-key cryptography.
C ₈ :	<i>RSA public-key cryptosystem</i> . Description. Implementation. <i>RSA</i> encryption in practice.
C ₉ :	Security of RSA. Relation to factoring. Small encryption exponent <i>e</i> . Message concealing. Another attacks.
C ₁₀ :	<i>El Gamal public-key cryptosystem</i> . Description. Security of discrete logarithms. Generalalized El Gamal encryption.

- C₁₁: *Knapsack public-key encryption*. Merkle-Hellman encryption. Chor-Rivest public-key encryption.
- C₁₂-C₁₃: *Digital signature*. Introduction. Basic notions. A classification of digital signature schemes and short presentation. Types of attacks on signature scheme. *RSA* signature and possible attacks. El Gamal signature. Digital standard signature (*DSS*).
 - C₁₄: Data base security and secret sharing.

Bibliography:

- 1. Bușneag, D., Boboc, F., Piciu, D., Aritmetică și teoria numerelor, Editura Universitaria, Craiova, 1999.
- 2. Dan, C., Algoritmi în teoria numerelor, Editura Universitaria, Craiova, 2005.
- 3. Koblitz, N., *A Course in Number Theory and Crzptography*, ed. a II-a, Springer-Verlag, Berlin, 1994.
- 4. Knut, D.E., The Art of Computer Programming, vol. I, ed. a II-a, Addison-Wesley, 1973.
- 5. Menezes, A., Oorschot, P., Vanstone, S., *Handbook of Applied Cryptography*, CRC Press, Boca Raton, Florida, 1998.
- 6. Yan, Song Y., Number theory for computing, ed. a II-a, Springer Verlag, 2002.