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a b s t r a c t

We consider a nonlinear antiplane problem which models the deformation of an elastic
cylindrical body in frictional contact with a rigid foundation. The contact is modelled with
Tresca’s law of dry friction in which the friction bound is slip dependent.

The aim of this article is to study an optimal control problem which consists of leading
the stress tensor as close as possible to a given target, by acting with a control on the
boundary of the body. The existence of at least one optimal control is proved. Next we
introduce a regularized problem, depending on a small parameter ρ, and we study the
convergence of the optimal controls when ρ tends to zero. An optimality condition is
delivered for the regularized problem.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of the present paper is to study an optimal control problem related to a static mechanical model describing
a bilateral frictional contact between a deformable body and a rigid foundation under the small deformation hypothesis. The
envisagedmechanicalmodel is an antiplane one.We recall that the antiplane shear deformation is the expected deformation
of a very long cylinder loaded in the direction of its generators. In such amodel the displacement vectorial field is parallel to
the generators of the cylinder and it is independent of the axial coordinate. An excellent reference on this topic is the review
article [1]. Due to their simplicity in the writing of the equations without loss of physical relevance, antiplane models have
enjoyed special attention in recent years (see, for instance [2–11]). The antiplane models appear in the technical literature
in engineering, describing the functioning of various mechanisms, and in geophysics, focusing on the deformation of the
tectonic plates, in particular on earthquakes.

In this work we consider an antiplane model whose nonlinear feature comes from the frictional contact condition.
Using Tresca’s law of dry friction in which the friction bound prescribed on the contact zone depends on the slip, the
weak formulation of the model consists of an elliptic quasi-variational inequality, (PS1). For details on the model we refer
the interested reader to [11]. The optimal control problem related to the proposed model, denoted by (POC1), consists of
minimizing a quadratic functional which is dependent on the deformation’s norm and is penalized by the control’s norm.
Firstly, the existence of at least one solution of (POC1) is proved. The main difficulties of this minimization problem are
related to the non convex dependence of the functional we want to minimize with respect to its argument. Therefore, the
standard approach based on convexity cannot be used and has to be replaced by an indirect method which takes advantage
of the particular form of our quasi-variational inequality and the compactness of the trace operator. According to our study,
we can act on a part of the boundary in order to minimize the distance between the stress σ and a given target σd.
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Once we have proved the existence of a solution for (POC1), we introduce a regularized variational state problem (PS2),
depending on a parameter ρ, whose solution converges to the solution of the state problem (PS1) when ρ tends to zero. The
optimal control problem corresponding to this regularization, denoted by (POC2), has at least one solution. Related to the
regularized problem, we deliver an optimality condition and we show that any solution of (POC2) is weakly convergent to a
solution of (POC1), as ρ tends to zero. Both the regularization technique and the optimality condition are extremely useful
in the numerical approximation processes. Moreover, the results about (POC2) may help the investigation of the optimal
control for the original (POC1) in the sense of the approximation to the optimal control in the weak topology. To obtain an
optimality condition (a Pontryagin’s maximum principle) for the original problem (POC1) is an open problem.

The optimal control of variational inequalities has a long history, see for instance [12–18]. Moreover, the recent book [19]
is devoted to the optimal control of linear or nonlinear elliptic problems, including variational inequalities. Despite their
mechanical relevance, optimal control problems for contactmodels are not so frequent in the literature. A notable exception
is [20], where a quasistatic frictional bilateral contact problem is considered. Unlike [20], in our problem the friction bound
is slip dependent, a fact that enforces the nonlinear character of the mathematical problem, leading us to a more difficult
mathematical problem even in the case of the simplified antiplane setting, for static processes. More importantly, the
standard convexity arguments used in [20], cannot be applied in our case due to the lack of convexity.

The rest of the paper is structured as follows. Section 2 introduces some notation and useful results. In Section 3 we
describe the mechanical problem, recall its weak solvability and state the optimal control problem (POC1). The main result
of Section 3 is the existence of at least one optimal control. In Section 4 we discuss the regularized problem (POC2) and a
necessary optimality condition is provided for it. In Section 5 we prove two convergence results.

2. Preliminaries

In this section we introduce notations and present some results used throughout the paper. Let (X, (·, ·)X , ‖ · ‖X ) be a
Hilbert space.

Definition 2.1. A map φ : X → R is Gâteaux differentiable at u ∈ X if there exists an element ∇φ(u) ∈ X such that

lim
t→0

φ(u + tv) − φ(u)
t

= (∇φ(u), v)X ∀v ∈ X .

The element ∇φ(u) which satisfies the relation above is called the gradient of φ at u. The function φ : X → R is said to
be Gâteaux differentiable if it is Gâteaux differentiable at every point of X. In this case, the operator ∇φ : X → X that maps
every element u ∈ X into the element ∇φ(u) is called the gradient operator of φ.

Definition 2.2. Let φ : X → (−∞, ∞] and u ∈ X . The subdifferential of φ at u is the set

∂φ(u) = {f ∈ X | φ(v) − φ(u) ≥ (f , v − u)X ∀v ∈ X} .

Denote

D(∂φ) = {u ∈ X | ∂φ(u) ≠ ∅} .

A function φ is said to be subdifferentiable at u ∈ X if u ∈ D(∂φ). A function φ is called subdifferentiable if it is
subdifferentiable at each point u ∈ X .

Lemma 2.3. Let φ : X → (−∞, ∞] be a convex and Gâteaux differentiable functional. Then, φ is subdifferentiable, ∂φ is a
single-valued operator on X and ∂φ(u) = {∇φ(u)} for all u ∈ X .

The proof of Lemma 2.3 is standard and can be found in many books (see, for instance, [11]).
For the convenience of the reader, we recall below a result in the theory of quasi-variational inequalities. Given f ∈ X ,

we consider the problem of finding an element u ∈ X such that
a(u, v − u) + j(u, v) − j(u, u) ≥ (f , v − u)X ∀v ∈ X . (2.1)

Assuming that

a : X × X → R is a bilinear, symmetric form, such that
there existsM > 0 : |a(u, v)| ≤ M‖u‖X‖v‖X ∀u, v ∈ X,

there existsm > 0 : a(v, v) ≥ m‖v‖
2
X ∀v ∈ X,

 (2.2)

and
j : X × X → R is a functional such that
for every η ∈ X, j(η, ·) is convex and lower semi-continuous on X,
there exists α ≥ 0 such that
j(η1, v2) − j(η1, v1) + j(η2, v1) − j(η2, v2)
≤ α‖η1 − η2‖X‖v1 − v2‖X ∀η1, η2, v1, v2 ∈ X,

 (2.3)

the following existence and uniqueness result takes place.
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Theorem 2.4. Assume that (2.2) and (2.3) hold. Moreover, assume that m > α. Then, for each f ∈ X, the quasi-variational
elliptic inequality (2.1) has a unique solution which depends Lipschitz continuously on f .

The proof of this theorem can be found for example in [11].
Finally, we recall a theorem that will be used in Section 4.3.

Theorem 2.5. Let B be a Banach space, X and Y two reflexive Banach spaces. Let also be given two C1 functions

F : B × X → Y , L : B × X → Y .

We suppose that, for all β ∈ B ,

(i) There exists a unique ũ(β) such that F(β, ũ(β)) = 0,
(ii) ∂2F(β, ũ(β)) is an isomorphism from X onto Y .

Then, J(β) = L(β, ũ(β)) is differentiable and, for every ζ ∈ B ,

dJ
dβ

(β)ζ = ∂1L

β, ũ(β)


ζ −


p(β), ∂1F


β, ũ(β)


ζ

Y ′,Y , (2.4)

where p(β) ∈ Y ′ is the adjoint state, unique solution of
∂2F


β, ũ(β)

∗ p(β) = ∂2L

β, ũ(β)


in X ′. (2.5)

For the proof of Theorem 2.5, we refer the reader to [15].

3. A frictional contact problem

In the first part of this section we state the mechanical problem, list the assumptions on the data and recall an existence
and uniqueness result for the weak solution. In a second part we introduce and solve an optimal control problem related to
this mechanical model.

3.1. The model and its weak solvability

Let � ⊂ R2 be an open, bounded, connected set, with Lipschitz continuous boundary Γ partitioned in three measurable
parts Γ1, Γ2, Γ3 such that the Lebesgue measures of Γi are strictly positive, for each i ∈ {1, 2, 3}.

We consider the following mechanical problem: find a displacement field u : �̄ → R such that

div(µ(x)∇u(x)) + f0(x) = 0 in �, (3.6)
u(x) = 0 on Γ1, (3.7)
µ(x)∂νu(x) = f2(x) on Γ2, (3.8)

|µ(x)∂νu(x)| ≤ g(x, |u(x)|),

µ(x)∂νu(x) = −g(x, |u(x)|)
u(x)
|u(x)|

if u(x) ≠ 0 on Γ3. (3.9)

The proposed problem models the antiplane shear deformation of an elastic, isotropic, nonhomogeneous cylindrical
body, in frictional contact on Γ3 with a rigid foundation. Referring the body to a cartesian coordinate system Ox1x2x3 such
that the generators of the cylinder are parallel with the axis Ox3, the domain � ⊂ Ox1x2 denotes the cross section of the
cylinder. The functionµ = µ(x1, x2) : �̄ → R denotes a coefficient of thematerial (one of Lamé’s coefficients), the functions
f0 = f0(x1, x2) : � → R, f2 = f2(x1, x2) : Γ2 → R are related to the density of the body forces and the density of the surface
traction, respectively and g : Γ3 × R+ → R+ is a given function called friction bound. Here ν = (ν1, ν2), νi = νi(x1, x2),
for each i ∈ {1, 2}, represents the outward unit normal vector to the boundary of � and ∂νu = ∇u · ν. The unknown of the
problem is the function u = u(x1, x2) : �̄ → R that represents the third component of the displacement vector u. We recall
that, in the antiplane physical setting, the displacement vectorial field has the particular form u = (0, 0, u(x1, x2)). Once
the displacement field u is determined, we compute the stress tensor σ as follows,

σ =


0 0 µ

∂u
∂x1

0 0 µ
∂u
∂x2

µ
∂u
∂x1

µ
∂u
∂x2

0

 . (3.10)

The structure of the mechanical problem is the following: (3.6) represents the equilibrium equation, (3.7) is the
displacement boundary condition, (3.8) is the traction boundary condition and (3.9) is a frictional contact condition. To
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write (3.9) we used Tresca’s law of dry friction with slip dependent friction bound g . To give an example of such a function
g we consider

g : Γ3 × R+ → R+ g(x, r) = k

1 + δe−r

; k, δ > 0. (3.11)
It is easy to observe that, in this case, the friction bounddecreases from the value k(1+δ) to the value k. The slip dependent

friction law (3.9) with the friction bound given by (3.11) describes the slip weakening phenomenon which appears in the
study of geophysical problems, see for example [3,4,21]. More details concerning the physical significance of the problem
(3.6)–(3.9) can be found in [11].

The weak solvability of this model is based on Theorem 2.4.
Let us assume that

µ ∈ L∞(�), µ(x) ≥ µ∗ > 0 a.e. in �, (3.12)

f0 ∈ L2(�), f2 ∈ L2(Γ2), (3.13)
and

(a) g : Γ3 × R+ → R+;

(b) There exists Lg > 0 : |g(x, r1) − g(x, r2)| ≤ Lg |r1 − r2|
∀r1, r2 ∈ R+, a.e. x ∈ Γ3;

(c) The mapping x → g(x, r)
is Lebesgue measurable on Γ3, ∀r ∈ R+;

(d) The mapping x → g(x, 0) belongs to L2(Γ3).


(3.14)

Furthermore, we consider the Hilbert space
V = {v ∈ H1(�) | γ v = 0 a.e. on Γ1};

γ denotes here the Sobolev trace operator. We endow the space V with the following inner product,

(·, ·)V : V × V → R, (u, v)V =

∫
�

∇u(x) · ∇v(x)dx.

The corresponding normwill be denoted by ‖·‖V . We recall that γ : H1(�) → L2(Γ ) is a linear, continuous and compact
operator. Moreover, there exists c0 > 0 such that

‖γ v‖L2(Γ ) ≤ c0‖v‖V ∀v ∈ V . (3.15)
Finally, we assume

µ∗ > c20Lg . (3.16)
Let us define the operator

A : V → V ; (Au, v)V =

∫
�

µ(x)∇u(x) · ∇v(x)dx ∀u, v ∈ V , (3.17)

and the functional

j : V × V → R; j(u, v) =

∫
Γ3

g(x, |γ u(x)|)|γ v(x)|ds ∀u, v ∈ V . (3.18)

Next, using Riesz’s representation theorem, we define f ∈ V as follows,

(f , v)V =

∫
�

f0(x)v(x)dx +

∫
Γ2

f2(x)γ v(x)dΓ ∀v ∈ V . (3.19)

We are led to the following weak formulation of the problem (3.6)–(3.9): Given f0 ∈ L2(�) and f2 ∈ L2(Γ2), find u ∈ V
such that

(Au, v − u)V + j(u, v) − j(u, u) ≥ (f , v − u)V ∀v ∈ V , (3.20)
where f is given by (3.19).

By the hypothesis (3.12), it is straightforward to verify that
a : V × V → R, a(u, v) = (Au, v)V ,

is a continuous, V -elliptic, symmetric bilinear form. In addition, we note that for every η ∈ V , j(η, ·) : V → R is a convex
and continuous functional. Furthermore, by the definition of the functional j, taking into account (3.14) and (3.15), it can be
proved (see [11]) that for any η1, η2, v1, v2 ∈ V ,

j(η1, v2) − j(η1, v1) + j(η2, v1) − j(η2, v2) ≤ Lgc20‖η1 − η2‖V‖v1 − v2‖V . (3.21)
Thus, all the hypotheses of Theorem 2.4 are fulfilled and the following result takes place.

Theorem 3.6. Assume (3.12), (3.13), (3.14) and (3.16). Then, the problem (3.20) has a unique solution u ∈ V which depends
Lipschitz continuously on f .
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3.2. The optimal control problem

For a fixed function f0 ∈ L2(�), we consider the following state problem.
(PS1) Let f2 ∈ L2(Γ2) (called control) be given. Find u ∈ V such that

(Au, v − u)V + j(u, v) − j(u, u) ≥

∫
�

f0(x)(v(x) − u(x))dx +

∫
Γ2

f2(x)(γ v(x) − γ u(x))dΓ ∀v ∈ V . (3.22)

Using Theorem 3.6, we deduce that, for every control f2 ∈ L2(Γ2), the state problem (PS1) has a unique solution u ∈ V ,
u = u(f2). In addition, taking into account the properties of the operator A and of the functional j, choosing in (3.22) v = 0V ,
we deduce that

‖u‖V ≤
1
µ∗


‖f0‖L2(�) + c0‖f2‖L2(Γ2)


, (3.23)

where µ∗ is the constant in (3.12) and c0 is the constant in (3.15). Now, we would like to act a control on Γ2 such that the
resulting stress σ be as close as possible to a given target

σd =


0 0 µ

∂ud

∂x1
0 0 µ

∂ud

∂x2
µ

∂ud

∂x1
µ

∂ud

∂x2
0


where ud is a given function. Note that, since

‖σ − σd‖L2(�)3×3 =
√
2‖µ∇(u − ud)‖L2(�) ≤

√
2‖µ‖L∞(�)‖u − ud‖V ,

σ and σd will be close to one another if the difference between the functions u and ud is small in the sense of V -norm. To
give an example of a target of interest, ud, we can consider ud = 0. In this situation, by acting a control f2 on Γ2, the tension
σ is small in the sense of L2-norm, even if f0 does not vanish in �.

Let α, β > 0 be two positive constants and let us define the following functional

L : L2(Γ2) × V → R, L(f2, u) =
α

2
‖u − ud‖

2
V +

β

2
‖f2‖2

L2(Γ2)
. (3.24)

Furthermore, we denote

Vad =

[u, f2] | [u, f2] ∈ V × L2(Γ2), such that (3.22) is verified


and we introduce the following optimal control problem,
(POC1) Find [u∗, f ∗

2 ] ∈ Vad such that L(f ∗

2 , u∗) = min[u,f2]∈Vad


L(f2, u)


.

The following result holds.

Theorem 3.7. Assume (3.12)–(3.14) and (3.16). Then, (POC1) has at least one solution (u∗, f ∗

2 ).

Proof. From definition (3.24) of the functional L, we deduce that

inf
[u,f2]∈Vad

{L(f2, u)} ∈ [0, ∞). (3.25)

There exists a minimizing sequence ([un, f n2 ])n ⊂ Vad such that

lim
n→∞

L

f n2 , un

= inf
[u,f2]∈Vad

{L(f2, u)} .

Due to (3.25), the sequences (f n2 )n and (un)n are bounded in L2(Γ2) and V , respectively. Thus, there exists [u∗, f ∗

2 ] ∈

V × L2(Γ2) such that, passing eventually to a subsequence, but keeping the notation to simplify the writing, we have

un ⇀ u∗ in V as n → ∞,

f n2 ⇀ f ∗

2 in L2(Γ2) as n → ∞.
(3.26)

In fact, it can be proved that

un
→ u∗ in V as n → ∞. (3.27)

Indeed, from the V -ellipticity of the bilinear form a,

µ∗
‖un

− u∗
‖
2
V ≤


Aun, un

− u∗

V +


Au∗, u∗

− un
V . (3.28)
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On the other hand, due to (3.22), we can write
Aun, u∗

− un
V + j


un, u∗


− j


un, un

≥

f0, u∗

− un
L2(�)

+

f n2 , γ u∗

− γ un
L2(Γ2)

. (3.29)

Next, taking into account the definition of the functional j, the hypotheses (3.14) and the compactness of the trace
operator γ , we deduce that

lim
n→∞


j

un, u∗


− j


un, un

= 0.

Moreover, since (f n2 )n is bounded in L2(Γ2) and γ is a compact operator, we obtain

lim
n→∞


f n2 , γ u∗

− γ un
L2(Γ2)

= 0.

Consequently, from (3.29) we deduce that

lim sup
n→∞


Aun, un

− u∗

V ≤ 0.

Using now (3.28), we obtain (3.27).
Since for every n ∈ N∗, [un, f n2 ] ∈ Vad, we pass to the limit as n → ∞ in (3.22) and we deduce that [u∗, f ∗

2 ] ∈ Vad and it
is a solution of (POC1). �

A solution of (POC1) will be called an optimal pair. The second component of the optimal pair is called an optimal control.

Remark 3.8. Any optimal control f ∗

2 minimizes the functional

J : L2(Γ2) → R, J(f2) =
α

2
‖u(f2) − ud‖

2
V +

β

2
‖f2‖2

L2(Γ2)
(3.30)

where u = u(f2) is the solution of (3.22).
Generally, the functional J defined by (3.30) is not convex. This is the reason why we cannot use a convexity argument

in the proof of Theorem 3.7 and we have introduced the functional L where the control and the state can be viewed as
independent variables. It is only in the set Vad where these two quantities are related.

Remark 3.9. Let f ∗

2 be a minimizer of J and suppose that

there exists f2d ∈ L2(Γ2) such that ud = u(f2d). (3.31)

We have that
α

2
‖u(f ∗

2 ) − ud‖
2
V +

β

2
‖f ∗

2 ‖
2
L2(Γ2)

≤ J(f2d) =
β

2
‖f2d‖2

L2(Γ2)

and consequently

‖u(f ∗

2 ) − ud‖
2
V ≤

β

α


‖f2d‖2

L2(Γ2)
− ‖f ∗

2 ‖
2
L2(Γ2)


.

Thus, by taking β arbitrarily small, we deduce that wemay lead the displacement u as close as wewant to the prescribed
valued ud = u(f2d). The same conclusion would hold without condition (3.31) if the set {u(f2) : f2 ∈ L2(Γ2)} would be dense
in V . To our knowledge, this property is an open problem. For a similar density argument see [22].

Remark 3.10. Due to the lack of convexity of Vad and J , the uniqueness of the optimal control is not ensured. Nevertheless,
it is easy to see that if an optimal pair [u∗, f ∗

2 ] ∈ Vad also minimizes the functional L in L2(Γ2) × V , then the uniqueness of
the solution of (POC1) does hold. Indeed, this is a consequence of the strict convexity of L in L2(Γ2) × V . Note that, in this
very particular case, [u∗, f ∗

2 ] = [ud, 0].

4. A regularized problem

In this section we introduce a regularized variational problem by replacing the functional j, given by (3.18), with a more
regular one. As in the previous section, we investigate first the solvability of the regularized problem and we introduce an
optimal control problem for it. In addition, in this section we obtain a necessary optimality condition.

4.1. A regularized state problem

Let ρ > 0. We define a functional jρ : V × V → R as follows,

jρ(u, v) =

∫
Γ3

g

x,


(γ u(x))2 + ρ2 − ρ

 
(γ v(x))2 + ρ2 − ρ


dΓ ∀u, v ∈ V . (4.32)
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Taking into account (3.14), we deduce for the functional jρ the following properties:

jρ(u, ·) ≥ 0 ∀u ∈ V ; jρ(u, 0V ) = 0 ∀u ∈ V ;

jρ(η1, v2) − jρ(η1, v1) + jρ(η2, v1) − jρ(η2, v2) ≤ Lgc20‖η1 − η2‖V‖v1 − v2‖V ∀η1, η2, v1, v2 ∈ V . (4.33)

In addition, in the second argument, the functional jρ is convex, lower semi-continuous and Gâteaux differentiable. More
precisely, for every (u, v) ∈ V × V ,

lim
h→0

jρ(u, v + hw) − jρ(u, v)

h
=


∇2jρ(u, v), w


V ∀w ∈ V ,

where 
∇2jρ(u, v), w


V =

∫
Γ3

g

x,


(γ u(x))2 + ρ2 − ρ

 γ v(x)γw(x)
(γ v(x))2 + ρ2

dΓ ∀w ∈ V . (4.34)

Replacing in the problem (3.20) the functional j with the functional jρ , we state the following problem: Given ρ > 0,
f0 ∈ L2(�) and f2 ∈ L2(Γ2), find the displacement field uρ

∈ V such that

(Auρ, v − uρ)V + jρ (uρ, v) − jρ (uρ, uρ) ≥

∫
�

f0(x) (v(x) − uρ(x)) dx

+

∫
Γ2

f2(x) (γ v(x) − γ uρ(x)) dΓ ∀v ∈ V .

(4.35)

Theorem 4.11. Assume (3.12)–(3.14) and (3.16). Then, problem (4.35) has a unique solution uρ
∈ V which depends Lipschitz

continuously on f .

The proof of this theorem follows again from Theorem 2.4. To simplify the writing, in the remaining parts of this section
we shall denote the solution uρ of (4.35) by u, dropping out the index ρ.

4.2. The regularized optimal control problem

Let us fix ρ > 0 and f0 ∈ L2(�). We introduce the following regularized problem
(PS2) Let f2 ∈ L2(Γ2) (called control). Find u ∈ V such that

(Au, v − u)V + jρ(u, v) − jρ(u, u) ≥ (f0, v − u)L2(�) + (f2, γ v − γ u)L2(Γ2)
∀v ∈ V . (4.36)

By Theorem 4.11, for every f2 ∈ L2(Γ2), the problem (PS2) has a unique solution u ∈ V , u = u(f2). In addition, by similar
arguments with those used in order to get (3.23), we deduce

‖u‖V ≤
1
µ∗


‖f0‖L2(�) + c0‖f2‖L2(Γ2)


. (4.37)

Remark 4.12. By Riesz’s representation theorem, there exists an unique z ∈ V such that

(z, v)V =

∫
�

f0(x)v(x)dx ∀v ∈ V . (4.38)

Furthermore, there exists an unique y(f2) ∈ V such that

(y(f2), v)V =

∫
Γ2

f2(x)γ v(x)dΓ ∀v ∈ V . (4.39)

Let u ∈ V be the unique solution of (PS2). Denoting

∂2jρ(u, u) =

ζ ∈ V | jρ(u, v) − jρ(u, u) ≥ (ζ , v − u)V ∀v ∈ V


,

the inequality (4.36) is equivalent with the following inclusion

z + y(f2) − Au ∈ ∂2jρ(u, u).

Since, in the second argument, jρ is convex and Gâteaux differentiable, see Lemma 2.3 in Section 2, we have

∂2jρ(u, u) =

∇2jρ(u, u)


.

Thus, (4.36) is equivalent with the nonlinear equation

Au + ∇2jρ(u, u) = z + y(f2). (4.40)
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Let us define the following admissible set,

V
ρ

ad =

[u, f2] | [u, f2] ∈ V × L2(Γ2), such that (4.36) is verified


.

Using the functional L, given by (3.24), we introduce an optimal control problem as follows.
(POC2) Find [ū, f̄2] ∈ V

ρ

ad such that L(f̄2, ū) = min
[u,f2]∈V

ρ
ad


L(f2, u)


.

With arguments similar to those used in Theorem 3.7, the following result can be proved.

Theorem 4.13. Assume (3.12)–(3.14) and (3.16). Then, (POC2) has at least one solution (ū, f̄2).

A solution of (POC2) is called a regularized optimal pair and the second component f̄2 is called a regularized optimal control.
Like for (POC1), we have that f̄2 is a minimizer of the functional

J : L2(Γ2) → R, J(f2) =
α

2
‖u(f2) − ud‖

2
V +

β

2
‖f2‖2

L2(Γ2)
(4.41)

where u = u(f2) is the solution of the state problem (PS2). Again, the functional J is not convex in general.

4.3. Optimality condition

In this last part of Section 3 we obtain an optimality condition for the problem (POC2), replacing the hypotheses (b) and
(d) in (3.14), with the following stronger ones,

g(x, ·) ∈ C1 a.e. x ∈ Γ3,
there exists Lg > 0 : |∂2g(x, r)| ≤ Lg∀r ∈ R+, a.e x ∈ Γ3,
there existsM > 0 : |g(x, r)| ≤ M∀r ∈ R+, a.e. x ∈ Γ3.

 (4.42)

Here and below, by ∂i, i ∈ {1, 2}, we denote a partial derivative.
Note that the function g in the example (3.11) verifies (4.42) and, in addition, ∂2g(x, r) < 0, for all x ∈ Γ3 and r ∈ R+.
We have the following result.

Theorem 4.14 (Optimality Condition). Any optimal control f̄2 of the state problem (PS2) verifies

f̄2 = −
1
β

γ

p(f̄2)


, (4.43)

where p(f̄2) is the unique solution of the variational equation

α (ū − ud, w)V =

p(f̄2), Aw + D2

2jρ(ū, ū)w

V ∀w ∈ V , (4.44)

and, for all v ∈ V ,
D2
2jρ(ū, ū)w, v


V =

∫
Γ3

∂2g

x,


(γ ū(x))2 + ρ2 − ρ

 (γ ū(x))2

(γ ū(x))2 + ρ2
γw(x)γ v(x)dΓ

+

∫
Γ3

g(x,


(γ ū(x))2 + ρ2 − ρ)
ρ2

(γ ū(x))2 + ρ2
3/2 γw(x)γ v(x)dΓ ,

ū = u(f̄2) being the solution of (PS2) with f2 = f̄2.

Proof. In order to obtain an optimality condition we will apply Theorem 2.5.
Using the definition of the functional (3.24), for every (u, f2) ∈ V × L2(Γ2), we get

∂1L(f2, u) : L2(Γ2) → R; ∂1L(f2, u)ζ = β(f2, ζ )L2(Γ2)
∀ζ ∈ L2(Γ2),

and

∂2L(f2, u) : V → R; ∂2L(f2, u)v = α (u − ud, v)V ∀v ∈ V .

Now, let us define F : L2(Γ2) × V → V ,

F(f2, u) = Au + ∇2jρ(u, u) − z − y(f2), ∀f2 ∈ L2(Γ2), u ∈ V , (4.45)

where z is given by (4.38) and y(f2) by (4.39).
We shall apply Theorem 2.5 with F given by (4.45) and J from (4.41).
For every (u, f2) ∈ V × L2(Γ2), we have

∂1F(f2, u) : L2(Γ2) → V ; ∂1F(f2, u)ζ = −y(ζ ) ∀ζ ∈ L2(Γ2),
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and

∂2F(f2, u) : V → V ; ∂2F(f2, u)q = Aq + D2
2jρ(u, u)q ∀q ∈ V ,

where, for all w ∈ V ,
D2
2jρ(u, u)q, w


V =

∫
Γ3

∂2g

x,


(γ u(x))2 + ρ2 − ρ

 (γ u(x))2

(γ u(x))2 + ρ2
γ q(x)γw(x)dΓ

+

∫
Γ3

g

x,


(γ u(x))2 + ρ2 − ρ

 ρ2
(γ u(x))2 + ρ2

3/2 γ q(x)γw(x)dΓ .

Let f2 ∈ L2(Γ2) and u(f2) ∈ V be the corresponding solution of the regularized state problem (PS2). Then, ∂2F(f2, u(f2)) :

V → V is an isomorphism.
Indeed, ∂2F(f2, u(f2)) : V → V is an isomorphism from V to V if and only if for every h ∈ V , there exists an unique

element v∗
∈ V such that

Av∗, w

V +


D2
2jρ (u(f2), u(f2)) v∗, w


V = (h, w)V . (4.46)

Let us denote by af2,u(f2) the following bilinear functional

af2,u(f2) : V × V → R; af2,u(f2)(v, w) = (Av, w)V +

D2
2jρ (u(f2), u(f2)) v, w


V .

Taking into account the properties of the operator A and the functional jρ , together with the hypotheses (3.16) and (4.42),
we deduce that the bilinear form af2,u(f2)(·, ·) is continuous and V -elliptic. Thus, the existence of a unique element v∗

∈ V
such that (4.46) holds is obtained from Lax–Milgram’s lemma.

We note that the adjoint of the operator ∂2F(f2, u(f2)) is also an isomorphism. Let us denote by p(f2) ∈ V the unique
solution of the equation

[∂2F (f2, u(f2))]∗ p(f2) = ∂2L (f2, u(f2)) .

Since

∂2L (f2, u(f2)) w =

[∂2F (f2, u(f2), )]∗ p(f2), w


V = (p(f2), ∂2F (f2, u(f2)) w)V ,

p(f2) ∈ V is in fact the unique solution of the following variational equation,

α (u(f2) − ud, w)V =

p(f2), Aw + D2

2jρ (u(f2), u(f2)) w

V . (4.47)

Now, from Theorem 2.5, we deduce that for all q ∈ L2(Γ2),

dJ
df2

(f2)q = ∂1L (f2, u(f2)) q − (p(f2), ∂1F (f2, u(f2)) q)V

= β(f2, q)L2(Γ2)
+ (p(f2), y(q))V ,

where y(q) is defined by (4.39). Since f̄2 is a minimizer of J , we obtain that

dJ
df2

(f̄2)q = 0

and thus, we get the following optimality condition

β

f̄2, q


L2(Γ2)

+

p(f̄2), y(q)


V = 0 ∀q ∈ L2(Γ2), (4.48)

where p(f̄2) is the unique solution of (4.47) with f2 = f̄2.
By taking into account (4.39), relation (4.48) is equivalent to (4.43) that concludes the proof. �

Remark 4.15. The replacement of the functional j from (PS1) by the Gâteaux differentiable function jρ in (PS2) has enabled
us to deduce the optimality condition (4.43)–(4.44). How to deduce an optimality condition for (PS1) is an open question.

5. Convergence results

Our investigation in this section is made under the hypotheses (3.12), (3.13), (a) and (c) of (3.14), (3.16) and (4.42). In
the first part of this section, we prove that the unique solution of the problem (4.36) converges to the unique solution of the
problem (3.22). More precisely, the following theorem takes place.
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Theorem 5.16. Let ρ > 0, f0 ∈ L2(�) and f2 ∈ L2(Γ2) be given. If uρ , u ∈ V are the solutions of problems (PS2) and (PS1),
respectively, then,

uρ
→ u in V as ρ → 0. (5.49)

Proof. Let us take v = uρ in (3.22) and v = u in (4.36). By adding, we get

(Au − Auρ, u − uρ)V ≤ j (u, uρ) − j(u, u) + jρ (uρ, u) − jρ (uρ, uρ)

≤ j (u, uρ) − j(u, u) + j (uρ, u) − j (uρ, uρ)

+

jρ (uρ, u) − j (uρ, u)


−


jρ (uρ, uρ) − j (uρ, uρ)


≤ Lgc20‖u − uρ

‖
2
V + |jρ (uρ, u) − j (uρ, u) | + |jρ (uρ, uρ) − j (uρ, uρ) |.

Thus, by the properties of the operator Awe have,
µ∗

− Lgc20

‖uρ

− u‖2
V ≤ |jρ (uρ, u) − j (uρ, u) | + |jρ (uρ, uρ) − j (uρ, uρ) |.

Taking into account the definitions of the functionals j and jρ , we obtain

|jρ (uρ, u) − j (uρ, u) | → 0 as ρ → 0.

Using in addition (4.37), we get

|jρ (uρ, uρ) − j (uρ, uρ) | → 0 as ρ → 0.

By (3.16) we deduce now (5.49). �

Next, we prove a convergence result involving the solutions of the problems (POC2) and (POC1).

Theorem 5.17. Let [ūρ, f̄2
ρ
] be a solution of the problem (POC2). Then, there exists a solution of the problem (POC1), [u∗, f ∗

2 ],
such that

ūρ
→ u∗ in V as ρ → 0,

f̄2
ρ

⇀ f ∗

2 in L2(Γ2) as ρ → 0.
(5.50)

Proof. Let uρ

0 be the unique solution of the problem (PS2) with f2 = 0L2(Γ2)
.

L

0L2(Γ2)

, uρ

0


=

α

2
‖uρ

0 − ud‖
2
V ≤ α


‖uρ

0‖
2
V + ‖ud‖

2
V


.

Since

‖uρ

0‖V ≤
1
µ∗

‖f0‖L2(�)

then, there exists c∗ > 0 such that

L

f̄2

ρ
, ūρ


≤ L


0L2(Γ2)

, uρ

0


≤ c∗


‖f0‖2

L2(�)
+ ‖ud‖

2
V


.

Thus, we deduce that (ūρ, f̄2
ρ
)ρ is a bounded sequence in V × L2(Γ2). Consequently, there exists [u∗, f ∗

2 ] ∈ V × L2(Γ2)
such that

ūρ ⇀ u∗ in V as ρ → 0

and

f̄2 ⇀ f ∗

2 in L2(Γ2) as ρ → 0.

In fact,

ūρ
→ u∗ in V as ρ → 0. (5.51)

Indeed, since the operator A is strongly monotone, by (4.35), we have

µ∗
‖ūρ

− u∗
‖
2
V ≤


Au∗, u∗

− ūρ

V +


Aūρ, ūρ

− u∗

V

≤

Au∗, u∗

− ūρ

V + jρ


ūρ, u∗


− jρ (ūρ, ūρ) +


f0, u∗

− ūρ

L2(�)

+

f̄ ρ

2 , γ u∗
− γ ūρ


L2(Γ2)

. (5.52)
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Using the compactness of the trace operator and the estimate

|jρ

ūρ, u∗


− jρ (ūρ, ūρ) | ≤ M

∫
Γ3

|γ ūρ(x) − γ u∗(x)|dΓ ,

we deduce that

lim
ρ→0


jρ


ūρ, u∗


− jρ (ūρ, ūρ) +


f0, u∗

− ūρ

L2(�)

+

f̄ ρ

2 , γ u∗
− γ ūρ


L2(Γ2)


= 0.

Combining this last relation with (5.52) and passing to the limit as ρ → 0, we get (5.51). Moreover, it can be proved that
u∗, f ∗

2


∈ Vad. (5.53)

Indeed, since ūρ
→ u∗ in V as ρ → 0 and f̄2

ρ
⇀ f ∗

2 in L2(Γ2) as ρ → 0 we have, for every v ∈ V ,

(Aūρ, v − ūρ)V →

Au∗, v − u∗


V as ρ → 0, (5.54)

f̄ ρ

2 , γ v − γ ūρ

L2(Γ2)

→

f ∗, γ v − γ u∗


L2(Γ2)

as ρ → 0, (5.55)

(f0, v − ūρ)L2(�) →

f0, v − u∗


L2(�)

as ρ → 0. (5.56)

Taking into account the definitions of jρ and j, it follows that, for every v ∈ V ,

jρ (ūρ, v) − jρ (ūρ, ūρ) → j

u∗, v


− j


u∗, u∗


as ρ → 0. (5.57)

Therefore, we deduce that (u∗, f ∗

2 ) verifies (3.22). Thus, (5.53) holds.
Let (ū, f̄2) be a solution of (POC1) and let us consider the sequence (uρ)ρ such that, for each ρ > 0, uρ is the unique

solution of the problem (PS2) with the data f0 ∈ L2(�) and f̄2 ∈ L2(Γ2). Obviously, for every ρ > 0, (uρ, f̄2) ∈ V
ρ

ad. Using
Theorem 5.16 we deduce that

uρ, f̄2


→

ū, f̄2


in V × L2(Γ2) as ρ → 0. (5.58)

Since the functional L is convex and continuous, we have

L

f ∗

2 , u∗


≤ lim inf
ρ→0

L

f̄ ρ

2 , ūρ

. (5.59)

Moreover, since [ūρ, f̄2
ρ
] is a solution of (POC2) we can write

lim sup
ρ→0

L

f̄ ρ

2 , ūρ


≤ lim sup
ρ→0

L

f̄2, uρ


. (5.60)

Taking into account (5.58) we have

lim sup
ρ→0

L

f̄2, uρ


= L


f̄2, ū


(5.61)

and, due to the fact that [ū, f̄2] is a solution of (POC1),

L

f̄2, ū


≤ L


f ∗

2 , u∗

. (5.62)

Thus, from (5.59)–(5.62), we deduce that

L

f̄2, ū


= L


f ∗

2 , u∗


and the proof ends. �

Remark 5.18. Theorem 5.17 shows that the regularized problem (POC2), for which we dispose of the optimality condition
(4.43)–(4.44), may be used to approximate a solution of (POC1).
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