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Abstract This article considers a hyperbolic equation perturbed by a vanishing vis-
cosity term depending on a small parameter ε > 0. We show that the resulting par-
abolic equation is null-controllable. Moreover, we provide uniform estimates, with
respect to ε, for the parabolic controls and we prove their convergence to a control of
the limit hyperbolic equation. The method we use is based on Fourier expansion of
solutions and the analysis of a biorthogonal sequence to a family of complex expo-
nential functions.
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1 Introduction

Given a time T > 0, an initial data u0 and a “profile” f , the null-controllability prop-
erty of the simple 1-D parabolic problem

⎧
⎪⎨

⎪⎩

ut − ∂2
xxu = f (x)v(t), x ∈ (0,π), t > 0,

u(t,0) = u(t,π) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0,π)

(1)

consists of finding a control v such that the corresponding solution u of (1) veri-
fies u(T ) = 0. This problem has been well studied, by using nonharmonic Fourier
analysis and moment problems, in the pioneering articles of Fattorini and Russell
[3, 4]. Their method consists of constructing a control v by means of a biorthogonal
family to the sequence of exponential functions (e−νn t )n≥1, where νn are the eigen-
values of the Dirichlet Laplace operator in (0,π). We recall that a family of functions
(φm)m≥1 ⊂ L2(−T

2 , T
2 ) with the property that

∫ T
2

− T
2

φm(t)e−νn t dt = δmn, ∀m,n ≥ 1, (2)

is a biorthogonal sequence to (e−νn t )n≥1. Once a family (φm)m≥1 verifying (2) is
given, a control v(t) for (1) is obtained by considering linear combinations of func-
tions φm. More precisely, if u0 =∑n≥1 an sin(nx) and f =∑n≥1 f̂n sin(nx), then

v(t) =
∑

n≥1

an

f̂n

φn

(

t − T

2

)

e−νn
T
2 , t ∈ (0, T ) (3)

is a control for (1) in time T , if the series converges in L2(0, T ). Like in [3], in
order to ensure the density in L2(0,1) of the set of null-controllable initial data,
we shall suppose that f̂n �= 0 for each n ∈ N

∗. Note that each biorthogonal element
φn represents a control for one mode initial datum and, therefore, the study of the
biorthogonal sequence’s properties allows to obtain information about the control of
any frequency or range of frequencies. Hence, one may deduce what frequencies are
more difficult to control, estimate the magnitude of the control for any of them and
characterize the spaces of controllable initial data. This is one of the advantages of
the Fourier method’s application in control.

An interesting fact is that, although the norm ‖φn‖L2(− T
2 , T

2 )
increases exponen-

tially with n, the series (3) converges in L2(0, T ) for a large class of Fourier co-

efficients (an)n≥1. This is due to the presence of the negative exponentials e−νn
T
2

which reflects the dissipative effect of the equation. Indeed, given any time T > 0
and supposing that, for any η > 0, lim infn→∞ |f̂n|eηn > 0, it is sufficient to prove
the existence of two positive constants c and ω such that

‖φn‖L2(− T
2 , T

2 )
≤ c eω

√|νn| ∀n ∈ N
∗, (4)
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in order to ensure the absolute convergence of the series in (3) in L2(0, T ) for initial
data u0 in any negative Sobolev space in time T .

A way to obtain the controllability of the parabolic equation (1) from the con-
trollability of a hyperbolic one has been introduced by Russell in [17]. This method
was denominated transmutation method. It has been used in the last years to obtain
controllability results for other types of equations and estimates for different controls
norms (see, for instance, [13–15, 19, 20]). A similar problem was addressed in [10],
where the null controllability property of the heat equation is obtained as limit of
the exact controllability properties of singularly perturbed damped wave equations.
Nevertheless, there are much fewer results concerning the passage from a parabolic
equation to a hyperbolic one. As far as we know, the only papers addressing this type
of questions are [2] and [5], where the controllability of the transport equation is con-
sider by introducing a vanishing viscosity term. In [2] Carleman estimates are used
to obtain a uniform bound for the sequence of controls. The same result was shown
in [5], improving the control time, by means of nonharmonic Fourier analysis and
biorthogonal technique. The main difficulty in this type of problems consists in the
fact that the dissipation vanishes in the limit hyperbolic problem. Therefore, precise
estimates on the behavior of the biorthogonal’s norm ‖φn‖ are needed to study the
convergence of the series (3) which gives the control.

In this article, we study the possibility to obtain controls of a hyperbolic equation
as a limit of controls of parabolic ones. More precisely, we consider the equation

⎧
⎪⎨

⎪⎩

ut + i(−∂2
xx)

1
2 u − ε∂2

xxu = f (x)vε(t), x ∈ (0,π), t > 0,

u(t,0) = u(t,π) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0,π),

(5)

and we address the following controllability problem: given T > 0, f ∈ L2(0,π) and
u0 ∈ L2(0,π), is there a control vε ∈ L2(0, T ), such that the corresponding solution
u of (5) verifies u(T , x) = 0, x ∈ (0,π)? Moreover, what happens with the controls
vε when ε → 0+?

In order to give an answer to these questions we need some notation. Here and in
what follows (−∂2

xx)
α denotes the fractional power of order α > 0 of the Dirichlet

Laplacian in (0,π). More precisely,

(−∂2
xx)

α : D((−∂2
xx)

α) ⊂ L2(0,π) → L2(0,π),

D((−∂2
xx)

α) =
{

u ∈ L2(0,π) : u =
∑

n≥1

an sin(nx) and
∑

n≥1

|an|2n4α < ∞
}

, (6)

u(x) =
∑

n≥1

an sin(nx) −→ (−∂2
xx)

αu(x) =
∑

n≥1

ann
2α sin(nx).

For any h ∈ L2(0,π) we shall denote ĥn = ∫ π

0 h(x) sin(nx)dx. Let f ∈ L2(0,π)

be such that

f̂n �= 0 ∀n ≥ 1 (7)
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and define the space

H =
{

h ∈ L2(0,π) :
∑

n∈N∗

∣
∣
∣
∣
ĥn

f̂n

∣
∣
∣
∣

2

< ∞
}

. (8)

The main result of our paper is the following one.

Theorem 1.1 Let f ∈ L2(0,π) be a function verifying (7). There exists a time T > 0
with the property that, for any u0 ∈ H and ε > 0, there exists a control vε ∈ L2(0, T )

of (5) such that the sequence (vε)ε>0 is uniformly bounded in L2(0, T ) and any weak
limit v of it, as ε → 0+, is a control in time T for the equation

⎧
⎪⎨

⎪⎩

ut + i(−∂2
xx)

1
2 u = f (x)v(t), x ∈ (0,π), t > 0,

u(t,0) = u(t,π) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0,π).

(9)

Note that (5) is of parabolic type, whereas (9) is hyperbolic. Therefore, we are
dealing with a singular problem in which we try to approximate controls of the limit
equation (9) by controls of (5). From this point of view, this work is similar to the
works [2, 5] mentioned above. Also, somehow related is [11], where the controlla-
bility of the semi-discrete wave equation is studied by adding a vanishing viscosity
term (see, also, [23]).

We remark that the method we employ here is similar to the one used in [5]. More
precisely, for each ε > 0, we construct a control vε for the parabolic problem (5), and
we obtain the uniform boundedness of the sequence (vε)ε>0 in L2(0, T ). Nextly, a
classical (weak) limit argument allows us to obtain the desired result. As in [3, 4], the
controls vε are given in terms of a biorthogonal sequence, by a formula similar to (3).

The eigenvalues of the operator corresponding to (5) are μn = in − εn2, n ≥ 1.
Note that this family is slightly more complicated than the one in [5], where all the
eigenvalues are purely real. The main difficulty in our study is related to the fact that
limε→0 (μn) = 0 for each n ≥ 1. Indeed, in order to prove the convergence result
from Theorem 1.1, we need estimates of the biorthogonal’s norm of the type

‖φn‖L2(− T
2 , T

2 )
≤ c eω |(μn)| ∀n ∈ N

∗, (10)

where c and ω are positive constants independent of ε. Note that, for n ≤ 1√
ε
, the real

part of μn is uniformly bounded in n and ε and a similar property must be satisfies
by ‖φn‖L2 . Hence, estimates (10) are harder to prove than (4).

As in [3, 4], it is easy to show that there exist controls vε for (5), analytic in (0, T ).
On the other hand, the controls v of (9) may belong to L2(0, T ) only. Therefore, the
approximation of v by vε may be very useful in certain numerical tasks.

Equation (5) is inspired from [9], where the fractional Schrödinger equation is
introduced as a result of extending the Feynman path integral, from the Brownian-like
to Lévy-like quantum mechanical paths. Instead of the second order space derivative
as in the standard Schrödinger equation, [9] considers a space derivative of fractional
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order r ∈ (1,2). Our article takes the limit case r = 1 and adds the vanishing viscosity
term −ε∂2

xx in order to stabilize the system.
The rest of the paper is organized as follows. Section 2 gives the equivalent char-

acterization of the controllability property in terms of a moment problem. In Sect. 3,
a biorthogonal sequence is constructed and evaluated. The final section is devoted to
the proof of the main result and to some comments.

2 The Moment Problem

For the sake of completeness, we first present the main result concerning the well-
posedness of (5).

Theorem 2.1 Given any T > 0, ε ≥ 0, h ∈ L1(0, T ;L2(0,π)) and u0 ∈ L2(0,π),
there exists a unique weak solution u ∈ C([0, T ],L2(0,π)) of the problem

⎧
⎪⎨

⎪⎩

ut + i(−∂2
xx)

1
2 u − ε∂2

xxu = h(t, x), x ∈ (0,π), t ∈ (0, T ),

u(t,0) = u(t,π) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0,π).

Proof Since the operator (D(A),A), where D(A) = D(−∂2
xx) if ε > 0 and D(A) =

(−∂2
xx)

1
2 if ε = 0 and A = i(−∂2

xx)
1
2 − ε∂2

xx , is maximal monotone in L2(0,π), we
apply the classical semigroup theory. �

We can give now the characterization of the controllability property of (5) in terms
of a moment problem. Based in Fourier expansion of the solution, the moment prob-
lems have been widely used in linear control theory. We refer to [1, 8, 22] for a quite
complete discussion on the subject.

Theorem 2.2 Let T > 0, ε ≥ 0, u0 ∈ L2(0,π) and f ∈ L2(0,π) such that

u0(x) =
∞∑

n=1

an sin(nπx) and f (x) =
∞∑

n=1

f̂n sin(nπx).

There exists a control v ∈ L2(0, T ) such that the solution u of (5) verifies u(T , x) = 0
for x ∈ (0,π) if, and only if, v ∈ L2(0, T ) is a solution of

f̂n

∫ T
2

− T
2

v

(

s + T

2

)

esλnds = −e− T
2 λnan ∀n ≥ 1, (11)

where λn = −in + εn2.

Remark 2.1 If the function f introduced in Theorem 2.2 are such that f̂n = 0 for
some n, it is necessary to introduce an additional condition for the initial data u0. In
fact, in this case, (11) implies that the corresponding coefficient an must be equal to
zero in order to ensure the controllability of u0.
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Proof We consider the equation
⎧
⎪⎨

⎪⎩

−ϕt − i(−∂2
xx)ϕ + ε(−∂2

xx)ϕ = 0, x ∈ (0,π), t ∈ (0, T ),

ϕ(t,0) = ϕ(t,π) = 0, t ∈ (0, T ),

ϕ(T , x) = ϕ0(x), x ∈ (0,π),

(12)

and we multiply (5) by ϕ and integrate by parts over (0, T ) × (0,π). It follows that
v ∈ L2(0, T ) is a control for (5) if, and only if, it verifies

∫ T

0
v(t)

∫ π

0
f (x)ϕ(t, x)dxdt = −

∫ π

0
u0(x)ϕ(0, x)dx (13)

for any solution ϕ of (12). Since (sin(nx))n≥1 is a basis of L2(0,π) we have to check
(13) only for the solutions of (12) of the form ϕ(t, x) = e(t−T )λn sin(nx), n ∈ N

∗.
Thus, v is a control for (5) if and only if it verifies (11). �

The notion of biorthogonal family is very useful in the study of moment problems.
We recall that (θm)m≥1 ⊂ L2(−T

2 , T
2 ) is a biorthogonal sequence to the family of

exponential functions (eλnt )n≥1 in L2(−T
2 , T

2 ) iff

∫ T
2

− T
2

θm(t)eλntdt = δnm ∀n,m ≥ 1. (14)

It is easy to see from (11) that, if (θm)m≥1 is a biorthogonal sequence to the family
of exponential functions (eλnt )n≥1 in L2(−T

2 , T
2 ), then a control v of (5) is given by

v(t) =
∞∑

n=1

−an

f̂n

e− T
2 λnθn

(

t − T

2

)

, t ∈ (0, T ), (15)

provided that the right hand series converges in L2(0, T ). Now, the main task is to
show that there exists a biorthogonal sequence (θm)m≥1 and to evaluate its norm in
order to prove the convergence of this series.

3 A Biorthogonal Sequence

The aim of this section is to construct and evaluate an explicit biorthogonal se-
quence to the family (eλnt )n≥1 in L2(−T

2 , T
2 ). In order to do that, we introduce a

family �m(z) of entire functions of exponential type (see, for instance, [21]) such
that �m(iλn) = δmn, where δmn is the Kronecker symbol. Nextly, Paley-Wiener the-
orem gives us a biorthogonal family θm as the inverse Fourier transform of �m. Each
�m is obtained from a Weierstrass product Pm multiplied by a function Mε with a
suitable behavior on real axis. Such a method was used for the first time by Paley
and Wiener [16]. The main difficulty in our analysis is to obtain good estimates for
the behavior of Pm on the real axis, to construct an appropriate multiplier Mε and to
evaluate carefully Mε(iλm) in order to ensure (10).



J Fourier Anal Appl (2011) 17:991–1007 997

For any m ∈ N
∗, we define the function

Pm(z) =
∏

n∈Z∗
|n|�=m

(
1 + zi

λn

)( λn

λn − λm

)
, (16)

where λ−n = λn for n > 0. In what follows we study some of the properties of Pm.

Lemma 3.1 Pm is an entire function of exponential type independent of ε such that

Pm(iλn) = δmn, n ∈ N
∗. (17)

Proof We evaluate the following expressions

Em(z) =
∏

n∈Z∗
|n|�=m

∣
∣
∣
∣1 + zi

λn

∣
∣
∣
∣ and Qm =

∏

n∈Z∗
|n|�=m

∣
∣
∣
∣

λn

λn − λm

∣
∣
∣
∣ .

For any z ∈ C, we have that

Em(z) = exp

(
Nz∑

n=1

ln

∣
∣
∣
∣1 − z2

|λn|2 + 2iz
(

1

λn

)∣
∣
∣
∣

+
∞∑

n=Nz+1

ln

∣
∣
∣
∣1 − z2

|λn|2 + 2iz
(

1

λn

)∣
∣
∣
∣

)

= exp(A(z) + B(z)), (18)

where Nz is defined by

Nz = max

{

N ≥ 1 :
∣
∣
∣
∣2z

(
1

λn

)∣
∣
∣
∣≤

|z|2
|λn|2 , ∀n ≤ N

}

.

Then

A(z) ≤
Nz∑

n=1

ln

(

1 + 2|z|2
|λn|2

)

≤
Nz∑

n=1

ln

(

1 + 2|z|2
n2

)

≤
∫ ∞

0
ln

(

1 + 2|z|2
s2

)

ds

=
√

2

2
π |z| (19)

and

B(z) ≤
∞∑

n=Nz+1

ln

(

1 + 4|z|
∣
∣
∣
∣
(

1

λn

)∣
∣
∣
∣

)

≤
∞∑

n=Nz+1

4|z|
∣
∣
∣
∣
(

1

λn

)∣
∣
∣
∣≤ 8|z|. (20)



998 J Fourier Anal Appl (2011) 17:991–1007

The last inequality from (20) follows from the fact that

∑

n≥1


(

1

λn

)

=
∑

n≥1

εn2

ε2n4 + n2
≤

[ 1
ε
]

∑

n=1

εn2

n2
+

∞∑

n=[ 1
ε
]+1

εn2

ε2n4
≤ 2.

Finally, for Qm we obtain

|Qm|2 =
∏

n∈N∗
n�=m

(n2 + ε2n4)2

[(n − m)2 + ε2(n2 − m2)2][(n + m)2 + ε2(n2 − m2)2]

=
∏

n∈N∗
n�=m

n4(1 + ε2n2)2

(n + m)2(n − m)2[1 + ε2(n + m)2][1 + ε2(n − m)2]

=
∏

n∈N∗
n�=m

n4

(n − m)2(n + m)2

∏

n∈N∗
n�=m

(1 + ε2n2)2

[1 + ε2(m + n)2][1 + ε2(n − m)2]

= 4
1 + 4ε2m2

1 + ε2m2
. (21)

This completes the proof. �

The following result is the key estimate which allows to construct the biorthog-
onal sequence we intend to obtain. Roughly speaking, we need to ensure that Pm is
uniformly bounded inside a sufficiently long interval I (ε), centered in 0, and that it
does not increase very rapidly outside I (ε).

Lemma 3.2 The function Pm defined by (16) has the following behavior on the real
axis

|Pm(x)| ≤ C exp (ωϕ(x)) ∀x ∈ R, (22)

where C and ω are two positive constants, independent of ε and m, and

ϕ(x) =
{

εx2 if |x| ≤ 1
ε
,

√
|x|
ε

if |x| > 1
ε
.

(23)

Proof Since |Pm(x)| = Em(x)Qm and, from (21), Qm ≤ 16, it is enough to evaluate
Em(x). In the sequel, c denotes a generic constant which may changes from one row
to another but it is always independent of m and ε.

To begin with, we evaluate Em on the real axis in the case |x| < 1
ε

. For any x �=
|λn|, |x| < 1

ε
, we set

(Em)2(x) =
∏

n∈N∗
n�=m

∣
∣
∣
∣1 + xi

λn

∣
∣
∣
∣

2 ∣∣
∣
∣1 + xi

λn

∣
∣
∣
∣

2
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= |λm|4
(|λm|2 − x2)2

∏

n∈N∗
n�=m

(|λn|2 − x2)2 + 4x2((λn))
2

(|λn|2 − x2)2

×
∏

n∈N∗

(|λn|2 − x2)2

|λn|4 . (24)

Let xε be the unique positive solution of the equation x2 = x2
ε + ε2x4

ε . Firstly, note
that

|λm|4
(|λm|2 − x2)2

≤ m2

(m − xε)2
. (25)

Let Am(x) be the first product from (24). Then,

Am(x) =
∏

n∈N∗
n�=m

(|λn|2 − x2)2 + 4x2((λn))
2

(|λn|2 − x2)2

≤
[xε]∏

n=1
n�=m

(

1 + 4ε2n4x2

(x2 − n2 − ε2n4)2

) ∞∏

n=1+[xε ]
n�=m

(

1 + 4ε2n4x2

(x2 − n2 − ε2n4)2

)

= A1
m(x)A2

m(x). (26)

Here and in the sequel we denote by [r] and {r} the integer and fractional part of the
real number r , respectively. Now we have

A1
m(x) =

[xε]∏

n=1
n�=m

(

1 + 4ε2n4x2

((x2
ε − n2) + ε2(x2

ε − n4))2

)

≤
[xε]∏

n=1
n�=m

(

1 + n2

(xε − n)2

4ε2x2
ε

1 + ε2x2
ε

)

≤ d1εe
2εx2

exp

(∫ xε

0
ln

(

1 + s2

(xε − s)2

4ε2x2
ε

1 + ε2x2
ε

)

ds

)

≤ d1ε exp(cεx2), (27)

where d1ε = 1 if [xε] = m or d1ε = 1
{xε}2 if [xε] �= m.

Let us analyze A2
m(x).

A2
m(x) =

∞∏

n=[xε ]+1
n�=m

(

1 + 4ε2n4x2

(n − xε)2(n + xε)2(1 + ε2(n2 + x2
ε ))2

)

≤
[ 2
ε
]

∏

n=[xε ]+1
n�=m

(

1 + 4ε2n2x2

(n − xε)2(1 + ε2n2)2

) ∞∏

n=[ 2
ε
]+1

(

1 + 4ε2n2x2

(n − xε)2(1 + ε2n2)2

)

= A21
m (x)A22

m (x). (28)
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Then,

A22
m (x) ≤

∞∏

n=[ 2
ε
]+1

(

1 + 4ε2n2x2

(n − xε)2ε4n4

)

≤
∞∏

n=[ 2
ε
]+1

(

1 + x2

(n − xε)2

)

≤ exp

(∫ ∞

[ 2
ε
]

ln

(

1 + x2

(s − xε)2

)

ds

)

≤ exp

(∫ ∞

[ 2
ε
]

x2

(s − xε)2
ds

)

≤ exp

(
x2ε

1 − ε

)

(29)

and

A21
m (x) ≤

[ 2
ε
]

∏

n=[xε ]+1
n�=m

(

1 + 4ε2n2x2

(n − xε)2

)

≤ d2εe
2εx2

exp

(∫ [ 2
ε
]

[xε]+1
ln

(

1 + 4ε2s2x2

(s − xε)2

)

ds

)

≤ d2εe
2εx2

exp

(∫ 2
ε

xε

ln

(

1 + 4ε2s2x2

(s − xε)2

)

ds

)

≤ d2ε exp(c ε x2), (30)

where d2ε = 1 if [xε] = m − 1 or d2ε = 1
(1−{xε})2 if [xε] �= m − 1.

From (26) up to (30) we deduce the existence of two positive constants C1 and ω1,
independent of ε and m, such that

Am(x) ≤ C1 d1εd2ε exp(ω1εx
2) ∀|x| ≤ 1

ε
. (31)

Now, let Bm(x) be the second product from (24). We obtain that

Bm(x) =
∏

n∈N∗

(|λn|2 − x2)2

|λn|4 =
∏

n∈N∗

(

1 − x2
ε

n2

)2 ∏

n∈N∗

(

1 + ε2x2
ε

1 + ε2n2

)2

= sin2(πxε)

π2 x2
ε

∏

n∈N∗

(

1 + ε2x2
ε

1 + ε2n2

)2

. (32)

In order to estimate the last product from (32) we remark that

∏

n∈N∗

(

1 + ε2x2
ε

1 + ε2n2

)2

≤ exp

(∫ ∞

0
ln

(

1 + ε2x2
ε

1 + ε2s2

)

ds

)

≤ exp

(∫ ∞

0

ε2x2
ε

1 + ε2s2
ds

)

= exp

(
π

2
εx2

ε

)

≤ exp

(
π

2
εx2
)

. (33)
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From (32) and (33) we deduce the existence of two positive constants C2 and ω2,
independent of ε and m, such that

Bm(x) ≤ C2
sin2(πxε)

x2
ε

exp(ω2εx
2) ∀|x| ≤ 1

ε
. (34)

Note that there exists a positive constant C3, independent of ε and m, such that

d1εd2ε

sin2(πxε)

x2
ε

m2

(m − xε)2
≤ C3. (35)

Finally, estimates (25), (31), (34) and (35) ensure that there exist two positive
constants C and ω, independent of ε and m, such that

Em(x) ≤ C exp(ω ε x2) ∀|x| ≤ 1

ε
. (36)

To conclude the proof it remains to evaluate the product Em(x) for the case
|x| ≥ 1

ε
. We note that

(Em)2(x) =
∏

n∈N∗
n�=m

(|λn|2 − x2)2 + 4x2((λn))
2

|λn|4

≤
∏

n∈N∗

|λn|4 + x4 + 4x2((λn))
2

|λn|4

= exp

(
∑

n∈N∗
ln

(

1 + x4 + 4x2((λn))
2

|λn|4
))

= exp

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

[
1
2

√
|x|
ε

]

∑

n=1

+
∞∑

n=
[

1
2

√
|x|
ε

]
+1

⎞

⎟
⎟
⎠ ln

(

1 + x4 + 4x2((λn))
2

|λn|4
)

⎞

⎟
⎟
⎠

= exp(F 1
m(x) + F 2

m(x)). (37)

We first evaluate F 2
m(x):

F 2
m(x) ≤ 8x2

∞∑

n=
[

1
2

√
|x|
ε

]
+1

|(λn)|2
|λn|4 = 8x2ε2

∞∑

n=
[

1
2

√
|x|
ε

]
+1

1

(1 + ε2n2)2

≤ 8x2ε2
∫ ∞

1
2

√
|x|
ε

1

(1 + ε2x2)2
ds ≤ 8x2ε2

∫ ∞
1
2

√
|x|
ε

1

ε4s4
ds = 3

√ |x|
ε

. (38)
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Now we evaluate F 1
m(x):

F 1
m(x) ≤

[
1
2

√
|x|
ε

]

∑

n=1

ln

(

1 + 2x4

|λn|4
)

≤
∫ 1

2

√
|x|
ε

0
ln

(

1 + 2x4

s4(1 + ε2s2)2

)

ds

≤
∫ 1

2ε

0
ln

(

1 + 2x4

s4

)

ds +
∫ 1

2

√
|x|
ε

1
2ε

ln

(

1 + 2x4

ε4s8

)

ds

≤
∫ 1

2ε

0

8x4

s4 + 2x4
ds + 1

2

√ |x|
ε

ln(1 + 29) +
∫ 1

2

√
|x|
ε

1
2ε

16x4

ε4s8 + 2x4
ds

≤ c

√ |x|
ε

. (39)

From (37)–(39) we deduce that there exist two positive constants C and ω, inde-
pendent of ε and m, such that

Em(x) ≤ C exp

(

ω

√ |x|
ε

)

∀|x| > 1

ε
. (40)

By taking into account (36) and (40) the Lemma is proved. �

In order to complete the construction of the biorthogonal sequence we have to
find a multiplier to compensate the growth of Pm on the real axis. We use an idea of
Ingham [6], generalized by Redheffer [18].

Lemma 3.3 There exists a function Mε : C → C with the following properties

1. Mε is an entire function of exponential type independent of ε and m;
2. |Mε(x)| ≤ exp(−Qϕ(x)), for all x ∈ R;
3. |Mε(iλm)| ≥ exp(−R |(λm)|), for all m ∈ N

∗,

where Q and R are positive constants independent of ε and m.

Proof Let (ρn)n≥1 be the nonincreasing sequence defined by

ρn =
{

eε, n ≤ 1
ε
,

e

√
1

εn3 , n > 1
ε
.

(41)

Note that ρn = e
ϕ(n)

n2 and there exists a positive number l > 0 independent of ε

such that

∑

n≥1

ρn = e

[ 1
ε
]

∑

n=1

ε + e

∞∑

n=[ 1
ε
]+1

√
1

εn3
≤ l < ∞.
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The function Mε defined by

Mε(z) =
∏

n≥1

sin(ρnz)

ρnz

is an entire function of exponential type less than l.
We pass to evaluate Mε(x) by considering the following two cases:

• |x| > 1
ε

. We consider ν = [
√

|x|
ε

] ≥ [ 1
ε
] and we have that

|Mε(x)| ≤
ν∏

n=1

| sin(ρnx)|
|ρnx| ≤

ν∏

n=1

1

ρn|x| ≤
(

1

ρν |x|
)ν

≤ e−ν ≤ e exp

(

−
√ |x|

ε

)

.

• |x| ≤ 1
ε

. We consider ν = [ 1
ε
] and note that

|Mε(x)| ≤
ν∏

n=1

| sin(ρnx)|
|ρnx| =

( | sin(eεx)|
|eεx|

)ν

.

Since eε|x| ≤ e and sin(t) ≤ t − sin(e)
6e

t3 for all t ∈ [0, e], it follows that

|Mε(x)| ≤
(

1 − sin(e)

6e
(eε|x|)2

)ν

= exp

(

ν ln

(

1 − sin(e)

6e
(eε|x|)2

))

≤ exp

(

−ν
sin(e)

6e
(eε|x|)2

)

≤ e exp

(

−e sin(e)

6
ε|x|2

)

≤ e exp

(

−1

6
ε|x|2

)

.

It follows that

|Mε(x)| ≤ C exp

(

−1

6
ϕ(x)

)

∀x ∈ R, (42)

and property 2. is proved with Q = 1
6 .

We pass now to evaluate Mε(iλm), m ∈ N
∗. Firstly, we remark that, if |b| ≥ |a|,

∣
∣
∣
∣
sin (a + i b)

a + i b

∣
∣
∣
∣

2

= e2b + e−2b − 2 cos(2a)

4(a2 + b2)
= (eb + e−b)2 + 4 sin2(a)

4(a2 + b2)
≥ 1.

Thus, if m ≥ 1
ε

, we get |Mε(iλm)| ≥ 1 and property 3. is verified by any R > 0.
Let us now analyze the case m < 1

ε
. We have that

|Mε(iλm)| =
∞∏

n=1

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣=

∏

ρn|λm|≤1

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣

∏

ρn|λm|>1

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣ .
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We consider first the case ρn|λm| ≤ 1 and note that

| sin(i ρnλm)| ≥ sin(ρn|λm|) ≥ ρn|λm| − (ρn|λm|)3

6

and, consequently,

∏

ρn|λm|≤1

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣ = exp

⎛

⎝
∑

ρn|λm|≤1

ln

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣

⎞

⎠

≥ exp

⎛

⎝
∑

ρn|λm|≤1

ln

(

1 − (ρn|λm|)2

6

)
⎞

⎠

≥ exp

⎛

⎝−|λm|2
3

∑

n≥1

ρ2
n

⎞

⎠ .

Since

∑

n≥1

ρ2
n =

∑

n≤[ 1
ε
]
e2ε2 +

∑

n>[ 1
ε
]
e2 1

εn3
≤ e2ε + e2

ε

∫ ∞

[ 1
ε
]

ds

s3
≤ 4e2ε

and |(λm)| = εm2 > ε
2m2(1 + ε2m2) = ε

2 |λm|2 we obtain

∏

ρn|λm|≤1

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣≥ exp

(

−4e2

3
ε|λm|2

)

≥ exp

(

−8e2

3
|(λm)|

)

. (43)

Now, we pass to the case ρn|λm| > 1 which implies |λm| > 1
ρn

≥ 1
eε

and

|(λm)|
|λm| = εm√

1 + ε2m2
≥ εm√

2
≥ 1

2e
.

Thus,

∏

ρn|λm|>1

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣≥

∏

ρn|λm|>1

2ρn(λm)

2ρn|λm| =
∏

ρn|λm|>1

εm√
1 + ε2m2

≥ exp(−2γ )

where

γ = #

{

n ≥ 1 : ρn >
1

|λm|
}

.

Since |λm| > 1
eε

, γ = [ 3
√

e2

ε
|λm|2] ≤ (λm) and, therefore,

∏

ρn|λm|>1

∣
∣
∣
∣
sin(i ρnλm)

i ρnλm

∣
∣
∣
∣≥ exp (−2(λm)) . (44)
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From (43) and (44) it follows that the function Mε verifies property 3. with R =
8e2

3 + 2 and the proof ends. �

Now, we have all the ingredients needed to show the existence of a biorthogonal
sequence to the family {eλmt }m∈N∗ .

Theorem 3.1 There exists T̃ > 0 independent of ε such that there exists a biorthog-
onal sequence {θm}m∈N∗ to the family {eλmt }m∈N∗ in L2(− T̃

2 , T̃
2 ) with the following

property

‖θm‖
L2(− T̃

2 , T̃
2 )

≤ C exp (α|(λm)|) ∀m ∈ N
∗ (45)

where C and α are two positive constants independent of ε and m.

Proof For any m ∈ N
∗, we define the function

�m(z) = Pm(z)

(
Mε(z)

Mε(iλm)

) ω
Q sin(δ(z − iλm))

δ(z − iλm)
(46)

where δ > 0 is an arbitrary constant and let

θm(t) = 1

2π

∫

R

�m(x)eixt dx. (47)

From Lemmas 3.1 and 3.3 we deduce that there exists T̃ > 0 independent of ε such
that �m is an entire function of exponential type T̃

2 . Moreover, from the estimate of
the function Pm on the real axis given by Lemma 3.2 and the properties of the function
Mε from Lemma 3.3, we obtain that
∫ ∞

−∞
|�m(x)|2dx ≤ C2e

ωR
Q

|(λm)|
∫ ∞

−∞

∣
∣
∣
∣
sin(δ(x − λmi))

δ(x − λmi)

∣
∣
∣
∣

2

dx

= C2

δ
e

ωR
Q

|(λm)|
∫ ∞

−∞

∣
∣
∣
∣
sin(t − iδ(λm))

t − iδ(λm)

∣
∣
∣
∣

2

dt ≤ Ceα|(λm)|.

From Paley-Wiener’s Theorem we deduce that θm ∈ L2(− T̃
2 , T̃

2 ) and Plancherel’s
Theorem gives that (45) holds. �

The following result is inspired in [7] (see also [8, 12, 20]) and it gives the exis-
tence of a new biorthogonal sequence with better norm properties.

Theorem 3.2 There exist α, C and T > 2α, three positive constants independent of
ε, and a biorthogonal sequence {ζm}m∈N∗ to the family {eλmt }m∈N∗ in L2(−T

2 , T
2 )

with the following property

∫ T
2

− T
2

∣
∣
∣
∣
∣

∑

m∈N∗
cmζm(t)

∣
∣
∣
∣
∣

2

dt ≤ C
∑

m∈N∗
|cm|2e2α|(λm)| (48)

for any finite sequence (cm)m∈N∗ .
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Proof Since it is similar to that of Theorem 3.4 from [12], we only give the main
ideas. Let (θm)m≥1 ⊂ (− T̃

2 , T̃
2 ) be the biorthogonal family from Theorem 3.1. For

any a > 0 define ka =
√

2π

a2 (χa ∗ χa), where χa represents the characteristic function

χ[−a/2,a/2]. Evidently supp(ka) ⊂ [−a, a]. We introduce ρm(x) = eix�(λm)ka(x) and
we define

ζm = 1

2πρ̂m(iλm)
θm ∗ ρm, ∀m ≥ 1 (49)

where ρ̂m is the Fourier transform of ρm. Evidently, ζm ∈ L2(− T̃
2 − a, T̃

2 + a). Let
T = T̃ + 2a. From the convolution’s properties, it follows easily that (ζm)m∈N∗ is a
biorthogonal sequence to the family {eλmt }m∈N∗ in L2(−T

2 , T
2 ) and (48) holds. �

4 Controllability Results

We can prove now the main result of our paper.

Proof of Theorem 1.1 Let T > 2α and (ζm)m∈N∗ as in Theorem 3.2. We construct a
control vε ∈ L2(0, T ) of (5) corresponding to the initial data u0 ∈ H given by,

u0(x) =
∑

n∈N∗
an sin(nx) (50)

as follows:

vε(t) =
∞∑

n=1

−an

f̂n

e− T
2 λnζn

(

t − T

2

)

, t ∈ (0, T ). (51)

From the properties of the biorthogonal sequence (ζm)m∈N∗ , it is easy to see that vε

verifies (11). To conclude that vε is a control for (5), we only have to prove that the
series from (51) converges in L2(0, T ). This follows immediately from estimate (48)
and the fact that u0 ∈ H. Indeed, we have that

∫ T

0

∣
∣
∣
∣
∣

∞∑

n=1

an

f̂n

e− T
2 λnζn

(

t − T

2

)∣∣
∣
∣
∣

2

dt ≤ C
∑

n∈N∗

|an|2
|f̂n|2

e(−T +2α)|(λn)| ≤ C.

The constant from the last inequality does not depend of ε. Thus, the sequence
of controls (vε)ε>0 is uniformly bounded in L2(0, T ). Let v be a weak limit of this
sequence. In order to show that v is a control for (9) we only have to pass to the limit
as ε goes to zero in the characterization relation (11). �

Remark 4.1 The optimal time controllability for the limit equation (9) is T0 = 2π .
Probably, Theorem 1.1 is true for any T ≥ T0. From the proof of Theorem 1.1 we only
deduce the existence of a uniform controllability time T independent of ε. Estimates
on T can be explicitly obtained, but it would be difficult to show that T may be any
number greater that T0. This fact has already been noted in [5, 12], where similar
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methods are used. On the other side, if T < T0, equation (9) is not even spectrally
controllable, due to the fact that the family of complex exponentials {eλmt }m≥1 is not
minimal in L2(0, T ) (see, for instance, [1]).

Remark 4.2 The controllable space of initial data, H, depends on the regularity of
the “profile” f . Indeed, functions f with lower regularity will have smaller Fourier
coefficients and consequently the controllable space H will be larger.
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