Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Regularity issues for the null-controllability of the linear 1-d heat equation

Sorin Micu ${ }^{\text {a,* }}$, Enrique Zuazua ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Facultatea de Matematica si Informatica, Universitatea din Craiova, Al. I. Cuza 13, Craiova 200585, Romania
${ }^{\text {b }}$ Basque Center for Applied Mathematics, Bizkaia Technology Park, Building 500, E-48160 Derio, Basque Country, Spain
${ }^{\text {c }}$ IKERBASQUE - Basque Foundation for Science, E-48011 Bilbao, Basque Country, Spain

ARTICLE INFO

Article history:

Received 20 May 2010
Received in revised form
22 March 2011
Accepted 24 March 2011
Available online 27 April 2011

Keywords:

Heat equation
Null-control
Ill-posedness
Moment problem
Biorthogonal family
Regularity

Abstract

The fact that the heat equation is controllable to zero in any bounded domain of the Euclidean space, any time $T>0$ and from any open subset of the boundary is well known. On the other hand, numerical experiments show the ill-posedness of the problem. In this paper we develop a rigorous analysis of the 1-d problem which provides a sharp description of this ill-posedness.

To be more precise, each initial data $y^{0} \in L^{2}(0,1)$ of the $1-\mathrm{d}$ linear heat equation has a boundary control of the minimal $L^{2}(0, T)$-norm which drives the state to zero in time $T>0$. This control is given by a solution of the homogeneous adjoint equation with some initial data $\widehat{\varphi}^{0}$, minimizing a suitable quadratic cost. Our aim is to study the relationship between the regularity of y^{0} and that of $\widehat{\varphi}^{0}$. We show that there are regular data y^{0} for which the corresponding $\widehat{\varphi}^{0}$ are highly irregular, not belonging to any negative exponent Sobolev space. Moreover, the class of such initial data y^{0} is dense in $L^{2}(0,1)$. This explains the severe ill-posedness of the numerical algorithms developed for the approximation of the minimal $L^{2}(0, T)$-norm control of y^{0} based on the computation of $\widehat{\varphi}^{0}$. The lack of polynomial convergence rates for Tychonoff regularization processes is a consequence of this phenomenon too.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given $T>0$ arbitrary, $y^{0} \in L^{2}(0,1)$ and $v \in L^{2}(0, T)$, we consider the following non-homogeneous 1-d heat equation

$$
\begin{cases}y_{t}(t, x)-y_{x x}(t, x)=0 & x \in(0,1), t \in(0, T) \\ y(t, 0)=0, \quad y(t, 1)=v(t) & t \in(0, T) \tag{1}\\ y(0, x)=y^{0}(x) & x \in(0,1) .\end{cases}
$$

In (1) $y=y(t, x)$ is the state and $v=v(t)$ is the control function which acts on the extreme $x=1$. We aim at changing the dynamics of the system by acting on the boundary of the domain $(0,1)$. More precisely, we say that (1) is boundary null-controllable (or controllable to zero) in time T if for each $y^{0} \in L^{2}(0,1)$ there exists $v \in L^{2}(0, T)$ such that the corresponding solution of (1) verifies
$y(T, x)=0 \quad \forall x \in(0,1)$.
There is an extensive literature on this subject. The reader is referred to [1-3] and to the more recent survey article [4].

In the present article we address this control problem in the frame developed in [1,2] where it is reduced to a moment problem which is solved by constructing a biorthogonal sequence to the

[^0]family of exponential functions $\Lambda=\left(\mathrm{e}^{-\lambda_{n} t}\right)_{n \geq 1}$, where λ_{n} are the eigenvalues of the Dirichlet Laplace operator in $(0,1)$, entering in the Fourier expansion of solutions.

When a system is controllable, controls are not unique. Often the control is chosen according to some optimality criterion. Normally, this is accompanied by a systematic method of constructing a uniquely defined control. We thus analyze in this paper the most common control, the one of the minimal $L^{2}(0, T)$ norm. These controls not only are optimal from the viewpoint of their $L^{2}(0, T)$-norm, but they can also be characterized and constructed easily through the adjoint system and a minimization argument. In order to fix some notation, let us briefly describe how these controls are obtained.

Given $T>0$ and $\varphi^{0} \in L^{2}(0,1)$ we consider the adjoint heat equation

$$
\begin{cases}\varphi_{t}+\varphi_{x x}=0 & x \in(0,1), t \in(0, T) \tag{3}\\ \varphi(t, 0)=\varphi(t, 1)=0 & t \in(0, T) \\ \varphi(T, x)=\varphi^{0}(x) & x \in(0,1) .\end{cases}
$$

In view of the regularizing properties of the heat equation, the map
$\varphi^{0} \longrightarrow \sqrt{\int_{0}^{T}\left(\varphi_{x}\right)^{2}(t, 1) \mathrm{d} t}$
which is well defined and continuous in some Sobolev space (for instance $H_{0}^{1}(0,1)$), by unique continuation, is a norm in $L^{2}(0,1)$ (see, for instance, [5] and the references therein).

Furthermore, it is by now well known that the following socalled observability inequality holds for all $T>0$: There exists a constant $C(T)>0$ such that every solution of (3) satisfies:
$\|\varphi(\cdot, 0)\|_{L^{2}(0,1)}^{2} \leq C(T) \int_{0}^{T}\left(\varphi_{x}\right)^{2}(t, 1) \mathrm{d} t$.
We define the Hilbert space \mathscr{H} as the completion of $L^{2}(0,1)$ with respect to the norm (4). Now, we introduce the functional $\mathcal{I}: \mathscr{H} \rightarrow \mathbb{R}$ given by
$\mathcal{L}\left(\varphi^{0}\right)=\frac{1}{2} \int_{0}^{T}\left|\varphi_{x}\right|^{2}(t, 1) \mathrm{d} t-\int_{0}^{1} y^{0}(x) \varphi(0, x) \mathrm{d} x$,
where φ is the solution of (3) with initial data φ^{0}.
It is easy to see that, for all $y^{0} \in L^{2}(0,1), \mathscr{A}$, in view of (5), is coercive in \mathscr{H} and it has a unique minimizer $\widehat{\varphi}^{0} \in \mathscr{H}$. Moreover, the solution $\widehat{\varphi}$ of (3) with initial data $\widehat{\varphi}^{0}$ gives the control of the minimal $L^{2}(0, T)$-norm of (1), as the following well known result guarantees (see, for instance [6,5]).

Proposition 1.1. Let $T>0$. For each $y^{0} \in L^{2}(0,1)$ there exists a unique control of the minimal L^{2}-norm for $E q$. (1), $u \in L^{2}(0, T)$. It is given by
$u(t)=\widehat{\varphi}_{x}(t, 1) \quad t \in(0, T)$,
where $\widehat{\varphi}$ is the solution of the adjoint Problem (3) with initial data $\widehat{\varphi}^{0} \in \mathscr{H}$, the minimizer of (6). Moreover, the map $\mathfrak{g}: L^{2}(0,1) \rightarrow \mathcal{H}$, defined by
$g\left(y^{0}\right)=\widehat{\varphi}^{0}$,
is linear and continuous.
The operator g from Proposition 1.1 is usually called the HUM (Hilbert Uniqueness Method) operator and the control u is referred to as the HUM control. The important property of the minimal $L^{2}(0, T)$-norm makes the HUM control very desirable. However, as reported in $[7,8]$, the minimization of (6) is severely ill-posed. This comes from the fact that the space \mathscr{H} is very large. In fact, due to the regularizing effect of the heat equation, one can see that any distribution in a negative order Sobolev space $H^{-s}(0,1)$, with support away from $x=1$, belongs to \mathscr{H}, whatever $s>0$ is. Therefore, for a given $y^{0} \in L^{2}(0,1)$, the minimizer of \mathcal{g} may have very low regularity and it may be difficult to capture it numerically with accuracy and robustness.

The aim of this article is to investigate the regularity of the minimizer $\mathcal{g}\left(y^{0}\right)=\widehat{\varphi}^{0} \in \mathscr{H}$ when $y^{0} \in L^{2}(0,1)$. We show that, even for a regular initial data y^{0}, the corresponding minimizer $\mathcal{g}\left(y^{0}\right)$ of \mathcal{g} may not belong to any Sobolev space of negative exponent. For instance, we prove that, when the initial datum y^{0} to be controlled is a sinusoidal function $\left(y^{0}(x)=\sin (n \pi x)\right)$, the Fourier coefficients of the corresponding control, $\mathcal{q}(\sin (n \pi x))$, grow exponentially for high frequencies. Moreover, we show that the set of initial data $y^{0} \in L^{2}(0,1)$ with such property is dense in $L^{2}(0,1)$. These results are based on precise estimates for the Fourier coefficients of $g\left(y^{0}\right)$, obtained by using the minimal norm biorthogonal family to the sequence of exponential functions $\Lambda=$ $\left(\mathrm{e}^{-\lambda_{n} t}\right)_{n \geq 1}$ in $L^{2}(0, T)$, entering in the Fourier expansion of the solutions of the state and adjoint systems.

These low regularity properties explain why, in practice, the problem of minimizing (6) is ill-posed and why it is difficult to compute numerically with efficiency the control of the minimal $L^{2}(0, T)$-norm for (1).

One of the most frequent cures for ill-posed problems is the Tychonoff regularization technique which guarantees convergence towards the minimizer and gives polynomial convergence rates, with respect to the regularization parameter, under appropriate
regularity hypotheses on the minimizer (see, for instance, $[9,10]$). This can also be done in our context, showing that the minimizer of a Tychonoff regularized functional converges towards the minimizer of g with a polynomial rate provided the last one has some Sobolev regularity. But, since we have proved that our minimizer may have a very low regularity, no convergence rate can be established and then, eventually, the Tychonoff regularization technique will be inefficient to compute the control.

We point out that this phenomenon of ill-posedness occurs at the level of the continuous heat equation. It is compatible with the fact that observability properties of semi-discrete or fully-discrete approximation schemes of the heat equation are uniform with respect to the discretization parameters (see, for instance, [11,12,5]) but makes an impact on the effective computation of controls, thus making it very difficult in practice.

In [13] it is proved that, in the context of time-reversible infinite dimensional systems, the controls of the minimal L^{2}-norm inherit the regularity of the initial data to be controlled. Our results show that this important property is not true for the heat equation (1).

The rest of the paper is organized as follows. Section 2 is devoted to characterize the HUM controls of (1) and the Fourier coefficients of the minimizer $g\left(y^{0}\right)$ of (6) by means of a biorthogonal sequence to the family Λ. In Section 3 we estimate the elements of the inverse of the Gramm matrix corresponding to Λ, by analyzing three different cases. Finally, in the last section, we discuss the main consequences of the estimates mentioned above in the context of control of (1).

2. The moment problem and the HUM control

The following characterization of the boundary nullcontrollability property of (1) is well known (see, for instance, [2,6]).

Proposition 2.1. Eq. (1) is null-controllable in time $T>0$ if and only if, for any $y^{0} \in L^{2}(0,1)$ with Fourier expansion
$y^{0}(x)=\sum_{n \geq 1} a_{n} \sin (\pi n x)$,
there exists a function $w \in L^{2}(0, T)$ such that,
$\int_{0}^{T} w(t) \mathrm{e}^{-n^{2} \pi^{2} t} \mathrm{~d} t=(-1)^{n} \frac{a_{n}}{2 n \pi} \mathrm{e}^{-n^{2} \pi^{2} T} \quad n \in \mathbb{N}^{*}$.
If $w \in L^{2}(0, T)$ verifies (10), the function $v(t)=w(T-t)$ is a boundary control for (1). Problem (10) is usually referred to as a moment problem since we are looking for a function w whose moments with respect to the exponentials $\mathrm{e}^{-n^{2} \pi^{2} t}, n \in \mathbb{N}^{*}$, are given by the right hand side data in (10).

Let us introduce some notation. The eigenvalues of the 1-d Dirichlet Laplace operator are $\lambda_{n}=n^{2} \pi^{2}$ and the corresponding eigenfunctions $\Phi^{n}=\sin (n \pi x)$, for every $n \in \mathbb{N}^{*} . \Lambda=\left(\mathrm{e}^{-\lambda_{n} t}\right)_{n \geq 1}$ denotes the family of the corresponding real exponential functions.

For any $T>0$, let $E(\Lambda, T)$ and $E(m, \Lambda, T)$ be the closure in $L^{2}(0, T)$ of the spaces $\operatorname{Span}(\Lambda)$ and $\operatorname{Span}\left(\Lambda_{m}\right)$ respectively, where $\Lambda_{m}=\left(\mathrm{e}^{-\lambda_{n} t}\right)_{\substack{n \geq 1 \\ n \neq m}}$. Also, we introduce the notation $p_{T}^{n}:[0, T] \rightarrow \mathbb{R}$, $p_{T}^{n}(t)=\mathrm{e}^{-\lambda_{n} t}$. We recall that.

Definition 2.1. $\left(\theta_{T}^{m}\right)_{m \geq 1}$ is a biorthogonal sequence to Λ in $L^{2}(0, T)$ if
$\int_{0}^{T} p_{T}^{n}(t) \theta_{T}^{m}(t) \mathrm{d} t=\delta_{n m} \quad \forall n, m \in \mathbb{N}^{*}$.

The existence of a biorthogonal sequence to the family Λ is a consequence of the following Theorem (see, for instance, [14]).

Theorem 2.1 (Müntz). Let $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots$ be a sequence of real numbers and $T \in(0, \infty)$. The family of exponential functions $\left(\mathrm{e}^{-\lambda_{n} t}\right)_{n \geq 1}$ is complete in $L^{2}(0, T)$ if and only if
$\sum_{n \geq 1} \frac{1}{\lambda_{n}}=\infty$.
Since in our case $\lambda_{n}=\pi^{2} n^{2}$ and (11) is not verified, it follows from Müntz's Theorem, that $E(\Lambda, T)$ and $E(m, \Lambda, T)$ are proper subspaces of $L^{2}(0, T)$. Consequently, $E(\Lambda, T)$ is minimal (each element of Λ lies outside the closed subspace spanned by the others). Thus, for each $m \geq 1, p_{T}^{m} \notin E(m, \Lambda, T)$ (see [14], p. 23). Let r_{T}^{m} be the orthogonal projection of p_{T}^{m} over the space $E(m, \Lambda, T)$ and define
$\theta_{T}^{m}(t)=\frac{1}{\left\|p_{T}^{m}-r_{T}^{m}\right\|_{L^{2}(0, T)}^{2}}\left(p_{T}^{m}(t)-r_{T}^{m}(t)\right)$.
The following result may be found in [1,2].
Theorem 2.2. For any $T>0$, the sequence $\left(\theta_{T}^{m}\right)_{m \geq 1}$ given by (12) is the unique biorthogonal to the family Λ in $L^{2}(0, T)$ such that
$\left(\theta_{T}^{m}\right)_{m \geq 1} \subset E(\Lambda, T)$.
Moreover, this biorthogonal sequence has the minimal $L^{2}(0, T)$-norm: any other biorthogonal $\left(\zeta_{m}\right)_{m \geq 1}$ to the family Λ in $L^{2}(0, T)$ verifies
$\left\|\theta_{T}^{m}\right\|_{L^{2}(0, T)}<\left\|\zeta_{m}\right\|_{L^{2}(0, T)} \quad \forall m \geq 1$.
The following proposition establishes the relation between the HUM control (7) and the biorthogonal with minimal norm $\left(\theta_{T}^{m}\right)_{m \geq 1} \subset E(\Lambda, T)$ to the family Λ in $L^{2}(0, T)$ given by Theorem 2.2.

Proposition 2.2. Let $y^{0} \in L^{2}(0,1)$ be given by (9) and suppose that the following series is convergent in $L^{2}(0, T)$
$u(t)=\sum_{n=1}^{\infty}(-1)^{n} \frac{a_{n}}{2 n \pi} \mathrm{e}^{-n^{2} \pi^{2} T} \theta_{T}^{n}(T-t)$,
where $\left(\theta_{T}^{m}\right)_{m \geq 1} \subset E(\Lambda, T)$ is the minimal norm biorthogonal to the family Λ in $L^{\frac{1}{2}}(0, T)$ given by Theorem 2.2. Then $u \in L^{2}(0, T)$ is the HUM control (7) corresponding to initial data y^{0} of Eq. (1).
Proof. By using the biorthogonal properties, it is easy to see that $w(t)=u(T-t)$ verifies (10). Hence, u is a control for (1).

In order to prove that u is the HUM control it is sufficient to show that it has the minimal $L^{2}(0, T)$-norm. This is true if the Fourier coefficients of y^{0} are all zero, except $a_{n_{0}}$ which is not zero. Indeed, in this case
$u=(-1)^{n_{0}} \frac{a_{n_{0}}}{2 n_{0} \pi} \mathrm{e}^{-n_{0}^{2} \pi^{2} T} \theta_{T}^{n_{0}}$
and the minimality of its norm follows from that of the biorthogonal $\left(\theta_{T}^{m}\right)_{m \geq 1}$. This fact together with linearity of the map which assigns to each initial data y^{0} its HUM control completes the proof.

We recall that, in [1,2], it is proved that (15) absolutely converges in $L^{2}(0, T)$ for any $\left(a_{n}\right)_{n \geq 1}$ such that $\sum_{n=1}^{\infty}\left|a_{n}\right| \mathrm{e}^{-\delta n^{2}}<$ ∞, with δ a positive number depending only on T.

Since u given by Proposition 2.2 is the HUM control corresponding to y^{0}, then $u=\widehat{\varphi}_{x}(\cdot, 1)$, where $\widehat{\varphi}$ is the solution of (3) with initial data $\widehat{\varphi}^{0}=\mathcal{g}\left(y^{0}\right)$ given by Proposition 1.1. Our aim is to study
the regularity of $\widehat{\varphi}^{0}$. A possibility to do this consists in expanding $\widehat{\varphi}^{0}$ in the Fourier series
$g\left(y^{0}\right)=\widehat{\varphi}^{0}(x)=\sum_{m \geq 1} b_{m} \sin (\pi m x)$
and analyzing the behavior of the Fourier coefficients b_{m}. The following characterization of b_{m} holds.
Theorem 2.3. Let $y^{0} \in L^{2}(0,1)$ be defined as in (9). The Fourier coefficients b_{m} of $\mathcal{g}\left(y^{0}\right)$ from (16) are given by
$b_{m}=\frac{(-1)^{m}}{m \pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{a_{n}}{2 n \pi} \mathrm{e}^{-n^{2} \pi^{2} T}\left\langle\theta_{T}^{n}, \theta_{T}^{m}\right\rangle_{L^{2}(0, T)}$.
Moreover, the infinite matrix $\left(\left\langle\theta_{T}^{n}, \theta_{T}^{m}\right\rangle_{L^{2}(0, T)}\right)_{n, m \geq 1}$ verifies
$\sum_{k \geq 1}\left\langle\theta_{T}^{m}, \theta_{T}^{k}\right\rangle_{L^{2}(0, T)}\left\langle\mathrm{e}^{-\lambda_{k} t}, \mathrm{e}^{-\lambda_{n} t}\right\rangle_{L^{2}(0, T)}=\delta_{m n} \quad \forall m, n \geq 1$.
Proof. If $\widehat{\varphi}$ is the solution of (1) with initial data $\widehat{\varphi}^{0}$ given by (16) and $u(t)=\widehat{\varphi}_{x}(t, 1)$, the following relation is obtained from (15)
$\sum_{m \geq 1}(-1)^{m} m \pi b_{m} \mathrm{e}^{-\lambda_{m} t}=\sum_{n=1}^{\infty}(-1)^{n} \frac{a_{n}}{2 n \pi} \mathrm{e}^{-n^{2} \pi^{2} T} \theta_{T}^{n}(t)$.
From (19) and the orthogonality properties of θ_{T}^{m} we deduce that (17) holds.

For the second part, note that θ_{T}^{m}, being the biorthogonal of the minimal norm, belongs to $E(\Lambda, T)$. Therefore, for each $m \in$ \mathbb{N}^{*}, there exists a scalar sequence $\left(d_{k}^{m}\right)_{k \geq 1}$ such that (see [15], Theorem 8.2)
$\theta_{T}^{m}(t)=\sum_{k \geq 1} d_{k}^{m} \mathrm{e}^{-\lambda_{k} t}$.
From (20) we deduce that
$\left\langle\theta_{T}^{m}(t), \theta_{T}^{k}(t)\right\rangle_{L^{2}(0, T)}=d_{k}^{m}$
and
$\delta_{m n}=\left\langle\theta_{T}^{m}(t), \mathrm{e}^{-\lambda_{n} t}\right\rangle_{L^{2}(0, T)}=\sum_{k \geq 1} d_{k}^{m}\left\langle\mathrm{e}^{-\lambda_{k} t}, \mathrm{e}^{-\lambda_{n} t}\right\rangle_{L^{2}(0, T)}$.
This represents exactly (18) and completes the proof of the theorem.

Remark 2.1. The "infinite Gramm matrix" $G(T)=\left(\left\langle p_{T}^{n}\right.\right.$, $\left.\left.p_{T}^{m}\right\rangle_{L^{2}(0, T)}\right)_{n, m \geq 1}$ is an one-to-one linear operator in ℓ^{2} but it is not invertible in ℓ^{2}.

In order to evaluate the Fourier coefficients b_{m} of $g\left(y^{0}\right)$ we need to estimate the quantities d_{k}^{n} given by (21). In order to do that, we use a strategy similar to [1,2], where the norms $\left\|\theta_{T}^{n}\right\|_{L^{2}(0, T)}=\sqrt{d_{n}^{n}}$ are evaluated. It consists in truncating the matrix G by considering only a finite number N of exponentials and extending the time interval to $(0, \infty)$.

Before explaining how the estimates for d_{k}^{n} are obtained, let us introduce some notation. For any $T \in(0, \infty]$ and $N \in \mathbb{N}^{*}, E_{N}(\Lambda, T)$ and $E_{N}(m, \Lambda, T)$ denote the subspaces generated in $L^{2}(0, T)$ by the finite families $\left(\mathrm{e}^{-\lambda_{k} t}\right)_{1 \leq k \leq N}$ and $\left(\mathrm{e}^{-\lambda_{k} t}\right)_{\substack{1 \leq k \leq N \\ k \neq m}}$ respectively. Note that $E_{N}(\Lambda, T)$ and $E_{N}(m, \Lambda, T)$ are finite dimensional subspaces and
$E(\Lambda, T)=\overline{\bigcup_{N \geq 1} E_{N}(\Lambda, T)}$,
$E(m, \Lambda, T)=\overline{\bigcup_{N \geq 1} E_{N}(m, \Lambda, T)}$.
As before, p_{T}^{n} denotes the exponential function $\mathrm{e}^{-\lambda_{n} t}$ defined on the interval $[0, T]$ if $T<\infty$ or $[0, \infty)$ if $T=\infty$.

As in Theorem 2.2, there exists a unique biorthogonal $\left(\theta_{T, N}^{m}\right)_{1 \leq m \leq N} \subset E_{N}(\Lambda, T)$ to the finite family of exponentials $\left(\mathrm{e}^{-\lambda_{k} t}\right)_{1 \leq k \leq N}$ given by
$\theta_{T, N}^{m}=\frac{1}{\left\|p_{T}^{m}-r_{T, N}^{m}\right\|_{L^{2}(0, T)}^{2}}\left(p_{T}^{m}-r_{T, N}^{m}\right)$,
where $r_{T, N}^{m}$ is the orthogonal projection of p_{T}^{m} over $E_{N}(m, \Lambda, T)$. For each $m \in \mathbb{N}^{*}$, there exist some unique scalars $\left(d_{k}^{m}(T, N)\right)_{1 \leq k \leq N}$ such that
$\theta_{T, N}^{m}=\sum_{k=1}^{N} d_{k}^{m}(T, N) p_{T}^{k}$.
Let $G_{N}(T)$ denote the Gramm matrix of the family $\left(\mathrm{e}^{-\lambda_{k} t}\right)_{1 \leq k \leq N}$, i.e. the matrix of elements
$g_{k l}(T, N)=\int_{0}^{T} p_{T}^{k}(t) p_{T}^{l}(t) \mathrm{d} t, \quad 1 \leq k, l \leq N$.
As in the final part of Theorem 2.3, we have the following characterization of the coefficients $d_{k}^{m}(T, N)$.

Proposition 2.3. Let $T \in(0, \infty]$. The matrix $\left(d_{k}^{m}(T, N)\right)_{1 \leq k, m \leq N}$ given by (23) is the inverse of the Gramm matrix $G_{N}(T)$. Consequently, from Cramer's rule,
$d_{k}^{m}(T, N)=\frac{\left|G_{m k}(T)\right|}{\left|G_{N}(T)\right|}$
where $\left|G_{N}(T)\right|$ is the determinant of matrix $G_{N}(T)$ and $\left|G_{m k}(T)\right|$ is the determinant of the matrix $G_{m k}(T)$ obtained by replacing the m th column of $G_{N}(T)$ with the k-th vector of the canonical basis.

Now, let us briefly explain how the estimates for d_{k}^{m} may be obtained. If $T=\infty$, the determinants $\left|G_{N}(\infty)\right|$ and $\left|G_{m k}(\infty)\right|$, and consequently the coefficients $d_{k}^{m}(\infty, N)$ from Proposition 2.3 , may be explicitly computed. Next, a perturbation argument and an extension theorem allow us to address the case $T<\infty$ and to deduce estimates for $d_{k}^{m}(T, N)$. Finally, by letting $N \rightarrow \infty$, we obtain the desired estimates for d_{k}^{m}. This is the strategy used in the following section.

3. Estimates for $\boldsymbol{d}_{\boldsymbol{k}}^{\boldsymbol{m}}$

As we have said before, we study successively $d_{k}^{m}(\infty, N)$, $d_{k}^{m}(T, N)$ and finally d_{k}^{m}.

3.1. Analysis of the case $T=\infty$ and $N<\infty$

In this section we evaluate the quantities $d_{k}^{m}(\infty, N)$ from (25), Proposition 2.3. To compute the determinants $\left|G_{N}(\infty)\right|$ and $\left|G_{m k}(\infty)\right|$ we use the following lemma.
Lemma 3.1. If $C=\left(c_{i j}\right)_{1 \leq i, j \leq N}$ is a matrix of coefficients $c_{i j}=\frac{1}{a_{i}+b_{j}}$ then
$|C|=\frac{\prod_{1 \leq j<i \leq N}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\prod_{1 \leq i, j \leq N}\left(a_{i}+b_{j}\right)}$.
Moreover, if $C_{m k}$ denotes the matrix obtained by replacing the m th column of C by the k-th vector of the canonical basis, then
$\left|C_{m k}\right|=(-1)^{m+k} \frac{\prod_{1 \leq j<i \leq N}^{\prime}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\prod_{1 \leq i, j \leq N}^{\prime}\left(a_{i}+b_{j}\right)}$,
where' means that the terms containing a_{k} and b_{m} have been skipped in the product.

Proof. For the first part, see [16]. For the second part, note that

$$
\begin{equation*}
\left|C_{m k}\right|=\lim _{b_{m} \rightarrow \infty} \lim _{a_{k} \rightarrow \infty} a_{k}|C| \tag{28}
\end{equation*}
$$

We have that

$$
\begin{aligned}
|C| & =\frac{\prod_{1 \leq j<i \leq n}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\prod_{1 \leq i, j \leq N}\left(a_{i}+b_{j}\right)}=\frac{\prod_{1 \leq j<i \leq N}^{\prime}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\prod_{1 \leq i, j \leq N}^{\prime}\left(a_{i}+b_{j}\right)} \\
& \times \frac{\prod_{1 \leq j<k}\left(a_{k}-a_{j}\right) \prod_{k<i \leq N}\left(a_{i}-a_{k}\right) \prod_{1 \leq j<m}\left(b_{m}-b_{j}\right) \prod_{m<i \leq N}\left(b_{i}-b_{m}\right)}{\left(a_{k}+b_{m}\right) \prod_{1 \leq j \leq N, j \neq m}\left(a_{k}+b_{j}\right) \prod_{1 \leq i \leq N, i \neq k}\left(a_{i}+b_{m}\right)} .
\end{aligned}
$$

It follows that
$|C|=\frac{\prod_{1 \leq j<i \leq N}^{\prime}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\prod_{1 \leq i, j \leq N}^{\prime}\left(a_{i}+b_{j}\right)}$

$$
\times \frac{(-1)^{k+m} \prod_{1 \leq p \leq N, p \neq k}\left(a_{k}-a_{p}\right) \prod_{1 \leq p \leq N, p \neq m}\left(b_{m}-b_{p}\right)}{\left(a_{k}+b_{m}\right) \prod_{1 \leq j \leq N, j \neq m}\left(a_{k}+b_{j}\right) \prod_{1 \leq i \leq N, i \neq k}\left(a_{i}+b_{m}\right)}
$$

and consequently

$$
\begin{aligned}
\left|C_{m k}\right| & =\lim _{b_{m} \rightarrow \infty} \lim _{a_{k} \rightarrow \infty} a_{k}|C| \\
& =(-1)^{m+k} \frac{\prod_{1 \leq j<i \leq N}^{\prime}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)}{\prod_{1 \leq i, j \leq N}^{\prime}\left(a_{i}+b_{j}\right)} .
\end{aligned}
$$

The proof of the lemma is finished.
Now, we can pass to estimate the numbers $d_{k}^{m}(\infty, N)$.
Proposition 3.1. If $\left(d_{k}^{m}(\infty, N)\right)_{1 \leq k, m \leq N}$ is the matrix in Proposition 2.3, then
$d_{k}^{m}(\infty, N)=\frac{4 \pi^{2} k^{2} m^{2}}{k^{2}+m^{2}} \prod_{\substack{p=1 \\ p \neq k}}^{N} \frac{k^{2}+p^{2}}{k^{2}-p^{2}} \prod_{\substack{p=1 \\ p \neq m}}^{N} \frac{m^{2}+p^{2}}{m^{2}-p^{2}}$.
Moreover, for each $k, m \geq 1$, the sequence $\left(\left|d_{k}^{m}(\infty, N)\right|\right)_{N \geq \max \{k, m\}}$ is increasing and

$$
\begin{align*}
\lim _{N \rightarrow \infty} d_{k}^{m}(\infty, N)= & (-1)^{m+k} \frac{k m}{k^{2}+m^{2}}\left(\mathrm{e}^{\pi k}-\mathrm{e}^{-\pi k}\right) \\
& \times\left(\mathrm{e}^{\pi m}-\mathrm{e}^{-\pi m}\right) \tag{30}
\end{align*}
$$

Proof. We have that
$d_{k}^{m}(\infty, N)=\frac{\left|G_{m k}(\infty)\right|}{\left|G_{N}(\infty)\right|}$
where $\left|G_{N}(\infty)\right|$ denotes the determinant of matrix $G_{N}(\infty)$ and $\left|G_{m k}(\infty)\right|$ the determinant of the matrix $G_{m k}(\infty)$, obtained by replacing the m-th column of $G_{N}(\infty)$ by the k-th vector of the canonical basis. In order to evaluate $\left|G_{N}(\infty)\right|$ and $\left|G_{m k}(\infty)\right|$ we remark that the elements $g_{i j}(\infty)$ of the matrix $G_{N}(\infty)$ are given by
$g_{i j}(\infty)=\int_{0}^{\infty} p_{\infty}^{i}(t) p_{\infty}^{j}(t) \mathrm{d} t=\frac{1}{\left(i^{2}+j^{2}\right) \pi^{2}} \quad 1 \leq i, j \leq N$.
Hence, we can use Lemma 3.1 to evaluate $\left|G_{N}(\infty)\right|$ and $\left|G_{m k}(\infty)\right|$. We deduce from (31) that

$$
\begin{aligned}
d_{k}^{m}(\infty, N)= & \left(k^{2}+m^{2}\right) \pi^{2} \\
& \times \frac{\prod_{1 \leq p \leq N, p \neq m}\left(k^{2}+p^{2}\right) \prod_{1 \leq p \leq N, p \neq k}\left(m^{2}+p^{2}\right)}{\prod_{1 \leq p \leq N, p \neq k}\left(k^{2}-p^{2}\right) \prod_{1 \leq p \leq N, p \neq m}\left(m^{2}-p^{2}\right)}
\end{aligned}
$$

from which (29) follows immediately.
For $k \geq 1$ and $N \geq k$, let us denote
$S_{N}(k)=\prod_{\substack{p=1 \\ p \neq k}}^{N} \frac{k^{2}+p^{2}}{\left|k^{2}-p^{2}\right|}=\prod_{p=1}^{N}\left(1+\frac{k^{2}}{p^{2}}\right) \prod_{p=N-k+1}^{N} \frac{p}{p+k}$.
It follows that
$\frac{S_{N+1}(k)}{S_{N}(k)}=\left(1+\frac{k^{2}}{(N+1)^{2}}\right)\left(1+\frac{k^{2}}{(N+1)^{2}-k^{2}}\right)>1$
and the sequence $\left(\left|d_{k}^{m}(\infty, N)\right|\right)_{N \geq \max \{k, m\}}$ is increasing.
On the other hand, from Euler's formula,
$\lim _{N \rightarrow \infty} S_{N}(k)=\prod_{p=1}^{\infty}\left(1+\frac{k^{2}}{p^{2}}\right)=\frac{\sin (\mathrm{i} k \pi)}{\mathrm{i} k \pi}$.
Therefore (30) holds and the proof of Proposition 3.1 is completed.

3.2. Analysis of the case $T<\infty$ and finite dimension N

Let $T<\infty$ be given. In this section we give estimates for d_{k}^{m} (T, N). Firstly, we recall the following result (see [1,14]).

Theorem 3.1. Let $T \in(0, \infty)$ and Λ be the family of exponential functions $\left(\mathrm{e}^{-\lambda_{n} t}\right)_{n \geq 1}$, where $\lambda_{n}=n^{2} \pi^{2}$ are the eigenvalues of the Dirichlet Laplace operator in $(0,1)$. The restriction operator
$R_{T}: E(\Lambda, \infty) \rightarrow E(\Lambda, T), \quad R_{T}(v)=v_{[0, T]}$
is invertible and there exists $C_{T}>0$, depending only on T, such that
$\left\|R_{T}^{-1}\right\| \leq C_{T}$.
Also, let us define the restriction
$R_{T, N}: E_{N}(\Lambda, \infty) \rightarrow E_{N}(\Lambda, T), \quad R_{T, N}(v)=v_{[0, T]}$
and note that, if p_{T}^{n} and p_{∞}^{n} denote the function $\mathrm{e}^{-\lambda_{n} t}$ defined in $[0, T]$ and $[0, \infty)$ respectively, then
$R_{T}\left(p_{\infty}^{n}\right)=R_{T, N}\left(p_{\infty}^{n}\right)=p_{T}^{n}, \quad 1 \leq n \leq N$.
Evidently, $R_{T, N}$ is invertible. Moreover, since
$\delta_{m n}=\left\langle\theta_{\infty, N}^{m}, p_{\infty}^{n}\right\rangle_{L^{2}(0, \infty)}=\left\langle\theta_{\infty, N}^{m}, R_{T, N}^{-1} p_{T}^{n}\right\rangle_{L^{2}(0, \infty)}$
$=\left\langle\left(R_{T, N}^{-1}\right)^{*} \theta_{\infty, N}^{m}, p_{T}^{n}\right\rangle_{L^{2}(0, T)}$
and $\left(R_{T, N}^{-1}\right)^{*} \theta_{\infty, N}^{m} \in E_{N}(\Lambda, T)$, we deduce that
$\left(R_{T, N}^{-1}\right)^{*} \theta_{\infty, N}^{m}=\theta_{T, N}^{m}$.
The following proposition gives a first estimate for the elements $d_{k}^{m}(T, N)$ in Proposition 2.3.

Proposition 3.2. If $\left(d_{k}^{m}(T, N)\right)_{1 \leq k, m \leq N}$ is the inverse of the Gramm matrix $G_{N}(T)$, then there exists a positive constant $C=C(T)>0$, independent of N but depending on T, such that
$\left|d_{k}^{m}(T, N)\right| \leq C \frac{k^{2}+m^{2}}{k m}\left|d_{k}^{m}(\infty, N)\right| \quad 1 \leq k, m \leq N$.

Proof. From (37) and (29) it follows that

$$
\begin{aligned}
\left|d_{k}^{m}(T, N)\right| & =\left|\left\langle\theta_{T, N}^{m}, \theta_{T, N}^{k}\right\rangle\right|=\left|\left\langle\left(R_{T, N}^{-1}\right)^{*} \theta_{\infty, N}^{m},\left(R_{T, N}^{-1}\right)^{*} \theta_{\infty, N}^{k}\right\rangle\right| \\
& \leq\left\|\left(R_{T, N}^{-1}\right)^{*}\right\|^{2}\left\|\theta_{\infty, N}^{m}\right\|\left\|\theta_{\infty, N}^{k}\right\| \\
& =\left\|\left(R_{T, N}^{-1}\right)^{*}\right\|^{2} \sqrt{d_{m}^{m}(\infty, N)} \sqrt{d_{k}^{k}(\infty, N)} \\
& =\left\|\left(R_{T, N}^{-1}\right)^{*}\right\|^{2} 2 \pi^{2} m k \prod_{\substack{p=1 \\
p \neq m}}^{N} \frac{m^{2}+p^{2}}{\left|m^{2}-p^{2}\right|} \prod_{\substack{p=1 \\
p \neq k}}^{N} \frac{k^{2}+p^{2}}{\left|k^{2}-p^{2}\right|} \\
& =\left\|\left(R_{T, N}^{-1}\right)^{*}\right\|^{2} \frac{k^{2}+m^{2}}{2 k m}\left|d_{k}^{m}(\infty, N)\right| .
\end{aligned}
$$

On the other hand, by using Theorem 3.1, we deduce that

$$
\begin{aligned}
\left\|\left(R_{T, N}^{-1}\right)^{*}\right\|_{\mathcal{L}\left(E_{N}(\Lambda, \infty), E_{N}(\Lambda, T)\right)} & =\left\|R_{T, N}^{-1}\right\|_{\mathcal{L}\left(E_{N}(\Lambda, T), E_{N}(\Lambda, \infty)\right)} \\
& \leq\left\|R_{T}^{-1}\right\|_{\mathcal{L}(E(\Lambda, T), E(\Lambda, \infty))} \leq C_{T}
\end{aligned}
$$

and the proof ends by taking $C=\frac{1}{2} C_{T}^{2}$.
The main estimate for $d_{k}^{m}(T, N)$ is given in the following proposition.

Proposition 3.3. If $\left(d_{k}^{m}(T, N)\right)_{1 \leq k, m \leq N}$ is the inverse of the Gramm matrix $G_{N}(T)$, there exists a positive integer $n_{0}>0$, independent of N but depending of T, such that
$\left|d_{k}^{m}(T, N)\right| \geq \frac{1}{2}\left|d_{k}^{m}(\infty, N)\right| \quad \forall m, k \geq n_{0}$.
Proof. For each $n \in\{1,2, \ldots, N\}$, we have that $\left(R_{T, N}^{-1}\right)^{*} p_{\infty}^{n} \in$ $E_{N}(\Lambda, T)$ and there exist scalars $\left(q_{k}^{n}\right)_{1 \leq k \leq N} \subset \mathbb{R}$ such that
$\left(R_{T, N}^{-1}\right)^{*} p_{\infty}^{n}=\sum_{k=1}^{N} q_{k}^{n} p_{T}^{k}$.
Moreover, the coefficients q_{k}^{n} verify

$$
\begin{aligned}
q_{k}^{n} & =\left\langle\left(R_{T, N}^{-1}\right)^{*} p_{\infty}^{n}, \theta_{T, N}^{k}\right\rangle_{L^{2}(0, T)}=\left\langle p_{\infty}^{n}, R_{T, N}^{-1} \theta_{T, N}^{k}\right\rangle_{L^{2}(0, \infty)} \\
& =\int_{0}^{T} p_{T}^{n}(t) \theta_{T, N}^{k}(t) \mathrm{d} t+\int_{T}^{\infty} p_{\infty}^{n}(t) R_{T, N}^{-1} \theta_{T, N}^{k}(t) \mathrm{d} t \\
& =\delta_{n k}+\int_{T}^{\infty} \mathrm{e}^{-\lambda_{n} t} R_{T, N}^{-1} \theta_{T, N}^{k}(t) \mathrm{d} t
\end{aligned}
$$

and therefore
$q_{k}^{n}-\delta_{n k}=\int_{T}^{\infty} \mathrm{e}^{-\lambda_{n} t} R_{T, N}^{-1} \theta_{T, N}^{k}(t) \mathrm{d} t$.
From (23), we deduce that
$R_{T, N}^{-1} \theta_{T, N}^{k}=R_{T, N}^{-1}\left(\sum_{j=1}^{N} d_{j}^{k}(T, N) p_{T}^{j}\right)=\sum_{j=1}^{N} d_{j}^{k}(T, N) p_{\infty}^{j}$
which, together with (41), gives
$q_{k}^{n}-\delta_{n k}=\sum_{j=1}^{N} \frac{d_{j}^{k}(T, N)}{\left(n^{2}+j^{2}\right) \pi^{2}} \mathrm{e}^{-\pi^{2}\left(n^{2}+j^{2}\right) T} \quad 1 \leq n, k \leq N$.
On the other hand, we have that

$$
\begin{aligned}
d_{k}^{m}(T, N) & =\left\langle\theta_{T, N}^{m}, \theta_{T, N}^{k}\right\rangle_{L^{2}(0, T)} \\
& =\left\langle\left(R_{T, N}^{-1}\right)^{*}\left(\sum_{i=1}^{N} d_{i}^{m}(\infty, N) p_{\infty}^{i}\right), \theta_{T, N}^{k}\right\rangle_{L^{2}(0, T)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{N} d_{i}^{m}(\infty, N)\left\langle\left(R_{T}^{-1}\right)^{*} p_{\infty}^{i}, \theta_{T, N}^{k}\right\rangle_{L^{2}(0, T)} \\
& =\sum_{i=1}^{N} d_{i}^{m}(\infty, N) q_{k}^{i}
\end{aligned}
$$

and consequently

$$
\begin{align*}
& d_{k}^{m}(T, N)-d_{k}^{m}(\infty, N)=\sum_{i=1}^{N} d_{i}^{m}(\infty, N)\left(q_{k}^{i}-\delta_{i k}\right) \\
& \quad 1 \leq k, m \leq N \tag{43}
\end{align*}
$$

Now, using (43) and (42), we deduce that

$$
\begin{align*}
& \left|d_{k}^{m}(T, N)-d_{k}^{m}(\infty, N)\right| \\
& \quad=\left|\sum_{i, j=1}^{N} \frac{\mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{\left(i^{2}+j^{2}\right) \pi^{2}} d_{j}^{k}(T, N) d_{i}^{m}(\infty, N)\right| . \tag{44}
\end{align*}
$$

From (44), estimate (38) and formulas (29), it follows that

$$
\begin{aligned}
& \left|d_{k}^{m}(T, N)-d_{k}^{m}(\infty, N)\right| \\
& \quad \leq \frac{1}{2} C_{T}^{2} \sum_{i, j=1}^{N} \frac{\mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{\left(i^{2}+j^{2}\right) \pi^{2}} \frac{j^{2}+k^{2}}{j k}\left|d_{j}^{k}(\infty, N)\right|\left|d_{i}^{m}(\infty, N)\right| \\
& =8 C_{T}^{2} \pi^{2} \prod_{\substack{p=1 \\
p \neq k}}^{N} \frac{k^{2}+p^{2}}{\left|k^{2}-p^{2}\right|} \prod_{\substack{p=1 \\
p \neq m}}^{N} \frac{m^{2}+p^{2}}{\left|m^{2}-p^{2}\right|} \\
& \quad \times \sum_{i, j=1}^{N} \frac{\mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{i^{2}+j^{2}} \frac{j^{2}+k^{2}}{j k} \frac{k^{2} j^{2}}{k^{2}+j^{2}} \frac{m^{2} i^{2}}{m^{2}+i^{2}} \\
& \quad \times \prod_{\substack{p=1 \\
p \neq i}}^{N} \frac{i^{2}+p^{2}}{\left|i^{2}-p^{2}\right|} \prod_{\substack{p=1 \\
p \neq j}}^{N} \frac{j^{2}+p^{2}}{\left|j^{2}-p^{2}\right|} .
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \left|d_{k}^{m}(T, N)-d_{k}^{m}(\infty, N)\right| \leq 2 C_{T}^{2} \frac{m^{2}+k^{2}}{k m^{2}}\left|d_{k}^{m}(\infty, N)\right| \\
& \quad \times \sum_{i, j=1}^{N} \frac{\mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{i^{2}+j^{2}} \frac{j i^{2} m^{2}}{m^{2}+i^{2}} \prod_{\substack{p=1 \\
p \neq i}}^{N} \frac{i^{2}+p^{2}}{\left|i^{2}-p^{2}\right|} \prod_{\substack{p=1 \\
p \neq j}}^{N} \frac{j^{2}+p^{2}}{\left|j^{2}-p^{2}\right|} . \tag{45}
\end{align*}
$$

By using (29)-(30), we deduce that

$$
\begin{aligned}
& \sum_{i, j=1}^{N} \frac{\mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{i^{2}+j^{2}} \frac{j i^{2} m^{2}}{m^{2}+i^{2}} \prod_{\substack{p=1 \\
p \neq i}}^{N} \frac{i^{2}+p^{2}}{\left|i^{2}-p^{2}\right|} \prod_{\substack{p=1 \\
p \neq j}}^{N} \frac{j^{2}+p^{2}}{\left|j^{2}-p^{2}\right|} \\
& \quad \leq \sum_{i, j=1}^{N} \frac{j i^{2} \mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{i^{2}+j^{2}} \prod_{\substack{p=1 \\
p \neq i}}^{N} \frac{i^{2}+p^{2}}{\left|i^{2}-p^{2}\right|} \prod_{\substack{p=1 \\
p \neq j}}^{N} \frac{j^{2}+p^{2}}{\left|j^{2}-p^{2}\right|} \\
& \quad=\sum_{i, j=1}^{N} \frac{\mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{4 \pi^{2} j}\left|d_{i}^{j}(\infty, N)\right| \\
& \quad \leq \sum_{i, j=1}^{N} \frac{i \mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{4 \pi^{2}\left(i^{2}+j^{2}\right)} \mathrm{e}^{\pi(i+j)} \leq \frac{1}{4 \pi^{2}}\left(\sum_{i=1}^{N} \mathrm{e}^{-\pi^{2} T i^{2}+\pi i}\right)^{2} .
\end{aligned}
$$

Thus, there exists a constant $C_{T}^{\prime}>0$, depending only on T, such that

$$
\begin{equation*}
\sum_{i, j=1}^{N} \frac{\mathrm{e}^{-\pi^{2}\left(i^{2}+j^{2}\right) T}}{i^{2}+j^{2}} \frac{j i^{2} m^{2}}{m^{2}+i^{2}} \prod_{\substack{p=1 \\ p \neq i}}^{N} \frac{i^{2}+p^{2}}{\left|i^{2}-p^{2}\right|} \prod_{\substack{p=1 \\ p \neq j}}^{N} \frac{j^{2}+p^{2}}{\left|j^{2}-p^{2}\right|} \leq C_{T}^{\prime} . \tag{46}
\end{equation*}
$$

By denoting $C=2 C_{T}^{2} C_{T}^{\prime}$, it follows from (45) and (46) that
$\left|d_{k}^{m}(T, N)-d_{k}^{m}(\infty, N)\right| \leq C \frac{k^{2}+m^{2}}{k m^{2}}\left|d_{k}^{m}(\infty, N)\right|$
$1 \leq k, m \leq N$.
Now, remark that $C \frac{k^{2}+m^{2}}{k m^{2}} \leq \frac{1}{2}$ if $\frac{2 C k^{2}}{k-2 C} \leq m^{2}$. Thus (39) is verified for any $k \geq 2 C+1$ and $m^{2} \geq(2 C+1)^{2} k$. From the symmetry of the matrices $\left(d_{k}^{m}(T, N)\right)_{1 \leq k, m \leq N}$ and $\left(d_{k}^{m}(\infty, N)\right)_{1 \leq k, m \leq N}$, we deduce that inequality (39) holds for any $m \geq 2 C+1$ and $k^{2} \geq(2 C+1)^{2} m$, too. The proof of the proposition ends by taking $n_{0}=\left[(2 C+1)^{2}\right]+1$.

3.3. Analysis of the case $T<\infty$ and $N=\infty$

Now we have all the ingredients needed to estimate the coefficients d_{k}^{m} given by (21).

Theorem 3.2. Let $\left(\theta_{T}^{m}\right)_{m \geq 1}$ be the biorthogonal of the minimal norm to the family Λ in $L^{2}(0, T)$ and $\left(d_{k}^{m}\right)_{m, k \geq 1}$ be given by (21). There exist a positive integer n_{0} and a positive constant $C>0$, independent of k and m, but depending of T, such that
$\left|d_{k}^{m}\right| \leq C \mathrm{e}^{\pi(k+m)} \quad \forall k, m \geq 1$
$\left|d_{k}^{m}\right| \geq \frac{k m}{32\left(k^{2}+m^{2}\right)} \mathrm{e}^{\pi(k+m)} \quad \forall m, k \geq n_{0}$.
Proof. From (22)

$$
\begin{align*}
\theta_{T, N}^{m} & =\sum_{k=1}^{N} d_{k}^{m}(T, N) \mathrm{e}^{-\lambda_{k} t} \\
& =\frac{1}{\left\|p_{T}^{m}-r_{T, N}^{m}\right\|_{L^{2}(0, T)}^{2}}\left(p_{T}^{m}-r_{T, N}^{m}\right) \tag{50}
\end{align*}
$$

where $r_{T, N}^{m}$ is the orthogonal projection of p_{T}^{m} over $E_{N}(m, \Lambda, T)$.
On the other hand, from (12),
$\theta_{T}^{m}(t)=\sum_{k \geq 1} d_{k}^{m} \mathrm{e}^{-\lambda_{k} t}=\frac{1}{\left\|p_{T}^{m}-r_{T}^{m}\right\|_{L^{2}(0, T)}^{2}}\left(p_{T}^{m}-r_{T}^{m}\right)$
where r_{T}^{m} is the projection of p_{T}^{m} over the space $E(m, \Lambda, T)$.
Now, remark that
$r_{T, N}^{m} \rightarrow r_{T}^{m} \quad$ as $N \rightarrow \infty$ in $L^{2}(0, T)$.
Indeed, since $\left\langle r_{T}^{m}-r_{T, N}^{m}, \mathrm{e}^{-\lambda_{j} t}\right\rangle=0$ for any $1 \leq j \leq N$, we have that

$$
\begin{aligned}
\left\|r_{T}^{m}-r_{T, N}^{m}\right\|_{L^{2}(0, T)}^{2} & =\left\langle r_{T}^{m}-r_{T, N}^{m}, r_{T}^{m}-r_{T, N}^{m}\right\rangle_{L^{2}(0, T)} \\
& =\left\langle r_{T}^{m}-r_{T, N}^{m}, r_{T}^{m}\right\rangle_{L^{2}(0, T)} \\
& =\left\langle r_{T}^{m}-r_{T, N}^{m}, r_{T}^{m}-\sum_{n=1, n \neq m}^{N} \alpha_{n} \mathrm{e}^{-\lambda_{n} t}\right\rangle_{L^{2}(0, T)} .
\end{aligned}
$$

Now, since $r_{T}^{m} \in E(m, \Lambda, T)=\overline{\bigcup_{N>1} E_{N}(m, \Lambda, T)}$, we deduce that (52) holds. From formulas (50) and (51) we deduce that $\theta_{T, N}^{m} \rightarrow \theta_{T}^{m}$ as $N \rightarrow \infty$ in $L^{2}(0, T)$ and, consequently,
$d_{k}^{m}(T, N)=\left\langle\theta_{T, N}^{m}, \theta_{T, N}^{k}\right\rangle \rightarrow d_{k}^{m} \quad$ as $N \rightarrow \infty$.
By taking into account estimates (38) and (39) from Propositions 3.2 and 3.3 respectively, we obtain from (53) the conclusion of the theorem.

4. Control theoretical consequences

In this section we deduce some consequences of the estimates in Theorem 3.2 for the controllability of (1).

4.1. Control for one mode

Let us consider the case in which the initial data y^{0} of (1) to be controlled is the n-th eigenfunction Φ^{n}. It follows from Proposition 2.2 that the corresponding HUM control is given by

$$
\begin{align*}
u(t) & =\frac{(-1)^{n}}{2 n \pi} \mathrm{e}^{-n^{2} \pi^{2} T} \theta_{T}^{n}(T-t) \\
& =\frac{(-1)^{n}}{2 n \pi} \sum_{k \geq 1} d_{k}^{n} \mathrm{e}^{-\left(n^{2}+k^{2}\right) \pi^{2} T} \mathrm{e}^{k^{2} \pi^{2} t} \tag{54}
\end{align*}
$$

Moreover, the Fourier coefficients $\left(b_{m}^{0, n}\right)_{m \geq 1}$ of the initial data $\mathcal{g}\left(y^{0}\right)=\widehat{\varphi}^{0, n}$ which gives the HUM control corresponding to y^{0}, may be computed by using (17):
$b_{m}^{0, n}=\frac{(-1)^{n+m}}{2 n m \pi^{2}} \mathrm{e}^{-n^{2} \pi^{2} T} d_{m}^{n} \quad m \geq 1$.
From (55) and estimates (48)-(49) from Theorem 3.2, we immediately obtain the following properties of the Fourier coefficients $\left(b_{m}^{0, n}\right)_{m \geq 1}$.
Corollary 4.1. Let $\left(b_{m}^{0, n}\right)_{m \geq 1}$ be the Fourier coefficients of $\mathcal{G}\left(\Phi^{n}\right)$. Then
$\left|b_{m}^{0, n}\right| \leq \frac{C}{n m} \mathrm{e}^{-\pi^{2} T n^{2}+\pi(m+n)} \quad \forall m \geq 1$.
Moreover, if $n \geq n_{0}$, then
$\left|b_{m}^{0, n}\right| \geq \frac{1}{64 \pi^{2}\left(n^{2}+m^{2}\right)} \mathrm{e}^{-\pi^{2} T n^{2}+\pi(m+n)} \quad \forall m \geq n_{0}$.
The constants $C>0$ and n_{0} are those given by Theorem 3.2, are independent of n and m but depend on T.

Remark 4.1. Estimates (57) from Corollary 4.1 show that, for any $n \geq n_{0}$, the initial data $g\left(\Phi^{n}\right)$ of (3), which gives the HUM control for the n-th eigenfunction Φ^{n}, has a very low regularity. Indeed, for any $m \geq 2 \pi T n^{2}$, we obtain that $\left|b_{m}^{0, n}\right| \geq \mathrm{e}^{\frac{\pi}{2} m}$ and therefore $\mathscr{G}\left(\Phi^{n}\right)$ does not belong to any Sobolev space of negative order. Also, note that the first Fourier coefficients $b_{m}^{0, n}$, corresponding to $m \leq \alpha \pi T n^{2}$, with $\alpha<1$, are exponentially small for $n \rightarrow \infty$.

4.2. Controls for initial data in $L^{2}(0,1)$

Let us now study the regularity of the HUM controls for initial data in $L^{2}(0,1)$. We have the following result.
Corollary 4.2. For any $y^{0} \in L^{2}(0,1)$ and $\varepsilon>0$ there exists $y_{\varepsilon}^{0} \in$ $L^{2}(0,1)$ and a positive constant C, depending only on T and ε, such that
$\left\|y^{0}-y_{\varepsilon}^{0}\right\|_{L^{2}(0,1)}<\varepsilon$
$\left|b_{\varepsilon, m_{k}}^{0}\right| \geq \frac{C}{m_{k}^{2}} e^{\pi m_{k}} \quad \forall k \geq 1$,
where $\left(b_{\varepsilon, m}^{0}\right)_{m \geq 1}$ are the Fourier coefficients of $\mathcal{G}\left(y_{\varepsilon}^{0}\right)$ and $\left(m_{k}\right)_{k \geq 1}$ is an increasing sequence of positive integers.
Proof. Let $g\left(y^{0}\right)=\sum_{m=1}^{\infty} b_{m}^{0} \sin (m \pi x)$ and n_{0} be the positive integer from Theorem 3.2. We define $y^{1}=y^{0}+\varepsilon \sin \left(n_{0} \pi x\right)$ and remark that $g\left(y^{1}\right)=g\left(y^{0}\right)+\varepsilon g\left(\Phi^{n_{0}}\right)$, where $g\left(\Phi^{n_{0}}\right)$ was studied in Corollary 4.1. If $\left(b_{m}^{1}\right)_{m \geq 1}$ are the Fourier coefficients of $g\left(y^{1}\right)$, we deduce from (55) that
$b_{m}^{1}=b_{m}^{0}+\varepsilon b_{m}^{0, n_{0}}=b_{m}^{0}+\varepsilon \frac{(-1)^{n_{0}+m}}{2 n_{0} m \pi^{2}} \mathrm{e}^{-n_{0}^{2} \pi^{2} T} d_{m}^{n_{0}} \quad m \geq 1$.
Consequently, $\max \left\{\left|b_{m}^{0}\right|,\left|b_{m}^{1}\right|\right\} \geq \frac{\varepsilon| | d_{m}^{n_{0}} \mid}{4 n_{0} m \pi^{2}} \mathrm{e}^{-n_{0}^{2} \pi^{2} T}$ and, by taking into account (49) from Theorem 3.2, we deduce that
$\max \left\{\left|b_{m}^{0}\right|,\left|b_{m}^{1}\right|\right\} \geq \frac{\varepsilon}{128 \pi^{2}\left(n_{0}^{2}+m^{2}\right)} \mathrm{e}^{-n_{0}^{2} \pi^{2} T} \mathrm{e}^{\pi\left(m+n_{0}\right)}$
$\forall m \geq n_{0}$.
Thus, at least one of the sequences $\left(b_{m}^{0}\right)_{m \geq 1}$ or $\left(b_{m}^{1}\right)_{m \geq 1}$ has a subsequence which verifies (59). If this is $\left(b_{m}^{0}\right)_{m \geq 1}$, we choose $y_{\varepsilon}^{0}=y^{0}$. Otherwise, we take $y_{\varepsilon}^{0}=y^{1}$. In both cases y_{ε}^{0} verifies (58) and (59) and the proof ends.

Remark 4.2. Corollary 4.2 shows that the set of initial data y^{0} whose HUM controls are given by a minimizer $\mathcal{g}\left(y^{0}\right)$ of g which do not belong to any Sobolev space of negative order is dense in $L^{2}(0,1)$.

4.3. Monochromatic controls

Another natural question is the reciprocal of the one addressed in the paragraph 4.1: which is the regularity of the initial datum y^{0} of (1) whose HUM control is given by the solution of (3) with initial datum $\widehat{\varphi}^{0}=\sin (m \pi x)$ containing one single Fourier component? The following corollary shows that y^{0} is highly irregular.

Corollary 4.3. The initial data $y^{0}=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x)$, whose HUM control is given by the solution of (3) with initial data $\widehat{\varphi}^{0}=\sin (m \pi x)$, verifies
$\left|a_{n}\right| \geq C \frac{m n}{m^{2}+n^{2}} \mathrm{e}^{T \pi^{2} n^{2}} \quad \forall n \geq 1$,
where C is a positive constant independent of n and m.
Remark 4.3. This result confirms that the data for which the controls are smooth are irregular. This complements our previous results showing that the control associated with smooth data are highly irregular. This also shows that the operator $g: L^{2}(0,1) \rightarrow$ \mathscr{H} defined in Proposition 1.1 is injective but not surjective.
Proof. From (19) we deduce that
$(-1)^{m} m \pi \mathrm{e}^{-\lambda_{m} t}=\sum_{n=1}^{\infty}(-1)^{n} \frac{a_{n}}{2 n \pi} \mathrm{e}^{-T \pi^{2} n^{2}} \theta_{T}^{n}(t)$
and consequently $a_{n}=(-1)^{n+m} 2 n m \pi^{2} \mathrm{e}^{T \pi^{2} n^{2}}\left\langle p_{T}^{n}, p_{T}^{m}\right\rangle_{L^{2}(0, T)}$ from which (62) follows immediately.

Acknowledgements

The first author was partially supported by Grant MTM200803541 funded by MICINN (Spain) and Grant 420/2008 of CNCSIS (Romania). Part of this work was done during the first author's visit to Basque Center for Applied Mathematics and he would like to thank the members of the center for their kindness and warm hospitality. The second author has been partially supported by Grant MTM2008-03541 of the MICINN, Spain, theERC Advanced Grant FP7-246775 NUMERIWAVES and the Grant PI2010-04 of the Basque Government.

References

[1] H.O. Fattorini, D.L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. J. Appl. Math. 32 (1974) 45-69.
[2] H.O. Fattorini, D.L. Russell, Exact controllability theorems for linear parabolic equation in one space dimension, Arch. Ration. Mech. Anal. 43(1971)272-292.
[3] G. Lebeau, L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. P.D.E. 20 (1995) 335-356.
[4] E. Zuazua, in: C.M. Dafermos, E. Feireisl (Eds.), Controllability and Observability of Partial Differential Equations: Some Results and Open Problems, in: Handbook of Differential Equations: Evolutionary Equations, vol. 3, Elsevier Science, 2006, pp. 527-621.
[5] E. Zuazua, Controllability of partial differential equations and its semi-discrete approximations, DCDS 8 (2002) 469-513.
[6] S. Micu, E. Zuazua, An introduction to the controllability of partial differential equations, in: Tewfik Sari (Ed.), Chapter in Quelques Questions de théorie du Contrôle, in: Collection Travaux en Cours, Editions, Hermann, 2005, pp. 69-157.
[7] C. Carthel, R. Glowinski, J.-L. Lions, On exact and approximate Boundary Controllabilities for the heat equation: a numerical approach, J. Optim. Theory Appl. 82 (1994) 429-484.
[8] A. Münch, E. Zuazua, Numerical approximation of null controls for the heat equation: ill-posedness and remedies, Inverse Problems 26 (2010) 085018.
[9] S. Kindermann, Convergence rates of the Hilbert uniqueness method via Tikhonov regularization, J. Optim. Theory and Appl. 103 (1999) 657-673.
[10] J.-P. Puel, A nonstandard approach to a data assimilation problem and Tychonoff regularization revisited, SIAM J. Control. Optim. 48 (2009) 1089-1111.
[11] S. Labbé, E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett. 55 (2006) 597-609.
[12] A. López, E. Zuazua, Some new results related to the null-controllability of the 1-d heat equation, Sèm EDP, Ecole Polytech. VIII (1998) 1-22.
[13] S. Ervedoza, E. Zuazua, A systematic method for building smooth controls for smooth data, DCDS-B 14 (2010) 1375-1401. Special issue in honor of D.L. Russell.
[14] L. Schwartz, Etude des Sommes d'exponentielles, Herman, Paris, 1959.
[15] W.A.J. Luxemburg, J. Korevaar, Entire functions and Müntz-Szasz type approximation, Trans. AMS 157 (1971) 23-37.
[16] P.J. Davis, Interpolation and Approximation, Dover, New York, 1975.

[^0]: * Corresponding author.

 E-mail addresses: sd_micu@yahoo.com (S. Micu), zuazua@bcamath.org (E. Zuazua).

