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Abstract— This article deals with the approximation of the
boundary control of the 1-D linear wave equation. Due to the
spurious high frequencies, the semi-discrete models obtained
with finite difference or classical finite element methods are
not uniformly controllable as the discretization parameter h
goes to zero (see [8]). We propose a new strategy for the
approximation of the boundary control based on the addition
of a numerical vanishing viscous term. This will damp out the
spurious high frequencies and will ensure the existence of a
convergent sequence of approximate controls. We present an
approximation algorithm and some numerical experiments.

Keywords: boundary controllability, wave equation, semi-
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I. INTRODUCTION

This article is dealing with the boundary exact controlla-

bility property for the 1-D linear wave equation: given T ≥ 2

and (u0,u1) ∈ L2(0,1) × H−1(0,1) there exists a control

function v ∈ L2(0,T ) such that the solution of the equation





u′′−uxx = 0 x ∈ (0,1), t > 0,
u(t,0) = 0 t > 0,
u(t,1) = v(t) t > 0,
u(0,x) = u0(x) x ∈ (0,1),
u′(0,x) = u1(x) x ∈ (0,1),

(1)

satisfies

u(T, ·) = u′(T, ·) = 0. (2)

By ′ we denote the time derivative.

For the study of this controllability problem the moments

theory has been successfully used (see, for instance, [1] and

[14]). This approach is based on the construction of a control

for each initial data equal to an eigenfunction of the wave

operator.

The Hilbert Uniqueness Method (HUM) (see [9]) has

offered a different and general way to study this and sim-

ilar multi-dimensional problems. It provides the minimal

L2−norm control and reduces the problem to minimization

of a coercive convex functional. The control with minimal

L2-norm is unique and it will be referred in the sequel as the

HUM control.
In the last years there was an increasing interest for the

numerical approximations of the controls. For instance HUM
was used in [4], [6] and [7] to deduce numerical algorithms
with finite differences in the context of the two dimensional
wave equation. A one-dimensional correspondent of the
problem studied in the above references may be obtained in

Partially Supported by Grant MTM2005-00714 of MCYT (Spain) and
Grant CEEX-05-D11-36/2005(Romania).

S. Micu is with Faculty of Mathematics and Computer Science, University
of Craiova, Craiova 200497, Romania sd micu@yahoo.com

the following way: let N ∈ N
∗, h = 1

N+1
and an equidistant

mesh of the interval (0,1), 0 = x0 < x1 < ... < xN < xN+1 = 1
with x j = jh, 0 ≤ j ≤ N +1. A finite-difference approxima-
tion of the space derivatives leads to the following semi-
discretization (space discretization) of (1)






u′′j (t)−
u j+1(t)+u j−1(t)−2u j(t)

h2 = 0 t > 0

u0(t) = 0, uN+1(t) = vh(t) t > 0

u j(0) = u0
j(x), u′j = u1

j(x) 1 ≤ j ≤ N.

(3)

System (3) consists of N linear differential equations

with N unknowns u1,u2, ...,uN . Roughly speaking, u j(t)
approximates u(t,x j), the solution of (1), provided that

(u0
j ,u

1
j)0≤ j≤N+1 is an approximation for the initial datum in

(1). In fact we shall choose u0
j = u0( jh) and u1

j = u1( jh) for

0 ≤ j ≤ N +1. In (3) the control vh acts on the (N +1)−th

component of the solution.

The following controllability property may be addressed

for (3): given T > 2, and (u0
j ,u

1
j)1≤ j≤N ∈ C

2N , there exists a

control function vh ∈ H1(0,T ) such that the corresponding

solution (u j,u
′
j)1≤ j≤N of (3) satisfies

u j(T ) = u′j(T ) = 0, 1 ≤ j ≤ N. (4)

If this holds for any (u0
j ,u

1
j)1≤ j≤N ∈ C

2N we say that (3)

is exactly controllable in time T .

It is not difficult to see that the controllability problem

we have just addressed has a positive answer and a se-

quence of discrete controls (vh)h>0 may be found easily.

What it is considerably more difficult is to show that the

sequence (vh)h>0 converges in some way to a control v of

the continuous wave equation (1). In fact, a bad behavior

of the approximate controls may be readily seen. These

negative numerical results are due to the fact that, in gen-

eral, any semi-discrete dynamics generates spurious high-

frequency oscillations that do not exist at the continuous

level. Moreover, a dispersion phenomenon appears and the

velocity of propagation of these high frequency numerical

waves may converge to zero when the mesh size tends to

zero. Note that these spurious oscillations correspond to the

high frequencies of the discrete model and therefore, they

weakly converge to zero when the discretization parameter

h does. Consequently, their existence is compatible with

the convergence of the numerical scheme. However, when

we are dealing with the exact controllability problem, an

uniform time for the control of all numerical waves is needed.

Since the velocity of propagation of some high frequency

numerical waves may tend to zero with the mesh size, the
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uniform controllability properties of the semi-discrete model

may eventually disappear for a fixed time T > 0. As it

was shown in [8] and [15], this is indeed the case when

finite differences are used like in (3). The conclusion is

that, with this and other similar semi-discrete models, the

controllability property is not uniform as the discretization

parameter h goes to zero which means that there are initial

data of the wave equation (even very regular ones) for which

the corresponding controls of the semi-discrete model will

diverge in the L2-norm.

Since the main problem are the spurious high frequencies

generated by the discretization process, the idea of elim-

inating them in one way or another is natural. How to

do that in an optimal and general way and how to show

mathematically the uniform controllability results is not so

clear. At the beginning there were numerical experiments

such as a Tychonoff regularization technique ([6] and [7]),

a bi-grid algorithm ([4] and [7]) and a mixed finite element

approximation ([5]). In the last years many theoretical results

were obtained, too. In [10] the high frequency modes of the

discrete initial data are filtered out in an appropriate manner

and a convergent sequence of discrete controls is constructed.

In [2] a mixed finite elements method is analyzed. It consists

in a discretization scheme with different basis functions:

while the classical piecewise linear polynomials are used

for the position, discontinuous elements approximate the

velocity. With this method an explicit sequence of discrete

controls which tends to the HUM control of the limit wave

equation (1) is constructed. Analysis of a bi-grid method is

presented in [12] where uniform results were also proved.

II. A SCHEME WITH NUMERICAL VISCOSITY

This paper considers a different method to achieve the
uniform controllability as the discretization parameter h goes
to zero. The idea is to introduce in the discrete equation a
numerical viscous term vanishing in the limit. The dissipation
has the role to damp out the bad spurious high frequencies,
ensuring the uniform controllability of the system. More
precisely, we consider the following alternative to (3)






u′′j (t)−
u j+1(t)+u j−1(t)−2u j(t)

h2 −

−ε
u′j+1(t)+u′j−1(t)−2u′j(t)

h2 = 0 t > 0

u0(t) = 0, uN+1(t) = vh(t) t > 0

u j(0) = u0
j(x), u′j = u1

j(x) 1 ≤ j ≤ N

(5)

and we address the same controllability problem as before.

The parameter ε which multiplies the viscous term
1
h2

(
u′j+1(t)+u′j−1(t)−2u′j(t)

)
depends on the step size h

and tends to zero as h → 0,

lim
h→0

ε(h) = 0. (6)

Hence, in (5), the term ε
u′j+1(t)+u′j−1(t)−2u′j(t)

h2 represents a

vanishing numerical viscosity and it has the role to damp out

the spurious high frequencies introduced by the numerical

discretization. This will eventually ensure the boundedness of

the sequence (vh)h>0. More precisely, we have the following

result

Theorem 1: For any h > 0 let ε = h in (5). There exists a

control vh of the semi-discrete problem (5) with the property

that the sequence (vh)h>0 is bounded in L2(0,T ). If v ∈
L2(0,T ) is a weak limit of the sequence (vh)h>0 then v is

a control for the continuous problem (1).

The proof of this result is based on moments theory

and biorthogonals technique (see [11] for details). Roughly

speaking, in our context, an element of a biorthogonal

sequence is a control for a particular eigenmode. The norms

of those elements which correspond to high modes may be

very large and may give an unbounded sequence of discrete

controls. However, the dissipation is stronger precisely on

the high modes and it acts as a compensation for the norm

increasing. This mechanism leads to a uniform controllability

result and therefore produces a sequence of discrete controls

weakly convergent to a control of the continuous wave

equation (1) when h → 0.

The situation is similar to the heat equation where the

biorthogonals have large norms but the dissipation fully

compensates that (see [3]). The main difficulty here consists

on the fact that the norm increasing of the elements of the

biorthogonal sequence and the decay rate of the energy due

to the dissipative term are of the same order and some very

precise estimates are needed in order to compare them.

III. THE HUM APPROACH

In this section we transform the controllability problem

in a minimization problem. Let us first write (5) in an

equivalent vectorial form. We define the following matrix

from MN×N(R)

Ah =
1

h2





2 −1 0 0 ..... 0 0

−1 2 −1 0 ..... 0 0

0 −1 2 −1 ..... 0 0

... ... ... ... ..... ... ...
0 0 0 0 ..... 2 −1

0 0 0 0 ..... −1 2




.

If we denote the unknown of (5) by U(t) =
(u1(t),u2(t), ...,uN(t))T system (5) can be written as

{
U ′′(t)+AhU(t)+ εAhU ′(t) = Fh t > 0

U(0) = U0
h , U ′(0) = U1

h ,
(7)

where U0
h = (u0

j)1≤ j≤N and U1
h = (u1

j)1≤ j≤N and the vector

Fh is given by

Fh(t) =





0

0

.

.

.
0

1
h2

(
vh + εv′h

)





.

In (7) we have taken into account that uN+1(t) = vh(t) and

u0(t) = 0 for all t > 0.

Our aim is to study the following controllability property

for (7): given T > 2, and (U0
h ,U1

h ) ∈ C
2N , there exists a
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control function vh ∈H1(0,T ) such that the solution (Uh,U
′
h)

of (7) satisfies

Uh(T ) = U ′
h(T ) = 0. (8)

If this holds for any (U0
h ,U1

h ) ∈ C
2N we say that (7) is

exactly controllable.

Let us define in C
N the canonic inner product

( f ,g) = h
N

∑
k=1

fkgk (9)

where f = ( fk)1≤k≤N and g = (gk)1≤k≤N belong to C
N .

Also, we consider in C
2N the inner product defined by

( f ,g)1 = (Ah f 1,g1)+( f 2,g2), (10)

where f = ( fk)1≤k≤2N and g = (gk)1≤k≤2N are two vectors

from C
2N with f 1 = ( fk)1≤k≤N , f 2 = ( fk)N+1≤k≤2N , g1 =

(gk)1≤k≤N , g2 = (gk)N+1≤k≤2N . The corresponding norm

will be denoted by || · ||1.

The following discrete duality product will be needed in

the study of the control problem

〈( f 1, f 2),(g1,g2)〉D = −( f 1,g2)+( f 2 + εAh f 1,g1) (11)

where f = ( f 1, f 2) and g = (g1,g2) are as above.

Firstly, we deduce a variational characterization of the

controllability property for the system (7). Let (φh,φ
′
h) be

the solution of the adjoint backward homogeneous system

{
φ ′′(t)+Ahφ(t)− εAhφ ′(t) = 0 t ∈ (0,T ),
φ(T ) = φ 0

h , φ ′(T ) = φ 1
h

(12)

The unknown of (12) is the vector-valued function φh(t) =
(φ1(t),φ2(t), ...,φN(t))T . Note that, to simplify the notation,

we do not make explicit the dependence in h of the compo-

nents φ j(t).

Multiplying system (12) by the solution Uh of system (7)

and integrating in time we obtain the following characteri-

zation of the controllability property.

Theorem 2: Given T > 0, system (7) is exactly control-

lable if, for any (U0
h ,U1

h ) ∈ C
2N , there exists vh ∈ H1

0 (0,T )
which satisfies

∫ T

0
vh(t)

φN(t)− εφ ′
N

h
dt+

+〈(U0
h ,U1

h ),(φh(0),φ ′
h(0))〉D = 0,

(13)

for any (φ 0
h ,φ 1

h ) ∈ C
2N , (φh,φ

′
h) being the corresponding

solution of (12).

Given T > 2, let us also consider a cut-off function ρ ∈
C∞[0,T ] with the property that there exists a positive number

ε > 0 such that T −2ε > 2 and

(i) supp(ρ) ⊂ (ε/2,T − ε/2),
(ii) 0 ≤ ρ(t) ≤ 1 for all t ∈ [0,T ],

(iii) ρ(t) ≥ 1/2 for all t ∈ [ε,T − ε].
(14)

Finally, let J : C
2N → C be a functional defined by

J(φ 0
h ,φ 1

h ) =
1

2

∫ T

0
ρ(t)

∣∣∣∣
φN(t)− εφ ′

N(t)

h

∣∣∣∣
2

dt+

+〈(U0
h ,U1

h ),(φh(0),φ ′
h(0))〉D,

(15)

where (φh,φ
′
h) is the solution of the adjoint homogeneous

system (12).

Theorem 3: Given any T > 2 and (U0
h ,U1

h ) ∈ C
2N ,

the functional J defined by (15) has a unique minimizer

(φ̂ 0
h , φ̂ 1

h ) ∈ C
2N . If vh ∈ H1

0 (0,T ) is given by

vh = ρ
φ̂N − εφ̂ ′

N

h
, (16)

where (φ̂h, φ̂
′
h) is the solution of (12) with initial data

(φ̂ 0
h , φ̂ 1

h ), then vh is a control for (7).

We define

a : C
2N ×C

2N → C,

a((φ 0
h ,φ 1

h ),(ξ 0
h ,ξ 1

h )) =

=

∫ T

0
ρ(t)

(
φN − εφ ′

N

h

)(
ξN − εξ ′

N

h

)
dt,

(17)

L : C
2N → C,

L(φ 0
h ,φ 1

h ) = 〈(U0
h ,U1

h ),(φh(0),φ ′
h(0))〉D

(18)

where (φ ,φ ′) and (ξ ,ξ ′) are the solution of (12) with initial

data (φ 0
h ,φ 1,h) and (ξ 0

h ,ξ 1,h) respectively.

With these notations we have that

J(φ 0
h ,φ 1

h ) =
1

2
a((φ 0

h ,φ 1
h ),(φ 0

h ,φ 1
h ))+L(φ 0

h ,φ 1
h ).

In order to describe the algorithm we use to approximate

the minimizer of J let us first make some remarks concerning

the quantities which define J.

i) Computation of L(φ 0
h ,φ 1

h ).
If (τ,τ ′) is the solution of the equation
{

τ ′′(t)+Ahτ(t)+ εAhτ ′(t) = 0, t ∈ (0,T ),
τ(0) = U0

h , τ ′(0) = U1
h

(19)

and (φ ,φ ′) is the solution of (12) with initial data

(φ 0
h ,φ 1

h ) then

〈(U0
h ,U1

h ),(φ ′(0),φ ′(0))〉D =

= 〈(τ(T ),τ ′(T )),(φ 0
h ,φ 1

h )〉D.

Moreover, for any (ξ 0
h ,ξ 1

h ), we have that

〈(τ(T ),τ ′(T )),(ξ 0
h ,ξ 1

h )〉D =
(
( f 0

h , f 1
h ),(ξ 0

h ,ξ 1
h )

)
1

where ( f 0
h , f 1

h ) are given by
{

f 1
h = −τ(T ),

Ah f 0
h = τ ′(T )+ εAhτ(T ).

(20)

Hence,

L(φ 0
h ,φ 1

h ) =
(
( f 0

h , f 1
h ),(φ 0

h ,φ 1
h )

)
1

(21)

where ( f 0
h , f 1

h ) is given by (19)-(20).
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ii) Computation of a((φ 0
h ,φ 1

h ),(ξ 0
h ,ξ 1

h )).
For any (φ 0

h ,φ 1
h ) and (ξ 0

h ,ξ 1
h ), we have that

∫ T

0
ρ(t)

(
φN − εφ ′

N

h

)(
ξN − εξ ′

N

h

)
dt =

= 〈(w(T ),w′(T )),(ξ 0
h ,ξ 1

h )〉D

where (w,w′) is the solution of

{
w′′ +Ahw+ εAhw′ = F,
w(0) = 0, w′(0) = 0,

(22)

and the vector F is given by

F(t) =





0

0

.

.

.
0

1
h3 [ρ (φN − εφ ′

N)+ ε(ρ (φN − εφ ′
N))′]





.

Moreover,

〈(τ(T ),τ ′(T )),(ξ 0
h ,ξ 1

h )〉D =
(
( f̃ 0

h , f̃ 1
h ),(ξ 0

h ,ξ 1
h )

)
1

where ( f̃ 0
h , f̃ 1

h ) is given by

{
f̃ 1
h = −w(T ),

Ah f̃ 0
h = w′(T )+ εAhw(T )

(23)

Hence,

a((φ 0
h ,φ 1

h ),(ξ 0
h ,ξ 1

h )) =
(
( f̃ 0

h , f̃ 1
h ),(ξ 0

h ,ξ 1
h )

)
1

(24)

where ( f̃ 0
h , f̃ 1

h ) is given by (22)-(23).

iii) Computation of the gradient of J.

We have that

∇J(φ 0
h ,φ 1

h )(ξ 0
h ,ξ 1

h ) =

= a((φ 0
h ,φ 1

h ),(ξ 0
h ,ξ 1

h ))+L(ξ 0
h ,ξ 1

h ) =

=
(
( f 0

h + f̃ 0
h , f 1

h + f̃ 1
h ),(ξ 0

h ,ξ 1
h )

)
1
.

Hence,

∇J(φ 0
h ,φ 1

h ) = (g0,g1) (25)

where (g0,g1) are given by

{
g1 = −τ(T )−w(T ),

Ahg0 = τ ′(T )+w′(T )+ εAh(τ(T )+w(T )).
(26)

with (τ,τ ′) and (w,w′) solutions of (19) and (22)

respectively.

IV. CONJUGATE GRADIENT METHOD

For the sake of completeness, we present in this section the

steps of the conjugate gradient method applied to a general

variational problem in a Hilbert space (see [6]).

Let H be a Hilbert space with the inner product ( · , ·) and

the norm || || and consider the following general variational

problem: find u ∈ H such that

a(u,ϕ)+L(ϕ) = 0, ∀ϕ ∈ H. (27)

We suppose that a : H ×H → R is a bilinear, continuous,

symmetric and coercive form in H and L : H → R is a

linear and continuous form in H. These hypothesis ensure

the existence of a unique solution u ∈ H of problem (27).

Now, define the functional J : H → R,

J(ϕ) =
1

2
a(ϕ,ϕ)+L(ϕ).

Under the above conditions, it follows that the problem

J(ϕ̂) = min
ϕ∈H

J(ϕ) (28)

has a unique solution ϕ̂ ∈ H which is the solution u of (27).

In order to approximate the solution ϕ̂ of the minimization

problem (28) we may use the following conjugate gradient

method:

0. Initialization: take ϕ0 ∈ H.
1. Compute the gradient g0 = ∇J(ϕ0) ∈ H by using

(g0,ψ) = (∇J(ϕ0),ψ) = lim
h→0

J(ϕ0 +hψ)− J(ϕ0)

h
=

= a(ϕ0,ψ)+L(ψ), ∀ψ ∈ H.

2. If ||g0|| ≤ ε take ϕ̂ = ϕ0 and finish.

3. If ||g0|| > ε take the descent direction d0 = −g0.

Suppose that we have ϕn, gn = ∇J(ϕn) and dn and we

compute ϕn+1, gn+1 and dn+1 as it follows:

4. Compute the step descent

ρn = −
(gn,dn)

a(dn,dn)

Since (gn,g j) = 0, 0 ≤ j ≤ n−1, we also have

ρn =
(gn,gn)

a(dn,dn)
.

5. Compute the next approximation

ϕn+1 = ϕn +ρndn.

6. Compute the new gradient gn+1 = ∇J(ϕn+1) by using

(gn+1,ψ) = a(ϕn+1,ψ)+L(ψ), ∀ψ ∈ H

or, taking into account that ϕn+1 = ϕn +ρndn

(gn+1,ψ) = (gn,ψ)+ρna(dn,ψ), ∀ψ ∈ H.

7. If ||gn+1|| ≤ ε take ϕ̂ = ϕn+1 and finish.

8. If ||gn+1|| > ε compute the new descent direction

dn+1 = −gn+1 +
||gn+1||

2

||gn||2
dn.
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9. Make n = n+1 and go to 4.

Remark 1: In order to calculate a(ϕ ,ψ) we may use the

fact that, for any ϕ ∈ H there exists a unique ζ = ζ (ϕ) ∈ H

such that

a(ϕ,ψ) = (ζ (ϕ),ψ), ∀ψ ∈ H. (29)

Hence, to compute ρn at step 4, we use the formula

ρn =
(gn,gn)

(dn,ζ (dn))

and to compute gn+1 at step 6 we use the formula

gn+1 = gn +ρnζ (dn).
Remark 2: The gradient ∇J(ϕ0) is a linear and continuous

map from H to R. However, since H is a Hilbert space

we have used the Riesz identification and considered that

∇J(ϕ0) ∈ H and ∇J(ϕ0)(ψ) = (∇J(ϕ0),ψ).

V. A NUMERICAL ALGORITHM

The following numerical algorithm is a version of that

introduced in [6] and uses conjugate gradient method in order

to find the minimizer of J defined by (15) and consequently

the approximate control vh.

0. Initialization: take (ϕ0
0 ,ϕ1

0 ) ∈ R
N ×R

N .
1. Compute the gradient

(g0
0,g

1
0) = ∇J(ϕ0

0 ,ϕ1
0 ) ∈ R

N ×R
N .

To do that, solve the equations:
{

ϕ ′′ +Ahϕ − εAhϕ ′ = 0 in (0,T )
ϕ(T, ·) = ϕ0

0 , ϕ ′(T, ·) = ϕ1
0 ,

(30)

{
w′′ +Ahw+ εAhw′ = F in (0,T )
w(0, ·) = w′(0, ·) = 0,

(31)

{
τ ′′ +Ahτ + εAhτ = 0 in (0,T )
τ(0, ·) = u0, τ ′(0) = u1,

(32)

{
g1

0 = −τ(T )−w(T ),
Ahg0

0 = τ ′(T )+w′(T )+ εAh(τ(T )+w(T )
(33)

where

F =





0

0

.

.

.
0

1
h3 [ρ (φN − εφ ′

N)+ ε(ρ (φN − εφ ′
N))′]





.

2. If ||(g0
0,g

1
0)||1 ≤ ε take (ϕ̂0, ϕ̂1) = (ϕ0

0 ,ϕ1
0 ) and finish.

3. If ||(g0
0,g

1
0)||1 > ε take the descent direction

(d0
0 ,d1

0) = −(g0
0,g

1
0).

Suppose that we have (ϕ0
n ,ϕ1

n ), (g0
n,g

1
n) = ∇J(ϕ0

n ,ϕ1
n )

and (d0
n ,d1

n). Compute (ϕ0
n+1,ϕ

1
n+1), (g0

n+1,g
1
n+1) and

(d0
n+1,d

1
n+1) as it follows:

4. Solve the equations:
{

ϕ ′′ +Ahϕ − εAhϕ ′ = 0 in (0,T )
ϕ(T, ·) = d0

n , ϕ ′(T, ·) = d1
n ,

(34)

{
w′′ +Ahw+ εAhw′ = F in (0,T )
w(0, ·) = w′(0, ·) = 0,

(35)

{
g̃1

n = −w(T ),
Ahg̃0

n = w′(T )+ εAhw(T ),
(36)

where

F =





0

0

.

.

.
0

1
h3 [ρ (φN − εφ ′

N)+ ε(ρ (φN − εφ ′
N))′]





.

5. Compute the step descent,

ρn = −

(
(g0

n,g
1
n),(d

0
n ,d1

n)
)

a((d0
n ,d1

n),(d0
n ,d1

n))
=

=
||(g0

n,g
1
n)||

2

a((d0
n ,d1

n),(d0
n ,d1

n))
=

||(g0
n,g

1
n)||

2

((g̃0
n, g̃

1
n),(d

0
n ,d1

n))
.

6. Compute the next approximation

(ϕ0
n+1,ϕ

1
n+1) = (ϕ0

n ,ϕ1
n )+ρn(d

0
n ,d1

n).

7. Compute the new gradient (g0
n+1,g

1
n+1) =

∇J(ϕ0
n+1,ϕ

1
n+1) by using the relation

(g0
n+1,g

1
n+1) = (g0

n,g
1
n)+ρn(g̃

0
n, g̃

1
n).

8. If ||(g0
n+1,g

1
n+1)|| ≤ ε take (ϕ̂0, ϕ̂1) = (ϕ0

n+1,ϕ
1
n+1) and

finish.

9. If ||(g0
n+1,g

1
n+1)|| > ε compute the new descent direc-

tion

(d0
n+1,d

1
n+1) = −(g0

n+1,g
1
n+1)+

+
||(g0

n+1,g
1
n+1)||

2

||(g0
n,g

1
n)||

2
(d0

n ,d1
n).

10. Make n = n+1 and go to 4.

VI. NUMERICAL EXPERIMENTS

In this section we present some numerical experiments in

which we approximate the control HUM v of (1) by using the

discretization (5). More precisely, the algorithm presented in

the previous section is implemented.

In order to solve the differential equations in t we use a

time discretization: given a time interval [0,T ] we introduce

a uniform mesh {tk = k∆t}k=0,...,M with time-step ∆t and

T = M∆t. A fully-discrete scheme may be obtained by

replacing the time derivative w′′(tk) by the central finite

difference (w(tk+1)−2w(tk)+w(tk−1))/∆t2. It is known that,

if ∆t = h and ε = 0, the exact control is obtained. This very

special situation is due to the exact resolution of the 1-D

wave equation by finite differences with these numerical

parameters. Note that this correspond to (3). However, as

ThA05.3

4471



Fig. 1. Initial data (u0,u1) to be controlled.

we have said before, if ∆t 6= h, (3) no longer provides good

approximations for the control.

In order to obtain good approximations in the case ∆t 6= h

we use (5). In our experiments with (5) we shall chose

ε = h, ∆t = lh, l = 7/8.

Other values of the Courant number l do not alter sig-

nificantly the numerical results. Hence, scheme (5) is more

robust and may be applied successfully to other types of

equations.

Numerical example: We consider the initial data depicted

in Figure 1,

u0(x) =






3 if x ∈ [1/5,2/5]∪ [3/5,4/5]
−3 if x ∈ (2/5,3/5)
0 if x ∈ [0,1/5)∪ (4/5,0]

u1(x) = 0 if x ∈ [0,1].

As it may be immediately seen, u0 belongs to L2(0,1) and

it is discontinuous. Note that both initial data have compact

support.

Since we were not interested in the optimal time, we have

taken T = 4. The exact value of the HUM control, v, is

obtained by considering the algorithm presented in Section

V with ε = 0 (i.e. based on (3)), ∆t = h and the usual central

finite difference scheme in time. In Fig. 2 it is drawn with

solid line. We note that ||v||L2 = 1.1874.

As we have said before, the algorithm based on the finite

difference scheme (3) fails to converge when ∆t/h < 1. On

the contrary, (5) provides satisfactory approximations of the

control. Indeed, four approximations of the control with

different values of h are given in Fig. 2 with dashed line.

These are obtained by considering the algorithm presented

in Section V and based on (5), ∆t = 7/8h and the Newmark

scheme in time with parameters β = 1/2 and γ = 1/4 which

is unconditionally stable (see [13]). However, we note the

slow convergency of the algorithm in this singular case.

TABLE I

NUMERICAL RESULTS OBTAINED WITH ∆t = 7/8h.

h 1/100 1/500 1/1000 1/5000

‖vh‖L2 0.3506 0.7529 0.8999 1.0693
‖vh − v‖L2 0.8817 0.5432 0.4429 0.1580

Fig. 2. Approximations of the control with four different values of
h, h = 1/100,1/500,1/1000,1/5000.
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