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1. Introduction

In this work, we analyze the boundary controllability property of a nonlinear system
of two coupled Korteweg–de Vries equations. More precisely, given T > 0, and
functions u0, v0, u1 and v1, we study the existence of four control functions h1, h2,
g1 and g2, such that the solution of the system

ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x = 0, in (0, T ) × (0, L)

b1vt + rvx + vvx + b2a3uxxx + vxxx + b2a2uux

+ b2a1(uv)x = 0, in (0, T ) × (0, L)

u(0, x) = u0(x), v(0, x) = v0(x), on (0, L),

(1)
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{
u(t, 0) = 0, u(t, L) = h1(t), ux(t, L) = h2(t), on (0, T ),

v(t, 0) = 0, v(t, L) = g1(t), vx(t, L) = g2(t), on (0, T ),
(2)

satisfies

u(T, ·) = u1, v(T, ·) = v1. (3)

The spaces to which the initial and final data as well as the controls where these
belong to will be given latter.

In (1), ai, bi and r are real constants such that bi > 0 for i = 1, 2 and a2
3b2 < 1.

System (1) was derived by Gear and Grimshaw in [10] as a model to describe
strong interactions of two long internal gravity waves in a stratified fluid, where the
two waves are assumed to correspond to different modes of the linearized equations
of motion. It has the structure of a pair of KdV equations with both linear and
nonlinear coupling terms. This somewhat complicated system has been object of
intensive research in recent years (see, for instance [1, 2, 15, 17–19]).

The controllability problem we address here has been intensively investigated in
the context of the wave or heat equations but there are fewer results for the KdV
type equation under the boundary condition as in (1). Rosier in [24] proved that
the underlying scalar linear equation,

ut + uxxx + ux = 0, in (0, T )× (0, L)

u(t, 0) = u(t, L) = 0, ux(t, L) = h(t), on (0, T )

u(0, x) = u0(x), on (0, L)

(4)

is exactly controllable by means of a single boundary control h ∈ L2(0, T ), except
when L lies in a countable set of critical lengths, of the form

Λ =
{

2π√
3

√
k2 + kl + l2, k and l are positive natural numbers

}
. (5)

This was done by combining the Lions’ HUM method and a nonstandard unique
continuation principle for the eigenfunctions of the differential operator. The critical
lengths in (5) are such that there are eigenfunctions of the linear scalar problem
for which the observability inequality fails. By a linearization argument a local
controllability result for the semilinear scalar equation,

ut + uxxx + ux + uux = 0, in (0, T )× (0, L)

u(t, 0) = u(t, L) = 0, ux(t, L) = h(t), on (0, T )

u(0, x) = u0(x), on (0, L),

(6)

was also proved.
Later on, Zhang in [28] showed that using three controls, acting on all the bound-

ary conditions, controllability holds for all values of L. More recently, in [7] Crépeau
and Coron proved that the presence of the nonlinear term uux in the Korteweg–de
Vries equation (6) gives the controllability around the origin in the case L = 2kπ,
k ∈ N∗. Using the same approach their result was subsequently improved by Cerpa
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in [6] and Cerpa and Crépeau [8]. Finally, Guerrero and Glass [11] established a
result of null controllability for KdV via the left Dirichlet boundary condition and
of exact controllability via both Dirichlet boundary conditions. As a consequence,
they obtain some local exact controllability results for (6).

Concerning the controllability properties for system (1), we prove that the cor-
responding linear system

ut + uxxx + avxxx = 0, in (0, T )× (0, L)

cvt + rvx + abuxxx + vxxx = 0, in (0, T )× (0, L)

u(0, x) = u0, v(0, x) = v0, on (0, L),

(7)

under boundary conditions (2) is exactly controllable in L2(0, L), with control func-
tions h1, g1 ∈ H1

0 (0, T ) and h2, g2 ∈ L2(0, T ). The arguments of the proof follow
closely the ones developed in [24] for the analysis of the scalar KdV. Therefore,
the exact controllability property is reduced to a unique continuation result for the
eigenfunctions of the adjoint differential operator corresponding to (7).

The result for the linear system allows to prove the local controllability property
of the nonlinear system (1) by means of a fixed point argument. Our main result
reads as follows:

Theorem 1.1. Let L > 0 and T > 0. Then there exists a constant δ > 0 such that
for any initial and final data u0, v0, u1, v1 ∈ L2(0, L) verifying

‖(u0, v0)‖(L2(0,L))2 ≤ δ, and ‖(u1, v1)‖(L2(0,L))2 ≤ δ,

there exist four control functions h1, g1 ∈ H1
0 (0, T ) and h2, g2 ∈ L2(0, T ), such that

the solution

(u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2) ∩H1(0, T ; (H−2(0, L))2)

of (1)–(2) verifies (3).

In [20], a linear problem similar to (7), but with periodic boundary conditions
and r = 0, was analyzed. The main characteristic of that system was the symmetry
in the unknowns u and v which allowed to uncouple the system and to reduce the
problem to the controllability of two independent KdV equations. Remark that the
uncoupling is not possible in (7) unless r = 0. Moreover, if we consider periodic
boundary conditions for (7), we cannot obtain a control result for the nonlinear
system, since this problem does not have a regularizing effect.

Let us also remark that, as for the scalar KdV equation, the controllability of (1)
is very sensitive to changes of the boundary conditions and controls. For instance,
the use of a smaller number of controls is likely to impose some restrictions on the
length L of the interval, as it is the case for the scalar KdV equation. However, due
to the complexity of the system, it would be almost impossible to characterized the
set of the uncontrolled lengths.

The rest of the article is organized in the following way: In Sec. 2, we give some
fundamental results on the existence, uniqueness and regularity of solutions of the
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corresponding linear systems. The controllability results are given in Sec. 3 for the
linearized system and the fully nonlinear one in Sec. 4. Some comments are given
at the end of the paper.

2. Preliminaries

2.1. The linear homogeneous system

In this section, we study the existence of solutions of the linear system corresponding
to (1): 

ut + uxxx + avxxx = 0, in (0, T ) × (0, L)

cvt + rvx + bauxxx + vxxx = 0, in (0, T ) × (0, L)

u(t, 0) = u(t, L) = ux(t, L) = 0, on (0, T ),

v(t, 0) = v(t, L) = vx(t, L) = 0, on (0, T ),

u(0, x) = u0(x), v(0, x) = v0(x), on (0, L).

(8)

In (8) a, b, r and c are positive constants with

1 − a2b > 0.

Let X = (L2(0, L))2 endowed with the inner product

〈(u, v), (ϕ, ψ)〉 =
b

c

∫ L

0

uϕdx+
∫ L

0

vψdx, (9)

and consider the operator

A : D(A) ⊂ X → X

where

D(A) = {(u, v) ∈ (H3(0, L))2 : u(0) = v(0) = u(L) = v(L) = ux(L) = vx(L) = 0}
and

A(u, v) =

 −uxxx − avxxx

−r
c
vx − 1

c
vxxx − ab

c
uxxx

 , ∀ (u, v) ∈ D(A). (10)

With the notation introduced above, system (8) can be now written as an abstract
Cauchy problem in X : {

(u, v)t = A(u, v)

(u, v)(0) = (u0, v0).
(11)

On the other hand, it is easy to see that the adjoint of the operator A is the
operator A∗ defined by

A∗(ϕ, ψ) =

 ϕxxx + aψxxx

r

c
ψx +

1
c
ψxxx +

ab

c
ϕxxx

 (12)
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where

A∗ : D(A∗) ⊂ X → X

and

D(A∗) = {(ϕ, ψ) ∈ (H3(0, L))2 : ϕ(0) = ψ(0) = ϕ(L)

= ψ(L) = ϕx(0) = ψx(0) = 0}.
We are interested in the following property of these two operators:

Proposition 2.1. The operator A and its adjoint A∗ are dissipative in X.

Proof. Let u, v ∈ D(A). By multiplying the first equation of (8) by u and by
integrating by parts in (0, L) we obtain that∫ L

0

(−uxxx − avxxx)u = −1
2
u2

x(0) +
∫ L

0

avxxux. (13)

On the other hand, by multiplying the second equation of (8) by v and by
integrating by parts in (0, L), we obtain that∫ L

0

(
−r
c
vx − 1

c
vxxx − ab

c
uxxx

)
v = − 1

2c
v2

x(0) +
ab

c

∫ L

0

uxxvx. (14)

Thus, from (13) and (14), we get

〈A(u, v), (u, v)〉(L2(0,L))2 = − b

2c
u2

x(0) +
ab

c

∫ L

0

vxxux − 1
2c
v2

x(0) +
ab

c

∫ L

0

uxxvx

= − b

2c
u2

x(0) − 1
2c
v2

x(0) +
ab

c

∫ L

0

(uxvx)x

= − 1
2c

(bu2
x(0) + v2

x(0) + 2abux(0)vx(0))

= − 1
2c

([
√
bux(0) +

√
a2bvx(0)]2 + (1 − a2b)v2

x(0))

≤ 0. (15)

Hence, A is a dissipative operator in (L2(0, L))2. Analogously, we can deduce that

〈(ϕ, ψ), A∗(ϕ, ψ)〉(L2(0,L))2

= − 1
2c

([
√
bϕx(L) +

√
a2bψx(L)]2 + (1 − a2b)ψ2

x(L)) ≤ 0 (16)

and therefore A∗ is also dissipative in (L2(0, L))2.

Since A and A∗ are both dissipatives, A is a closed operator and the respective
domains D(A) and D(A∗) are dense and compactly embedded in X we conclude
that A generates a C0 semigroup of contractions on (L2(0, L))2 (see [22]) which
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will be denoted by (S(t))t≥0. Classical existence results then give us the global
well-posedness for (8):

Theorem 2.1. Let (u0, v0) ∈ L2(0, L). There exists a unique weak solution (u, v) =
S(·)(u0, v0) of (8) such that

(u, v) ∈ C([0, T ]; (L2(0, L))2) ∩H1(0, T ; (H−2(0, L))2). (17)

Moreover, if (u0, v0) ∈ D(A), then (8) has a unique (classical) solution (u, v) such
that

(u, v) ∈ C([0, T ];D(A)) ∩ C1(0, T ; (L2(0, L))2). (18)

Additional regularity results for the weak solutions on (8) are proven in the next
theorem.

Theorem 2.2. Let (u0, v0) ∈ (L2(0, L))2 and (u, v) = S(·)(u0, v0) the weak solu-
tion of (8). Then, (u, v) ∈ L2(0, T ; (H1(0, L))2) and there exists a positive constant
c0 such that

‖(u, v)‖L2(0,T ;(H1(0,L))2) ≤ c0‖(u0, v0)‖(L2(0,L))2 . (19)

Moreover, there exist two positive constants c1 and c2 such that

‖(ux(·, 0), vx(·, 0))‖2
(L2(0,T ))2 ≤ c1‖(u0, v0)‖2

(L2(0,L))2 (20)

and

‖(u0, v0)‖2
(L2(0,L))2 ≤ 1

T
‖(u, v)‖2

L2(0,T ;(L2(0,L))2)

+ c2‖(ux(·, 0), vx(·, 0))‖2
(L2(0,T ))2 . (21)

Proof. A density argument allows us to consider only the case (u0, v0) ∈ D(A).
Let us first remark that, if q ∈ C∞((0, T )× (0, L)), then the following identities

hold

0 =
∫ T

0

∫ L

0

qu(ut + uxxx + avxxx)

= −
∫ T

0

∫ L

0

u(qu)t +
∫ L

0

qu2|T0 −
∫ T

0

∫ L

0

(uxx + avxx)(qu)x, (22)

and

0 =
∫ T

0

∫ L

0

qv(cvt + rvx + vxxx + abuxxx)

= −
∫ T

0

∫ L

0

cv(qv)t +
∫ L

0

cqv2|T0 −
∫ T

0

∫ L

0

(rv)(qv)x

−
∫ T

0

∫ L

0

(vxx + abuxx)(qv)x. (23)
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Now, if we consider q = x we have that

0 =
∫ T

0

∫ L

0

xu(ut + uxxx + avxxx)

=
1
2

∫ L

0

xu2(t, x)|T0 −
∫ L

0

∫ T

0

(xux)(u + av)xx +
∫ T

0

∫ L

0

ux(u + av)x (24)

and

0 =
∫ T

0

∫ L

0

xv(cvt + rvx + vxxx + abuxxx)

=
c

2

∫ L

0

xv2(t, x)|T0 − r

2

∫ T

0

∫ L

0

v2(t, x) −
∫ L

0

∫ T

0

(xvx)(abu+ v)xx

+
∫ T

0

∫ L

0

vx(abu+ v)x. (25)

By multiplying (24) by b and by adding to (25) we obtain

0 =
1
2

∫ L

0

x(bu2(t, x) + cv2(t, x))|T0 +
r

2

∫ T

0

∫ L

0

v2 +
3
2

∫ T

0

∫ L

0

(bu2
x + v2

x)

+ 3ab
∫ T

0

∫ L

0

uxvx − 1
2

∫ T

0

x(bu2
x + 2abuxvx + v2

x)|L0 . (26)

Since ux(L) = vx(L) = 0, the following holds

3
2

∫ T

0

∫ L

0

(bu2
x + 2abuxvx + v2

x) =
r

2

∫ T

0

∫ L

0

v2 − 1
2

∫ L

0

x(bu2(t, x) + cv2(t, x))|T0

≤ r

2

∫ T

0

∫ L

0

v2 +
1
2

∫ L

0

x(b(u0)2(x) + c(v0)2(x))

≤ r

2

∫ T

0

∫ L

0

v2 +
L

2

∫ L

0

(b(u0)2(x) + c(v0)2(x)).

(27)

Choosing ε > 0 such that
√
a2b < ε < 1, we obtain that

bu2
x + 2abuxvx + v2

x ≥ b(1 − ε2)u2
x + v2

x

(
1 − a2b

ε2

)
(28)

and, consequently,∫ T

0

∫ L

0

b(1 − ε2)u2
x + v2

x

(
1 − a2b

ε2

)
≤ r

3

∫ T

0

∫ L

0

v2 +
L

3

∫ L

0

(b(u0)2 + c(v0)2).

(29)

Thus, there exits a positive constant c0 > 0 such that

‖(ux, vx)‖2
L2((0,T )×(0,L))2 ≤ c0(‖v‖2

L2((0,T )×(0,L))2 + ‖(u0, v0)‖2
(L2(0,L))2). (30)
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Since the semigroup is continuous, we conclude that there exists a constant
c0 > 0 satisfying

‖(ux, vx)‖2
L2((0,T )×(0,L))2 ≤ c0‖(u0, v0)‖2

L2(0,L)2 (31)

and (19) is proven.
By taking q = 1, we obtain from (22) and (23) that

0 =
1
2

∫ L

0

u2(T, x) − 1
2

∫ L

0

u2(0, x) −
∫ T

0

∫ L

0

(uxx + avxx)ux, (32)

and

0 =
1
2

∫ L

0

cv2(T, x) − 1
2

∫ L

0

cv2(0, x) −
∫ T

0

∫ L

0

(vxx + abuxx)vx. (33)

By multiplying (32) by b and by adding to (33), we have that

0 =
b

2

∫ L

0

u2(T, x) − b

2

∫ L

0

u2(0, x) −
∫ T

0

∫ L

0

(buxx + abvxx)ux

+
1
2

∫ L

0

cv2(T, x) − 1
2

∫ L

0

cv2(0, x) −
∫ T

0

∫ L

0

(vxx + abuxx)vx

=
b

2

∫ L

0

u2(T, x) − b

2

∫ L

0

u2(0, x) +
1
2

∫ L

0

cv2(T, x) − 1
2

∫ L

0

cv2(0, x)

+
∫ T

0

[
b

2
u2

x(t, 0) + abvx(t, 0)ux(t, 0) +
1
2
v2

x(t, 0)
]
, (34)

that is

b

c

∫ L

0

u2(0, x) − b

c

∫ L

0

u2(T, x) +
∫ L

0

v2(0, x) −
∫ L

0

v2(T, x)

=
∫ T

0

[
b

c
u2

x(t, 0) + 2
ab

c
vx(t, 0)ux(t, 0) +

1
c
v2

x(t, 0)
]
. (35)

Hence,

‖(u0, v0)‖2
(L2(0,L))2 =

b

c

∫ L

0

u2(0, x) +
∫ L

0

v2(0, x)

=
∫ T

0

[
b

c
u2

x(t, 0) + 2
ab

c
vx(t, 0)ux(t, 0) +

1
c
v2

x(t, 0)
]
. (36)

If ε is a constant such that 1 > ε >
√
a2b, then

2abvx(t, 0)ux(t, 0) = 2
(

1
ε

√
a2bvx(t, 0)

)
(ε
√
bux(t, 0))

≥ −ε2bu2
x(t, 0) − a2b

ε2
v2

x(t, 0). (37)
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Consequently, we can guarantee the existence of a constant c1 > 0 such that

‖(u0, v0)‖2
(L2(0,L))2 =

b

c

∫ L

0

u2(0, x) +
∫ L

0

v2(0, x)

≥
∫ T

0

[
b

c
u2

x(t, 0) + 2
ab

c
vx(t, 0)ux(t, 0) +

1
c
v2

x(t, 0)
]

≥
∫ T

0

[
b

c
u2

x(0, t)(1 − ε2) +
1
c
v2

x(t, 0)
(

1 − a2b

ε2

)]
≥ c‖(ux(·, 0), v2

x(·, 0))‖2
(L2(0,T ))2 (38)

and (20) is proved.
In order to obtain (21) we use a similar argument with q = (T − t) to obtain

0 =
1
T

∫ T

0

∫ L

0

(bu2 + cv2) −
∫ L

0

(b(u0)2 + c(v0)2)

+
1
T

∫ T

0

(T − t)(bu2
x(t, 0) + v2

x(t, 0) + 2abvx(t, 0)ux(t, 0)), (39)

which implies that

‖(u0, v0)‖2
(L2(0,L))2 ≤ 1

T
‖(u, v)‖2

L2((0,T )×(0,L))2 + c2‖(ux(·, 0), vx(·, 0))‖2
(L2(0,T ))2 ,

(40)

for a suitable constant c2 > 0. Now the proof is complete.

Remark 2.1. If µ =
√(

1
c − 1

)2 + 4a2b
c , the change of variable

(
u

v

)
=

 2a 2a(
1
c
− 1

)
+ µ

(
1
c
− 1

)
− µ

(
ũ

ṽ

)

transforms the linear system (8) into

ũt +
(

1
c

+ 1 + µ

)
ũxxx − ra

c

(
1
c
− 1 + µ

)
ũx

+
ra

c

(
1
c
− 1 − µ

)
ṽx = 0, in (0, T )× (0, L)

ṽt +
(

1
c

+ 1 − µ

)
ṽxxx +

ra

c

(
1
c
− 1 + µ

)
ṽx

− ra

c

(
1
c
− 1 − µ

)
ũx = 0, in (0, T )× (0, L)

ũ(t, 0) = ũ(t, L) = ũx(t, L) = 0, on (0, T ),

ṽ(t, 0) = ṽ(t, L) = ṽx(t, L) = 0, on (0, T ),

ũ(0, x) = ũ0(x), ṽ(0, x) = ṽ0(x), on (0, L).

(41)
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This change of variables was used in [20] where we have analyzed the case r = 0
and where the resulting system (41) consists of two uncoupled KdV equations. If
r �= 0, system (41) is still coupled. However, it is simpler than (8), in the sense
that the coupling is realized only through the lower terms ũx and ṽx. This is an
alternative equivalent approach for the study of our system.

2.2. The nonhomogeneous system

Now, we study the nonhomogeneous system corresponding to (8):

ut + uxxx + avxxx = 0, in (0, T ) × (0, L)

cvt + rvx + abuxxx + vxxx = 0, in (0, T ) × (0, L)

u(t, 0) = 0, u(t, L) = h1, ux(t, L) = h2, on (0, T ),

v(t, 0) = 0, v(t, L) = g1, vx(t, L) = g2, on (0, T ),

u(0, x) = u0, v(0, x) = v0, on (0, L)

(42)

where h1, g1 ∈ H1
0 (0, T ) and h2, g2 ∈ L2(0, T ).

The following result ensures the existence of classical solutions of (42).

Theorem 2.3. Let (u0, v0) ∈ D(A) and

hi, gi ∈ C2
0 [0, T ] = {z ∈ C2[0, T ] : z(0) = z(T ) = 0}, i = 1, 2.

Then, system (42) has a unique (classical) solution

(u, v) ∈ C([0, T ]; (H3(0, L))2) ∩ C1([0, T ]; (L2(0, L))2) (43)

and there exists a positive constant C such that

‖(u, v)‖2
C([0,T ];(L2(0,L))2) + ‖(u, v)‖2

L2(0,T ;(H1(0,L))2)

≤ C

[
‖(u0, v0)‖2

(L2(0,L))2 +
2∑

i=1

(‖hi‖2
H1(0,T ) + ‖gi‖2

H1(0,T ))

]
. (44)

Proof. As in [24], let φi, ηi ∈ C∞([0, L]) be functions such that

φ1(0) = φ′1(L) = η1(0) = η′1(L) = 0 and φ1(L) = η1(L) = 1 (45)

φ2(0) = φ2(L) = η2(0) = η2(L) = 0 and φ′2(L) = η′2(L) = 1. (46)

The solution (u, v) of (42) can be written as

(u, v) = S(t)(u0, v0) + (ϕ, ψ), (47)

where (S(t))t≥0 is the semigroup associated to the homogeneous problem (8),

ϕ̂(x, t) =
2∑

i=1

φi(x)gi(t), ψ̂(x, t) =
2∑

i=1

ηi(x)hi(t)
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and (ϕ, ψ) is the solution of the problem

ϕt + ϕxxx + aψxxx = F, in (0, T )× (0, L)

cψt + rψx + abϕxxx + ψxxx = G, in (0, T )× (0, L)

ϕ(t, 0) = ϕ(t, L) = ϕx(t, L) = 0, on (0, T ),

ψ(t, 0) = ψ(t, L) = ψx(t, L) = 0, on (0, T ),

ϕ(0, x) = ψ(0, x) = 0, on (0, L),

(48)

where

F (x, t) = ϕ̂t + ϕ̂xxx + aψ̂xxx

G(x, t) = cψ̂t + rψ̂x + ψ̂xxx + abϕ̂xxx.
(49)

Since F,G ∈ C1([0, T ]; (L2(0, L))2), it follows that (48) has a unique solution

(ϕ, ψ) ∈ C([0, T ];D(A)) ∩ C1([0, T ], (L2(0, L))2).

Thus, for every (u0, v0) ∈ D(A) and hi, gi ∈ C2
0 [0, T ], we have a solution of (42)

with the property (43). The uniqueness follows from the corresponding property of
the homogeneous linear system.

For estimate (44) we note that

‖(u, v)‖2
C([0,T ];(L2(0,L))2)

≤ 2‖S(t)(u0, v0)‖2
C([0,T ];(L2(0,L))2) + 2‖(ϕ, ψ)‖2

C([0,T ];(L2(0,L))2)

≤ C[‖(u0, v0)‖2
(L2(0,L))2 + ‖(F,G)‖2

L2([0,T ];(L2(0,L))2)].

Since

‖(F,G)‖2
L2([0,T ];(L2(0,L))2) ≤ C

2∑
i=1

(‖hi‖2
H1(0,T ) + ‖gi‖2

H1(0,T )), (50)

we deduce that

‖(u, v)‖2
C([0,T ];(L2(0,L))2)

≤ C

[
‖(u0, v0)‖2

(L2(0,L))2 +
2∑

i=1

(‖hi‖2
H1(0,T ) + ‖gi‖2

H1(0,T ))

]
. (51)

On the other hand, from (19) we deduce that

‖(u, v)‖2
L2(0,T ;(H1(0,L))2)

≤ 2‖S(t)(u0, v0)‖2
L2(0,T ;(H1(0,L))2) + 2‖(ϕ, ψ)‖2

L2(0,T ;(H1(0,L))2)

≤ C[‖(u0, v0)‖2
(L2(0,L))2 + ‖(ϕ, ψ)‖2

L2(0,T ;(H1(0,L))2)].

As in the proof of Theorem 2.2, we obtain that the solution (ϕ, ψ) of (48) verifies∫ T

0

∫ L

0

x(bFϕ+Gψ) =
1
2

∫ L

0

x(bϕ2(t, x) + cψ2(t, x))
∣∣∣T
0

+
r

2

∫ T

0

∫ L

0

ψ2 +
3
2

∫ T

0

∫ L

0

(bϕ2
x + 2abϕxψx + ψ2

x).
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It follows that there exists a positive constant such that

‖(ϕ, ψ)‖L2(0,T ;(H1(0,L))2) ≤ C[‖(ϕ(T ), ψ(T ))‖2
(L2(0,L))2

+ ‖(ϕ, ψ)‖2
L2(0,T ;(L2(0,L))2) + ‖(F,G)‖2

L2(0,T ;(L2(0,L))2)]

≤ C‖(F,G)‖2
L2(0,T ;(L2(0,L))2)

≤ C

2∑
i=1

(‖hi‖2
H1(0,T ) + ‖gi‖2

H1(0,T )).

Hence,

‖(u, v)‖2
L2(0,T ;(H1(0,L))2)

≤ C

[
‖(u0, v0)‖2

(L2(0,L))2 +
2∑

i=1

(‖hi‖2
H1(0,T ) + ‖gi‖2

H1(0,T ))

]
. (52)

From (51) and (52), it follows that (44) holds and the proof ends.

Now, we shall prove two results of existence and regularity of weak solutions
of (42).

Theorem 2.4. There exists a unique linear and continuous map

Ψ : (L2(0, L))2 × (H1
0 (0, T ))2 × (L2(0, T ))2

→ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2)

such that, for any (u0, v0) ∈ D(A) and h1, g1, h2, g2 ∈ C2
0 [0, T ],

Ψ((u0, v0), (h1, g1, h2, g2)) = (u, v)

where (u, v) is the unique classical solution of (42).

Remark 2.2. If (u0, v0) ∈ (L2(0, L))2, (u, v) will be the weak solution of (42).

Proof. We decompose the solution of (42) as (u, v) = (u1, v1) + (u2, v2), where
(u1, v1) is the solution of (42) with h1 = g1 = 0 and (u2, v2) is the solution of (42)
with null data (u0, v0) and h2 = g2 = 0.

We first consider the case h1 = g1 = 0. The proof will done using the
multipliers method. Let q ∈ C∞([0, L] × [0, T ]), (u0, v0) ∈ D(A) and h2, g2 ∈
C2

0 [0, T ]. From Theorem 2.3, it follows that there exists a unique solution (u, v) ∈
C([0, T ]; (H3(0, 1))2) ∩ C1([0, T ]; (L2(0, 1))2) of (42). If s ∈ [0, T ] we have

0 = −1
2

∫ s

0

∫ L

0

qt(bu2 + cv2) +
1
2

∫ L

0

q(bu2 + cv2)|s0 −
r

2

∫ s

0

∫ L

0

qxv
2

+
r

2

∫ s

0

qv2|L0 −
∫ s

0

∫ L

0

(qu)x(bu+ abv)xx +
∫ s

0

(qu)(bu+ abv)xx|L0

−
∫ s

0

∫ L

0

(qv)x(abu+ v)xx +
∫ s

0

(qv)(abu+ v)xx|L0 . (53)
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Consequently, if q = 1 the following holds

0 =
1
2

∫ L

0

(bu2 + cv2)|s0 −
∫ s

0

∫ L

0

ux(bu+ abv)xx −
∫ s

0

∫ L

0

vx(abu+ v)xx

=
1
2

∫ L

0

(bu2 + cv2)|s0 −
1
2

∫ s

0

(bu2
x + v2

x + 2abuxvx)|L0 , (54)

i.e.

1
2

∫ L

0

(bu2(s, x) + cv2(s, x)) +
1
2

∫ s

0

(bu2
x(t, 0) + v2

x(t, 0) + 2abux(t, 0)vx(t, 0))

=
1
2

∫ L

0

(b(u0)2(x) + c(v0)2(x)) +
1
2

∫ s

0

(bh2
2(t) + g2

2(t) + 2abh2(t)g2(t)). (55)

If we consider ε > 0 satisfying
√
a2b < ε < 1, as in (28), we obtain a constant

M > 0 such that

‖(u(s, ·), v(s, ·))‖2
(L2(0,L))2 + ‖(ux(·, 0), vx(·, 0))‖2

(L2(s,0))2

≤ M(‖(u0, v0)‖2
(L2(0,L))2 + ‖(h2, g2)‖2

(L2(s,0))2) (56)

which give us that

‖(u, v)‖C([0,T ];(L2(0,L))2) ≤M(‖(u0, v0)‖2
L2(0,L)2 + ‖(h2, g2)‖2

L2(0,T )2) (57)

and

‖(ux(0, ·), vx(0, ·))‖2
L2(0,T )2 ≤M(‖(u0, v0)‖2

L2(0,L)2 + ‖(h2, g2)‖2
L2(0,T )2). (58)

Now, letting q(x, t) = x and performing as in the previous computation we get

0 =
1
2

∫ L

0

x(bu2 + cv2)|T0 − r

2

∫ T

0

∫ L

0

v2

+
3
2

∫ T

0

∫ L

0

(bu2
x + v2

x + 2abuxvx) − 1
2

∫ T

0

L(bh2
2 + g2

2 + 2abh2g2), (59)

or∫ L

0

x(bu2(T, x) + cv2(T, x)) + 3
∫ T

0

∫ L

0

(bu2
x + v2

x + 2abuxvx)

=
∫ L

0

x(b(u0)2 + c(v0)2) + r

∫ T

0

∫ L

0

v2 +
∫ T

0

L(bh2
2 + g2

2 + 2abh2g2). (60)

On the other hand, from the last relation, we obtain∫ T

0

∫ L

0

(u2
x + v2

x) ≤ C

[∫ L

0

((u0)2 + (v0)2) + r

∫ T

0

∫ L

0

v2 +
∫ T

0

(h2
2 + g2

2)

]
. (61)
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Finally, by taking (57) into account we conclude that there exists a constant C > 0
such that

‖(u, v)‖2
L2(0,T ;H1(0,L))2 ≤ C(‖(u0, v0)‖2

L2(0,L)2 + ‖(h2, g2)‖2
L2(0,T )2). (62)

From the density of D(A) in (L2(0, L))2 and from the density of C2
0 [0, T ] in

(L2(0, T ))2, we obtain that the linear map

Ψ1 : D(A) × (C2
0 [0, T ])2 → C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2)

Ψ1((u0, v0), (h2, g2)) = (u1, v1)

can be uniquely extended by continuity to a linear and continuous map

Ψ1 : (L2(0, L))2 × (L2(0, T ))2 → C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2).

In order to estimate the second component, i.e. the solution of (42) when
h2 = g2 = 0 and u0 = v0 = 0, we use (44). For (u0, v0) ∈ D(A) and h1, g1 ∈ C2

0 [0, T ]
it follows that there exists a unique solution (u2, v2) ∈ C([0, T ]; (H3(0, 1))2) ∩
C1([0, T ]; (L2(0, 1))2) of (42). Moreover, (44) implies that

Ψ2 : D(A) × (C2
0 [0, T ])2 → C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2)

Ψ2((u0, v0), (h1, g1)) = (u2, v2)

can be uniquely extended by continuity to a linear and continuous map

Ψ2 : (L2(0, L))2 ∩ (H1
0 (0, T ))2 → C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2).

Then, defining Ψ = Ψ1 + Ψ2, the proof is complete.

Remark 2.3. For the nonhomogeneous Korteweg–de Vries equation
ut + uxxx + ux = 0, in (0, T ) × (0, L)

u(t, 0) = 0, u(t, L) = h(t), ux(t, L) = g(t), on (0, T )

u(0, x) = u0(x), on (0, L)

(63)

the well-posedness in L2(0, L) is obtained by taking h ∈ H
1
3 (0, T ) and g ∈ L2(0, T )

(see, for instance, [3,4,9,12]). Moreover, additional regularity for the solution may
be obtained in the case h = g = 0. The same properties should be true for our
system but we shall not need them in the controllability study.

2.3. The adjoint system

This section is devoted to study the properties of the adjoint system of (8):

ϕt − ϕxxx − aψxxx = 0, in (0, T )× (0, L)

cψt − rψx − baϕxxx − ψxxx = 0, in (0, T )× (0, L)

ϕ(t, 0) = ϕ(t, L) = ϕx(t, 0) = 0, on (0, T ),

ψ(t, 0) = ψ(t, L) = ψx(t, 0) = 0, on (0, T ),

ϕ(0, x) = ϕ0(x), ψ(0, x) = ψ0(x), on (0, L)

(64)
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which is equivalent to {
(ϕ, ψ)t = A∗(ϕ, ψ)

(ϕ, ψ)(0) = (ϕ0, ψ0),

where A∗ is given by (12).
Remark that the change of variable x = L − x reduces system (64) to (8).

Therefore, the properties of the solutions of (64) are similar to the ones deduced
in Theorems 2.1 and 2.2 for the linear homogeneous system (8). More precisely,
we have

Theorem 2.5. Let ϕ0, ψ0 ∈ L2(0, L). There exists a unique solution (ϕ, ψ) of (64)
such that

(ϕ, ψ) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2) (65)

and the following estimate holds

‖(ϕ, ψ)‖L2(0,T ;(H1(0,L))2) ≤ c0‖(ϕ0, ψ0)‖(L2(0,L))2 . (66)

Moreover, there exist c1, c2 > 0 such that following inequalities hold

‖(ϕx(·, L), ψx(·, L))‖2
(L2(0,T ))2 ≤ c1‖(ϕ0, ψ0)‖2

(L2(0,L))2 (67)

and

‖(ϕ0, ψ0)‖2
(L2(0,L))2 ≤ 1

T
‖(ϕ, ψ)‖2

(L2((0,T )×(0,L)))2

+ c2‖(ϕx(·, L), ψx(·, L))‖2
(L2(0,T ))2 . (68)

Moreover, we have the following estimate of the second derivative of the solution
on the boundary.

Theorem 2.6. Let ϕ0, ψ0 ∈ L2(0, L). The corresponding solution (ϕ, ψ) of (64)
verifies

‖(ϕxx(·, L), ψxx(·, L))‖2
(H−1(0,T ))2 ≤ C‖(ϕ0, ψ0)‖2

(L2(0,L))2 . (69)

Proof. Let (ϕ0, ψ0) ∈ D(A∗). Then (ϕ, ψ) ∈ C([0, T ];D(A∗)) and
ϕxx(·, L), ψxx(·, L) ∈ C[0, T ]. Let now h1, g1 ∈ C2

0 [0, T ] and (u, v) be the (classical)
solution of

ut + uxxx + avxxx = 0, in (0, T )× (0, L)
cvt + rvx + abuxxx + vxxx = 0, in (0, T )× (0, L)
u(t, 0) = 0, u(t, L) = h1, ux(t, L) = 0, on (0, T ),
v(t, 0) = 0, v(t, L) = g1, vx(t, L) = 0, on (0, T ),
u(0, x) = 0, v(0, x) = 0, on (0, L).

(70)
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Multiplying the first equation of (70) by ϕ, the second one by ψ and integrating
by parts we obtain that

∫ L

0

uϕ|T0 +
∫ T

0

uϕxx|L0 + a

∫ T

0

vϕxx|L0 =
∫ T

0

∫ L

0

(ϕtu+ ϕxxxu+ aϕxxxv)

c

∫ L

0

vψ|T0 + ab

∫ T

0

uψxx|L0 +
∫ T

0

vψxx|L0

=
∫ T

0

∫ L

0

(cψtv + rψxv + abψxxxu+ ψxxxv).

(71)

Multiplying the first equation of (70) by b and adding it to the second one, we
obtain that∫ L

0

(bu(T )ϕ(T ) + cv(T )ψ(T )) = −
∫ T

0

[ϕxx(t, L)(bu(t, L) + abv(t, L))

+ψxx(t, L)(abu(t, L) + v(t, L))]. (72)

On the other hand, by (44), we have that∣∣∣∣∣
∫ L

0

(bu(T )ϕ(T ) + cv(T )ψ(T ))

∣∣∣∣∣
≤ C‖(ϕ0, ψ0)‖2

(L2(0,L))2(‖h1‖H1(0,T ) + ‖g1‖H1(0,T ))

where C does depend on h1 and g1. then, it follows that the map

Υ : (H1(0, T ))2 → R,

Υ(h̃1, g̃1) =
∫ T

0

ϕxx(t, L)h̃1 +
∫ T

0

ψxx(t, L)g̃1

verifies

|Υ(h̃1, g̃1)| ≤ C‖(ϕ0, ψ0)‖2
(L2(0,L))2(‖h̃1‖2

H1(0,T ) + ‖g̃1‖2
H1(0,T ))

from which (69) follows and the proof is completed.

Let us also remark that the following backward system

ϕt + ϕxxx + aψxxx = 0, in (0, T )× (0, L)

cψt + rψx + baϕxxx + ψxxx = 0, in (0, T )× (0, L)

ϕ(t, 0) = ϕ(t, L) = ϕx(t, 0) = 0, on (0, T ),

ψ(t, 0) = ψ(t, L) = ψx(t, 0) = 0, on (0, T ),

ϕ(T, x) = ϕ1(x), ψ(T, x) = ψ1(x), on (0, L)

(73)

is well-posed for any (ϕ1, ψ1) ∈ (L2(0, L))2 and the simple change of variable t =
T − t transforms (73) in (64). Therefore, all the results from Theorems 2.5 and 2.6
hold, with minor changes, for system (73) too.
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3. Exact Boundary Controllability Results: The Linear System

This section is devoted to the analysis of the exact controllability property for the
linear system corresponding to (1) with boundary controls (2). More precisely, given
T > 0 and (u0, v0), (u1, v1) ∈ (L2(0, L))2, we study the existence of four control
functions h1, g1 ∈ H1

0 (0, T ) and h2, g2 ∈ L2(0, T ), such that the solution (u, v) of
the system 

ut + uxxx + avxxx = 0, in (0, T ) × (0, L)

cvt + rvx + bauxxx + vxxx = 0, in (0, T ) × (0, L)

u(0, x) = u0(x), v(0, x) = v0(x), on (0, L)

(74)

with boundary conditions{
u(t, 0) = 0, u(t, L) = h1(t), ux(t, L) = h2(t), on (0, T ),

v(t, 0) = 0, v(t, L) = g1(t), vx(t, L) = g2(t), on (0, T ),
(75)

satisfies

u(T, ·) = u1, v(T, ·) = v1 in L2(0, L). (76)

Definition 3.1. Let T > 0. System (74) is exactly controllable in time T if for
any initial an final data (u0, v0), (u1, v1) ∈ (L2(0, L))2 there exist control functions
h1, g1 ∈ H1

0 (0, T ) and h2, g2 ∈ L2(0, T ) such that the solution (u, v) of (74)–(75)
satisfies (76).

Remark 3.1. Without any lost of generality, we may study only the exact con-
trollability property for the case u0 = v0 = 0. Indeed, let (u0, v0), (u1, v1) be
arbitrarily in (L2(0, L))2 and let h1, g1 ∈ H1

0 (0, T ), h2, g2 ∈ L2(0, T ) be controls
which lead the solution (u, v) of (74) from the zero initial data to the final state
(u1, v1) − S(T )(u0, v0) (we recall that (S(t))t≥0 is the semigroup generated by the
differential operator A corresponding to (74)). It follows immediately that these
controls also lead to the solution (u, v) + S(·)(u0, v0) of (74) from (u0, v0) to the
final state (u1, v1).

From now on, we shall consider only the case u0 = v0 = 0. Firstly, we give an
equivalent condition for the exact controllability property.

Lemma 3.1. Let (u1, v1) ∈ (L2(0, T ))2. Then, there exist controls h1, g1 ∈
H1

0 (0, T ) and h2, g2 ∈ L2(0, T ), such that the solution (u, v) of (74)–(75), satis-
fies (76) if and only if∫ L

0

(bϕ1(x)u1(x) + cψ1(x)v1(x))dx

=
∫ T

0

bh2(t)(ϕx(t, L) + aψx(t, L))dt

+
∫ T

0

g2(t)(abϕx(t, L) + ψx(t, L))dt
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−〈bh1(t), ϕxx(t, L) + aψxx(t, L)〉H1
0×H−1

−〈g1(t), abϕxx(t, L) + ψxx(t, L)〉H1
0×H−1 (77)

for any (ϕ1, ψ1) ∈ (L2(0, L))2, (ϕ, ψ) being the solution of the backward system (73).

Proof. Relation (77) is obtained multiplying (74) by the solution (ϕ, ψ) of (73)
and integrating by parts.

For the study of the controllability property, a fundamental role will be played
by the following observability result

Theorem 3.1. For any L > 0 and T > 0 there exists a positive constant C =
C(L, T ) > 0 such that the inequality

C‖(w1, z1)‖2
(L2(0,L))2

≤ ‖wx(·, L) + azx(·, L)‖2
L2 + ‖abwx(·, L) + zx(t, L)‖2

L2

+ ‖wxx(·, L) + azxx(·, L)‖2
H−1 + ‖abwxx(·, L) + zxx(·, L)‖2

H−1 (78)

holds for any w1, z1 ∈ L2(0, L), where (w, z) is the solution of (73) with initial data
(w1, z1).

Proof. The change of variable t = T−t transforms (73) into (64). Hence, inequality
(78) is equivalent to

C‖(w0, z0)‖2
(L2(0,L))2

≤ ‖wx(·, L) + azx(·, L)‖2
L2 + ‖abwx(·, L) + zx(t, L)‖2

L2

+ ‖wxx(·, L) + azxx(·, L)‖2
H−1 + ‖abwxx(·, L) + zxx(·, L)‖2

H−1 , (79)

for any w0, z0 ∈ L2(0, L), where (w, z) is the solution of (64) with initial data
(w0, z0).

Let us suppose that (79) does not hold. In this case, it follows that there exists
a sequence (w0

n, z
0
n)n≥1 ⊂ (L2(0, L))2 such that

‖(w0
n, z

0
n)‖(L2(0,L))2 = 1, ∀n ≥ 1 (80)

and
lim

n→∞(‖(wn)x(·, L) + a(zn)x(·, L)‖2
L2 + ‖ab(wn)x(·, L) + (zn)x(·, L)‖2

L2) = 0,

lim
n→∞(‖(wn)xx(·, L) + a(zn)xx(·, L)‖2

H−1

+ ‖ab(wn)xx(·, L) + (zn)xx(·, L)‖2
H−1) = 0,

(81)

where (wn, zn) is the solution of (64) with initial data (w0
n, z

0
n).

Since (1 − a2b) > 0, from (81) we deduce that

lim
n→∞((wn)x(·, L)) = 0 and lim

n→∞((zn)x(·, L)) = 0 in L2(0, T )

lim
n→∞((wn)xx(·, L)) = 0 and lim

n→∞((zn)xx(·, L)) = 0 in H−1(0, T ).
(82)
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From Theorem 2.5, we obtain that (wn, zn)n≥1 is bounded in (L2(0, T ;
H1(0, L)))2 and from (64), we have that ((wn)t, (zn)t)n≥1 is bounded in (L2(0, T ;
H−2(0, L)))2.

Since H1(0, L) ⊂ L2(0, L) ⊂ H−2(0, L) and the first embedding is compact,
it follows that (wn, zn)n≥1 is relatively compact in L2(0, T ; (L2(0, L))2). There-
fore, there exists a subsequence, still denoted by the same index, which converges
to (w, z) in L2(0, T ; (L2(0, L))2).

Now, from (68) and the above convergences, we deduce that (w0
n, z

0
n)n≥1 is

a Cauchy sequence in (L2(0, L))2. Hence, it converges to (w0, z0) ∈ (L2(0, L))2.
Moreover, (w, z) ∈ C([0, T ]; (L2(0, L))2) is a weak solution of (64) and

w(0, ·) = w0 and z(0, ·) = z0. (83)

Indeed, if (ŵ, ẑ) ∈ C([0, T ]; (L2(0, L))2) is the solution of (64) with data
(w0, z0) ∈ (L2(0, L))2, then

‖(ŵ, ẑ) − (w, z)‖L2(0,T ;(L2(0,L))2)

≤ ‖(ŵ, ẑ) − (wn, zn)‖L2(0,T ;(L2(0,L))2) + ‖(wn, zn) − (w, z)‖L2(0,T ;(L2(0,L))2)

≤ C‖(w0, z0) − (w0
n, z

0
n)‖(L2(0,L))2 + ‖(wn, zn) − (w, z)‖L2(0,T ;(L2(0,L))2).

The last expression tends to zero when n goes to infinity and (83) follows. On
the other hand, since ‖(w0

n, z
0
n)‖(L2(0,L))2 = 1, for all n ≥ 1, it follows that

‖(w0, z0)‖(L2(0,L))2 = 1. (84)

From (67), and (69), we deduce that

(wn)x(·, 0) → wx(·, L) and (zn)x(·, L) → zx(·, L)

in L2(0, T ), as n→ ∞,

(wn)xx(·, L) → wxx(·, L) and (zn)xx(·, L) → zxx(·, L)

in H−1(0, T ), as n→ ∞
and from (82) we conclude that wx(·, L) = zx(·, L) = wxx(·, L) = zxx(·, L) = 0.

Hence, (w, z) is a solution of

wt − wxxx − azxxx = 0, in (0, L) × (0, T )

czt − rzx − bawxxx − zxxx = 0, in (0, L) × (0, T )

w(0, t) = w(L, t) = wx(0, t) = 0, on (0, T ),

z(0, t) = z(L, t) = zx(0, t) = 0, on (0, T ),

w(x, 0) = w0, z(x, 0) = z0, on (0, L)

(85)

and satisfies

wx(·, L) = zx(·, L) = wxx(·, L) = zxx(·, L) = 0. (86)
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Remark that (84) implies that the solutions of (85)–(86) cannot be identically
zero. Therefore, the proof of the theorem will be complete if we prove the following
unique continuation result:

Lemma 3.2. Let w0, z0 ∈ L2(0, L). Then if

(w, z) is a solution of (85)

(w, z) satisfies (86)

}
⇒ w0 = z0 = 0. (87)

Proof. The additional regularity of the solutions given by Theorem 2.5 allows to
reduce (87) to a unique continuation principle for the eigenfunctions of the system.
This argument was used before in [16, 24].

Let NT be the space of initial data (w0, z0) ∈ (L2(0, L))2 such that the
corresponding solution of (85) satisfies wx(·, L) = zx(·, L) = 0 in L2(0, T )
and wxx(·, L) = zxx(·, L) = 0 in H−1(0, T ). The space NT has the following
properties:

(1) dimNT <∞;
(2) NT ⊂ D(A∗);
(3) If NT �= {0}, then A∗ : NT → NT has at least one (complex) eigenvalue (NT is

the complexification of NT ).

Let us prove these properties of the space NT .

(1) As above, we deduce that any bounded set in NT is relatively compact. Then,
it follows that the unit ball is relatively compact in NT and therefore NT has
finite dimension.

(2) First of all let us remark that T1 < T implies NT ⊂ NT1 . On the other hand,
since dim(NT ) <∞, there exists T1 > 0 and ε > 0 such that

NT1 = Nt, ∀ t ∈ [T1, T1 + ε].

We shall prove that NT1 ⊂ D(A∗). Let y ∈ NT1 and let {S∗(t)}t≥0 be the
semigroup generated by the operator A∗. We have that

y ∈ D(A∗) ⇔ lim
t→0

S∗(t)y − y

h
exists in (L2(0, L))2.

We obtain immediately that, for t sufficiently small,

S∗(t)y − y

h
∈ NT1 .

On the other hand, from the extrapolation theory (see [5, p. 27]), we deduce
that there exists a Banach space Y such that (L2(0, L))2 ⊂ Y and

S∗(·)(y) ∈ C1([0, T ], Y ).
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Hence,

lim
t→0

S∗(t)y − y

h

exists in Y . But, NT1 ⊂ (L2(0, L))2 ⊂ Y and, since dim(NT1) < ∞, the norms
induced from (L2(0, L))2 and Y on NT1 are equivalent. Consequently, it follows
that

lim
t→0

S∗(t)y − y

h

exists in (L2(0, L))2 and therefore y ∈ D(A∗).
(3) Since A∗ is a linear operator defined in a finite dimensional space the property

follows immediately.

Remark that the unique continuation principle (87) does not hold if and only if
NT �= {0} or, equivalently,

there exists λ ∈ C and (w, z) ∈ NT such that (w, z) �= 0 and A∗(w, z) = λ(w, z).

(88)

Note that (88) means that there exists a nontrivial solution (w, z) of the system
λw − wxxx − azxxx = 0, in (0, L)

cλz − rzx − bawxxx − zxxx = 0, in (0, L)

w(0) = w(L) = wx(0) = wx(L) = wxx(L) = 0,

z(0) = z(L) = zx(0) = zx(L) = zxx(L) = 0.

(89)

To conclude the proof of the Lemma 3.2, the following result is needed.

Lemma 3.3. If (λ, (w, z)) is a solution of (89), then

w = z = 0. (90)

Proof. Let us remark that λ = 0 is not a solution of (88). Indeed, λ = 0 implies
that 

wxxx + azxxx = 0, in (0, L)

rzx + bawxxx + zxxx = 0, in (0, L)

w(0) = w(L) = wx(0) = wxx(0) = 0,

z(0) = z(L) = zx(0) = zxx(0) = 0.

(91)

By noting zx = ζ, we obtain that ζ satisfies{
(a2b− 1)ζxx − rζ = 0, in (0, L)

ζ(0) = ζx(0) = 0.
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The unique solution of the last equation is ζ = 0 (and consequently w = z = 0),
hence λ = 0 is not a solution of (88).

Now, we introduce the Fourier transforms of w and z,

ŵ(ξ) =
∫ L

0

w(x)eixξdx, ẑ(ξ) =
∫ L

0

z(x)eixξdx.

Thus ŵ and ẑ are entire functions.
By multiplying the first and second equations in (89) eixξ and integrating by

parts, we obtain {
(λ− iξ3)ŵ(ξ) − iξ3aẑ(ξ) = α′

1 + aβ′
1

(λc− iξ3 + irξ)ẑ(ξ) − iξ3abŵ(ξ) = abα′
1 + β′

1

(92)

where α′
1 = −wxx(0) and β′

1 = −zxx(0) are complex values. Remark that α′
1 and

β′
1 determine uniquely ŵ and ẑ and, consequently, w and z.

Also we have that

w = z = 0 ⇔ α′
1 = β′

1 = 0.

By eliminating ŵ from (92), we obtain the identity

[(λ− iξ3)(λc− iξ3 + irξ) + a2bξ6]ẑ

= [(iabξ3)(α′
1 + aβ′

1) + (λ − iξ3)(abα′
1 + β′

1)]. (93)

Let us denote{
Pλ(ξ) = (a2b− 1)ξ6 + rξ4 − iλ(1 + c)ξ3 + irλξ + λ2c,

Qλ(ξ, L) = [(iabξ3)(α′
1 + aβ′

1) + (λ− iξ3)(abα′
1 + β′

1)],

from (93) we obtain that,

Pλ(ξ)ẑ(ξ) = Qλ(ξ, L). (94)

Since ẑ is an entire function, it follows that all the roots of Pλ are also roots of
Qλ. Furthermore, the following properties of Pλ are evident:

(1) The polynomial Pλ has degree 6 (since (1 − a2b) > 0).
(2) There is no root of Pλ with multiplicity 6 (since there is no term containing ξ5).

On the other hand, the polynomial Qλ has the properties:

(1) The polynomial Qλ has degree 3.
(2) There is no root of Qλ with multiplicity 3 (since there is no term containing ξ2).

Since the degree of Qλ is smaller than the degree of Pλ, we conclude that ẑ is
an entire function if Qλ = 0 or equivalently α′

1 = β′
1 = 0.

Therefore we have that w = z = 0, which completes the proofs of the lemmas
and of Theorem 3.1.
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The following theorem solves the control problem (74)–(75):

Theorem 3.2. Let T > 0 and L > 0. Then system (74)–(75) is exactly controllable
in time T .

Proof. Let us define the following functional

J(w1, z1) =
1
2
(‖b(wxx(·, L) + azxx(·, L))‖2

H−1 + ‖abwxx(·, L) + zxx(·, L)‖2
H−1)

+
1
2
(‖b(wx(·, L) + azx(·, L))‖2

L2 + ‖abwx(·, L) + zx(·, L)‖2
L2)

−
∫ L

0

[bu1(x)w1(x) + cv1(x)z1(x)]dx, (95)

where (w1, z1) ∈ (L2(0, L))2 and (w, z) is the solution of the backward system (73)
with initial data (w1, z1).

Let (ŵ1, ẑ1) ∈ (L2(0, L))2 be a minimizer of J . By differentiating J , we obtain
that (77) is satisfied with h1, g1 ∈ H1

0 (0, T ) being the unique solutions of

〈bŵxx(t, L) + aẑxx(t, L), ψ〉 =
∫ T

0

(h1)t(t)ψt(t)dt, ∀ψ ∈ H1
0 (0, T )

〈abŵxx(t, L) + ẑxx(t, L), ψ〉 =
∫ T

0

(g1)t(t)ψt(t)dt, ∀ψ ∈ H1
0 (0, T )

and h2(t) = bŵx(t, L)+aẑx(t, L), g2(t) = abŵx(t, L)+ ẑx(t, L). Above, 〈·, ·〉 denotes
the duality product between H−1(0, T ) and H1

0 (0, T ).
Remark that h1, g1 ∈ H1

0 (0, T ) and h2, g2 ∈ L2(0, T ). Hence, in order to get
the controllability result it is sufficient to prove that J has at least one minimum
point. But J is a continuous and convex function in (L2(0, L))2. Which guarantees
that the map J has a minimum if it is coercive. This is a direct consequence of the
observability inequality given by Theorem 3.1 and the proof ends.

4. Boundary Controllability Result: The Nonlinear System

Now we can study the controllability of the nonlinear system (1). Note that the
solutions of (1) can be written as

(u, v) = S(t)(u0, v0) + (ϕ, ψ) + (η, ζ), (96)

where S(t) is the semigroup associated to the linear part of the system and
(ϕ, ψ), (η, ζ) verify

ϕt + ϕxxx + a3ψxxx = f1, in (0, T )× (0, L)

b1ψt + rψx + b2a3ϕxxx + ψxxx = f2, in (0, T )× (0, L)

ϕ(t, 0) = 0, ϕ(t, L) = 0, ϕx(t, L) = 0, on (0, T ),

ψ(t, 0) = 0, ψ(t, L) = 0, ψx(t, L) = 0, on (0, T ),

ϕ(0, x) = 0, ψ(0, x) = 0, on (0, L),

(97)
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and 

ηt + ηxxx + a3ζxxx = 0, in (0, T )× (0, L)

b1ζt + rζx + b2a3ηxxx + ζxxx = 0, in (0, T )× (0, L)

η(t, 0) = 0, η(t, L) = h1, ηx(t, L) = h2, on (0, T ),

ζ(t, 0) = 0, ζ(t, L) = g1, ζx(t, L) = g2, on (0, T ),

η(0, x) = 0, ζ(0, x) = 0, on (0, L),

(98)

respectively, with f1 = −(uux + a1vvx + a2(uv)x) and f2 = −(vvx + b2a2uux +
b2a1(uv)x).

In order to simplify the notation, we consider the following spaces:

X = L2(0, T, (H1(0, L))2) ∩ C([0, T ]; (L2(0, L))2),

Y = L1(0, T, (L2(0, L))2),

Z = L2(0, T, (H1(0, L))2).

(99)

The following results will be needed to study the solutions of (97).

Proposition 4.1. If u, v ∈ L2(0, T ;H1(0, L)), then uux, vvx, uvx, uxv ∈ L1(0, T ;
L2(0, L)), the map

(u, v) ∈ L2(0, T, (H1(0, L))2) → (uux, vvx, uvx, uxv) ∈ L1(0, T, (L2(0, L))4)

is continuous and there exists a constant c > 0 such that

‖(uux, vvx, uvx, uxv)‖L1(0,T ;(L2(0,L))4)

≤ c[‖u‖2
L2(0,T ;H1(0,L)) + ‖v‖2

L2(0,T ;H1(0,L))]. (100)

Moreover, for any (f1, f2) ∈ L1(0, T, (L2(0, L))2) there exists a unique solution

(ϕ, ψ) ∈ L2(0, T, (H1(0, L))2) ∩C([0, T ]; (L2(0, L))2)

of (97) and the map

(f1, f2) ∈ L1(0, T, (L2(0, L))2)

→ (ϕ, ψ) ∈ L2(0, T, (H1(0, L))2) ∩ C([0, T ]; (L2(0, L))2)

is continuous.

Proof. The proof is analogous to the proof of [24, Proposition 4.1] and therefore
we omit it.

Let us now define the maps

Θ1 : L1(0, T ; (L2(0, L))2) → C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2),

Θ1(f1, f2) = (ϕ, ψ),

where (ϕ, ψ) is the unique solution of (97) with nonhomogeneous term (f1, f2) and

Θ2 : (H1
0 (0, T ))2 × (L2(0, T ))2 → C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2),

Θ2((h1, g1), (h2, g2)) = (η, ζ),

where (η, ζ) is the unique solution (98) with nonhomogeneous terms (h, g).
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From Proposition 4.1 and Theorem 2.4, it follows that Θ1 and Θ2 are continuous,
linear and well-defined maps. Therefore, the existence and uniqueness of solutions
of the nonlinear system (1) can be proved easily if the initial data and the boundary
conditions are small enough.

Theorem 4.1. There exists δ > 0 such that for any

‖(u0, v0)‖(L2(0,L))2 ≤ δ and ‖(h1, g1)‖(H1
0 (0,T ))2 , ‖(h2, g2)‖(L2(0,T ))2 ≤ δ,

system (1) has a unique solution

(u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H1(0, L))2) ∩H1(0, T ; (H−2(0, L))2).

Proof. Let us define the map

G : L2(0, T ; (H1(0, L))2) → L2(0, T ; (H1(0, L))2) ∩ C([0, T ]; (L2(0, L))2)

G(u, v) = S(·)(u0, v0) + Θ1(f1, f2) + Θ2((h1, g1), (h2, g2)),
(101)

where

f1 = −(uux + a1vvx + a2(uv)x),
f2 = −(vvx + b2a2uux + b2a1(uv)x).

(102)

By using the continuity of the maps Θ1 and Θ2 and estimate (100), it is
easy to see that G has a unique fixed point (u, v) ∈ L2(0, T ; (H1(0, L))2) ∩
C([0, T ]; (L2(0, L))2). This fixed point is the unique solution of system (1).

Now we can prove the main result of this work.

Proof of Theorem 1.1. To prove this result we apply a fixed point argument for
a suitable map. First, let us define

Γ : (L2(0, L))2 → (H1
0 (0, T ))2 × (L2(0, T ))2,

Γ(u1, v1) = (ϑ1, τ1, ϑ2, τ2)

where ϑ1, τ1 ∈ H1
0 (0, T ) and ϑ2, τ2 ∈ L2(0, T ) are the controls given by Theorem 3.2

which lead the solution of (74)–(75) from the initial data (0, 0) to the final state
(u1, v1).

More precisely, if (ŵ1, ẑ1) ∈ (L2(0, L))2 is the minimizer of the functional J
defined in Theorem 3.2 and (ŵ, ẑ) is the solution of the backward system (73) with
initial data (ŵ1, ẑ1), then ϑ1, τ1 ∈ H1

0 (0, T ) and ϑ2, τ2 ∈ L2(0, T ) are given by

〈bŵxx(t, L) + aẑxx(t, L), ψ〉 =
∫ T

0

(ϑ1)t(t)ψt(t)dt, ∀ψ ∈ H1
0 (0, T ),

〈abŵxx(t, L) + ẑxx(t, L), ψ〉 =
∫ T

0

(τ1)t(t)ψt(t)dt, ∀ψ ∈ H1
0 (0, T ),

ϑ2(t) = bŵx(t, L) + aẑx(t, L),

τ2(t) = abŵx(t, L) + ẑx(t, L).
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Since J(ŵ1, ẑ1) ≤ J(0, 0) = 0, from observability inequality (78) we deduce that
Γ is continuous.

We define now the operator

F : L2(0, T ; (H1(0, L))2) → L2(0, T ; (H1(0, L))2) ∩ C([0, T ]; (L2(0, L))2)

F (u, v) = S(·)(u0, v0) + Θ2 ◦ Γ((u1, v1) − S(T )(u0, v0)

+ Θ1(−f1,−f2)(T, ·)) + Θ1(f1, f2),

where (f1, f2) are given by (102).
Remark that, if (u, v) is a fixed point of F , then (u, v) is a solution of (1) and

satisfies

(u(T, x), v(T, x)) = (u1, v1),

that is, system (1) is controllable by (u1, v1).
We prove that there exists δ > 0, small enough, such that if

‖(u0, v0)‖(L2(0,L))2 ≤ δ and ‖(u1, v1)‖(L2(0,L))2 ≤ δ,

the map F has a fixed point. To do this, it is sufficient to show that there exists
R > 0, with the following properties:

• F (B(0, R)) ⊂ B(0, R) ⊂ L2(0, T ; (H1(0, L))2).
• There exits a constant c ∈ (0, 1) such that

‖F (u, v) − F (û, v̂)‖X ≤ c‖(u, v) − (û, v̂)‖X , ∀ (u, v), (û, v̂) ∈ B(0, R)

where B(0, R) is the closed ball of radius R in L2(0, T ; (H1(0, L))2). Since Θ1, Θ2

and Γ are continuous, there exist positive constants K1,K2,K such that

‖Θ1(f1, f2)‖X ≤ K1‖(f1, f2)‖Y ,

‖Θ2((h1, g1), (h2, g2))‖X ≤ K2‖((h1, g1), (h2, g2))‖(H1
0 (0,T ))2×(L2(0,T ))2 ,

‖Γ(u1, v1)‖(H1
0 (0,T ))2×(L2(0,T ))2 ≤ K‖(u1, v1)‖(L2(0,T ))2 .

(103)

Let R > 0 (R will be chosen latter on) and let (u, v) ∈ B(0, R) ⊂
L2(0, T ; (H1(0, L))2). We have that

‖F (u, v)‖X ≤ ‖(u0, v0)‖(L2(0,L))2 +K2K‖(u1, v1) − S(T )(u0, v0)

+ Θ1(−f1,−f2)(T, ·)‖(L2(0,L))2 +K1‖(f1, f2)‖Y

≤ δ + 2K2Kδ +K1KK2C
′‖(u, v)‖2

X + C′K1‖(u, v)‖2
X

≤ δ + 2K2Kδ + (KK2 + 1)C′K1R
2. (104)

Therefore, F (B(0, R)) ⊂ B(0, R) for any R > 0 such that

(1 + 2K2K)δ + (KK2 + 1)K1C
′R2 ≤ R. (105)
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On the other hand, since

F (u, v) − F (û, v̂) = Θ1((f1, f2) − (f̂1, f̂2)) + Θ2 ◦ Γ(Θ1((f̂1, f̂2) − (f1, f2))),

we obtain

‖F (u, v) − F (û, v̂)‖X ≤ K1C
′‖(u, v) − (û, v̂)‖2

X +K1K2KC
′‖(u, v) − (û, v̂)‖2

X

≤ 2K1C
′R(1 +KK2)‖(u, v) − (û, v̂)‖X . (106)

Hence, F is a contraction if R verifies

2RK1C
′(1 +KK2) < 1. (107)

Now, if R satisfies (107), by choosing

δ =
R

2(1 + 2K2K)
, (108)

we have that (105) also holds. Thus, for every (u0, v0), (u1, v1) such that

‖(u0, v0)‖(L2(0,L))2 ≤ δ, ‖(u1, v1)‖(L2(0,L))2 ≤ δ,

the map F has a fixed point and the proof ends.

5. Final Comments and Remarks

• In [18,19], the authors consider a coupled system of Kuramoto–Sivashinsky (KS)
equations in a bounded interval depending on a suitable parameter ν > 0. Intro-
ducing appropriate boundary conditions, they show that the energy of the solu-
tions of the corresponding damped model decays exponentially as t → +∞,
uniformly with respect to the parameter ν > 0. As ν tends to zero, they obtain
a coupled system of Korteweg–de Vries (KdV) equations for which the energy
tends to zero exponentially as well. The decay holds except when the length of the
space interval L lies in a set of critical lengths. It would be interesting to pursue
the analysis of [18, 19] in the context of the exact boundary controllability.

• Recently, Cerpa and Crépeau proved in [8] that, for some critical values of the
length L, the corresponding nonlinear KdV equation is exact controllable. This
suggests that the controllability of system (1) may hold with a smaller number
of controls but this problem is open.

• We mention that if we consider the boundary conditions

u(t, 0) = h1, u(t, L) = ux(t, L) = 0 and v(t, 0) = h2, v(t, L) = vx(t, L) = 0,

with controls h1 and h2, it is possible to prove that the adjoint system satisfies a
unique continuation property for any length L > 0. This implies an approximate
controllability result for the associated linear system. However, we could not
prove the exact boundary controllability for this case.
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