
ON THE CONTROLLABILITY OF THE LINEARIZED
BENJAMIN–BONA–MAHONY EQUATION∗

SORIN MICU†

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 39, No. 6, pp. 1677–1696

Abstract. We study the boundary controllability properties of the linearized Benjamin–Bona–
Mahony equation {

ut − uxxt + ux = 0, x ∈ (0, 1), t > 0,
u(t, 0) = 0, u(1, t) = f(t), t > 0.

We show that the equation is approximately controllable but not spectrally controllable (no
finite linear combination of eigenfunctions, other than zero, is controllable). Next, we prove a finite
controllability result and we estimate the norms of the controls needed in this case.
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1. Introduction. The Benjamin–Bona–Mahony (BBM) equation

ut + ux + uux − uxxt = 0,(1.1)

like the Korteweg-de Vries (KdV) equation

ut + ux + uux + uxxx = 0,(1.2)

was originally derived as approximation for surface water waves in a uniform channel
(see, for instance, [3], [4], and [5]).

Both (1.1) and (1.2) also cover cases of the following type: surface waves of long
wavelength in liquids, acoustic-gravity waves in compressible fluids, hydromagnetic
waves in cold plasma, acoustic waves in anharmonic crystals, etc. The wide applica-
bility of these equations is the main reason why, during the last decades, they have
attracted so much attention from mathematicians.

The main mathematical difference between KdV and BBM models can be most
readily appreciated by comparing the dispersion relation for the respective linearized
equations. It can be easily seen that these relations are comparable only for small
wave numbers (i.e., long waves) and they generate drastically different responses to
short waves (which are irrelevant to its role as a physical model). This is one of the
reasons why, whereas existence and regularity theory for the KdV equation is difficult,
the theory of the BBM equation is comparatively simple. The computing is also much
easier for (1.1) than for (1.2).

The existence, uniqueness, and regularity of the BBM equation have been studied,
for instance, in [7] and [18]. The large time behavior of the solutions of (1.1) was also
intensively analyzed in the last decade (see, for instance, [1], [2], and [3]).

∗Received by the editors October 20, 1999; accepted for publication November 6, 2000; published
electronically February 28, 2001. This research was partially supported by grant PB96-0663 of DGES
(Spain) and by grant 303/1999 of CNCSU (Romania).

http://www.siam.org/journals/sicon/39-6/36249.html
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Although it is generally considered that the BBM equation is easier to deal with
than the KdV equation, it seems that, from the controllability point of view, (1.2)
offers greater possibilities than (1.1). While important progress has been made in
the last years for the KdV (see, for instance, [20], [24], and [21]), very little is known
about the BBM. Some interior unique continuation properties for (1.1) and related
problems (the linear case included) were studied in [9]. It is well known that, for
the linear equation, by using the Hilbert uniqueness method due to J.-L. Lions (see
[15]), the unique continuation property implies approximate controllability. Therefore,
from [9], some approximate interior controllability results can be obtained for the
linearized BBM equation. Nevertheless, the approximate controllability results for the
nonlinear case do not seen to be entirely reducible to a unique continuation property
and some estimates are needed on the dependence of the control function with respect
to the perturbation introduced by the nonlinear term. In [23], (1.1) posed in R+ with
boundary control is studied. It is proved that approximate controllability holds for
the corresponding linear equation.

As far as we know there are no results for the controllability of the nonlinear
BBM equation.

The present paper is concerned with the boundary controllability properties of
the linearized BBM equation in finite domain. More precisely, given T > 0 and
u0 ∈ H−1(0, 1) can we find a control function f ∈ L2(0, T ) such that the solution u
of ⎧⎨

⎩
ut − uxxt + ux = 0, t > 0, x ∈ (0, 1),
u(t, 0) = 0, u(t, 1) = f(t), t > 0,
u(0, x) = u0(x), x ∈ (0, 1),

(1.3)

satisfies

u(T, x) = 0, x ∈ (0, 1)?(1.4)

We shall first show that (1.3) is not spectrally controllable. This means that no
finite linear nontrivial combination of eigenvectors can be driven to zero in finite time
by using a control f ∈ L2(0, T ).

Nevertheless, (1.3) is approximately controllable, i.e., the set of reachable states

R(T, u0) = {u(T, x) | f ∈ L2(0, T )}

is dense in L2(0, 1) for any u0 ∈ H−1(0, 1) and T > 0. Hence, given T > 0, u0 ∈
H−1(0, 1), v0 ∈ H−1(0, 1), and ε > 0, there exists a control function f ∈ L2(0, T )
such that the solution u of (1.3) satisfies ||u(T ) − v0||L2(0,1) < ε.

These two results can be found at the beginning of the last section (Theorems 4.2
and 4.3).

We refer to [19] for similar negative results in the context of the exact controlla-
bility of the linear heat equation in a half-line.

Another interesting problem, with practical relevance, is the following finite con-
trollability property: given T > 0, N > 0, and u0 ∈ H−1(0, 1), is there a control
fN ∈ L2(0, T ) such that the projection of the solution of (1.3) over the finite dimen-
sional space generated by the first 2N eigenvectors is equal to zero at t = T?

We give a positive answer to this question in Theorem 4.6. Moreover, by using
some estimates for the corresponding biorthogonal sequences, we analyze how the
norms of the controls change with N . We find an upper bound for the norms of the
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controls and we prove that this is, in some sense, sharp. More precisely, we prove that
for any initial data u0 ∈ H−1(0, 1) there exists a control fN such that

‖ fN ‖L2(0,T )≤ c1e
γ1N ln(N) ‖ u0 ‖H−1(0,1),(1.5)

where c1 and γ1 do not depend on N . Moreover, there are initial data u0 ∈ H1
0 (0, 1)

for which any corresponding control fN satisfies

c2e
γ2N ln(N) ‖ u0 ‖H1

0 (0,1)≤‖ fN ‖L2(0,T ),(1.6)

where c2 and γ2 do not depend on N .
We remark that the norms of the controls fN may increase very rapidly as N

goes to infinity. Hence, the cost needed to drive to zero the first 2N eigenmodes can
be very high when N is large.

The controllability of the KdV equation has been studied in [20], [21], and [24]. It
has been proved that exact controllability holds for the linearized equation with dif-
ferent boundary conditions and number of controls. Hence, a Sobolev space of initial
data can be controlled from the boundary. This implies that the linearized KdV equa-
tion is not only spectrally controllable but also N-partially controllable with uniformly
bounded controls. Therefore the boundary controllability properties of the linearized
KdV are much “nicer” than the corresponding ones for the linearized BBM (which is
not spectrally controllable and not uniformly N-partially controllable). We also re-
mark that, based on the linear case, local or global controllability results (depending
on the number of controls) can be obtained for the nonlinear KdV equation.

The paper is organized in the following way. In the second section we study the
differential operator A corresponding to (1.3). We prove that A has a sequence of
purely imaginary eigenvalues (iλn)n∈Z∗ such that lim|n|→∞ λn = 0.

In the third section we analyze the biorthogonal sequences to the exponentials
family {eiλnt}n∈Z∗ or to a subset of it. First, we prove that there is no full biorthogonal
sequence. Next we concentrate our attention on the finite families {eiλnt}|n|≤N

n�=0

. In

this case various biorthogonal sequences can be constructed. We give an example and
we analyze the behavior of the norms of the biorthogonals as N goes to infinity. The
techniques used in this section combine classical elements from the theory of analytic
functions with constructions specific to our problem.

Finally, in the last section, we use the previous results to solve the controllability
problems mentioned above.

2. Linearized BBM equation: Elementary properties. Let us consider the
following equation ⎧⎨

⎩
ut − uxxt + ux = 0, x ∈ (0, 1), t > 0,
u(t, 0) = u(t, 1) = 0, t > 0,
u(0, x) = u0(x), x ∈ (0, 1),

(2.1)

representing the linearized BBM equation.
In order to put (2.1) in an abstract Cauchy form, we apply the operator (I−∂2

x)−1.
The following equivalent equation is obtained:{

ut +Au = 0, x ∈ (0, 1), t > 0,
u(0) = u0, x ∈ (0, 1),

(2.2)

where A : H1
0 (0, 1) → H1

0 (0, 1) is given by

Au = (I − ∂2
x)−1∂xu.(2.3)



1680 SORIN MICU

Here ∂2
x denote the Laplace operator

∂2
x : H2(0, 1) ∩H1

0 (0, 1) → L2(0, 1), ∂2
xu = uxx.

The main properties of the operator A are given in the following proposition.
Proposition 2.1. A is a compact, skew-adjoint operator in H1

0 (0, 1).
Proof. Due to the regularizing effect of the operator (I − ∂2

x)−1 it follows imme-
diately that A takes values in H2(0, 1) ∩ H1

0 (0, 1) which is compactly embedded in
H1

0 (0, 1). Hence A is compact.
Let us consider in H1

0 (0, 1) the inner product given by

(u, v) =

∫ 1

0

∂xu∂xv +

∫ 1

0

uv.(2.4)

For any u, v ∈ H2(0, 1) ∩H1
0 (0, 1), we obtain

(Au, v) =
((I − ∂2

x

)−1
∂xu, v

)
=

∫ 1

0

∂x

[(I − ∂2
x

)−1
∂xu
]
∂xv+

∫ 1

0

[(I − ∂2
x

)−1
∂xu
]
v

=

∫ 1

0

(I − ∂2
x

)−1 (
∂2
xu
)
∂xv −

∫ 1

0

[(I − ∂2
x

)−1
u
]
∂xv = −

∫ 1

0

u(∂xv)

=

∫ 1

0

(∂xu)v = −
∫ 1

0

∂xu
(I − ∂2

x

)−1 (
∂2
xv
)

+

∫ 1

0

∂xu
[(I − ∂2

x

)−1
v
]

= −
∫ 1

0

∂xu∂x

[(I − ∂2
x

)−1
∂xv
]
−
∫ 1

0

u
[(I − ∂2

x

)−1
∂xv
]

= −
(
u,
(I − ∂2

x

)−1
∂xv
)

= −(u,Av).

By density we obtain that (Au, v) = −(u,Av) ∀u, v ∈ H1
0 (0, 1) and therefore A

is skew-adjoint in H1
0 (0, 1).

Since A is compact, (2.2) can be treated like an ordinary differential equation in
the Hilbert space H1

0 (0, 1). By using Cauchy–Lipschitz–Picard theorem the following
properties concerning the solutions of (2.2) are immediate.

Proposition 2.2. Equation (2.2) has a unique solution u ∈ C1
(
[0,∞); H1

0 (0, 1)
)

which satisfies∫ 1

0

| ∂xu(x, t) |2 +

∫ 1

0

| u(x, t) |2=
∫ 1

0

| ∂xu0 |2 +

∫ 1

0

| u0 |2 .(2.5)

Proof. Since A is a bounded linear operator the existence and uniqueness of
solutions follow from Cauchy–Lipschitz–Picard theorem (see [8, p. 104]).

On the other hand, since A is skew-adjoint, we have

1

2

d

dt
‖ u ‖2

H1
0
= Re(u, ut) = Re(u,−Au) = 0.

Hence, the H1
0 norm of the solution is conserved.
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Remark 2.1. In fact much more can be said about the regularity of solutions
of (2.2). Since (2.2) is linear and A is a bounded operator we can easily deduce that
u ∈ Cω

(
[0,∞); H1

0 (0, 1)
)
, where Cω

(
[0,∞); H1

0 (0, 1)
)

represents the class of analytic
functions defined in [0,∞) with values in H1

0 (0, 1). Indeed, for t0 ∈ [0,∞),∣∣∣∣∣
∣∣∣∣∣
∞∑

n=0

u(n)(t0)
(t− t0)

n

n!

∣∣∣∣∣
∣∣∣∣∣
H1

0

≤
∞∑

n=0

|t− t0|n
n!

∣∣∣∣∣∣u(n)(t0)
∣∣∣∣∣∣
H1

0

≤
∞∑

n=0

|t− t0|n
n!

||A||n ||u(t0)||H1
0
<∞.

Hence the series
∑∞

n=0 u
(n)(t0)

(t−t0)
n

n! is (absolutely) convergent and

u(t) = exp (−A(t− t0))u(t0) =

∞∑
n=0

(−1)n
(t− t0)

n

n!
Anu(t0) =

∞∑
n=0

(t− t0)
n

n!
u(n)(t0).

Our next objective is to express the solution u of (2.2) in Fourier series. To do so
we need the spectral decomposition of the operator A.

Proposition 2.3. A has a sequence of purely imaginary eigenvalues (µn)n∈Z∗ ,

µn = sgn(n)
i

2
√

1 + n2π2
, n ∈ Z

∗.(2.6)

Moreover, to each eigenvalue µn corresponds an unique eigenfunction Un,

Un(x) =
1√

n2π2 + 1
e−i sgn(n)

√
n2π2+1x sin(nπx), n ∈ Z

∗,(2.7)

such that ‖ Un ‖H1
0
= 1. The family (Un)n∈Z∗ forms an orthonormal basis in H1

0 (0, 1).

Proof. We are looking for µ ∈ C and τ ∈ H1
0 (0, 1) such that Aτ = µτ , which is

equivalent to {
µτ − µτxx − τx = 0,
τ(0) = τ(1) = 0.

(2.8)

Hence, τ(x) = c1e
x

−1−
√

1+4µ2

2µ + c2e
x

−1+
√

1+4µ2

2µ .
From the boundary conditions we obtain, from one hand, that c1 = −c2 and from

the other hand, that the eigenvalues of the operator are given by the equation

e

√
1+4µ2

µ = 1.(2.9)

It results that the eigenvalues of the operator A are

µn = sgn(n)
i

2
√

1 + n2π2
, n ∈ Z

∗.

To each µn corresponds an eigenfunction

Un(x) =
1√

n2π2 + 1
e−i sgn(n)

√
1+n2π2x sin(nπx)
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with ||Un||H1
0

= 1.

Remark 2.2. Let us remark that, for each n ∈ Z
∗,

(Un)x(1) =
(−1)nnπ√
n2π2 + 1

e−i sgn(n)
√

1+n2π2 	= 0

and |(Un)x(1)| ∼ 1 as |n| → ∞.

Remark 2.3. We have obtained that lim|n|→∞ λn = 0. This is due to the
compactness of the operator A and will have some very important consequences for
the controllability properties of the BBM equation.

If we consider an initial data, u0 ∈ H1
0 (0, 1), u0 =

∑
n∈Z∗ anUn, the solution of

(2.2) corresponding to this initial data can be written as

u =
∑
n∈Z∗

anUne
iλnt,

where λn =
sgn(n)

2
√

1+n2π2
and µn = iλn are the eigenvalues of the operator A found in

Proposition 2.3.

3. Biorthogonal sequences. Let λni, n ∈ Z
∗, be the eigenvalues of the opera-

torA. In this section we study the sequences biorthogonal to the family of exponentials
{eiλnt}n∈Z∗ or to some subset of it. All the results of this section will be used to study
the boundary controllability properties of the BBM equation in the last section.

Let us first recall the following definition.

Definition 3.1. Let (fn)n≥1 be a sequence of vectors from a Hilbert space H.
The sequence (gn)n≥1 ⊂ H is biorthogonal to (fn)n≥1 if and only if (fn, gm) = δnm
∀n,m ≥ 1.

We begin with the following negative result.

Theorem 3.2. Let T > 0 and m ∈ Z
∗. There is no function Θm ∈ L2(−T, T )

such that ∫ T

−T

Θm(t)eiλntdt =

{
0 if n ∈ Z

∗, n 	= m,
1 if n = m.

(3.1)

Proof. Let us suppose that there exists a function Θm ∈ L2(−T, T ) such that
(3.1) is satisfied.

We define F : C → C by

F (z) =

∫ T

−T

Θm(t)eiztdt.(3.2)

From the Paley–Wiener theorem, F is an entire function. Moreover, from (3.2)
and (3.1) we obtain that

F (λn) = δnm ∀n ∈ Z
∗.(3.3)

Since limn→∞ λn = 0, it follows that F is zero on a set with a finite accumulation
point. Therefore F = 0 which contradicts the fact that F (λm) = 1.

Hence, there is no function Θm ∈ L2(−T, T ) such that (3.1) is satisfied and the
proof ends.
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Remark 3.1. From Theorem 3.2 the following result of nonobservability can be
obtained: there is no sequence (ρn)n∈Z∗ of positive constants such that the following
inequality

∑
n∈Z∗

ρn | an |2≤
∫ T

−T

∣∣∣∣∣∑
n∈Z∗

ane
iλnt

∣∣∣∣∣
2

dt(3.4)

is true for any sequence (an)n∈Z∗ with a finite number of nonzero terms.
This is a direct consequence of Theorem 3.2 and the following result in moments

theory (see [22, p. 151]).
Theorem A. Let H be a Hilbert space, (fn)n a vector family from H, and (cn)n

a sequence of scalars. In order for a vector f ∈ H to exist such that ‖ f ‖≤ M and
(f, fn) = cn ∀n, it is necessary and sufficient that∣∣∣∣∣∑

n

anc̄n

∣∣∣∣∣ ≤M

∥∥∥∥∥∑
n

anfn

∥∥∥∥∥
2

(3.5)

for any finite number of scalars a1, a2, . . ..
Let us suppose now that (3.4) is true. Then, for each m ∈ Z

∗,

|am|2 ≤ 1

ρm

∫ T

−T

∣∣∣∣∣∑
n∈Z∗

ane
iλnt

∣∣∣∣∣
2

dt

for any sequence (an)n∈Z∗ with a finite number of nonzero terms.
From Theorem A it follows that there exists Θm ∈ L2(−T, T ) such that∫ T

−T
Θm(t)eiλntdt = δmn which contradicts Theorem 3.2.
Remark 3.2. Theorem 3.2 proves that there is no sequence biorthogonal to

{eiλnt}n∈Z∗ in L2(−T, T ). This is related to the fact that lim|n|→∞ λn = 0 which

affects the linear independency of the exponential family {eiλnt}n∈Z∗ in L2(−T, T ).
We shall use this result in the last section to prove that no eigenfunction of equa-

tion (1.3) can be driven to zero by using a control function in L2(0, T ) (see Theorem
4.2).

Let N ∈ N
∗. We shall pass now to prove the existence of a biorthogonal to the

finite family of exponentials {eiλnt}|n|≤N
n�=0

.

Theorem 3.3. Let T > 0 and N ∈ N
∗. There exists a biorthogonal sequence

{Ψm}|n|≤N
n�=0

to the family of exponentials {eiλnt}|n|≤N
n�=0

in L2(−T, T ) .

Proof. Let us first prove that there is a constant C1(N) > 0 such that, for any
scalars (an)|n|≤N

n�=0

,

C1(N)
∑

|n|≤N
n�=0

| an |2≤
∫ T

−T

∣∣∣∣∣∣∣
∑

|n|≤N
n�=0

ane
iλnt

∣∣∣∣∣∣∣
2

dt.(3.6)

We consider the space generated by {eiλnt}|n|≤N
n�=0

,

X = Span
L2(−T,T )

{
eiλnt

}
|n|≤N
n�=0

.
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X is a finite-dimensional space of dimension 2N . Moreover, the application

∑
|n|≤N
n�=0

ane
iλnt ∈ X −→

√√√√∑
|n|≤N
n�=0

| an |2

is a norm in X. Since X is finite dimensional this new norm and the one induced from
L2(T, T ) are equivalent. It follows that there is a constant C1(N) such that (3.6) is
satisfied for any scalars (an).

Now, for each m, | m |≤ N , m 	= 0, we can apply Theorem A from Remark 3.1
by taking cn = δnm, fn = eiλnt, and H = L2(−T, T ). It follows that there exists a

function Ψm ∈ L2(−T, T ) such that
∫ T
−T

Ψm(t)eiλntdt = δnm ∀n, | n |≤ N , n 	= 0.

Hence we get a biorthogonal sequence {Ψm}|m|≤N
m�=0

⊂ L2(−T, T ) to the family of

exponentials {eiλnt}|n|≤N
n�=0

and the proof finishes.

Remark 3.3. The following inequality is also true:

∫ T

−T

∣∣∣∣∣∣∣
∑

|n|≤N
n�=0

ane
iλnt

∣∣∣∣∣∣∣
2

dt ≤ 4NT
∑

|n|≤N
n�=0

| an |2 .(3.7)

Indeed, from the Cauchy inequality

∫ T

−T

∣∣∣∣∣∣∣
∑

|n|≤N
n�=0

ane
iλnt

∣∣∣∣∣∣∣
2

dt ≤
∫ T

−T

⎛
⎜⎝∑

|n|≤N
n�=0

| an |2
⎞
⎟⎠
⎛
⎜⎝∑

|n|≤N
n�=0

| eiλnt |2
⎞
⎟⎠ dt = 4NT

∑
|n|≤N
n�=0

| an |2

and (3.7) is proved.
Remark 3.4. The proof of Theorem 3.3 shows that there exists at least a biorthog-

onal sequence to any finite family of exponentials.
Remark 3.5. From Theorem A (Remark 3.1) we also obtain that the norm of

the biorthogonal sequence {Ψm}|m|≤N
m�=0

is bounded by C1(N). Since Theorem 3.2 proves

that there is no biorthogonal sequence to {eiλnt}n∈Z∗ we deduce again from Theorem
A that C1(N) degenerates when N goes to infinity. We shall analyze how this constant
changes when N increases.

Theorem 3.4. Let T > 0 and N ∈ N
∗. There exists a biorthogonal sequence

{Θ}|n|≤N
n�=0

to the family of exponentials {eiλnt}|n|≤N
n�=0

in L2(−T, T ) such that

‖ Θm ‖2
L2(−T,T )≤ C1e

αN ln(N),(3.8)

where C1 and α are two constants which do not depend on N .
Proof. Let us first define, for each m such that | m |≤ N and m 	= 0,

ξm(z) =

⎛
⎜⎝ ∏

|n|≤N
n�=0,m

z − λn
λm − λn

⎞
⎟⎠
(

sin T (z−λm)
2N

T (z−λm)
2N

)2N

.(3.9)

Each function ξm has the following properties:
• ξm is an entire function,
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• ξm(λn) = δnm,
• ξm(x) ∈ L2(−∞,∞),
• ξm is of the exponential type at most T , i.e., there exists a constant A > 0

such that ∀ε > 0, we have

|ξm(z)| ≤ Ae(T+ε)|z| ∀z ∈ C.

Let us now define

Θm(t) =
1√
2π

∫ ∞

−∞
ξm(x)e−ixtdx,(3.10)

and we shall show that {Θm}|n|≤N
n�=0

is the biorthogonal sequence we are looking for.

From the properties of ξm, by using Paley–Wiener theorem, it follows that Θm

has compact support in [−T, T ], it belongs to L2(−T, T ), and∫ T

−T

Θm(t)eiλntdt = ξm(λn) = δnm.

It follows that (Θm)|m|≤N
m�=0

is a biorthogonal sequence to {eiλnt}|n|≤N
n�=0

.

Our next objective is to estimate the norm of Θm and to see that it satisfies (3.8).
From Plancherel’s theorem we have that

‖ Θm ‖L2(−T,T )=‖ ξm ‖L2(−∞,∞).(3.11)

Let us now estimate ‖ ξm ‖L2(−∞,∞).

‖ ξm ‖2
L2(−∞,∞)=

∫ ∞

−∞

∣∣∣∣∣∣∣
⎛
⎜⎝ ∏

|n|≤N
n�=0,m

x− λn
λm − λn

⎞
⎟⎠
(

sin T (x−λm)
2N

T (x−λm)
2N

)2N
∣∣∣∣∣∣∣
2

=

⎛
⎜⎝ ∏

|n|≤N
n�=0,m

1

| λn − λm |2

⎞
⎟⎠∫ ∞

−∞

∣∣∣∣∣∣∣
⎛
⎜⎝ ∏

|n|≤N
n�=0,m

(x− λn)

⎞
⎟⎠
(

sin T (x−λm)
2N

T (x−λm)
2N

)2N
∣∣∣∣∣∣∣
2

dx.

Let us first evaluate the constant

γ1(N) =
∏

|n|≤N
n�=0,m

1

| λm − λn |2 .

We have

1

|λm − λn| =
1∣∣∣ sgn(n)√

1+n2π2
− sgn(m)√

1+m2π2

∣∣∣ =
2
√

1 + n2π2
√

1 +m2π2∣∣sgn(n)
√

1 +m2π2 − sgn(m)
√

1 + n2π2
∣∣

≤ 2
√

1 + n2π2
√

1 +m2π2∣∣√1 +m2π2 −√
1 + n2π2

∣∣ =
2
√

1 + n2π2
√

1 +m2π2
(√

1 +m2π2 +
√

1 + n2π2
)

|m2 − n2|π2

≤
2
√

(1 + n2π2)(1 +m2π2)
(

π2

2 m+ π2

2 n
)

|m2 − n2|π2
≤
√

(1 + n2π2)(1 +m2π2) ≤ (2πN)2.
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It follows that

γ1(N) =
∏

|n|≤N
n�=0,m

1

| λm − λn |2 ≤ (2πN)8N−4.(3.12)

Let us now evaluate the integral

γ2(N) =

∫ ∞

−∞

∣∣∣∣∣∣∣
⎛
⎜⎝ ∏

|n|≤N
n�=0,m

(x− λn)

⎞
⎟⎠
(

sin T (x−λm)
2N

T (x−λm)
2N

)2N
∣∣∣∣∣∣∣
2

dx.

We have

γ2(N) =

∫
|x|≤ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣ sin

T (x−λm)
2N

T (x−λm)
N

∣∣∣∣∣
4N

dx

+

∫
|x|≥ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2 ∣∣∣∣∣ sin

T (x−λm)
2N

T (x−λm)
2N

∣∣∣∣∣
4N

dx

≤
∫
|x|≤ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2

dx+

∫
|x|≥ 1

2

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣
2(

2N

T (x− λm)

)4N

dx.

However, since |λn| < 1
2 ,∣∣∣∣∣∣∣

∏
|n|≤N
n�=0,m

(x− λn)

∣∣∣∣∣∣∣ ≤
{

1 if |x| ≤ 1
2 ,

(2 | x |)2N−1 if | x |≥ 1
2 .

It follows that

γ2(N) ≤ 1 +

∫
|x|≥ 1

2

24N−2

| x |2
∣∣∣∣ x

x− λm

∣∣∣∣4N 24N

(
N

T

)4N

dx

≤ 1 + 212N−2

(
N

T

)4N ∫
|x|≥ 1

2

1

| x |2 = 1 + 212N

(
N

T

)4N

.

Hence,

γ2(N) ≤ 1 + 212N

(
N

T

)4N

.(3.13)

From (3.12) and (3.13) it follows that, for N large enough,

‖ ξm ‖L2(−∞,∞)≤ C1N
αN ,(3.14)
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where C1 > 0 and α > 3 are two constants which do not depend on N .
From (3.11) it follows that

‖ Θm ‖L2(−T,T )≤ C1N
αN

and (3.8) is obtained.
Remark 3.6. In Theorem 3.4 we construct an explicit biorthogonal sequence

which norm increases as exp(αN ln(N)) as N → ∞. Nevertheless, many other
biorthogonals can be found. What can be said about the norms of these biorthogonals?
We shall prove in the next theorem that the norm of any biorthogonal to {eiλnt}|n|≤N

n�=0

is bounded from below by a constant of the type exp(βN ln(N)). In this sense, (3.8)
is sharp.

Theorem 3.5. Let (ψn)|n|≤N
n�=0

be biorthogonal to {eiλnt}|n|≤N
n�=0

in L2(−T, T ). Then

there exist two positive constants C2 and ω, not depending on N , such that

‖ ψm ‖L2(−T,T )≥ C2e
ωN ln(N)(3.15)

∀m 	= 0 such that | m |≤ N .
Proof. In order to prove the theorem some arguments from [11] will be used. We

shall give the proof in several steps.
Step 1. Let us define the following sequence of functions:

τm(z) =

∫ T

−T

ψm(t)eitzdt, | m |≤ N, m 	= 0.(3.16)

From the Paley–Wiener theorem it follows that τm is an entire function of expo-
nential type at most T . Moreover,

| τm(x) |≤
√

2T ‖ ψm ‖L2(−T,T ) ∀x ∈ R.(3.17)

Since τm is a function of exponential type it follows from Hadamard’s factorization
theorem that

τm(z) = azpebz
∏

zk∈E

(
1 − z

zk

)
ez/zk ,(3.18)

where E is the set of the zeros zk of τm with zk 	= 0, E = {zk ∈ C | τm(zk) = 0, zk 	=
0}.

From the definition of the function τm it follows that τm(λn) = δm,n. Therefore
{λn : | n |≤ N, n 	= 0, n 	= m} ⊆ E. Let E′ = {λn : | n |≤ N, n 	= 0, n 	= ±m} and
define the polynomial function

Pm(z) =
∏

|n|≤N
n�=0,±m

λn − z

λn − λm
.(3.19)

Let us now define function φm(z) by

φm(z) =
τm(z)

Pm(z)
.(3.20)

The function φm has the following properties:
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• it is an entire function of exponential type at most T ,
• φm(λm) = 1,
• τm(z) = Pm(z)φm(z).

Step 2. In this step we shall give some estimates for | Pm(z) |.

| Pm(z) |=

∣∣∣∣∣∣∣
∏

|n|≤N
n�=0,±m

λn − z

λn − λm

∣∣∣∣∣∣∣ =
⎛
⎜⎝ ∏

|n|≤N
n�=0,±m

| λn − z |

⎞
⎟⎠
⎡
⎢⎣ ∏

|n|≤N
n�=0,±m

| λn − λm |

⎤
⎥⎦
−1

.

By taking z ∈ C such that | z |≥ 2 we obtain that∏
|n|≤N

n�=0,±m

| λn − z |≥ (| z | −1)2N−2.(3.21)

On the other hand∏
|n|≤N

n�=0,±m

| λn − λm |≤
∏

|n|≤N
n�=0,±m

1

2

(
1√

1 + n2π2
+

1√
1 +m2π2

)
≤ 1.(3.22)

From (3.21) and (3.22) we deduce that

| Pm(z) |≥ (| z | −1)2N−2 ∀z ∈ C, | z |≥ 2.(3.23)

Step 3. From (3.17) and (3.23) we obtain that

| φm(z) |= | τm(z) |
| Pm(z) | ≤

√
2TeT Im z ‖ ψm ‖L2(−T,T )

(|z| − 1)2N−2
∀z ∈ C, |z| ≥ 2.(3.24)

It follows that

| φm(x) |≤
√

2T ‖ ψm ‖L2(−T,T )
1

(| x | −1)2N−2
∀x ∈ R, | x |≥ 2.(3.25)

We shall show that (3.25) is not possible unless ‖ ψm ‖ grows rapidly with N .
Let us first recall the following result (see [14, p. 21] and [6, p. 52]).
Theorem B. Let f(z) be holomorphic in the circle | z |≤ 2eR (R > 0) with

f(0) = 1 and let η ∈ (0, 3e
2 ). Then inside the circle | z |≤ R, but outside of a family

of excluded circles the sum of whose radii is not greater than 4ηR, we have

ln(| f(z) |) > −
(

2 + ln

(
3e

2η

))
ln(Mf (2eR)),(3.26)

where Mf (2eR) = max
|z|=2eR

| f(z) |.
We apply this result to our case. Let us define ϕm : C → C, ϕm(z) = φm(λm −

z).
Evidently, ϕm is an entire function such that ϕm(0) = 1. Hence, ϕm satisfies the

hypothesis of Theorem B. It follows that, ∀R > 0 and η ∈ (0, 3e
2 ),

ln(| ϕm(z) |) > −2e

(
2 + ln

(
3e

2η

))
ln(Mϕm(2eR)) ∀z ∈ C, | z |≤ R,(3.27)
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outside of a set of circles the sum of whose radii is not greater than 4ηR.
Let us denote δ = 2e(2 + ln( 3e

2η )) > 1. Also, remark that, from (3.24),

Mϕm
(2eR) ≤ e4eRT ||ψm||L2(−T,T )

if 2eR ≥ 2.
Hence, ∀R > 0 and η ∈ (0, 3e

2 ) such that 2eR ≥ 2,

ln(| ϕm(z) |) > −δ ln
(
e4eRT ||ψm||L2(−T,T )

) ∀z ∈ C, | z |≤ R,(3.28)

outside of a set of circles the sum of whose radii is not greater than 4ηR.
Let us consider R > 6 and η ∈ (0, 1

8 ).

It follows that there exists x0 ∈ [R2 , R] such that

ln(| ϕm(x0) |) > −δ ln
(
e4eRT ||ψm||L2(−T,T )

)
.(3.29)

On the other hand, from (3.25),

|ϕm(x0)| = |φm(λm − x0)| ≤
√

2T ‖ ψm ‖L2(−T,T )
1

(| λm − x0 | −1)2N−2
.(3.30)

From (3.30) and (3.29) the following estimate is obtained:

ln

(√
2T ‖ ψm ‖L2(−T,T )

1

(| λm − x0 | −1)2N−2

)
> −δ ln

(
e4eRT ||ψm||L2(−T,T )

)
.

Hence

(1 + δ) ln
(||ψm||L2(−T,T )

)
> −4eδTR− ln(

√
2T ) + (2N − 2) ln(|x0 − λm| − 1).(3.31)

Let us now analyze the expression

G(N,x0, R) = (2N − 2) ln(| λm − x0 | −1) − 4eδTR.

Remark that, for R = N > 6,

G(N,x0, R) ≥ (2N − 2) ln(| x0 | − | λm | −1) − 4eδTN

≥ (2N − 2) ln

(
N

2
− 2

)
− 4eδTN

= 2N

⎛
⎝N − 1

N
ln

(
N

2
− 2

)
− 2eδT︸ ︷︷ ︸

cte

⎞
⎠ .

It follows that there exists ω > 0, not depending on N , such that

G(N,x0, R) ≥ ωN ln(N)(3.32)

for any N sufficiently large.
From (3.31) it follows that

ln
(||ψm||L2(−T,T )

)
> − ln(

√
2T )

1 + δ
+ ωN ln(N)

and the proof finishes.
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4. Controllability results. In this section we study some boundary control-
lability properties of the BBM equation. We begin with the following exact con-
trollability problem: given T < 0 and an initial data u0 ∈ H−1(0, 1) find a control
f ∈ L2(0, T ) such that the solution u of⎧⎨

⎩
ut − uxxt + ux = 0, x ∈ (0, 1), t > 0,
u(t, 0) = 0, u(t, 1) = f(t), t > 0,
u(0, x) = u0(x), x ∈ (0, 1),

(4.1)

satisfies

u(T, x) = 0, x ∈ (0, 1).(4.2)

Remark 4.1. Equation (4.1) has to be understood in a weak sense. For instance,
the solution of (4.1) can be defined by transpositions (see [16], [17]). Let us briefly
recall how can this be done.

Consider g ∈ L1(0, T, L2(0, 1)) and v the solution of the adjoint equation⎧⎨
⎩

vt − vxxt + vx = g, x ∈ (0, 1), t > 0,
v(t, 0) = v(t, 1) = 0, t > 0,
v(T, x) = 0, x ∈ (0, 1).

(4.3)

By multiplying (formally) (4.1) by v and integrating by parts we obtain

0 =

∫ T

0

∫ 1

0

(ut − uxxt + ux)v =

∫ 1

0

(
uv|T0 − uxxv|T0

)
+

∫ T

0

(ux − uvx + uv) |10

−
∫ T

0

∫ 1

0

u(vt − vtxx + vx) =

∫ 1

0

[−u0v(0) + (u0)xxv(0)] −
∫ T

0

fvtx −
∫ T

0

∫ 1

0

ug.

Therefore we can say that u is the solution of (4.1) if and only if∫ T

0

∫ 1

0

ug + 〈u0, v(0)〉H−1,H1
0

= −
∫ T

0

f(t)vtx(t, 1)dt(4.4)

∀g ∈ L1(0, T ;L2(0, 1)) and v the solution of (4.3). 〈· , ·〉 represents the duality product
between H1

0 and H−1. As in [16], [17] it can be proved that (4.4) has a unique solution
u ∈ C([0, T ];L2(0, 1)). On the other hand we have just seen that a classical solution
of (4.1) is the solution of (4.4).

Concerning the controllability of (4.1) let us begin with the following result which
transforms the control problem into a moments problem.

Lemma 4.1.

(i) The initial data u0 ∈ H−1(0, 1) is controllable to zero in time T > 0 with a
control f ∈ L2(0, T ) if and only if

〈u0, v(0)〉H−1,H1
0

= −
∫ T

0

f(t)vtx(t, 1)dt(4.5)

for any solution v of the equation⎧⎨
⎩

vt − vtxx + vx = 0,
v(t, 0) = v(t, 1) = 0,
v(T, x) = vT (x) ∈ H1

0 .
(4.6)
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(ii) The initial data u0 ∈ H−1(0, 1), u0(x) =
∑

n∈Z∗ anUn(x), is controllable to
zero in time T > 0 if and only if there exists f ∈ L2(0, T ) such that∫ T

0

f(t)e−iλntdt =
i

λ2
n(Un)x(1)

an ∀n ∈ Z
∗.(4.7)

Proof. (i) Let u be the solution of (4.1) and v the solution of (4.6). It follows that

0 =

∫ T

0

∫ 1

0

(ut − uxxt + ux)v = −
∫ T

0

∫ 1

0

u(vt − vtxx + vx)

+

∫ 1

0

(uv − uxxv)

∣∣∣∣
T

0

+

∫ T

0

(uxvt − uvxt + uv)

∣∣∣∣∣
1

0

= −
∫ 1

0

(u0v(0) + (u0)xvx)

+

∫ 1

0

(u(T )v(T ) + ux(T )vx(T )) −
∫ T

0

f(t)vxt(t, 1)dt.

We obtain that∫ T

0

f(t)vxt(t, 1)dt+ 〈u0, v(0)〉H−1,H1
0

= 〈u(T ), vT 〉H−1,H1
0

∀vT ∈ H1
0 .

Hence, u0 is controllable to zero in time T > 0 if and only if (4.5) is satisfied.
(ii) For the second part let us put vT =

∑
n 
=0 bnUn and use (4.5). It follows that

∑
n 
=0

1

λn
anbne

iλnT = −
∫ T

0

f(t)
∑
n 
=0

iλne
iλn(T−t)bn(Un)x(1)dt

which is equivalent to

∑
n 
=0

bne
iλnT

[∫ T

0

f(t)iλne
−iλnt(Un)x(1)dt+

1

λn
an

]
= 0

for any (bn)n 
=0 ∈ �2.
It follows that the control problem is equivalent to finding f ∈ L2(0, T ) such that∫ T

0

f(t)e−iλntdt =
i

(λn)2(Un)x(1)
an ∀n ∈ Z

∗.

By using Lemma 4.1 and Theorem 3.3 from section 3 the following negative result
can be easily proved.

Theorem 4.2. No eigenfunction of the operator A can be driven to zero in finite
time.

Proof. The controllability of an eigenfunction Um is equivalent, by Lemma 4.1,
to finding f ∈ L2(0, T ) such that∫ T

0

f(t)e−iλnt =

{
0 ∀n ∈ Z

∗, n 	= m,
i

(λm)2(Um)x(1) , n = m.

Let us suppose that there exists f ∈ L2(0, T ) with these properties. We define

g ∈ L2(−T
2 ,

T
2 ) such that g(t) = f(T2 −t)e− iλmT

2 almost everywhere in (−T
2 ,

T
2 ). Then∫ T

2

T
2

g(t)eiλntdt = e
iT
2 (λn−λm)

∫ T

0

f(t)e−iλntdt =

{
0 ∀n ∈ Z

∗, n 	= m,
i

(λm)2(Um)x(1) , n = m.
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However, in Theorem 3.2, we have proved that this is not possible and the proof
finishes.

Remark 4.2. From Theorem 4.2 it follows that (4.1) is not spectrally controllable.
This means that no finite linear nontrivial combination of eigenvectors can be driven
to zero in finite time by using a control f ∈ L2(0, T ).

Let us now study the approximate controllability of (4.1). We recall that (4.1) is
approximate controllable in time T > 0 if the set of reachable states

R(u0, T ) = {u(T, x) | f ∈ L2(0, T )}(4.8)

is dense in L2(0, 1) for any u0 ∈ H−1(0, 1).
In other words, given T > 0, u0 ∈ H−1(0, 1), v0 ∈ L2(0, 1), and ε > 0 there exists

a control function f ∈ L2(0, T ) such that the solution u of (4.1) satisfies ||u(T ) −
v0||L2(0,1) < ε.

Theorem 4.3. Equation (4.1) is approximate controllable in any time T > 0
with controls in L2(0, T ).

Proof. From the linearity of (4.1) it follows that it is sufficient to prove that the
set R(0, T ) is dense in H1

0 (0, 1) for any T > 0. Therefore we shall consider only the
case u0 = 0. Let u ∈ C([0, T ], H1

0 (0, 1)) be the corresponding solution of (4.1).
Let also v be the solution of the adjoint equation⎧⎨

⎩
vt − vtxx + vx = 0, x ∈ (0, 1), t < T,
v(t, 0) = v(t, 1) = 0, t < T,
v(T, x) = vT (x) ∈ H1

0 (Ω).
(4.9)

It follows that ∫ T

0

f(t)vxt(t, 1)dt = (u(T, x), vT (x))H1
0
.(4.10)

Suppose that R(0, T ) is not dense in H1
0 (0, 1). Hence, there exists vT ∈ H1

0 (0, 1),
vT 	= 0, such that

(u(T, x), vT (x)) = 0 ∀f ∈ L2(0, T ).

From (4.10) it follows that∫ T

0

f(t)vxt(t, 1) = 0 ∀f ∈ L2(0, T ).

Therefore vxt(t, 1) = 0 ∀t ∈ (0, T ). We show now that this contradicts the fact
that vT 	= 0. Hence, the problem is reduced to a unique continuation property.

Let us consider the Fourier decomposition of vT :

vT =
∑
n∈Z∗

anUn,

where (an)n∈Z∗ ∈ �2 and the series converges in H1
0 (0, 1).

It follows that the corresponding solution of (4.9) is

v(t, x) =
∑
n∈Z∗

ane
iλn(T−t)Un(x), t ∈ (0, T ).
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From the equation v verifies it follows that v ∈ Cω
(
[0,∞); H1

0 (0, 1)
)

(see Remark
2.1).

Hence, from the fact that vxt(t, 1) = 0 ∀t ∈ (0, T ), we obtain that vxt(t, 1) =
0 ∀t ∈ R, i.e., ∑

n∈Z∗
ane

iλn(T−t)(Un)x(1)(−iλn) = 0 ∀t ∈ R.

For each m ∈ Z
∗,

0 = lim
S→∞

1

2S

∫ S

−S

[∑
n∈Z∗

ane
iλn(T−t)(Un)x(1)(−iλn)

]
eiλmtdt

= am(Um)x(1)(−iλm)eiλmT .

From Remark 2.2 (Um)x(1) 	= 0. This implies that am = 0 ∀m ∈ Z
∗ and

therefore vT = 0, which represents a contradiction. Hence, R(0, T ) is dense inH1
0 (0, 1)

and the proof finishes.
As we have seen in Theorem 4.2 no finite linear combination of eigenfunctions can

be driven to zero. In this case the following question arises naturally: can we control
to zero at least a part of the solution u of (4.1)? And if we can do this, what is the
cost we have to pay?

Therefore we shall now investigate the following special type of controllability.
Definition 4.4. Equation (4.1) is N -partially controllable to zero in time T > 0

if, for any u0 ∈ H−1(0, 1), there exists a control f ∈ L2(0, T ) such that the projection
of the corresponding solution u of (4.1) over the space generated by the eigenvectors
(Un)|n|≤N

n�=0

is zero at time t = T .

Let XN = Span{Un :| n |≤ N, n 	= 0} and let

ΠN : H−1(0, 1) → XN , ΠN

⎛
⎝∑

n 
=0

anUn

⎞
⎠ =

∑
|n|≤N
n�=0

anUn,

be the projection operator.
Evidently, u is N -partially controllable to zero if and only if

ΠN (u(T )) = 0.(4.11)

By using the same argument as in Lemma 4.1, the following result can be obtained
immediately.

Lemma 4.5. The initial data u0 =
∑

n 
=0 anUn is N -partially controlled to zero

in time T > 0 if and only if there exists f ∈ L2(0, T ) such that∫ T

0

f(t)eiλntdt =
i

λ2
n(Un)x(1)

an ∀ | n |≤ N,n 	= 0.(4.12)

Now, the following theorem can be proved.
Theorem 4.6. Any initial data u0 ∈ H−1(0, 1) can be N -partially controlled to

zero in time T > 0 by using a control fN ∈ L2(0, T ) such that

‖ fN ‖2
L2(0,T )≤ c1 ‖ u0 ‖2

H−1 eα1N ln(N),(4.13)
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where c1 and α1 are two constants which do not depend on N .
Moreover, there exists initial data u0 ∈ H1

0 (0, 1) such that any control fN satisfies

‖ fN ‖2
L2(0,T )≥ c2 ‖ u0 ‖2

H1
0
eω1N ln(N),(4.14)

where c2 and ω1 are two constants which do not depend on N .
Proof. Let us consider the initial data u0 =

∑
n 
=0 anUn from H−1(0, 1). We

prove that there exists a function fN ∈ L2(0, T ) such that (4.12) is satisfied. This
will be the control we are looking for.

Let (Θn)n≤N
n�=0

be the biorthogonal sequence to (eiλnt)n≤N
n�=0

in L2(−T
2 ,

T
2 ) constructed

in Theorem 3.4.
Then we can define

fN (t) =
∑
n�=0

|n|≤N

ian
λ2
n(Un)x(1)

Θn

(
T

2
− t

)
e

iλnT
2 .

Evidently, fN ∈ L2(0, T ) and
∫ T
0
fN (t)e−iλntdt = ian

λ2
n(Un)x(1) ∀ | n |≤ N,n 	= 0.

From Lemma 4.5 it follows that fN is the control we are looking for.
By using inequality (3.8) from Theorem 3.4 it follows that

‖ fN ‖2
L2(0,T )≤

∑
|n|≤N
n�=0

| an |2
| λn |2| (Un)x(1) |2

∑
|n|≤N
n�=0

‖ Θn ‖2

≤
∑

|n|≤N
n�=0

| an |2
| λn |2| (Un)x(1) |2

∑
|n|≤N
n�=0

c1e
αN ln(N) ≤ c1 ‖ u0 ‖2

H−1 eα1N ln(N)

for any α1 > α.
On the other hand let us consider u0 = Um, | m |≤ N , m 	= 0. From Lemma 4.5

u0 is N -partially controllable to zero in time T > 0 if and only if there exists a control
fmN ∈ L2(0, T ) such that∫ T

0

fmN (t)e−iλntdt =

{
0, n 	= m,
i

(λm)2(Um)x(1) , n = m.

We define gmN ∈ L2(−T
2 ,

T
2 ) such that gmN (t) = fmN (T2 − t)e−

iλmT
2 almost every-

where in (−T
2 ,

T
2 ). Then∫ T

2

T
2

gmN (t)eiλntdt = e
iT
2 (λn−λm)

∫ T

0

fmN (t)e−iλntdt =

{
0 ∀n ∈ Z

∗, n 	= m,
i

(λm)2(Um)x(1) , n = m.

Now, by using Theorem 3.5, it follows that

‖ fmN ‖2
L2(0,T )=‖ gmN ‖2

L2(−T
2 ,T2 )

≥ C2
2 | λm |4| (Um)x(1) |2 e2ωN ln(N).

It follows that (4.14) is true for any ω1 < 2ω and c2 = C2
2 and the proof

finishes.
Remark 4.3. Theorem 4.6 proves that the cost (the norm of the control functions)

needed to drive to zero the projection of the solutions of (4.1) over the space generated
by the first 2N eigenfunctions may increase very rapidly when N goes to infinity.
Theorem 4.6 gives an upper bound for these norms (essentially, eαN ln(N)) and shows
that there exists a lower bound of the same order.
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5. Comments. As we have mentioned in the introduction, based on the linear
case, local or global controllability results (depending on the number of controls) have
been obtained for the nonlinear KdV equation in [20], [21], and [24].

The same cannot be said for the nonlinear equation (1.1). In fact, to our knowl-
edge, no result for the controllability of the BBM equation is available. The con-
trollability properties of the nonlinear systems are usually studied by linearizing the
problem at an equilibrium state, by proving exact controllability results for this lin-
ear problem and by applying next the implicit function theorem. This method was
first used in [13] for the ordinary differential equations and next generalized for the
nonlinear wave equation (see, for instance, [12]). In [10] and [25] exact and local con-
trollability results were given by using Schauder’s fixed point theorem instead of the
implicit function theorem. All approaches use the exact controllability result for the
linearized equation. Taking into account the negative results (like nonspectral con-
trollability) obtained in this paper for the linearized BBM equation it is not possible
to study the controllability properties of (1.1) by using one of the classical techniques
mentioned above. Probably, the controllability results for (1.1) are not better than
the ones for the corresponding linear case but this is still to be proved.
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