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UNIFORM CONTROLLABILITY OF THE LINEAR ONE DIMENSIONAL
SCHRÖDINGER EQUATION WITH VANISHING VISCOSITY
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Abstract. This article considers the linear 1-d Schrödinger equation in (0, π) perturbed by a vanishing
viscosity term depending on a small parameter ε > 0. We study the boundary controllability properties
of this perturbed equation and the behavior of its boundary controls vε as ε goes to zero. It is shown
that, for any time T sufficiently large but independent of ε and for each initial datum in H−1(0, π),
there exists a uniformly bounded family of controls (vε)ε in L2(0, T ) acting on the extremity x = π.
Any weak limit of this family is a control for the Schrödinger equation.
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1. Introduction

Given a time T > 0 and an initial datum y0 ∈ H−1(0, π), the null-controllability property of the linear 1-d
Schrödinger equation ⎧⎪⎨⎪⎩

yt(t, x) − i yxx(t, x) = 0, x ∈ (0, π), t > 0
y(t, 0) = 0, y(t, π) = v(t), t > 0
y(0, x) = y0(x), x ∈ (0, π)

(1.1)

consists of finding a scalar function v ∈ L2(0, T ), called control, such that the corresponding solution y of (1.1)
verifies y(T, · ) = 0. There exists a huge literature concerning the controllability of both linear and nonlinear
Schrödinger equation. We refer the interested reader to the pioneering articles [20,23], the monographs [6,30]
and the references therein. A great variety of techniques have been applied in these studies such as the Hilbert
Uniqueness Method, multipliers, Carleman inequalities and so on. In the one dimensional case (1.1), a control v
may be constructed by means of a biorthogonal family to the sequence of exponential functions (eνn t)n≥1, where
νn = i n2 are the eigenvalues of the unbounded skew-adjoint differential operator corresponding to (1.1). We
recall that a family of functions (φm)m≥1 ⊂ L2

(−T
2 , T

2

)
with the property that∫ T

2

−T
2

φm(t)eνn tdt = δmn ∀m, n ≥ 1, (1.2)
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is called a biorthogonal sequence to (eνn t)n≥1 in L2
(−T

2 , T
2

)
. In (1.2), δmn stands for the Kronecker symbol

which is 1 if n = m and 0 otherwise.
In the particular case νn = in2, the existence of a biorthogonal sequence to (eνn t)n≥1 is a consequence of

Ingham’s inequality ∑
n≥1

|an|2 ≤ C(T )
∫ T

2

−T
2

∣∣∣∣∣∣
∑
n≥1

aneνn t

∣∣∣∣∣∣
2

dt ∀(an)n≥1 ∈ �2, (1.3)

which holds for any T > 0 due to the fact that lim infn→∞ |νn+1 − νn| = ∞ (see [3,16]).
Once a family of functions (φm)m≥1 verifying (1.2) is given, a control v(t) for (1.1) is obtained by considering

linear combinations of them. More precisely, if y0 =
∑

n≥1 an sin(nx), then

v(t) =
∑
n≥1

(−1)nπ an

2n i
φn

(
t − T

2

)
e−

T
2 νn ∀t ∈ (0, T ) (1.4)

is a control which leads the solution y of (1.1) to zero in time T , provided that the series converges in L2(0, T ).
In this article, we study the possibility of obtaining a control for (1.1) as limit of controls of the following

perturbed equations ⎧⎪⎨⎪⎩
yt(t, x) − i yxx(t, x) − εyxx(t, x) = 0, x ∈ (0, π), t > 0
y(t, 0) = 0, y(t, π) = vε(t), t > 0
y(0, x) = y0(x), x ∈ (0, π),

(1.5)

where ε is a small parameter devoted to tend to zero. A function vε ∈ L2(0, T ) is called control for the initial
datum y0 in time T if the corresponding solution of (1.5) verifies y(T, · ) = 0. If, given any y0 ∈ H−1(0, π),
there exists a control vε ∈ L2(0, T ) for y0 in time T , we say that (1.5) is null-controllable in time T . In (1.5),
−εyxx represents a viscous term. Indeed, if vε = 0, we have that

d
dt

∫ π

0

|y(t, x)|2dx = −2 ε

∫ π

0

|yx(t, x)|2dx ≤ 0 ∀t ≥ 0, (1.6)

which means that the L2-norm of the solution y of (1.5) is decreasing in time.
Equation (1.5) is known as the linear complex Ginzburg-Landau equation. With a cubic nonlinearity, it plays

an important role in the theory of amplitude equations and provides a simple model for turbulence (see, for
instance, [4,21]). At the same time (1.5) may be viewed as a Schrödinger equation with an added viscous term.
As such it models an array of optical fibers in a weakly lossy medium (see [29]). The boundary controllability
properties for the cubic complex Ginzburg-Landau equation have been studied in [28], in a general domain, by
means of an appropriate Carleman inequality. For the linear problem, interior controllability results have been
obtained in [9,10] whereas [1] is concerned with the stabilization around an unstable equilibrium state.

In this article we are interested in the following issue: Given T > 0, ε > 0 and y0 ∈ H−1(0, π), is there
a control vε ∈ L2(0, T ) for (1.5) such that the family (vε)ε>0 converges to a control of (1.1) when ε → 0? Our
main result reads as follows.

Theorem 1.1. There exists T > 0 with the property that, for any y0 ∈ H−1(0, π) and ε ∈ (0, 1], there exists
a control vε ∈ L2(0, T ) of (1.5) such that the family (vε)ε∈(0,1] is uniformly bounded in L2(0, T ) and any weak
limit v of it is a control in time T for (1.1).

We emphasize that the focus of our concern is the uniform controllability with respect to ε of (1.5) and the
possibility of obtaining controls for (1.1) as limits, when ε goes to zero, of controls for (1.5). The interest of
this problem is justified by the use of the vanishing viscosity as a typical mechanism to study Cauchy problems
and to improve convergence of numerical schemes for hyperbolic conservation laws and shocks. For instance,
in [13,14], it is proved that, by adding an extra numerical viscosity term, the dispersive properties of the finite
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difference scheme for the nonlinear Schrödinger equation become uniform when the mesh-size tends to zero. This
scheme reproduces at the discrete level the properties of the continuous Schrödinger equation by dissipating the
high frequency numerical spurious solutions. On the other hand, a viscosity term is introduced in [8] to prove
the existence of solutions of hyperbolic equations. In both examples the viscosity is devoted to tend to zero in
order to obtain the original system. Thus, a legitimate question is related to the behavior and the sensitivity
of the controls during this process.

The method we employ in this article is different from the one used in [20,28]. It is based on the construction of
an explicit control vε for (1.5) such that the family (vε)ε∈(0,1] is uniformly bounded in L2(0, T ). Nextly, a classical
(weak) limit argument, allow us to obtain the desired result. The controls (vε)ε∈(0,1] are given in terms of
a biorthogonal sequence (ζm)m≥1 to the family of exponential functions (eμn t)n≥1, where μn = μn(ε) = εn2−i n2

are the eigenvalues of the differential operator corresponding to the perturbed equation (1.5). More precisely,
a control vε for the initial datum y0(x) =

∑
n≥1 an sin(nx) of (1.5) is obtained from a formula similar to (1.4):

vε(t) =
∞∑

n=1

(−1)nπan

2n(i + ε)
e−

T
2 μnζn

(
t − T

2

)
∀t ∈ (0, T ). (1.7)

Our construction allows to prove that, if T > 0 is sufficiently large but independent of ε, the following nonstan-
dard Ingham type inequality holds

∑
n≥1

|an|2e−2α|�(μn)| ≤ C(T )
∫ T

2

−T
2

∣∣∣∣∣∣
∑
n≥1

aneμn t

∣∣∣∣∣∣
2

dt ∀(an)n≥1 ∈ �2, (1.8)

where α and C(T ) are positive constants independent of ε. Note that, although (1.8) looks like (1.3), its proof
cannot be obtained as in [16] because of the different nature of the exponents μn which are no longer purely
imaginary numbers. The negative exponential weights from the left hand side of (1.8) reflect the particular
form of our exponents.

Through the paper, if λ is a complex number, 	(λ) and 
(λ) will denote its real and imaginary part,
respectively. Moreover [a] will represent the greatest integer smaller than the real number a.

Due to the character of equation (1.5), our controllability problem belongs to the interface between parabolic
and hyperbolic equations. From this point of view, it is related to [7,12], where the controllability of the
transport equation is consider by introducing a vanishing viscosity term. In [7] Carleman estimates are used
to obtain a uniform bound for the family of controls. The same result is shown in [12], improving the control
time, by means of nonharmonic Fourier analysis and biorthogonal technique. The recent article [19] deals with
a nonlinear scalar conservation law perturbed by a small viscosity term and proves the uniform boundedness of
the boundary controls.

The main difficulty in this type of problems consists of obtaining a uniform bound for the series (1.7). In
the high frequencies range, the exponentially large norms ||ζm||L2 are compensated by the strong damping
represented by the small negative exponential factors e−

T
2 μn . On the other hand, to the weakly dissipated low

frequencies correspond norms ||ζm||L2 which are much smaller. This mechanism ensures the convergence of
series (1.7) and the uniformly boundedness of the controls (vε)ε∈(0,1] for a large class of coefficients (an)n≥1.
However, in order to fully justify it, precise estimates of the biorthogonal’s norm ||ζm||L2 on both ε and m are
needed. This represents one of the main tasks of our work.

In [9,10] it is studied an interior controllability problem for an equation whose principal part is

P(z) = (α + iβ)∂tz +
N∑

j,k=1

∂k(ajk∂jz),
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where α and β are real functions. A pointwise weighted identity allows to deduce Carleman estimates and
controllability results for the corresponding equation. The author is mainly concerned with the case α < 0,
when uniform estimates with respect to β are obtained. This allows to prove a uniform controllability for the
perturbed heat equation. From this point of view, [10] is related to [22,33], where the null-controllability of the
heat equation is obtained as a singular limit of the exact controllability property of a damped wave equation.
This is complementary to our study where the dissipation vanishes and the singular limit is a conservative
system.

The rest of the paper is organized as follows. Section 2 gives the equivalent characterization of the con-
trollability property in terms of a moment problem. In Section 3, a biorthogonal sequence is constructed and
evaluated. Section 4 is devoted to the proof of the main result and some final comments are given in Section 5.

2. The moment problem

For the sake of completeness, we first present the main result concerning the well-posedness of (1.5).

Theorem 2.1. Given any T > 0, ε ≥ 0, v ∈ L2(0, T ) and y0 ∈ H−1(0, π), there exists a unique weak solution
y ∈ C([0, T ], H−1(0, π)) of the problem⎧⎪⎨⎪⎩

yt(t, x) − i yxx(t, x) − εyxx(t, x) = 0, x ∈ (0, π), t ∈ (0, T )
y(t, 0) = 0, y(t, π) = v(t), t > 0
y(0, x) = y0(x), x ∈ (0, π).

Proof. It is the same as for the nonhomogeneous Schrödinger equation and we omit it (see, for instance, [30],
pp. 343–344). �

We can give now the characterization of the controllability property of (1.5) in terms of a moment problem.
Based on Fourier expansion of the solution, the moment problems have been widely used in linear control theory.
We refer to [2,18,32] for a detailed discussion of the subject.

Theorem 2.2. Let T > 0, ε ≥ 0 and y0 ∈ H−1(0, π) given by

y0(x) =
∞∑

n=1

an sin(nx). (2.1)

There exists a control vε ∈ L2(0, T ) such that the solution y of (1.5) verifies y(T ) = 0 if, and only if, vε ∈ L2(0, T )
is a solution of the moment problem

∫ T
2

−T
2

vε

(
s +

T

2

)
esμnds =

(−1)nπ

2n(i + ε)
e−

T
2 μn an ∀n ≥ 1, (2.2)

where μn = εn2 − i n2.

Proof. We consider ϕ0 ∈ H1
0 (0, π) and the following adjoint equation of (1.5)⎧⎪⎨⎪⎩

−ϕt(t, x) + i ϕxx(t, x) − εϕxx(t, x) = 0, x ∈ (0, π), t ∈ (0, T )
ϕ(t, 0) = ϕ(t, π) = 0, t ∈ (0, T )
ϕ(T, x) = ϕ0(x), x ∈ (0, π).

(2.3)
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We multiply (1.5) by ϕ and integrate by parts over (0, T ) × (0, π). It follows that vε ∈ L2(0, T ) is a control
for (1.5) if, and only if, it verifies ∫ T

0

vε(t)ϕx(t, π)dt =
1

i + ε
〈y0, ϕ(0)〉H−1,H1

0
, (2.4)

for any ϕ0 ∈ H1
0 (0, π) and ϕ solution of (2.3). Since {sin(nx) : n ≥ 1} is a basis of H1

0 (0, π), we have to
check (2.4) only for solutions of (2.3) of the form ϕ(t, x) = e(t−T )μn sin(nx), n ∈ N

∗. Thus, vε is a control
for (1.5) if and only if it verifies (2.2). �

The notion of biorthogonal is very useful in the study of moment problems like (2.2). We recall that
(ζm)m≥1 ⊂ L2

(−T
2 , T

2

)
is a biorthogonal sequence to the family of exponential functions (eμnt)n≥1 in L2

(−T
2 , T

2

)
iff ∫ T

2

−T
2

ζm(t)eμntdt = δnm ∀n, m ≥ 1. (2.5)

It is easy to see from (2.2) that, if (ζm)m≥1 is a biorthogonal sequence to the family of exponential functions
(eμnt)n≥1 in L2

(−T
2 , T

2

)
, then a control vε of (1.5) is given by (1.7), provided that the right hand series converges

in L2(0, T ). Now, the main task is to show that there exists a biorthogonal sequence (ζm)m≥1 and to evaluate
its norm in order to prove the convergence of the series from (1.7) for each y0 ∈ H−1(0, π).

3. Construction of a biorthogonal sequence

The aim of this section is to construct and evaluate an explicit biorthogonal sequence to the family (eμnt)n≥1

in L2
(−T

2 , T
2

)
. In order to do that, we introduce a family Ψm(z) of entire functions of exponential type such

that Ψm(iμn) = δmn. Nextly, Paley-Wiener’s Theorem gives us a biorthogonal family (θm)m≥1 as the inverse
Fourier transforms of (Ψm)m≥1. Each Ψm is obtained from a Weierstrass product Pm multiplied by a function
Mm,ε with a suitable behavior on the real axis. Such a method was used for the first time by Paley and
Wiener [26]. The main difficulty in our analysis is to obtain good estimates for the behavior of Pm on the real
axis, to construct an appropriate multiplier Mm,ε and to evaluate carefully Mm,ε(iλm) in order to ensure the
boundedness of Ψm on the real axis. Finally, from Plancherel’s Theorem, we obtain the desired estimates for
the norms ||θm||L2 and we can pass to study the absolute convergence of the series (1.7).

For the non-specialist reader let us recall that an entire function f : C → C is of exponential type A > 0 if
there exists a constant B > 0 such that the following inequality holds

|f(z)| ≤ BeA |z| ∀z ∈ C. (3.1)

If g ∈ L1(R), we denote by ĝ the Fourier transform of g defined by

ĝ(z) =
1√
2π

∫
R

g(t)e−itz dt (3.2)

and the following inversion relation holds for any g, ĝ ∈ L1(R)

g(t) =
1√
2π

∫
R

ĝ(x)eitx dx. (3.3)

Moreover, if g ∈ L1(R) ∩ L2(R), Plancherel’s Theorem says that ||g||L2(R) = ||ĝ||L2(R). The main tool of
our analysis is Paley-Wiener’s Theorem which we also recall for convenience. For its proof and other details
concerning entire functions the interested reader is referred to [31].
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Theorem (Paley-Wiener). Let F be an entire function of exponential type A with the property that
∫

R
|F (x)|2

dx < ∞. Then there exists a function f ∈ L2(−A, A) such that

f̂ = F. (3.4)

Now, let us pass to construct our biorthogonal sequence. For any m ∈ N
∗, we define the function

Pm(z) =
∏

n∈Z∗
|n|�=m

(
1 − z

i λn

)( λn

λn − λm

)
, (3.5)

where

λn =

⎧⎪⎪⎨⎪⎪⎩
in + εn, if n = q2 with q ∈ N∗

i
√

1 + ε2 n, if n �= q2, n > 0 with q ∈ N∗

λ−n, if n < 0.

Note that λq2 = μq, for any q ≥ 1. Hence, the family (λm)m≥1 is larger than (μq)q≥1. This extension of the
family of exponents will be very important for the behavior on the real axis of Pm (see the second comment
from Sect. 5).

Lemma 3.1. For each m ≥ 1 of the form m = q2 with q ∈ N∗, Pm is an entire function of exponential type
independent of ε such that

Pm(iλn) = δmn, n ∈ N
∗. (3.6)

Proof. Properties (3.6) are evident if the product Pm is convergent. In order to show the convergence and to
study the behavior of Pm, we evaluate each of the following products

Rm(z) =
∏

n∈Z∗
|n|�=m

∣∣∣∣1 − z

i λn

∣∣∣∣ and Qm =
∏

n∈Z∗
|n|�=m

∣∣∣∣ λn

λn − λm

∣∣∣∣ ·
For any z ∈ C, we have that

Rm(z) = exp

(
Nz∑
n=1

ln
∣∣∣∣1 − z2

|λn|2 + 2iz	
(

1
λn

)∣∣∣∣+ ∞∑
n=Nz

ln
∣∣∣∣1 − z2

|λn|2 + 2iz	
(

1
λn

)∣∣∣∣
)

= exp(A(z) + B(z)),

where Nz is defined by

Nz = max
{

N ≥ 1 :
∣∣∣∣2z	

(
1
λn

)∣∣∣∣ ≤ |z|2
|λn|2 , ∀n ≤ N

}
.

Then

A(z) ≤
Nz∑
n=1

ln
(

1 +
2|z|2
|λn|2

)
≤

Nz∑
n=1

ln
(

1 +
2|z|2
n2

)
≤
∫ ∞

0

ln
(

1 +
2|z|2
s2

)
ds =

√
2π|z|.

Moreover, since ∑
n≥1

∣∣∣∣	( 1
λn

)∣∣∣∣ =∑
n≥1

εn2

ε2n4 + n4
=

ε

ε2 + 1

∑
n≥1

1
n2

≤ 2ε

1 + ε2
,

we have that

B(z) ≤
∞∑

n=Nz+1

ln
(

1 + 4|z|
∣∣∣∣	( 1

λn

)∣∣∣∣) ≤
∞∑

n=Nz+1

4|z|
∣∣∣∣	( 1

λn

)∣∣∣∣ ≤ 8ε

1 + ε2
|z|.
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Thus,

Rm(z) =
∏

n∈Z∗
|n|�=m

∣∣∣∣1 − z

i λn

∣∣∣∣ ≤ exp
((√

2π +
8ε

1 + ε2

)
|z|
)

∀z ∈ C. (3.7)

Now, we pass to study Qm. We have that

|Qm|2 =
∏

n∈Z∗
|n|�=m

∣∣∣∣ λn

λn − λm

∣∣∣∣2 =
∞∏

n=1
n �=m

|λn|4
||λn|2 + λ2

m − 2λm	(λn)|2

=

∣∣|λm|2 + λ2
m

∣∣2
|λm|4

∞∏
n=1

|λn|4
||λn|2 + λ2

m|2
∞∏

n=1
n=k2, n �=m

∣∣|λn|2 + λ2
m

∣∣2
||λn|2 + λ2

m − 2λm	(λn)|2

=
4ε2

1 + ε2

∣∣∣∣∣∣
i λmπ√
1+ε2

sin
(

i λmπ√
1+ε2

)
∣∣∣∣∣∣
2 ∞∏

n=1
n=k2, n �=m

∣∣|λn|2 + λ2
m

∣∣2
||λn|2 + λ2

m − 2λm	(λn)|2 = Q1
mQ2

m.

On the one hand we have that

Q1
m =

4ε2

1 + ε2

∣∣∣∣∣∣
i λmπ√
1+ε2

sin
(

i λmπ√
1+ε2

)
∣∣∣∣∣∣
2

=
4π2ε2m2

(1 + ε2)
∣∣∣sin(− mπ√

1+ε2 + i mπ√
1+ε2

)∣∣∣2
=

16π2ε2m2

(1 + ε2)
(

e
2mπε√
1+ε2 + e

− 2mπε√
1+ε2 − 2 cos

(
2mπε√
1+ε2

)) ≤ 16π2ε2m2

(1 + ε2)
(

e
2mπε√
1+ε2 + e

− 2mπε√
1+ε2 − 2

)
≤ 16π2ε2m2

1 + ε2
× 1 + ε2

4π2ε2m2
= 4.

On the other hand, since m = q2, q ∈ N∗, we have that

Q2
m =

∞∏
n=1

n=k2, n �=m

∣∣|λn|2 + λ2
m

∣∣2
||λn|2 + λ2

m − 2λm	(λn)|2

=
∞∏

n=1
n=k2, n �=m

∣∣	(λn)2 + 
(λn)2 + 	(λm)2 −
(λm)2 + 2i	(λm)
(λm)
∣∣2

|(	(λm) −	(λn))2 + 
(λn)2 −
(λm)2 + 2i
(λm)(	(λm) −	(λn))|2

=
∞∏

n=1
n=k2, n �=m

(
1 +

4ε2mn(n2 − nm + m2)
(m − n)2((m + n)2 + ε2(m − n)2)

)
≤

∞∏
n=1

n=k2, n �=m

(
1 +

4ε2mn

(m − n)2

)

≤ exp

⎛⎝ ∞∑
k=1,k 	=q

4ε2q2k2

(q2 − k2)2

⎞⎠ ≤ exp

⎛⎝ ∞∑
k=1,k 	=q

4ε2q2

(q − k)2

⎞⎠ ≤ exp

( ∞∑
k=1

8ε2q2

k2

)
≤ exp(16ε2q2).

Hence,
Qm =

∏
n∈Z∗
|n|�=m

∣∣∣∣ λn

λn − λm

∣∣∣∣ ≤ 4 exp (16ε	(λm)) . (3.8)

This completes the proof of the lemma. �
Now, we pass to study the behavior on the real axis of the function Pm.
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Lemma 3.2. For each m ≥ 1 of the form m = q2 with q ∈ N∗, the function Pm defined by (3.5) has the
following property

|Pm(x)| ≤ C exp(32ε
√
|x| + 16ε	(λm)) ∀x ∈ R, (3.9)

where C is a positive constant, independent of ε and m.

Proof. In order to establish the behavior of Pm on the real axis we consider

|Rm(x)|2 =
∏

n∈Z∗
|n|�=m

∣∣∣∣1 − x

i λn

∣∣∣∣2 =
∏

n∈N∗
n �=m

(|x|2 − |λn|2)2 + 4x2	2(λn)
|λn|4

=
∏

n∈N∗
n �=m

(|x|2 − |λn|2)2
|λn|4

∏
n∈N∗
n �=m

(
1 +

4x2	2(λn)
(|x|2 − |λn|2)2

)
= R1

m(x)R2
m(x).

First, we evaluate

R1
m(x) =

∏
n∈N∗
n �=m

(|x|2 − |λn|2)2
|λn|4 =

∏
n∈N∗
n �=m

(|x|2 − (1 + ε2)n2)2

(1 + ε2)2n4

=
(1 + ε2)2m4

(|x|2 − (1 + ε2)m2)2
∏

n∈N∗

(|x|2 − (1 + ε2)n2)2

(1 + ε2)2n4
=

(
m2

m2 − x2

1+ε2

)2
⎛⎝ sin

(
π|x|√
1+ε2

)
π|x|√
1+ε2

⎞⎠2

·

Now, we study

R2
m(x) =

∏
n∈N∗
n �=m

(
1 +

4x2	2(λn)
(|x|2 − |λn|2)2

)
=

(|x|2 − |λm|2)2
(|x|2 − |λm|2)2 + 4x2	2(λm)

∏
n∈N∗

(
1 +

4x2	2(λn)
(|x|2 − |λn|2)2

)

=
(|x|2 − |λm|2)2

(|x|2 − |λm|2)2 + 4x2	2(λm)

∏
k∈N∗

(
1 +

4ε2

1 + ε2

t4k4

(t4 − k4)2

)
,

where we have used the notation t =
√

x
4√1+ε2 · It follows that

R2
m(x) ≤ (|x|2 − |λm|2)2

(|x|2 − |λm|2)2 + 4x2	2(λm)

∏
k∈N∗

(
1 +

4ε2t2

(t − k)2

)

=
(|x|2 − |λm|2)2

(|x|2 − |λm|2)2 + 4x2	2(λm)
exp

⎛⎝ [t]∑
k=1

ln
(

1 +
4ε2t2

(t − k)2

)
+

∞∑
k=[t]+1

ln
(

1 +
4ε2t2

(k − t)2

)⎞⎠
≤ (|x|2 − |λm|2)2

(|x|2 − |λm|2)2 + 4x2	2(λm)

(
1 +

4ε2t2

(t − [t])2

)(
1 +

4ε2t2

([t] + 1 − t)2

)
× exp

(∫ t

0

ln
(

1 +
4ε2t2

(t − s)2

)
ds +

∫ ∞

t

ln
(

1 +
4ε2t2

(s − t)2

)
ds

)
.
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We evaluate now each of the integrals appearing at the exponent. We have that

I1 =
∫ t

0

ln
(

1 +
4ε2t2

(t − s)2

)
ds = −

∫ t

0

(t − s)′ ln
(

1 +
4ε2t2

(t − s)2

)
ds

= t ln
(
1 + 4ε2

)
+
∫ t

0

8ε2t2

(t − s)2 + 4ε2t2
ds,

I2 =
∫ ∞

t

ln
(

1 +
4ε2t2

(s − t)2

)
ds =

∫ ∞

t

(s − t)′ ln
(

1 +
4ε2t2

(s − t)2

)
ds

=
∫ ∞

t

8ε2t2

(s − t)2 + 4ε2t2
ds,

and consequently

I1 + I2 = t ln
(
1 + 4ε2

)
+
∫ ∞

0

8ε2t2

(t − s)2 + 4ε2t2
ds

≤ t ln
(
1 + 4ε2

)
+ 8ε2t2

(∫ (1−2ε)t

0

ds

(t − s)2
+
∫ ∞

(1+2ε)t

ds

(t − s)2
+
∫ (1+2ε)t

(1−2ε)t

ds

4ε2t2

)

= t ln
(
1 + 4ε2

)
+ 8ε2t2

(
1

2εt
− 1

t
+

1
2εt

+
1
εt

)
≤ 16εt.

We deduce that

R2
m(x) ≤ (|x|2 − |λm|2)2

(|x|2 − |λm|2)2 + 4x2	2(λm)

⎛⎜⎝1 +
4ε2x(√

x − 4
√

1 + ε2
[ √

x
4√1+ε2

])2

⎞⎟⎠
×

⎛⎜⎝1 +
4ε2x(

4
√

1 + ε2
([ √

x
4√1+ε2

]
+ 1
)
−√

x
)2

⎞⎟⎠ exp
(

16ε
√

x
4
√

1 + ε2

)
.

Finally, we have

|Rm(x)|2 ≤ ((1 + ε2)m2)2

(|x|2 − (1 + ε2)m2)2 + 4x2ε2m2

⎛⎝ sin π |x|√
1+ε2

π |x|√
1+ε2

⎞⎠2
⎛⎜⎝1 +

4ε2x(√
x − 4

√
1 + ε2

[ √
x

4√1+ε2

])2

⎞⎟⎠
×

⎛⎜⎝1 +
4ε2x(

4
√

1 + ε2
([ √

x
4√1+ε2

]
+ 1
)
−√

x
)2

⎞⎟⎠ exp
(

16ε
√

x
4
√

1 + ε2

)
≤ C exp

(
16ε
√
|x|
)

. (3.10)

Note that the numerators
√

x − 4
√

1 + ε2
[ √

x
4√1+ε2

]
or

√
x − 4

√
1 + ε2

(
1 +
[ √

x
4√1+ε2

])
vanishes if and only if

|x|√
1+ε2 = l2, l ∈ N. Taking into account that

∣∣∣∣sin(π
|x|√

1 + ε2

)∣∣∣∣ = ∣∣∣∣sin π

( |x|√
1 + ε2

− l2
)∣∣∣∣ =

∣∣∣∣∣sin π

( √|x|
4
√

1 + ε2
− l

)( √|x|
4
√

1 + ε2
+ l

)∣∣∣∣∣
and using the fact that | sin(x)| ≤ |x| it is easy to show the existence of the bound C in (3.10).
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On the other hand, the expression (|x|2 − (1 + ε2)m2)2 + 4x2ε2m2 attains its minimum when |x|√
1+ε2 = m. In

this case the first term from the right hand side of (3.10) is 1
ε2 and will be compensated by 4ε2x from the third

or forth right hand side term.
From (3.8) and (3.10), we deduce that inequality (3.9) holds and the proof is finished. �

In order to complete the construction of the biorthogonal sequence we have to find a multiplier to compensate
the growth (3.9) of Pm on the real axis. We use an idea of Ingham [15], generalized by Redheffer [27].

Lemma 3.3. For any ε ∈ (0, 1] and m ≥ 1 of the form m = q2 with q ∈ N∗, there exists a function Mm,ε : C → C

such that:
(1) Mm,ε is an entire function of exponential type independent of ε and m;

(2) Mm,ε(x) ≤ exp
(
−ε
√|x|

)
for all x ∈ R;

(3) Mm,ε(iλm) ≥ C exp (−R |	(λm)|),
where C and R are positive constants independent of ε and m.

Proof. Let (ρn)n≥1 be the nonincreasing sequence defined by

ρn =
ε e

n3/2
∀n ≥ 1. (3.11)

Note that
∑

n≥1 ρn := ε � < ∞. The function Mm,ε defined by

Mm,ε(z) = e−2−δ ε m
∏

n≥n0

sin(ρnz)
ρnz

(3.12)

is an entire function of exponential type less than ε�. The numbers n0 ∈ N∗ and δ > 0 will be conveniently
chosen latter on.

We pass to evaluate Mm,ε(x). We shall consider three cases:

• 0 ≤ ε
√|x| < 1. In this case

|Mm,ε(x)| = e−2−δ ε m
∏

n≥n0

sin(ρn|x|)
ρn|x| ≤ e−1 ≤ e−ε

√
|x|.

• 1 ≤ ε
√|x| ≤ n0. In this case

|Mm,ε(x)| = e−2−δ ε m
∏

n≥n0

sin(ρn|x|)
ρn|x| ≤ e−1−δ ε m ≤ en0−1−δ ε me−ε

√
|x|.

• ε
√|x| > n0. For any p ≥ n0, we have that

|Mm,ε(x)| = e−2−δ ε m
∏

n≥n0

sin(ρn|x|)
ρn|x| ≤ e−2−δ ε m

(
1

ρp|x|
)p−n0

≤ e−p−2+n0−δ ε m

(
p3/2

ε|x|
)p−n0

·

If we choose p =
[
ε
√|x|

]
> n0, since |x| >

n2
0

ε2 ≥ n2
0 ≥ 1, it follows that

p3/2

ε|x| ≤ (ε
√|x|)3/2

ε|x| = 4

√
ε2

|x| ≤
√

ε ≤ 1.
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Thus, since p + 1 > ε
√|x|, we obtain that

|Mm,ε(x)| ≤ en0−1−δ ε me−ε
√

|x|.

From the previous estimates it follows that

|Mm,ε(x)| ≤ max
{
1, en0−1−δ ε m

}
exp
(
−ε
√
|x|
)

∀x ∈ R. (3.13)

If we denote n1 = inf{n ≥ 0 : |λmρn| < 1} it follows that n1 =
[

3
√

ε2(1 + ε2)e2m2
]
. In what follows we

chose
n0 = [δ ε m] + 1, (3.14)

δ = 3
√

e2(1 + ε2). (3.15)
Note that, with this choice, n0 ≤ δ ε m+1. From (3.13), it follows that Mm,ε(x) verifies the second property.

Moreover,
n1 ≤ max{δ(ε m)2/3 − 1 , 1} ≤ max{δ ε m , 1} ≤ n0. (3.16)

Now, we pass to evaluate Mm,ε(iλm). Firstly, we remark that, for any z ∈ C with |z| < 1,

ln
∣∣∣∣ sin z

z

∣∣∣∣ ≥ ln
(

sin |z|
|z|
)

≥ ln
(

1 − 1
6
|z|2
)

≥ −1
3
|z|2. (3.17)

From (3.16) it follows that |i ρnλm| < 1 for any n ≥ n0 and inequality (3.17) allows to evaluate the product
from |Mm,ε(iλm)| as follows

∞∏
n=n0

∣∣∣∣ sin(i ρnλm)
i ρnλm

∣∣∣∣ = exp

( ∞∑
n=n0

ln
∣∣∣∣ sin(i ρnλm)

i ρnλm

∣∣∣∣
)

≥ exp

(
−

∞∑
n=n0

|ρn|2 |λm|2
3

)
≥ exp

(
−e2ε2|λm|2

3

(
1
n3

0

+
∫ ∞

[δ ε m]+1

ds

s3

))

= exp

(
−e2ε2|λm|2

3

(
1

([δ ε m] + 1)3
+

1
2 ([δ ε m] + 1)2

))
≥ exp

(
−e2ε2|λm|2

3
[δ ε m] + 3

2 ([δ ε m] + 1)3

)
·

Now, remark that

e2ε2|λm|2
3

[δ ε m] + 3
2 ([δ ε m] + 1)3

≤ e2ε2|λm|2
6(δ ε m)2

[δ ε m] + 3
[δ ε m] + 1

=
δ

6
[δ ε m] + 3
[δ ε m] + 1

≤ δ

2

and consequently
∞∏

n=n0

∣∣∣∣ sin(i ρnλm)
i ρnλm

∣∣∣∣ ≥ exp
(
− δ

2

)
· (3.18)

From (3.18) we deduce immediately that

|Mm,ε(iλm)| ≥ exp
(
− δ

2
− 2 − δ ε m

)
. (3.19)

From (3.19) it follows that the function Mm,ε verifies the third property with R = δ0 and C = exp
(− δ0

2 − 2
)
,

where δ0 = 3
√

2e2, and the proof ends. �
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Now, we have all the ingredients needed to show the existence of a biorthogonal sequence to the family
(eμmt)m∈N∗ .

Theorem 3.1. There exists T0 > 0 such that, for any ε ∈ (0, 1], we find a biorthogonal sequence (θm)m∈N∗ to
the family (eμmt)m∈N∗ in L2

(−T0
2 , T0

2

)
with the following property

||θm||
L2(−T0

2 ,
T0
2 ) ≤ C exp (α|	(μm)|) ∀m ≥ 1, (3.20)

where C and α are positive constants independent of ε and m.

Proof. For each m ∈ N∗ we define the function

Ψm(z) = Pm2(z)
(

Mm2,ε(z)
Mm2,ε(iλm2)

)32 sin(γ(z − iλm2))
γ(z − iλm2)

∀z ∈ C, (3.21)

where γ > 0 is an arbitrary positive constant independent of ε and m.
From Lemmas 3.1 and 3.3 we deduce that there exists T0 > 0 independent of ε such that Ψm is an entire

function of exponential type T0
2 . In fact, we can choose T0 any number greater than 2

(√
2π + 8ε

1+ε2 + 32ε� + γ
)
.

Moreover, from estimate (3.9) of the function Pm2 on the real axis and the properties of the function Mm2,ε

from Lemma 3.3, we obtain that

||Ψm||2L2(R) =
∫ ∞

−∞
|Ψm(x)|2dx ≤ C2e32(R+ε)|�(λm2 )|

∫ ∞

−∞

∣∣∣∣ sin(γ(x − λm2 i))
γ(x − λm2 i)

∣∣∣∣2 dx

=
C2

γ
e32(R+ε)|�(λm2 )|

∫ ∞

−∞

∣∣∣∣ sin(t − iγ	(λm2))
t − iγ	(λm2)

∣∣∣∣2 dt ≤ Ce2α|�(μm)|,

where α is any number greater than 16R + γ + 16ε.
From Paley-Wiener’s Theorem we deduce that there exists (θm)m≥1 ⊂ L2(−T0

2 , T0
2 ) such that

Ψm(z) =
∫ T0

2

−T0
2

θm(t)e−iztdx ∀m ≥ 1. (3.22)

Since, for each m ≥ 1, the functions Ψm satisfy

Ψm(iμn) = Ψm(iλn2) = δmn ∀n ≥ 1,

we have that (θm)m≥1 is a biorthogonal sequence to (eμm t)m≥1. Moreover, Plancherel’s Theorem gives that (3.20)
holds and the proof finishes. �

The following theorem gives a new biorthogonal family to (eμm t)m≥1 with even better norm properties than
those of the biorthogonal (θm)m≥1 from Theorem 3.1 (see, for instance, [17]).

Let a > 0 and ka =
√

2π
a2 (χa ∗ χa), where χa represents the characteristic function χ[−a/2,a/2]. Evidently

supp(ka) ⊂ [−a, a]. Also, we have

k̂a(ξ) =
1√
2π

∫
R

ka(t)e−itξ dt =
2π

a2
χ̂a(ξ)χ̂a(ξ) =

4
a2

sin2( ξa
2 )

ξ2
·

We define ρm(x) = eix�(μm)ka(x), so supp(ρm) ⊂ [−a, a].
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Theorem 3.2. Let (θm)m≥1 be the biorthogonal in L2
(−T0

2 , T0
2

)
from Theorem 3.1 and a > 0. We define

ζm =
1

2πρ̂m(iμm)
θm ∗ ρm, ∀m ≥ 1. (3.23)

Then we have the following assertions:

(i) The family (ζm)m≥1 is a biorthogonal in L2
(−T0

2 − a, T0
2 + a

)
to the family (eμmt)m≥1.

(ii) For any finite sequence (αm)m≥1 we have

∫ T0
2 +a

−T0
2 −a

∣∣∣∣∣∣
∑
m≥1

αmζm(t)

∣∣∣∣∣∣
2

dt ≤ C(T0, a)
∑
m≥1

|αm|2 exp(2α |	(μm)|), (3.24)

where α is the same as in (3.20) and C(T0, a) is a constant depending only of T0 and a.

Proof. (i) It is sufficient to remark that

∫ T0
2 +a

−T0
2 −a

ζm(t)eμnt dt =
√

2πζ̂m(iμn) =
θ̂m(iμn)ρ̂m(iμn)

ρ̂m(iμn)
= δmn.

(ii) Firstly, we note that

ρ̂m(iμm) =
1√
2π

∫
R

ρm(t)etμm dt =
1√
2π

∫
R

e−im2tka(t)etμm dt = k̂a(iεm2) ≥ 1.

Now, we have that

∫ T0
2 +a

−T0
2 −a

∣∣∣∣∣∣
∑
m≥1

αmζm(t)

∣∣∣∣∣∣
2

dt =
∫

R

∣∣∣∣∣∣
∑
m≥1

αmζ̂m(t)

∣∣∣∣∣∣
2

dt

=
∫

R

∣∣∣∣∣∣
∑
m≥1

αm

√
2π

θ̂m(t)ρ̂m(t)
ρ̂m(iμn)

∣∣∣∣∣∣
2

dt ≤ 2π

∫
R

∣∣∣∣∣∣
∑
m≥1

|αm|
|ρ̂m(iμn)| ‖θ̂m‖L∞(R)|ρ̂m(t)|

∣∣∣∣∣∣
2

dt

≤
∫

R

∣∣∣∣∣∣
∑
m≥1

|αm|
√

T0‖θm‖
L2(−T0

2 ,
T0
2 )|ρ̂m(t)|

∣∣∣∣∣∣
2

dt =
∫

R

∣∣∣∣∣∣
∑
m≥1

|αm|
√

T0‖θm‖
L2(−T0

2 ,
T0
2 )|k̂a(t − m2)|

∣∣∣∣∣∣
2

dt

≤
∫ a

−a

k2
a(t)

∣∣∣∣∣∣
∑
m≥1

|αm|
√

T0‖θm‖
L2(−T0

2 ,
T0
2 )e

−im2t

∣∣∣∣∣∣
2

dt ≤ 2π

a2
T0

∫ a

−a

∣∣∣∣∣∣
∑
m≥1

|αm|‖θm‖
L2(−T0

2 ,
T0
2 )e

−im2t

∣∣∣∣∣∣
2

dt.

By Ingham inequality (see [16]), there exists a positive constant C depending only of a such that

∫ a

−a

∣∣∣∣∣∣
∑
m≥1

|αm|‖θm‖
L2(−T0

2 ,
T0
2 )e

−im2t

∣∣∣∣∣∣
2

dt ≤ C
∑
m≥1

|αm|2‖θm‖2

L2(−T0
2 ,

T0
2 ).

Now, taking into account (3.20), we deduce immediately (3.24) and the proof ends. �
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Remark 3.1. Let T = T0 + 2a and (ζm)m≥1 be the biorthogonal in L2
(−T

2 , T
2

)
to the family (eμmt)m≥1

constructed in Theorem 3.2. By using the general biorthogonal properties and (3.24), we deduce that

∑
n≥1

|an|2e−2α|�(μn)| =
∫ T

2

−T
2

⎛⎝∑
n≥1

ane−2α|�(μn)|ζn(t)

⎞⎠⎛⎝∑
n≥1

aneμn t

⎞⎠dt

≤

⎛⎜⎝∫ T
2

−T
2

∣∣∣∣∣∣
∑
n≥1

ane−2α|�(μn)|ζn(t)

∣∣∣∣∣∣
2

dt

⎞⎟⎠
1
2
⎛⎜⎝∫ T

2

−T
2

∣∣∣∣∣∣
∑
n≥1

aneμn t

∣∣∣∣∣∣
2

dt

⎞⎟⎠
1
2

≤
√

C(T0, a)

⎛⎝∑
n≥1

|an|2e−2α|�(μn)|

⎞⎠
1
2
⎛⎜⎝∫ T

2

−T
2

∣∣∣∣∣∣
∑
n≥1

aneμn t

∣∣∣∣∣∣
2

dt

⎞⎟⎠
1
2

.

Hence, for any finite sequence (an)n≥1, the following weighted Ingham type inequality holds

∑
n≥1

|an|2e−2α|�(μn)| ≤ C(T0, a)
∫ T

2

−T
2

∣∣∣∣∣∣
∑
n≥1

aneμn t

∣∣∣∣∣∣
2

dt. (3.25)

4. Controllability results

This section is devoted to prove the main result of our paper.

Proof of Theorem 1.1. Let T > max{2α, T0 + 2a} and (ζm)m∈N∗ as in Theorem 3.2. We construct a control
vε ∈ L2(0, T ) of (1.5) corresponding to the initial datum y0 ∈ H−1(0, π),

y0(x) =
∑

n∈N∗
an sin(nx), (4.1)

as follows:

vε(t) =
∞∑

n=1

(−1)nπan

2n(i + ε)
e−

T
2 μn ζ̃n

(
t − T

2

)
∀t ∈ (0, T ), (4.2)

where ζ̃m is the extension by zero of ζm to the interval (−T/2, T/2). From the properties of the biorthogonal
sequence (ζm)m∈N∗ , it is easy to see that vε verifies (2.2). To conclude that vε is a control for (1.5), we only
have to prove that the series from (4.2) converges in L2(0, T ). This follows immediately from Theorem 3.2 and
the fact that y0 ∈ H−1(0, π). Indeed, we have that

∫ T

0

|vε(t)|2 dt =
∫ T

0

∣∣∣∣∣
∞∑

n=1

(−1)nπan

2n(i + ε)
e−

T
2 μn ζ̃n(t − T/2)

∣∣∣∣∣
2

dt

=
∫ T0

2 +a

−T0
2 −a

∣∣∣∣∣
∞∑

n=1

(−1)nπan

2n(i + ε)
e−

T
2 μnζn(t)

∣∣∣∣∣
2

dt

≤ C(T0, a)
∞∑

n=1

π2a2
n

4n2

e−T |�(μn)|

1 + ε2
e2α|�(μm)| ≤ C(T0, a)

π2

4
||y0||2H−1(0,π).

Note that the constant from the last inequality C(T0, a) is the one from (3.24) and it does not depend of ε.
Thus, the family of controls (vε)ε>0 is uniformly bounded in L2(0, T ). Let v be a weak limit of this family.
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In order to show that v is a control for equation (1.1) we only have to pass to the limit as ε goes to zero in the
characterization relation (2.2). �

5. Comments

(1) Concerning the optimal controllability time. Theorem 1.1 ensures the existence of a time T > 0,
sufficiently large but independent of ε, for which the uniform controllability of (1.5) holds. As we have
mentioned from the very beginning, the linear Schrödinger equation (1.1) is controllable in arbitrary
small time. The same is probably true in our case. However, to obtain the optimal time we should be
able to find a new product Pm of arbitrarily small exponential type and a multiplier Mm,ε with the
constant R from Lemma 3.3 as small as we want. This seems to be a difficult question and remains an
open problem (see also [12,25] for similar discussions).

(2) Concerning the product Pm. It is interesting to note that the simplest election for the function Pm does
not work. Indeed, if we choose

Pm(z) =
∏

n∈Z∗
|n|�=m

(
1 − z

i μn

)(
μn

μn − μm

)
, (5.1)

we have an entire function which verifies the necessary relations Pm(iμn) = δmn. Moreover, a product
like (5.1), has arbitrarily small exponential type and eventually would allow to deduce a controllability
result for any T > 0.

However, Pm given by (5.1) is useless. Indeed, it is easy to see that

|Pm(x)| ≥ C1 exp
(
C2

√
|x|
)

∀x ∈ R,

where C1 and C2 are positive constants independent of ε and m. Consequently, for each ε ∈ (0, 1] and
m ≥ 1, we would need a multiplier Mm,ε such that,

|Mm,ε(x)| ≤ exp
(
−C3

√
|x|
)

∀x ∈ R, (5.2)

|Mm,ε(iμm)| ≥ exp (−C4|	(μm)|) = exp
(−C4εm

2
)
, (5.3)

with C3 and C4 two positive constants independent of ε.
We show that this is not possible. Indeed, suppose that, for each ε ∈ (0, 1] and m ≥ 1, there exists

an entire function Mm,ε of exponential type less than B > 0 and with properties (5.2), (5.3). If we take
any η > 0 and define the auxiliary function

Gm,ε(z) = Mm,ε(z)e(B+η)zeC3
√−z,

we obtain from the Phragmén-Lindelöf Theorem that there exists a constant C > 0, independent of ε
and m, such that

|Gm,ε(x + iy)| ≤ C, x ≤ 0, y ≥ 0.

From the last inequality, we deduce that

|Mm,ε(iμm)| ≤ C exp
(
− m√

2

)
, m ≥ 1 (5.4)

which contradicts (5.3).
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(3) Concerning rectangular domains. Our approach could be used to study the uniform controllability
property of the perturbed two dimensional Schrödinger equation in a rectangular domain with a control
located on an edge. In this case, the main problem is to deduce, for each m ≥ 1, the existence of
a bounded (in m and ε) family of biorthogonal functions to (eμnmt)n≥1 when μnm = ε(n2 +m2)− i(n2 +
m2). Although quite technical, this study could be carried out by using similar ideas as in [25].

(4) Concerning other spaces of controllable data and regular controls. In this article we have considered
the space H−1(0, π) of controllable initial data which is the optimal space if one wants the controls to
remain in L2(0, T ). It is known that, if the initial data are more regular we can find smoother minimal
L2-norm boundary controls for the linear Schrödinger equation (see, for instance, [28]). The technique
used in this paper may be adapted to study the controllability of more regular spaces of initial data
(like Hs(0, π), s ≥ 0) with smoother controls (like Hr(0, T ), r > 0). Indeed, more regular biorthogonal
functions (and controls) may be constructed by considering in (3.21) Fourier transforms Ψm such that
xrΨm(x) ∈ L2(R) for some r > 0. However, note that the corresponding controls are not of minimal
L2-norm.

(5) Concerning other controllability problems. The spectral approach we have used in this paper allows the
study of other types of controls. Indeed, instead of looking for a boundary control vε as in (1.5), we may
be interested in finding an interior “lumped control” of the form vε(t)g(x), where g ∈ L2(0, π) is a given
function, or “punctual control” like vε(t)δx0 , where δx0 is the Dirac mass concentrated in x0 ∈ (0, π). It
is well-known that the existence of such controls is equivalent to a moment problem similar to (2.2). The
only major difference with respect to our study consists in deciding how the properties of the function g
or the position of the point x0 affect the space of the controllable initial data in each of these cases.

(6) Concerning general domains and nonlinear equations. An interesting question is the possibility of
extending our results to several dimension domains and even to nonlinear Schrödinger equation. The
method from this paper, based on the explicit knowledge of the spectrum and the reduction to a linear
moment problem, cannot be used any longer. A possibility would be to prove Carleman inequalities for
the Ginzburg-Landau linear equation like the ones obtained in [5,9–11,24,28], but independent of the
parameter ε. This completely different technique will make the subject of a future work.
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[17] J.P. Kahane, Pseudo-Périodicité et Séries de Fourier Lacunaires. Ann. Scient. Ec. Norm. Sup. 37 (1962) 93–95.
[18] V. Komornik and P. Loreti, Fourier Series in Control Theory. Springer-Verlag, New York (2005).
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