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We consider the motion of a stretched string coupled with a rigid body at one end and
we study the existence of periodic solution when a periodic force f acts on the body.
The main difficulty of the study is related to the weak dissipation that characterizes this
hybrid system, which does not ensure a uniform decay rate of the energy. Under additional
regularity conditions on f , we use a perturbation argument in order to prove the existence
of a periodic solution. In the last part of the paper we present some numerical simulations
based on the theoretical results.
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1. Introduction

In this paper we consider the following hybrid system⎧⎨
⎩

utt(x, t) − uxx(x, t) = 0 in (0,1) × (0,∞),

u(0, t) = 0 on (0,∞),

utt(1, t) + ux(1, t) + αut(1, t) = f (t) on (0,∞)

(1.1)

where α is a positive constant.
System (1.1) models the coupling between a vibrating string located on the interval (0,1) and a rigid body attached at

the right extremity x = 1. Here u(x, t) describes the position of the string at each moment t > 0 and point x ∈ (0,1) and
verifies the linear wave equation. The left extremity x = 0 of the string is supposed to be fixed. In the third equation of
(1.1), u(1, t) gives the movement of the body and satisfies the Newton law. When α > 0, the term αut(1, t) represents a
friction proportional with the velocity of the body. Note that the dissipation of system (1.1) acts only through the ordinary
differential equation representing the movement of the rigid body. For simplicity, we have chosen the length of the string,
the wave velocity and the mass of the solid to be equal to one.

Model (1.1) has been introduced and analyzed in [12] (see also [11,13,17]) and represents the simplest example of
hybrid system which couples two different types of differential equations. In [1,14,19,20] similar models in which the string
is replaced by a beam with different boundary conditions are considered. Most of the results obtained in this paper can be
extended to these models with similar statements. Many more complex one or multi dimensional hybrid systems have been
introduced and analyzed (see, for instance, [2–4,6,7,15,16,22]). Some of these models are characterized by a weak dissipation
acting on one component of the system only. This does not ensure a uniform decay rate of the corresponding energy and
makes more difficult the study of such properties as asymptotic behavior, compactness of trajectories, existence of periodic
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or almost periodic functions, etc. To establish these properties may be as a delicate problem as the corresponding one for
some nonlinear models.

The non-homogeneous term f in (1.1) represents an external force acting on the body and it is supposed to be not zero
and periodic in time with period T

f (t + T ) = f (t), ∀t � 0. (1.2)

The aim of this article is to study whether there exists a periodic solution of (1.1) under hypothesis (1.2) for f . In the
positive case, any other solution of (1.1) is bounded and converges to the periodic one as t goes to infinity. On the other
hand, the non-existence of a periodic solution implies that all the solutions are unbounded in the finite energy space when
t tends to infinity. In this case, we are dealing with a resonance phenomenon in which a bounded perturbation f of the
system leads to unbounded solutions.

In this paper we show that, if the non-homogeneous term f is such that f |(0,T ) ∈ H1(0, T ), then there exists a unique
periodic solution of (1.1). To prove this result we introduce a perturbed system, depending on a small parameter ε, devoted
to go to zero, for which we have an exponential decay rate of the corresponding energy. This property allows us to apply
a fixed point argument and to show that the perturbed system has a unique periodic solution for each ε > 0. If f |(0,T ) ∈
H1(0, T ), these periodic solutions are uniformly bounded. Hence, we can pass to the limit to obtain a periodic solution for
the initial system (1.1).

On the other hand, note that finite energy solutions for (1.1) exist even if f |(0,T ) belongs to L2(0, T ). In this case we
use the Fourier decomposition method in order to characterize the periods T for which there exists a periodic solution.
Due to the complexity of this characterization, it is not easy to say if this property holds for any T . Thus, in the case
f |(0,T ) ∈ L2(0, T ), we cannot guarantee the absence of the resonance phenomenon but we mathematically show that its
possible occurrence is precisely related to the weak dissipation of the system. In [15] a more complex hybrid system,
coupling two partial differential equations, is considered and the existence of periodic solutions is studied. Due to simpler
nature of the model, the results we obtain in the present paper are much sharper.

In the last part of the article we use the perturbation argument and the fixed point method mentioned above in order to
give some numerical approximation for the periodic solution. From these computations we can see that the extra dissipation
introduced in the perturbed system ensures, in many cases, a better numerical behavior of the approximation scheme. Also,
we provide some criteria for the optimal choice of the perturbed parameter ε with respect to the discretization step.

The remaining part of the paper is organized as follows. In Section 2 we present some basic properties of system (1.1).
Section 3 is devoted to the analysis of the perturbed system and the proof of existence of periodic solutions for it. Their
uniform boundedness is proved in Section 4 supposing that f |(0,T ) ∈ H1(0, T ). The existence of a periodic solution for the
initial system (1.1) is a consequence of those uniform estimates. In Section 5 we analyze the case f |(0,T ) ∈ L2(0, T ) and
we give characterization of the periods T for which there exists a periodic solution for (1.1). Finally, in the last section we
present the numerical simulations which are based on and confirm the theoretical results.

2. Preliminaries

In this section we present some basic properties of system (1.1). Most of these results are well known (see, for instance,
[1,11,12,17]) but we prefer to present them in order to make our paper self contained and easier to read. Firstly, we need
to introduce some notation and to rewrite (1.1) in an abstract form. We define the Hilbert spaces

V = {u ∈ H1(0,1): u(0) = 0
}
, H = V × L2(0,1) × R

endowed with their natural inner product. We shall denote by (·,·) and ‖ · ‖ the inner product and the corresponding norm
in H , respectively.

By introducing the new variables w = ut and z = ut(1, t), we equivalently write (1.1) as

dU (t)

dt
= AU (t) + F (t), t > 0 (2.1)

and we add the initial condition

U (0) = U0, (2.2)

where

U =
[ u

w
z

]
, AU =

[ w
uxx

−ux(1) − αw(1)

]
, F =

[ 0
0
f

]
and U0 =

[ u0
w0
z0

]
.

The operator A is an unbounded operator in H , with domain

D(A) = {(u, w, z) ∈ H2(0,1) ∩ V × V × R: w(1) = z
}
.



Author's personal copy

N. Cîndea et al. / J. Math. Anal. Appl. 385 (2012) 399–413 401

With this notation, we have the following result.

Theorem 2.1. The operator (D(A), A) is a maximal-dissipative operator which generates a contraction semigroup (S(t))t�0 in H.
If U0 ∈ H and f ∈ C[0,∞), there exists a unique mild solution U ∈ C([0,∞); H) of (2.1)–(2.2) given by the variation of constant
formula

U (t) = S(t)U0 +
t∫

0

S(t − s)F (s)ds. (2.3)

The total energy associated to (1.1) is given by

E(t) = 1

2

1∫
0

(
u2

t (x, t) + u2
x(x, t)

)
dx + 1

2
u2

t (1, t) (2.4)

and under the above boundary conditions we can, formally, deduce that

dE(t)

dt
= −αu2

t (1, t) + f (t)ut(1, t). (2.5)

When f = 0, (2.5) indicates that the energy is decreasing which has been shown sufficient for the strong stability, but as
we have said before, does not ensure the uniform stability. The next theorem describes this asymptotic behavior of solutions
of the homogeneous system (2.1)–(2.2).

Theorem 2.2. For any U0 ∈ H we have that

lim
t→∞

∥∥S(t)U0
∥∥= 0. (2.6)

Moreover, there are no positive constants M and ω such that∥∥S(t)U0
∥∥� M exp(−ωt)‖U0‖, ∀U0 ∈ H, ∀t � 0. (2.7)

Remark 2.3. The asymptotic properties described by Theorem 2.2 show that the dissipation αut(1, t) of (1.1), which is
concentrated on the rigid body, cannot ensure the exponential decay of the energy (2.5). As it is shown in [13], this is
equivalent to the existence of solutions with arbitrarily slow decay rate.

A spectral analysis of the operator A confirms the asymptotic behavior described in the previous theorem. More precisely,
we have the following result.

Theorem 2.4. The operator (D(A), A) has a sequence of eigenvalues (νn)n�1 with the following behavior

νn = nπ i + i

nπ
− α

n2π2
+ o

(
1

n2

)
as n → ∞. (2.8)

Remark 2.5. From (2.8) we see that Re (νn) < 0 but limn→∞ |Re (νn)| = 0. This confirms the non-uniform exponential decay
rate stated in Theorem 2.2.

As we have mentioned before, our interest is to prove the existence of a periodic solution for (2.1) when f is T -periodic,
i.e. satisfies

f (t + T ) = f (t), ∀t � 0. (2.9)

A first result in this direction is the following simple one.

Proposition 2.6. Suppose that f ∈ C[0,∞) and verifies (2.9). If system (2.1) has one T -periodic solution U ∈ C([0,∞); H), then any
other solution V ∈ C([0,∞); H) verifies

lim
t→∞

∥∥U (t) − V (t)
∥∥= 0. (2.10)

As a consequence, system (2.1) has at most one T -periodic solution in C([0,∞); H).
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Proof. Suppose that (2.1) has a periodic solution U . Let V be any other solution and W = U − V . It follows that W ∈
C([0,∞); H) and verifies

W (t) = S(t)
(
U (0) − V (0)

)
, ∀t � 0.

Now, (2.10) follows from (2.6) in Theorem 2.2.
If V is a T -periodic solution we deduce that W = U − V is T -periodic too. From (2.10) we obtain that U ≡ V and the

proof ends. �
3. Existence of periodic solution for a perturbed system

As we have said before, the main difficulty in the study of existence of periodic solutions for (2.1) comes from the
non-uniform decay rate of the corresponding energy (2.4). To overcome this difficulty, we introduce an extra dissipative
term, depending on a small parameter ε, which ensures the uniform decay of the energy. More precisely, for any ε > 0, we
consider the system⎧⎨

⎩
utt(x, t) − uxx(x, t) + εut = 0 in (0,1) × (0,∞),

u(0, t) = 0 on (0,∞),

utt(1, t) + ux(1, t) + αut(1, t) = f (t) on (0,∞)

(3.1)

where f is a T -periodic function verifying (1.2).
The aim of this section is to prove that, for each ε > 0, there exists a unique T -periodic solution of (3.1). As shown in [8],

if the corresponding linear system is uniformly stable, the existence of a periodic solution may be obtained from a fixed
point argument.

The total energy associated to (3.1) is given by

Eε(t) = 1

2

1∫
0

(
u2

t (x, t) + u2
x(x, t)

)
dx + 1

2
u2

t (1, t). (3.2)

It is easy to see that, at least formally,

dEε(t)

dt
= −αu2

t (1, t) − ε

1∫
0

u2
t (x, t)dx + f (t)ut(1, t). (3.3)

By comparing (2.5) and (3.3) we see that the term εut introduced in (3.1) reinforces the dissipation of the system. In
fact, as we shall prove latter on, this term ensures the uniform stability of system (3.1) and allows to prove the existence of
a periodic solution for (3.1) as in [8].

As in the previous section, introducing the new variables w = ut and z = ut(1, t), we write (3.1) as

dU (t)

dt
= AεU (t) + F (t) (3.4)

and we add the initial condition

U (0) = U0, (3.5)

where

U =
[ u

w
z

]
, AεU =

⎡
⎣ w

uxx − εw

−ux(1) − αw(1)

⎤
⎦ , F =

[ 0
0
f

]
and U0 =

⎡
⎣ u0

w0

z0

⎤
⎦ .

The operator Aε is an unbounded operator in H , with domain

D(Aε) = {(u, w, z) ∈ H2(0,1) ∩ V × V × R: w(1) = z
}

which is independent of ε. In fact, D(Aε) = D(A) for each ε > 0.
With this notation, we have the following result.

Theorem 3.1. If U0 ∈ H and f ∈ C[0,∞), there exists a unique weak solution U ∈ C([0,∞); H) of (3.4)–(3.5) with the property that,
for any t0 > 0,

‖U‖C([0,t0];H) � ‖U0‖ + √
t0‖ f ‖L2(0,t0). (3.6)

Moreover, if U0 ∈ D(Aε) and f |(0,a) ∈ H1(0,a), for all a > 0, there exists a unique weak solution U ∈ C1([0,∞); H) ∩
C([0,∞); D(Aε)) of (3.4)–(3.5).
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Proof. Performing as in [17] we can prove that (D(Aε), Aε) is the infinitesimal generator of a semigroup (Sε(t))t�0 of con-
tractions in H . Now, the result follows from the classical theory of linear equations of evolution (see, for instance, [5]). �

The following theorem shows that system (3.4)–(3.5) is exponentially stable if f ≡ 0.

Theorem 3.2. Let (Sε(t))t�0 be the semigroup of contractions generated by the operator (D(Aε), Aε). There exist two positive con-
stants M > 0 and ω = ω(ε) > 0 such that, for any U0 ∈ H,∥∥Sε(t)U0

∥∥� Me−ωt‖U0‖, t > 0. (3.7)

Moreover, for any U0 ∈ D(Aε),∥∥Sε(t)U0
∥∥

D(Aε)
� Me−ωt‖U0‖D(Aε), t > 0. (3.8)

Proof. Multiplying the first equation in (3.1) by u it is easy to see that the solution u satisfies

d

dt

{ 1∫
0

uut dx + ε

2

1∫
0

u2 dx + u(1, t)ut(1, t) + α

2
u2(1, t)

}
= −

1∫
0

u2
x dx +

1∫
0

u2
t dx + u2

t (1, t). (3.9)

For any δ > 0, from (3.3) and (3.9) we deduce that

dL(t)

dt
= −αu2

t (1, t) − ε

1∫
0

u2
t dx − δ

1∫
0

u2
x dx + δ

1∫
0

u2
t dx + δu2

t (1, t)

where L = L(t) is a suitable perturbation of the energy given by

L(t) = Eε(t) + δ

{ 1∫
0

uut dx + ε

2

1∫
0

u2 dx + u(1, t)ut(1, t) + α

2
u2(1, t)

}
. (3.10)

Moreover, for 0 < δ < ε, sufficiently small, we have

dL(t)

dt
� −cEε(t), (3.11)

where c = 1
2 min{α − δ, ε − δ, δ}. On the other hand, (3.10) and the Sobolev embedding theorem allow us to conclude that∣∣L(t) − Eε(t)

∣∣� c1δEε(t),

for some c1 independent of ε as well. Then, choosing δ sufficiently small the above inequality allow to deduce that

1

2
Eε(t) � L(t) � 3

2
Eε(t).

Since δ > 0 is small enough, the above inequality combined with (3.11) leads to the differential inequality

dEε(t)

dt
� −c2 Eε(t),

for some c2 > 0, which gives us (3.7).
In order to prove (3.8), note that ‖Sε(t)U0‖D(Aε) = ‖Sε(t)AεU0‖ + ‖Sε(t)U0‖ and use two times (3.7). �

Remark 3.3. Since Theorem 2.2 shows that (3.8) does not hold for the homogeneous system (2.1)–(2.2), we have that

lim
ε→0

ω(ε) = 0.

Now we have all the ingredients needed to prove the existence of a periodic solution for (3.4).

Theorem 3.4. If f ∈ C[0,∞) is a T -periodic function, for any ε > 0, there exists a unique weak solution Uε ∈ C([0,∞); H) of (3.4)
which is T -periodic. Moreover, if f |(0,T )

∈ H1(0, T ) then there exists a unique classical T -periodic solution Uε ∈ C([0,∞); D(Aε))

of (3.4).
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Proof. The proof uses the ideas from [8] and it is done by using a fixed point argument. We introduce the map

Λ : H → H

given by

ΛU0 = Sε(T )U0 +
T∫

0

Sε(T − s)F (s)ds

where (Sε(t))t�0 is the semigroup generated by Aε (see Theorem 3.1). Then, from Theorem 3.2 we get∥∥ΛnU0 − ΛnU1
∥∥�

∥∥Sε(nT )(U0 − U1)
∥∥� Me−nTω‖U0 − U1‖.

Then, for n sufficiently large Λn is a contraction and, therefore, there exists a unique U0 ∈ H such that

ΛnU0 = U0.

Consequently,

Λn(ΛU0) = Λ
(
ΛnU0

)= ΛU0.

From the uniqueness of the fixed point of Λn it follows that

ΛU0 = U0

which says that Λ has a fixed point. The solution U of (3.4)–(3.5) with initial data U0 belongs to C([0,∞); H) and verifies
U (0) = U (T ). This gives us a T -periodic weak solution of (3.4).

To treat the case f |(0,T )
∈ H1(0, T ), we use Theorem 3.1 and we repeat the above fixed point argument in D(Aε) instead

of H . From estimate (3.8), we deduce that there exists a unique fixed point U0 of Λ in D(Aε). This gives us a periodic
classical solution Uε ∈ C([0,∞); D(Aε)) of (3.4). �
4. Existence of periodic solution when f ∈ H 1(0, T )

In this section we prove the existence of a periodic solution for our system (2.1) under the additional condition f |(0,T ) ∈
H1(0, T ). Theorem 3.4 gives us a family (Uε)ε>0 of T -periodic functions. Any limit point of this family is a periodic solution
for (2.1). However, in order to prove that this family has a limit, we need some uniform estimates with respect to ε. These
estimates require additional regularity conditions for f mentioned above.

Theorem 4.1. Let f ∈ C[0,∞) be a T -periodic function such that f |(0,T )
∈ H1(0, T ) and ε < 1/2. If Uε is the T -periodic solution

of (3.4), then there exists a positive constant C > 0, independent of ε, such that

‖Uε‖C([0,∞);H) � C‖ f ‖H1(0,T ). (4.1)

Proof. In the sequel C denotes a positive constant which may change from one line to another but it remains independent
of ε. Multiplying the first in (3.1) equation by xux and integrating by parts over (0,1) × (0, T ), we deduce that

1

2

T∫
0

1∫
0

(
u2

t + u2
x

)
dx dt = 1

2

T∫
0

u2
t (1, t)dt + 1

2

T∫
0

u2
x(1, t)dt − ε

T∫
0

1∫
0

ut xux dx dt

since, from the periodicity,
∫ 1

0 ut xux|T
0 dx = 0. Consequently,

(1 − ε)
1

2

T∫
0

1∫
0

(
u2

t + u2
x

)
dx dt � 1

2

T∫
0

u2
t (1, t)dt + 1

2

T∫
0

u2
x(1, t)dt. (4.2)

In order to bound the terms
∫ T

0 u2
t (1, t)dt and

∫ T
0 u2

x(1, t)dt we proceed as follows. Integrating (3.3) in (0, T ) and taking
into account the periodicity of the solutions Uε , the following holds

0 = ε

T∫
0

1∫
0

u2
t dx dt +

T∫
0

(
αu2

t (1, t) − f (t)ut(1, t)
)

dt
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which allows to conclude that

α

2

T∫
0

u2
t (1, t)dt � 1

2α

T∫
0

f 2(t)dt. (4.3)

Now, differentiating (3.1) with respect to t and proceeding in the same way we can bound
∫ T

0 u2
tt(1, t)dt . Indeed, letting

v = ut , we get⎧⎪⎪⎨
⎪⎪⎩

vtt(x, t) − vxx(x, t) + εvt = 0 in (0,1) × (0,∞),

v(0, t) = 0 on (0,∞),

vtt(1, t) + vx(1, t) + αvt(1, t) = f ′(t) on (0,∞),

v(x,0) = u1(x), vt(x,0) = v1(x) on (0,1),

(4.4)

where v1(x) = utt(x,0) = u0,xx − εu1(x). Since f ∈ H1(0, T ), the same argument as before allows us to obtain that

α

2

T∫
0

u2
tt(1, t)dt � 1

2α

T∫
0

(
f ′)2(t)dt. (4.5)

By using the third equation from (3.1), we deduce that

T∫
0

u2
x(1, t)dt � 1

α2

T∫
0

(
f ′)2(t)dt +

(
1 + 1

α

) T∫
0

f 2(t)dt.

Now, from (4.2), (4.3) and (4.5), we obtain that

T∫
0

Eε(s)ds � C‖ f ‖2
H1(0,T )

. (4.6)

Finally, integrating (3.3) from 0 to t ∈ (0, T ), we have

Eε(0) = Eε(t) + ε

t∫
0

1∫
0

u2
t dx ds + α

t∫
0

u2
s (1, s)ds −

t∫
0

f (s)us(1, s)ds.

Consequently,

Eε(0) � Eε(t) + 2ε

t∫
0

Eε(s)ds +
(
α + 1

2

) t∫
0

u2
s (1, s)ds + 1

2

t∫
0

f 2(s)ds

� Eε(t) + 2ε

T∫
0

Eε(s)ds +
(
α + 1

2

) T∫
0

u2
s (1, s)ds + 1

2

T∫
0

f 2(s)ds. (4.7)

By integrating (4.7) on (0, T ) we deduce that

T Eε(0) � (1 + 2εT )

T∫
0

Eε(t)dt + T

(
α + 1

2

) T∫
0

u2
t (1, t)dt + T

2

T∫
0

f 2(t)dt. (4.8)

From (4.3), (4.6) and (4.8) it follows that∥∥Uε(0)
∥∥=√2Eε(0) � C‖ f ‖H1(0,T ). (4.9)

Now, (4.1) is a consequence of (4.9), (3.6) and the T -periodicity of Uε . �
The uniform estimate from Theorem 4.1 allows us to deduce the existence of a periodic solution for our initial prob-

lem (2.1).

Theorem 4.2. Let f ∈ C[0,∞) be a T -periodic function such that f |(0,T )
∈ H1(0, T ). Then (2.1) has a unique T -periodic solution

U ∈ C([0,∞); H).
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Proof. Following [5, Proposition 2.3.1], we introduce the completion H̃ of the space H with respect to the norm |||Φ||| = ‖(I −
A)−1Φ‖ and the unbounded operator in H̃ given by (H, Ã) which extends (D(A), A). Also, let ( S̃(t))t�0 be the semigroup
generated by (H, Ã) in H̃ .

According to Theorem 4.1, the family of periodic functions (Uε)ε∈(0,1) is uniformly bounded in C([0, T ]; H) and verifies

Uε(t) = S(t)Uε(0) +
t∫

0

S(t − s)
(

F (s) + εP2(s)
)

ds, t ∈ [0, T ] (4.10)

where P2(s) = (0,−ut(s),0)∗ .
Since the inclusion H ⊂ H̃ is compact, it follows that (Uε)ε∈(0,1) is relatively compact in C([0, T ]; H̃). Thus, there exist

Ũ ∈ C([0, T ]; H̃) and a subsequence that we denote in the same way, (Uε)ε∈(0,1) , which converges to Ũ in C([0, T ]; H̃). Let
us denote Ũ0 = U (0) ∈ H̃ . It is easy to see that

Ũ (t) = S̃(t)Ũ0 +
t∫

0

S̃(t − s)F (s)ds, t ∈ [0, T ]. (4.11)

On the other hand, since (Uε(0))ε∈(0,1) is a bounded sequence in H , it follows that there exist U0 ∈ H and a subsequence
that we denote in the same way, (Uε(0))ε∈(0,1) , which converges weakly to U0 in H . From the uniqueness of the limit in H̃ ,
we deduce that Ũ (0) = Ũ0 = U0 ∈ H .

Since S̃(t)Φ = S(t)Φ for any Φ ∈ H , it follows from (4.11) that

Ũ (t) = S(t)U0 +
t∫

0

S(t − s)F (s)ds, t ∈ [0, T ]. (4.12)

Consequently, Ũ is a weak solution in C([0, T ]; H) of (2.1) which may be extended to a T -periodic solution of the same
equation. �
5. Existence of periodic solution when f ∈ L2(0, T )

Theorem 4.2 shows that f |(0,T )
∈ H1(0, T ) is a sufficient condition for the existence of a periodic solution of (1.1). If this

condition is necessary remains an open question. In this section we use Fourier decomposition to give a characterization of
the periods T for which periodic solutions exist even when f ∈ L2(0, T ). Firstly, we consider the Fourier expansion of f ,

f (t) =
∑
n∈Z

aneiλnt (5.1)

where λn = 2nπ
T and an ∈ C. Note that f given by (5.1) belongs to L2(0, T ) if and only if

∑
n∈Z |an|2 < ∞ and belongs to

H1(0, T ) if and only if
∑

n∈Z n2|an|2 < ∞.
It is easy to check that, at least formally, the corresponding periodic solution of (1.1) is given by

u(x, t) =
∑
n∈Z

aneiλnt un(x) (5.2)

where, for each n ∈ Z, the functions un = un(x) satisfy the system⎧⎨
⎩

−λ2
nun(x) − un,xx(x) = 0,

un(0) = 0,

−λ2
nun(1) + un,x(1) + iαλnun(1) = 1.

(5.3)

From (5.3) it follows that u0(x) = x and, for any n ∈ Z∗ ,

un(x, t) = sin(λnx)

γn
(5.4)

where

γn = −λ2
n sinλn + λn cosλn + iαλn sinλn.
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Now, from (5.2), we deduce that

‖u‖2
L2(0,T ;V )

= T

2

∑
n∈Z∗

|λn|2
|γn|2

(
1 − sin(2λn)

2λn

)
|an|2 + T |a0|2

and consequently u(x, t) gives a finite energy periodic solution if and only if

∑
n∈Z∗

|λn|2
|γn|2 |an|2 < ∞. (5.5)

Remark 5.1. When f ∈ H1(0, T ), which is equivalent to the convergence of de series
∑

n∈Z n2|an|2, (5.5) does hold. In fact,
we can prove that | λn

γn
|2 � cn2 for some positive constant c > 0. Indeed, we have the following cases:

• If |λn sin λn| > 1
2 , we have | sinλn| > 1

2|λn| = T
4nπ and, therefore,

∣∣∣∣λn

γn

∣∣∣∣
2

= 1

α2 sin2 λn + (λn sinλn − cosλn)2
� 1

α2 sin2 λn
< n2

(
4π

αT

)2

.

• |λn sin λn| � 1
2 , we have | cosλn|2 � 1 − 1

4λ2
n

. Then there exists c > 0 such that

∣∣∣∣λn

γn

∣∣∣∣
2

� 1

(λn sinλn − cosλn)2
� 1

(| cosλn| − |λn sinλn|)2
� 1

(
√

1 − 1
4λ2

n
− 1

2 )2
� c.

This is precisely the case we have studied in the previous section, when we have assumed that f |(0,T )
∈ H1(0, T ).

If (5.5) does not hold, no periodic solution for Eq. (1.1) exists. As we have mentioned in the introduction, the non-
existence of periodic solution is equivalent to the presence of the resonance phenomenon. Note that (5.5) does not hold if
and only if λn = 2nπ

T verifies

sinλkn → 0 as n → ∞, (5.6)

λkn sinλkn − cosλkn → 0 as n → ∞, (5.7)

for some (strictly) increasing sequence of natural numbers (kn)n�1 ⊂ N.
Let us recall that νn = nπ i + i

nπ − α
n2π2 + o( 1

n2 ) are the eigenvalues of (2.1) while the eigenvalues of the corresponding
conservative system with α = 0 are of the form izn where

zn = nπ + 1

nπ
+ o

(
1

n

)
as n → ∞ (5.8)

and verifies, for each n � 1, the equation

t sin t − cos t = 0. (5.9)

Remark 5.2. As it follows form (5.5), the existence of a periodic solution in the case f ∈ L2(0, T ) is equivalent to the
boundedness of the sequence ( λn

γn
)n�1. Thus, the resonance phenomenon occurs if, and only if, a subsequence of (λn)n�1 is

close to the roots of the equation

−z sin z + cos z + iα sin z = 0. (5.10)

Note that −iνn are exactly the roots of (5.10). Since, as follows from Remark 2.5, the real parts of (νn)n�1 are smaller and
smaller as n tends to infinity, some of the real numbers (λn)n�1 may be close to (−iνn)n�1. Consequently, the possible
occurrence of the resonance phenomenon is precisely related to the weak dissipation of system (1.1).

With the notation above, we have the following properties, which characterize the periods T for which the resonance
phenomenon may occur.

Property 5.3. The resonance phenomenon occurs for the T -periodic function f given by (5.1) if, and only if, there exist two sequences
of (strictly) increasing natural numbers (ki

n)n�1 , i = 1,2, such that

|λk1
n
− zk2

n
||zk2

n
| → 0 as n → ∞. (5.11)
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Proof. First, we suppose that (5.11) holds and we prove (5.6)–(5.7). From (5.11) we deduce that limn→∞ |λk1
n

− zk2
n
| = 0,

which together with (5.8) gives (5.6). In order to show (5.7), let g(z) = z sin z − cos z. We have that there exists ξn between
λk1

n
and zk2

n
such that∣∣g(λk1

n
)
∣∣= ∣∣g(λk1

n
) − g(zk2

n
)
∣∣� ∣∣g′(ξn)

∣∣|λk1
n
− zk2

n
| � 2|ξn||λk1

n
− zk2

n
|

from which we immediately deduce (5.7).
Now suppose that (5.6)–(5.7) holds, which implies that g(λk1

n
) → 0 as n → ∞. Let ε > 0 small and k sufficiently large.

In each interval Ik = ((2k − 1) π
2 + ε, (2k + 1) π

2 − ε) the function g is invertible since g′(z) = z cos z + 2 sin(z) = 0. Then, in
each interval Ik there is exactly one number zk for which g(zk) = 0. Let k2

n the index of the interval Ik for which λk1
n
∈ Ik2

n
.

We have that there exists ζn between g(λk1
n
) and g(zk2

n
) such that

|λk1
n
− zk2

n
| = ∣∣g−1(g(λk1

n
)
)− g−1(g(zk2

n
)
)∣∣� ∣∣(g−1)′(ζn)

∣∣∣∣g(λk1
n
) − g(zk2

n
)
∣∣

= ∣∣(g−1)′(ζn)
∣∣∣∣g(λk1

n
)
∣∣= ∣∣∣∣ 1

g′(tn)

∣∣∣∣∣∣g(λk1
n
)
∣∣= |g(λk1

n
)|

|tn cos tn + 2 sin tn| �
∣∣g(λk1

n
)
∣∣ c

|tn|
for some constant c > 0, where tn = g−1(ζn) belongs to Ik2

n
and tends to zk2

n
as n goes to infinity. Consequently, |λk1

n
−

zk2
n
||zk2

n
| � c|g(λk1

n
)| and (5.11) holds. �

The following characterization is a direct consequence of Property 5.3.

Property 5.4. The resonance phenomenon occurs for the T -periodic function f given by (5.1) if, and only if, there exist two (strictly)
increasing sequences of natural numbers (ki

n)n�1 , i = 1,2 such that(
k1

n

k2
n

− T

2

)(
k2

n

)2 → T

2π2
as n → ∞. (5.12)

Proof. Firstly, observe that |λk1
n
− zk2

n
||zk2

n
| → 0 as n tends to infinity if and only if

∣∣∣∣2k1
nπ

T
− k2

nπ − 1

k2
nπ

+ o

(
1

k2
n

)∣∣∣∣
∣∣∣∣k2

nπ + 1

k2
nπ

+ o

(
1

k2
n

)∣∣∣∣→ 0 as n → ∞.

It follows that (5.11) is equivalent to∣∣∣∣k1
n

k2
n

− T

2
− T

2(k2
n)2π2

∣∣∣∣∣∣k2
n

∣∣2 → 0 as n → ∞

and the proof ends. �
Remark 5.5. Property 5.4 gives the conditions for resonance phenomenon’s occurrence in (2.1). However, it is not easy to
say whether periods T verifying (5.12) exist or not. For instance, if T is a rational number (5.12) cannot hold. Indeed, if we
suppose that T = p

q , with p,q ∈ N∗ , from (5.12) we deduce that

lim
n→∞

∣∣2qk1
n − pk2

n

∣∣= 0

and, consequently, T = 2k1
n

k2
n

for any n sufficiently large. However, this contradicts (5.12).

As mentioned before, the existence of irrational numbers T which verify (5.12) and produce the resonance phenomenon
remains an open question.

Remark 5.6. Let us compare our results with the corresponding ones for the classical boundary dissipated wave equation.
If f ∈ C[0,∞) is a periodic function of period T , then there exists a unique T -periodic solution of the non-homogeneous
wave equation (α is a positive constant)⎧⎨

⎩
utt(x, t) − uxx(x, t) = 0 in (0,1) × (0,∞),

u(0, t) = 0 on (0,∞),

ux(1, t) + αut(1, t) = f (t) on (0,∞).

(5.13)

Indeed, this is a consequence of the exponential decay of the energy corresponding to (5.13) in the homogeneous case (see,
for instance, [9,10,23]) and the fixed point argument used in Theorem 3.4. Note that the regularity assumption f |(0,T ) ∈
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H1(0, T ) is not required in the case of Eq. (5.13), where the energy of the equation is directly dissipated through the
boundary.

The presence of the point mass in x = 1 introduces a qualitatively new type of boundary condition for (1.1) which
determines the lack of uniform decay of the corresponding energy. Roughly speaking, the extra regularity assumption
f |(0,T ) ∈ H1(0, T ) from Theorem 4.2 compensates the energy’s weak dissipation.

6. Numerical approximation

In this section we approximate numerically the periodic solutions of the hybrid system (2.1), using the perturbation
argument presented in the theoretical part. More precisely, for a given small value of ε > 0, we use an iterative algorithm
to approximate the fixed point of the contractive map Λ introduced in Theorem 3.4. Once we have obtained this fixed
point with a given precision, we can compute the periodic solution of the perturbed system (3.4). The proof of Theorem 4.2
shows that taking smaller and smaller values of ε > 0 the periodic solutions of the perturbed system converge weakly to
the periodic solution of the initial hybrid system, if f |(0,T ) ∈ H1(0, T ).

In order to preserve the precision of the numerical scheme for (2.1), the parameter ε should be small enough. On the
other hand, the contractive property of the map Λ gets better when ε increases. This analysis allows us to conclude that
the optimal value of ε is of order of the precision of the numerical scheme (see the conclusions from Section 6.2).

First of all, we need to approximate the solution of system (3.4)–(3.5). We choose to semi-discretize in space using
P1 finite elements, paying attention to the special boundary condition in x = 1. More precisely, we denote by N ∈ N∗ the
number of discretization points in (0,1) and by h = 1

N+1 the discretization step. The vector uh(t) = (u1(t), . . . , uN+1(t))∗
will be the solution of the following differential system{

Muh,tt(t) + K uh(t) + Luh,t(t) = Fh(t), t > 0,

uh(0) = u0h, uh,t(0) = u1h,
(6.1)

where

M = h

6

⎛
⎜⎜⎜⎜⎜⎝

4 1 0 · · · 0

1 4 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 4 1

0 0 · · · 0 6
h

⎞
⎟⎟⎟⎟⎟⎠ , K = 1

h

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 2 −1

0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎠ ,

L = hε

6

⎛
⎜⎜⎜⎜⎜⎝

4 1 0 · · · 0

1 4 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 4 1

0 0 · · · 0 6α
hε

⎞
⎟⎟⎟⎟⎟⎠ , Fh(t) =

⎛
⎜⎜⎜⎜⎜⎝

0

0
...

0
f (t)

⎞
⎟⎟⎟⎟⎟⎠ .

In the sequel U∗ denotes the transposed vector.
Denoting Uh = ( uh

uh,t

)
, we write (6.1) as a first order system{

Uh,t(t) = AhUh(t) + F̃h(t), t > 0,

Uh(0) = U0h,
(6.2)

where

A =
(

0 I

−M−1 K −M−1L

)
, F̃h(t) =

(
0

Fh(t)

)
, U0h =

(
u0h

u1h

)
.

To discretize in time (6.2) we use the following implicit mid-point scheme⎧⎪⎨
⎪⎩

Uk+1
h − Uk

h

�t
= Ah

Uk
h + Uk+1

h

2
+ F̃ k

h + F̃ k+1
h

2
, k ∈ N∗,

U 0
h = U0h,

(6.3)

where �t > 0 is the time discretization step and U k
h and F̃ k

h approximate Uh(k�t) and F̃h(k�t), respectively. We define the
energy associated to (6.3) by the discrete equivalent of (2.4)

Eh
(
Uk

h

)= 1

2

((
Uk

h

)∗( Ke 0
0 Me

)
Uk

h + (Uk
h,2N+2

)2)
, (6.4)
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Table 1
Values of max{Eh(uh,ε(t) − u(t)): t ∈ [0,10]} for different choices of h and ε.

Value of h ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001 ε = 0

0.02 3.2384 0.1043 0.0012 0.0021 0.0023 0.0023
0.01 4.7285 0.1686 0.0015 0.0005 0.0006 0.0006
0.005 7.6631 0.2859 0.0033 0.0004 0.0005 0.0004

Fig. 1. Decay of the error in the fixed point algorithm for different values of ε, N = 100 and f given by (6.5).

where Me, Ke ∈ MN+1 are defined by

Me = h

6

⎛
⎜⎜⎜⎜⎜⎝

4 1 0 · · · 0

1 4 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 4 1

0 0 · · · 1 4

⎞
⎟⎟⎟⎟⎟⎠ , Ke = 1

h

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 2 −1

0 0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎠ .

Once we have a solver for (3.4)–(3.5), the second step is to compute the fixed point of the application Λ introduced
in Theorem 3.4, for a given T -periodic function f . Remark that Λ is nothing else than the application which associates
U (T ) to U0, where U is the solution of (3.4)–(3.5). Assuming that there exists l ∈ N∗ such that T = l�t we define Λh the
application which associates Ul

h to U0h , where U k
h verifies (6.3). To compute then an approximation of the fixed point of Λ

we use the following algorithm:

1. Let U0h be arbitrarily chosen.
2. Let e > 0 be a given tolerance and n = 1.
3. Repeat

• V n
h = Λn

hU0h ,
• n = n + 1,
until Eh(V n

h − V n−1
h ) < e.

4. The approximation of the fixed point is V n
h .

6.1. Numerical experiments

We shall present three different choices of periodic functions f and the corresponding numerical results. In all the
computations the parameter α is set to 1 and the tolerance e in the fixed point algorithm is 10−5.

6.1.1. Case of an explicit periodic solution
It is easy to verify that considering the 2-periodic function

f (t) = −π cos(πt) for t ∈ [0,10], (6.5)

the corresponding periodic solution of (1.1) is given by u(x, t) = cos(πt) sin(πx). We take the number of discretization points
N ∈ {50,100,200} and �t = h = 1

N+1 .
Table 1 displays the values of max{Eh(uh,ε(t) − u(t)): t ∈ [0,10]} for different choices of h and ε. In Fig. 1 we show the

decay of the error in the fixed point algorithm for different values of ε and N = 100.
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Fig. 2. Periodic solution of (6.3) for ε = 0 and f given by (6.6).

Fig. 3. The function f is given by (6.6). (a) Norm of the error in the fixed point algorithm. (b) Energy of the solution of (6.3) with the initial data being the
fixed point of Λh .

6.1.2. Case f ∈ H1(0, T )

Let T = π and consider the following T -periodic function

f (t) = 1 − 2

T

∣∣∣∣t − T

2

∣∣∣∣ for t ∈ [0, T ]. (6.6)

By periodicity, we extend f to the interval [0,10]. We take N = 100 and �t = h = 1
N+1 . The corresponding periodic

solution for ε = 0 is displayed in Fig. 2. In Fig. 3 we show the norm of the error in the fixed point algorithm (a) and the
energy of the solution of (6.3) with the initial data being the fixed point of Λh , (b) for different values of ε.

6.1.3. Case f ∈ L2(0, T )

Let T = √
2 and consider the following T -periodic function

f (t) =
{

1 if x ∈ (T /3,2T /3),

0 if x ∈ (0, T /3) ∪ (2T /3, T ).
(6.7)

By periodicity, we extend f to the interval [0,10]. As in the case f ∈ H1(0, T ) we take N = 100 and �t = h = 1
N+1 .

A very similar behavior of the solutions as in the case f ∈ H1 can be observed in Figs. 4 and 5.
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Fig. 4. Periodic solution of (6.3) for ε = 0 and f given by (6.7).

Fig. 5. Function f is given by (6.7). (a) Norm of the error in the fixed point algorithm. (b) Energy of the solution of (6.3) with the initial data being the
fixed point of Λh .

Table 2
Values of the energy of the periodic solution at the time t = 1 and different values of ε.

Function ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0

f given by (6.6) 10.1315 10.0268 10.0679 10.0671 10.0674
f given by (6.7) 4.2197 4.5134 4.5245 4.5232 4.5232

In Table 2 we summarize the values of the energy of the computed periodic solution of (6.2) at the time t = 1 for
different periodic functions. We remark that the values of the energy for ε = 1 and ε = 0.1 are clearly different from the
values obtained for smaller ε.

6.2. Conclusion and comments

First of all, we should remark from Table 1 that the solutions of the perturbed systems converge to the exact solution
when ε → 0. The results displayed in Table 2 confirm this fact, the difference between the solutions decreasing as ε tends
to zero.
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Analyzing Fig. 1, Fig. 3(a) and Fig. 5(a) we remark that the number of iterations necessary for the fixed point algorithm
increases when ε decreases with different velocities depending on f . This is a consequence of the fact that the application
Λh has better contractive properties when ε is larger. At the numerical level, this is related to Remark 3.3 for the continuous
problem. Note that taking �t = h, the order of convergence of the approximation scheme using P1 finite elements for the
wave equation is O (h) (see, for instance, [21, p. 213] and [18, pp. 96–97]). Coupling the wave equation with the rigid
body at one end, and still using a P1 finite elements approximation of this hybrid system, we maintain the same order
of convergence as for the wave equation with homogeneous Dirichlet boundary condition. Therefore, the perturbation εut

added in system (3.4) does not affect the precision of the numerical approximation if ε is at most of the same order as h.
Since large values of ε ensure better convergence properties of the fixed point algorithm, we deduce that the optimal choice
is ε of order h.

In conclusion, the numerical simulations above are coherent with our theoretical results concerning the existence of
periodic solutions for the hybrid system (2.1) if the T -periodic source term f is in H1(0, T ). For all T -periodic function
f |(0,T ) ∈ L2(0, T ) that we have tested, a periodic solution has been numerically found.
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