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a b s t r a c t

The fact that the heat equation is controllable to zero in any bounded domain of the Euclidean space,
any time T > 0 and from any open subset of the boundary is well known. On the other hand, numerical
experiments show the ill-posedness of the problem. In this paper we develop a rigorous analysis of the
1-d problem which provides a sharp description of this ill-posedness.

To be more precise, each initial data y0 ∈ L2(0, 1) of the 1-d linear heat equation has a boundary
control of theminimal L2(0, T )-normwhich drives the state to zero in time T > 0. This control is given by
a solution of the homogeneous adjoint equationwith some initial dataϕ0, minimizing a suitable quadratic
cost. Our aim is to study the relationship between the regularity of y0 and that ofϕ0. We show that there
are regular data y0 for which the corresponding ϕ0 are highly irregular, not belonging to any negative
exponent Sobolev space. Moreover, the class of such initial data y0 is dense in L2(0, 1). This explains
the severe ill-posedness of the numerical algorithms developed for the approximation of the minimal
L2(0, T )-norm control of y0 based on the computation ofϕ0. The lack of polynomial convergence rates for
Tychonoff regularization processes is a consequence of this phenomenon too.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given T > 0 arbitrary, y0 ∈ L2(0, 1) and v ∈ L2(0, T ), we
consider the following non-homogeneous 1-d heat equationyt(t, x) − yxx(t, x) = 0 x ∈ (0, 1), t ∈ (0, T )

y(t, 0) = 0, y(t, 1) = v(t) t ∈ (0, T )

y(0, x) = y0(x) x ∈ (0, 1).
(1)

In (1) y = y(t, x) is the state and v = v(t) is the control
function which acts on the extreme x = 1. We aim at changing the
dynamics of the system by acting on the boundary of the domain
(0, 1). More precisely, we say that (1) is boundary null-controllable
(or controllable to zero) in time T if for each y0 ∈ L2(0, 1) there exists
v ∈ L2(0, T ) such that the corresponding solution of (1) verifies

y(T , x) = 0 ∀x ∈ (0, 1). (2)

There is an extensive literature on this subject. The reader is
referred to [1–3] and to the more recent survey article [4].

In the present article we address this control problem in the
frame developed in [1,2] where it is reduced to a moment problem
which is solved by constructing a biorthogonal sequence to the
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family of exponential functions Λ = (e−λn t)n≥1, where λn are the
eigenvalues of the Dirichlet Laplace operator in (0, 1), entering in
the Fourier expansion of solutions.

When a system is controllable, controls are not unique. Often
the control is chosen according to some optimality criterion.
Normally, this is accompanied by a systematic method of
constructing a uniquely defined control. We thus analyze in this
paper the most common control, the one of the minimal L2(0, T )-
norm. These controls not only are optimal from the viewpoint
of their L2(0, T )-norm, but they can also be characterized and
constructed easily through the adjoint system and a minimization
argument. In order to fix some notation, let us briefly describe how
these controls are obtained.

Given T > 0 and ϕ0
∈ L2(0, 1) we consider the adjoint heat

equationϕt + ϕxx = 0 x ∈ (0, 1), t ∈ (0, T )
ϕ(t, 0) = ϕ(t, 1) = 0 t ∈ (0, T )

ϕ(T , x) = ϕ0(x) x ∈ (0, 1).
(3)

In view of the regularizing properties of the heat equation, themap

ϕ0
−→

∫ T

0
(ϕx)2(t, 1)dt (4)

which is well defined and continuous in some Sobolev space (for
instance H1

0 (0, 1)), by unique continuation, is a norm in L2(0, 1)
(see, for instance, [5] and the references therein).

0167-6911/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
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Furthermore, it is by now well known that the following so-
called observability inequality holds for all T > 0: There exists
a constant C(T ) > 0 such that every solution of (3) satisfies:

‖ϕ(·, 0)‖2
L2(0,1) ≤ C(T )

∫ T

0
(ϕx)

2(t, 1)dt. (5)

We define the Hilbert space H as the completion of L2(0, 1)
with respect to the norm (4). Now, we introduce the functional
J : H → R given by

J(ϕ0) =
1
2

∫ T

0
|ϕx|

2(t, 1)dt −

∫ 1

0
y0(x)ϕ(0, x)dx, (6)

where ϕ is the solution of (3) with initial data ϕ0.
It is easy to see that, for all y0 ∈ L2(0, 1), J, in view of (5), is

coercive in H and it has a unique minimizerϕ0
∈ H . Moreover,

the solution ϕ of (3) with initial data ϕ0 gives the control of the
minimal L2(0, T )-norm of (1), as the following well known result
guarantees (see, for instance [6,5]).

Proposition 1.1. Let T > 0. For each y0 ∈ L2(0, 1) there exists a
unique control of the minimal L2-norm for Eq. (1), u ∈ L2(0, T ). It is
given by

u(t) =ϕx(t, 1) t ∈ (0, T ), (7)

where ϕ is the solution of the adjoint Problem (3) with initial dataϕ0
∈ H , the minimizer of (6). Moreover, the map G : L2(0, 1) → H ,

defined by

G(y0) =ϕ0, (8)

is linear and continuous.

The operator G from Proposition 1.1 is usually called the HUM
(Hilbert Uniqueness Method) operator and the control u is referred
to as the HUM control. The important property of the minimal
L2(0, T )-norm makes the HUM control very desirable. However,
as reported in [7,8], the minimization of (6) is severely ill-posed.
This comes from the fact that the space H is very large. In fact,
due to the regularizing effect of the heat equation, one can see
that any distribution in a negative order Sobolev space H−s(0, 1),
with support away from x = 1, belongs to H , whatever s > 0 is.
Therefore, for a given y0 ∈ L2(0, 1), the minimizer of J may have
very low regularity and it may be difficult to capture it numerically
with accuracy and robustness.

The aim of this article is to investigate the regularity of the
minimizer G(y0) = ϕ0

∈ H when y0 ∈ L2(0, 1). We show that,
even for a regular initial data y0, the corresponding minimizer
G(y0) of J may not belong to any Sobolev space of negative
exponent. For instance, we prove that, when the initial datum
y0 to be controlled is a sinusoidal function (y0(x) = sin(nπx)),
the Fourier coefficients of the corresponding control, G(sin(nπx)),
grow exponentially for high frequencies. Moreover, we show that
the set of initial data y0 ∈ L2(0, 1) with such property is dense
in L2(0, 1). These results are based on precise estimates for the
Fourier coefficients of G(y0), obtained by using the minimal norm
biorthogonal family to the sequence of exponential functions Λ =

(e−λn t)n≥1 in L2(0, T ), entering in the Fourier expansion of the
solutions of the state and adjoint systems.

These low regularity properties explain why, in practice, the
problem of minimizing (6) is ill-posed and why it is difficult to
compute numerically with efficiency the control of the minimal
L2(0, T )-norm for (1).

One of the most frequent cures for ill-posed problems is the
Tychonoff regularization techniquewhich guarantees convergence
towards the minimizer and gives polynomial convergence rates,
with respect to the regularization parameter, under appropriate

regularity hypotheses on the minimizer (see, for instance, [9,10]).
This can also be done in our context, showing that the minimizer
of a Tychonoff regularized functional converges towards the
minimizer of J with a polynomial rate provided the last one
has some Sobolev regularity. But, since we have proved that our
minimizermay have a very low regularity, no convergence rate can
be established and then, eventually, the Tychonoff regularization
technique will be inefficient to compute the control.

We point out that this phenomenon of ill-posedness occurs at
the level of the continuous heat equation. It is compatible with the
fact that observability properties of semi-discrete or fully-discrete
approximation schemes of the heat equation are uniform with re-
spect to the discretization parameters (see, for instance, [11,12,5])
butmakes an impact on the effective computation of controls, thus
making it very difficult in practice.

In [13] it is proved that, in the context of time-reversible infinite
dimensional systems, the controls of the minimal L2-norm inherit
the regularity of the initial data to be controlled. Our results show
that this important property is not true for the heat equation (1).

The rest of the paper is organized as follows. Section 2 is devoted
to characterize the HUM controls of (1) and the Fourier coefficients
of the minimizer G(y0) of (6) by means of a biorthogonal sequence
to the family Λ. In Section 3 we estimate the elements of the
inverse of the Gramm matrix corresponding to Λ, by analyzing
three different cases. Finally, in the last section, we discuss the
main consequences of the estimates mentioned above in the
context of control of (1).

2. The moment problem and the HUM control

The following characterization of the boundary null-
controllability property of (1) is well known (see, for instance,
[2,6]).

Proposition 2.1. Eq. (1) is null-controllable in time T > 0 if and only
if, for any y0 ∈ L2(0, 1) with Fourier expansion

y0(x) =

−
n≥1

an sin(πnx), (9)

there exists a function w ∈ L2(0, T ) such that,∫ T

0
w(t) e−n2π2tdt = (−1)n

an
2nπ

e−n2π2T n ∈ N∗. (10)

If w ∈ L2(0, T ) verifies (10), the function v(t) = w(T − t) is
a boundary control for (1). Problem (10) is usually referred to as
a moment problem since we are looking for a function w whose
moments with respect to the exponentials e−n2π2t , n ∈ N∗, are
given by the right hand side data in (10).

Let us introduce some notation. The eigenvalues of the 1-d
Dirichlet Laplace operator are λn = n2π2 and the corresponding
eigenfunctions Φn

= sin(nπx), for every n ∈ N∗. Λ = (e−λnt)n≥1
denotes the family of the corresponding real exponential functions.

For any T > 0, let E(Λ, T ) and E(m, Λ, T ) be the closure in
L2(0, T ) of the spaces Span(Λ) and Span(Λm) respectively, where
Λm = (e−λnt) n≥1

n≠m
. Also,we introduce the notation pnT : [0, T ] → R,

pnT (t) = e−λnt . We recall that.

Definition 2.1. (θm
T )m≥1 is a biorthogonal sequence to Λ in

L2(0, T ) if∫ T

0
pnT (t)θ

m
T (t)dt = δnm ∀n,m ∈ N∗.
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The existence of a biorthogonal sequence to the family Λ is a
consequence of the following Theorem (see, for instance, [14]).

Theorem 2.1 (Müntz). Let 0 < λ1 < λ2 < · · · < λn < · · · be a
sequence of real numbers and T ∈ (0, ∞). The family of exponential
functions (e−λnt)n≥1 is complete in L2(0, T ) if and only if−
n≥1

1
λn

= ∞. (11)

Since in our case λn = π2n2 and (11) is not verified, it follows
from Müntz’s Theorem, that E(Λ, T ) and E(m, Λ, T ) are proper
subspaces of L2(0, T ). Consequently, E(Λ, T ) is minimal (each
element of Λ lies outside the closed subspace spanned by the
others). Thus, for each m ≥ 1, pmT ∉ E(m, Λ, T ) (see [14], p. 23).
Let rmT be the orthogonal projection of pmT over the space E(m, Λ, T )
and define

θm
T (t) =

1
‖pmT − rmT ‖

2
L2(0,T )

(pmT (t) − rmT (t)). (12)

The following result may be found in [1,2].

Theorem 2.2. For any T > 0, the sequence (θm
T )m≥1 given by (12) is

the unique biorthogonal to the family Λ in L2(0, T ) such that

(θm
T )m≥1 ⊂ E(Λ, T ). (13)

Moreover, this biorthogonal sequence has theminimal L2(0, T )-norm:
any other biorthogonal (ζm)m≥1 to the family Λ in L2(0, T ) verifies

‖θm
T ‖L2(0,T ) < ‖ζm‖L2(0,T ) ∀m ≥ 1. (14)

The following proposition establishes the relation between
the HUM control (7) and the biorthogonal with minimal
norm (θm

T )m≥1 ⊂ E(Λ, T ) to the family Λ in L2(0, T ) given by
Theorem 2.2.

Proposition 2.2. Let y0 ∈ L2(0, 1) be given by (9) and suppose that
the following series is convergent in L2(0, T )

u(t) =

∞−
n=1

(−1)n
an
2nπ

e−n2π2T θn
T (T − t), (15)

where (θm
T )m≥1 ⊂ E(Λ, T ) is the minimal norm biorthogonal to the

family Λ in L2(0, T ) given by Theorem 2.2. Then u ∈ L2(0, T ) is the
HUM control (7) corresponding to initial data y0 of Eq. (1).

Proof. By using the biorthogonal properties, it is easy to see that
w(t) = u(T − t) verifies (10). Hence, u is a control for (1).

In order to prove that u is the HUM control it is sufficient to
show that it has the minimal L2(0, T )-norm. This is true if the
Fourier coefficients of y0 are all zero, except an0 which is not zero.
Indeed, in this case

u = (−1)n0
an0

2n0π
e−n02π2T θ

n0
T

and the minimality of its norm follows from that of the
biorthogonal (θm

T )m≥1. This fact together with linearity of the map
which assigns to each initial data y0 its HUM control completes the
proof. �

We recall that, in [1,2], it is proved that (15) absolutely
converges in L2(0, T ) for any (an)n≥1 such that

∑
∞

n=1 |an|e−δn2 <
∞, with δ a positive number depending only on T .

Since u given by Proposition 2.2 is the HUM control correspond-
ing to y0, then u =ϕx( · , 1), whereϕ is the solution of (3) with ini-
tial dataϕ0

= G(y0) given by Proposition 1.1. Our aim is to study

the regularity ofϕ0. A possibility to do this consists in expandingϕ0 in the Fourier series

G(y0) =ϕ0(x) =

−
m≥1

bm sin(πmx) (16)

and analyzing the behavior of the Fourier coefficients bm. The
following characterization of bm holds.

Theorem 2.3. Let y0 ∈ L2(0, 1) be defined as in (9). The Fourier
coefficients bm of G(y0) from (16) are given by

bm =
(−1)m

mπ

∞−
n=1

(−1)n
an
2nπ

e−n2π2T
⟨θn

T , θm
T ⟩L2(0,T ). (17)

Moreover, the infinite matrix (⟨θn
T , θm

T ⟩L2(0,T ))n,m≥1 verifies−
k≥1

⟨θm
T , θ k

T ⟩L2(0,T ) ⟨e−λkt , e−λnt⟩L2(0,T ) = δmn ∀m, n ≥ 1. (18)

Proof. Ifϕ is the solution of (1) with initial dataϕ0 given by (16)
and u(t) =ϕx(t, 1), the following relation is obtained from (15)−
m≥1

(−1)mmπbme−λmt
=

∞−
n=1

(−1)n
an
2nπ

e−n2π2T θn
T (t). (19)

From (19) and the orthogonality properties of θm
T we deduce that

(17) holds.
For the second part, note that θm

T , being the biorthogonal
of the minimal norm, belongs to E(Λ, T ). Therefore, for each m ∈

N∗, there exists a scalar sequence (dmk )k≥1 such that (see [15],
Theorem 8.2)

θm
T (t) =

−
k≥1

dmk e
−λkt . (20)

From (20) we deduce that

⟨θm
T (t), θ k

T (t)⟩L2(0,T ) = dmk (21)

and

δmn = ⟨θm
T (t), e−λnt⟩L2(0,T ) =

−
k≥1

dmk ⟨e−λkt , e−λnt⟩L2(0,T ).

This represents exactly (18) and completes the proof of the
theorem. �

Remark 2.1. The ‘‘infinite Gramm matrix’’ G(T ) = (⟨pnT ,
pmT ⟩L2(0,T ))n,m≥1 is an one-to-one linear operator in ℓ2 but it is not
invertible in ℓ2. �

In order to evaluate the Fourier coefficients bm ofG(y0)we need
to estimate the quantities dnk given by (21). In order to do that, we
use a strategy similar to [1,2], where the norms ‖θn

T ‖L2(0,T ) =

dnn

are evaluated. It consists in truncating the matrix G by considering
only a finite number N of exponentials and extending the time
interval to (0, ∞).

Before explaining how the estimates for dnk are obtained, let us
introduce somenotation. For any T ∈ (0, ∞] andN ∈ N∗, EN(Λ, T )
and EN(m, Λ, T ) denote the subspaces generated in L2(0, T ) by
the finite families (e−λkt)1≤k≤N and (e−λkt) 1≤k≤N

k≠m
respectively. Note

that EN(Λ, T ) and EN(m, Λ, T ) are finite dimensional subspaces
and

E(Λ, T ) =


N≥1

EN(Λ, T ),

E(m, Λ, T ) =


N≥1

EN(m, Λ, T ).

As before, pnT denotes the exponential function e−λnt defined on the
interval [0, T ] if T < ∞ or [0, ∞) if T = ∞.
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As in Theorem 2.2, there exists a unique biorthogonal
(θm

T ,N)1≤m≤N ⊂ EN(Λ, T ) to the finite family of exponentials
(e−λkt)1≤k≤N given by

θm
T ,N =

1
‖pmT − rmT ,N‖

2
L2(0,T )

(pmT − rmT ,N), (22)

where rmT ,N is the orthogonal projection of pmT over EN(m, Λ, T ). For
each m ∈ N∗, there exist some unique scalars (dmk (T ,N))1≤k≤N
such that

θm
T ,N =

N−
k=1

dmk (T ,N)pkT . (23)

Let GN(T ) denote the Grammmatrix of the family (e−λkt)1≤k≤N ,
i.e. the matrix of elements

gkl(T ,N) =

∫ T

0
pkT (t)p

l
T (t)dt, 1 ≤ k, l ≤ N. (24)

As in the final part of Theorem 2.3, we have the following
characterization of the coefficients dmk (T ,N).

Proposition 2.3. Let T ∈ (0, ∞]. The matrix (dmk (T ,N))1≤k, m≤N
given by (23) is the inverse of the Grammmatrix GN(T ). Consequently,
from Cramer’s rule,

dmk (T ,N) =
|Gmk(T )|

|GN(T )|
(25)

where |GN(T )| is the determinant of matrix GN(T ) and |Gmk(T )| is
the determinant of the matrix Gmk(T ) obtained by replacing the m-
th column of GN(T ) with the k-th vector of the canonical basis.

Now, let us briefly explain how the estimates for dmk may be
obtained. If T = ∞, the determinants |GN(∞)| and |Gmk(∞)|,
and consequently the coefficients dmk (∞,N) from Proposition 2.3,
may be explicitly computed. Next, a perturbation argument and
an extension theorem allow us to address the case T < ∞ and
to deduce estimates for dmk (T ,N). Finally, by letting N → ∞, we
obtain the desired estimates for dmk . This is the strategy used in the
following section.

3. Estimates for dm
k

As we have said before, we study successively dmk (∞,N),
dmk (T ,N) and finally dmk .

3.1. Analysis of the case T = ∞ and N < ∞

In this section we evaluate the quantities dmk (∞,N) from
(25), Proposition 2.3. To compute the determinants |GN(∞)| and
|Gmk(∞)| we use the following lemma.

Lemma 3.1. If C = (cij)1≤i, j≤N is a matrix of coefficients cij =
1

ai+bj
then

|C | =

∏
1≤j<i≤N

(ai − aj)(bi − bj)∏
1≤i, j≤N

(ai + bj)
. (26)

Moreover, if Cmk denotes the matrix obtained by replacing the m-
th column of C by the k-th vector of the canonical basis, then

|Cmk| = (−1)m+k

∏
′

1≤j<i≤N
(ai − aj)(bi − bj)∏

′

1≤i, j≤N
(ai + bj)

, (27)

where ′ means that the terms containing ak and bm have been skipped
in the product.

Proof. For the first part, see [16]. For the second part, note that

|Cmk| = lim
bm→∞

lim
ak→∞

ak|C |. (28)

We have that

|C | =

∏
1≤j<i≤n

(ai − aj)(bi − bj)∏
1≤i, j≤N

(ai + bj)
=

∏
′

1≤j<i≤N
(ai − aj)(bi − bj)∏

′

1≤i, j≤N
(ai + bj)

×

∏
1≤j<k

(ak − aj)
∏

k<i≤N
(ai − ak)

∏
1≤j<m

(bm − bj)
∏

m<i≤N
(bi − bm)

(ak + bm)
∏

1≤j≤N, j≠m
(ak + bj)

∏
1≤i≤N, i≠k

(ai + bm)
.

It follows that

|C | =

∏
′

1≤j<i≤N
(ai − aj)(bi − bj)∏

′

1≤i, j≤N
(ai + bj)

×

(−1)k+m ∏
1≤p≤N, p≠k

(ak − ap)
∏

1≤p≤N, p≠m
(bm − bp)

(ak + bm)
∏

1≤j≤N, j≠m
(ak + bj)

∏
1≤i≤N, i≠k

(ai + bm)

and consequently

|Cmk| = lim
bm→∞

lim
ak→∞

ak|C |

= (−1)m+k

∏
′

1≤j<i≤N
(ai − aj)(bi − bj)∏

′

1≤i, j≤N
(ai + bj)

.

The proof of the lemma is finished. �

Now, we can pass to estimate the numbers dmk (∞,N).

Proposition 3.1. If (dmk (∞,N))1≤k, m≤N is the matrix in Proposi-
tion 2.3, then

dmk (∞,N) =
4π2 k2 m2

k2 + m2

N∏
p=1
p≠k

k2 + p2

k2 − p2

N∏
p=1
p≠m

m2
+ p2

m2 − p2
. (29)

Moreover, for each k,m ≥ 1, the sequence (|dmk (∞,N)|)N≥max{k,m}

is increasing and

lim
N→∞

dmk (∞,N) = (−1)m+k km
k2 + m2

(eπk
− e−πk)

× (eπm
− e−πm). (30)

Proof. We have that

dmk (∞,N) =
|Gmk(∞)|

|GN(∞)|
(31)

where |GN(∞)| denotes the determinant of matrix GN(∞) and
|Gmk(∞)| the determinant of the matrix Gmk(∞), obtained by
replacing the m-th column of GN(∞) by the k-th vector of the
canonical basis. In order to evaluate |GN(∞)| and |Gmk(∞)| we
remark that the elements gij(∞) of the matrix GN(∞) are given
by

gij(∞) =

∫
∞

0
pi

∞
(t)pj

∞
(t)dt =

1
(i2 + j2)π2

1 ≤ i, j ≤ N.

Hence, we can use Lemma 3.1 to evaluate |GN(∞)| and
|Gmk(∞)|. We deduce from (31) that
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dmk (∞,N) = (k2 + m2)π2

×

∏
1≤p≤N, p≠m

(k2 + p2)
∏

1≤p≤N, p≠k
(m2

+ p2)∏
1≤p≤N, p≠k

(k2 − p2)
∏

1≤p≤N, p≠m
(m2 − p2)

from which (29) follows immediately.
For k ≥ 1 and N ≥ k, let us denote

SN(k) =

N∏
p=1
p≠k

k2 + p2

|k2 − p2|
=

N∏
p=1


1 +

k2

p2

 N∏
p=N−k+1

p
p + k

. (32)

It follows that

SN+1(k)
SN(k)

=


1 +

k2

(N + 1)2


1 +

k2

(N + 1)2 − k2


> 1

and the sequence (|dmk (∞,N)|)N≥max{k,m} is increasing.
On the other hand, from Euler’s formula,

lim
N→∞

SN(k) =

∞∏
p=1


1 +

k2

p2


=

sin(i kπ)

i kπ
.

Therefore (30) holds and the proof of Proposition 3.1 is
completed. �

3.2. Analysis of the case T < ∞ and finite dimension N

Let T < ∞ be given. In this section we give estimates for dmk
(T ,N). Firstly, we recall the following result (see [1,14]).

Theorem 3.1. Let T ∈ (0, ∞) and Λ be the family of exponential
functions (e−λnt)n≥1, where λn = n2π2 are the eigenvalues of the
Dirichlet Laplace operator in (0, 1). The restriction operator

RT : E(Λ, ∞) → E(Λ, T ), RT (v) = v|[0,T ]
(33)

is invertible and there exists CT > 0, depending only on T , such that

‖R−1
T ‖ ≤ CT . (34)

Also, let us define the restriction

RT ,N : EN(Λ, ∞) → EN(Λ, T ), RT ,N(v) = v|[0,T ]
(35)

and note that, if pnT and pn
∞

denote the function e−λnt defined in
[0, T ] and [0, ∞) respectively, then

RT (pn∞) = RT ,N(pn
∞

) = pnT , 1 ≤ n ≤ N. (36)

Evidently, RT ,N is invertible. Moreover, since

δmn = ⟨θm
∞,N , pn

∞
⟩L2(0,∞) = ⟨θm

∞,N , R−1
T ,N pnT ⟩L2(0,∞)

= ⟨(R−1
T ,N)∗ θm

∞,N , pnT ⟩L2(0,T )

and (R−1
T ,N)∗θm

∞,N ∈ EN(Λ, T ), we deduce that

(R−1
T ,N)∗θm

∞,N = θm
T ,N . (37)

The following proposition gives a first estimate for the elements
dmk (T ,N) in Proposition 2.3.

Proposition 3.2. If (dmk (T ,N))1≤k, m≤N is the inverse of the Gramm
matrix GN(T ), then there exists a positive constant C = C(T ) > 0,
independent of N but depending on T , such that

|dmk (T ,N)| ≤ C
k2 + m2

km
|dmk (∞,N)| 1 ≤ k, m ≤ N. (38)

Proof. From (37) and (29) it follows that

|dmk (T ,N)| = |⟨θm
T ,N , θ k

T ,N⟩| = |⟨(R−1
T ,N)∗θm

∞,N , (R−1
T ,N)∗θ k

∞,N⟩|

≤ ||(R−1
T ,N)∗||2 ‖θm

∞,N‖ ‖θ k
∞,N‖

= ||(R−1
T ,N)∗||2


dmm(∞,N)


dkk(∞,N)

= ||(R−1
T ,N)∗||2 2π2 mk

N∏
p=1
p≠m

m2
+ p2

|m2 − p2|

N∏
p=1
p≠k

k2 + p2

|k2 − p2|

= ||(R−1
T ,N)∗||2

k2 + m2

2 km
|dmk (∞,N)|.

On the other hand, by using Theorem 3.1, we deduce that

||(R−1
T ,N)∗||L(EN (Λ,∞),EN (Λ,T )) = ||R−1

T ,N ||L(EN (Λ,T ),EN (Λ,∞))

≤ ||R−1
T ||L(E(Λ,T ),E(Λ,∞)) ≤ CT

and the proof ends by taking C =
1
2C

2
T . �

The main estimate for dmk (T ,N) is given in the following
proposition.

Proposition 3.3. If (dmk (T ,N))1≤k, m≤N is the inverse of the Gramm
matrix GN(T ), there exists a positive integer n0 > 0, independent of
N but depending of T , such that

|dmk (T ,N)| ≥
1
2
|dmk (∞,N)| ∀m, k ≥ n0. (39)

Proof. For each n ∈ {1, 2, . . . ,N}, we have that (R−1
T ,N)∗pn

∞
∈

EN(Λ, T ) and there exist scalars (qnk)1≤k≤N ⊂ R such that

(R−1
T ,N)∗pn

∞
=

N−
k=1

qnkp
k
T . (40)

Moreover, the coefficients qnk verify

qnk = ⟨(R−1
T ,N)∗pn

∞
, θ k

T ,N⟩L2(0,T ) = ⟨pn
∞

, R−1
T ,Nθ k

T ,N⟩L2(0,∞)

=

∫ T

0
pnT (t)θ

k
T ,N(t)dt +

∫
∞

T
pn

∞
(t)R−1

T ,Nθ k
T ,N(t)dt

= δnk +

∫
∞

T
e−λntR−1

T ,Nθ k
T ,N(t)dt

and therefore

qnk − δnk =

∫
∞

T
e−λntR−1

T ,Nθ k
T ,N(t)dt. (41)

From (23), we deduce that

R−1
T ,Nθ k

T ,N = R−1
T ,N


N−
j=1

dkj (T ,N)pjT


=

N−
j=1

dkj (T ,N)pj
∞

which, together with (41), gives

qnk − δnk =

N−
j=1

dkj (T ,N)

(n2 + j2)π2
e−π2(n2+j2)T 1 ≤ n, k ≤ N. (42)

On the other hand, we have that

dmk (T ,N) = ⟨θm
T ,N , θ k

T ,N⟩L2(0,T )

=


(R−1

T ,N)∗


N−
i=1

dmi (∞,N)pi
∞


, θ k

T ,N


L2(0,T )
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=

N−
i=1

dmi (∞,N)⟨(R−1
T )∗pi

∞
, θ k

T ,N⟩L2(0,T )

=

N−
i=1

dmi (∞,N)qik

and consequently

dmk (T ,N) − dmk (∞,N) =

N−
i=1

dmi (∞,N)(qik − δik)

1 ≤ k, m ≤ N. (43)

Now, using (43) and (42), we deduce that

|dmk (T ,N) − dmk (∞,N)|

=

 N−
i,j=1

e−π2(i2+j2)T

(i2 + j2)π2
dkj (T ,N) dmi (∞,N)

 . (44)

From (44), estimate (38) and formulas (29), it follows that

|dmk (T ,N) − dmk (∞,N)|

≤
1
2
C2
T

N−
i,j=1

e−π2(i2+j2)T

(i2 + j2)π2

j2 + k2

j k
|dkj (∞,N)| |dmi (∞,N)|

= 8C2
T π2

N∏
p=1
p≠k

k2 + p2

|k2 − p2|

N∏
p=1
p≠m

m2
+ p2

|m2 − p2|

×

N−
i,j=1

e−π2(i2+j2)T

i2 + j2
j2 + k2

j k
k2 j2

k2 + j2
m2 i2

m2 + i2

×

N∏
p=1
p≠i

i2 + p2

|i2 − p2|

N∏
p=1
p≠j

j2 + p2

|j2 − p2|
.

Hence,

|dmk (T ,N) − dmk (∞,N)| ≤ 2C2
T
m2

+ k2

km2
|dmk (∞,N)|

×

N−
i,j=1

e−π2(i2+j2)T

i2 + j2
j i2 m2

m2 + i2

N∏
p=1
p≠i

i2 + p2

|i2 − p2|

N∏
p=1
p≠j

j2 + p2

|j2 − p2|
. (45)

By using (29)–(30), we deduce that

N−
i,j=1

e−π2(i2+j2)T

i2 + j2
j i2 m2

m2 + i2

N∏
p=1
p≠i

i2 + p2

|i2 − p2|

N∏
p=1
p≠j

j2 + p2

|j2 − p2|

≤

N−
i,j=1

j i2 e−π2(i2+j2)T

i2 + j2

N∏
p=1
p≠i

i2 + p2

|i2 − p2|

N∏
p=1
p≠j

j2 + p2

|j2 − p2|

=

N−
i,j=1

e−π2(i2+j2)T

4π2j
|dji(∞,N)|

≤

N−
i,j=1

i e−π2(i2+j2)T

4π2(i2 + j2)
eπ(i+j)

≤
1

4π2


N−
i=1

e−π2Ti2+π i

2

.

Thus, there exists a constant C ′

T > 0, depending only on T , such
that

N−
i,j=1

e−π2(i2+j2)T

i2 + j2
j i2 m2

m2 + i2

N∏
p=1
p≠i

i2 + p2

|i2 − p2|

N∏
p=1
p≠j

j2 + p2

|j2 − p2|
≤ C ′

T . (46)

By denoting C = 2C2
T C

′

T , it follows from (45) and (46) that

|dmk (T ,N) − dmk (∞,N)| ≤ C
k2 + m2

km2
|dmk (∞,N)|

1 ≤ k, m ≤ N. (47)

Now, remark that C k2+m2

km2 ≤
1
2 if 2Ck2

k−2C ≤ m2. Thus (39) is ver-
ified for any k ≥ 2C + 1 and m2

≥ (2C + 1)2k. From the sym-
metry of thematrices (dmk (T ,N))1≤k, m≤N and (dmk (∞,N))1≤k, m≤N ,
we deduce that inequality (39) holds for any m ≥ 2C + 1 and
k2 ≥ (2C + 1)2m, too. The proof of the proposition ends by tak-
ing n0 = [(2C + 1)2] + 1. �

3.3. Analysis of the case T < ∞ and N = ∞

Now we have all the ingredients needed to estimate the
coefficients dmk given by (21).

Theorem 3.2. Let (θm
T )m≥1 be the biorthogonal of the minimal norm

to the familyΛ in L2(0, T ) and (dmk )m,k≥1 be given by (21). There exist
a positive integer n0 and a positive constant C > 0, independent of k
and m, but depending of T , such that

|dmk | ≤ Ceπ(k+m)
∀k,m ≥ 1 (48)

|dmk | ≥
km

32(k2 + m2)
eπ(k+m)

∀m, k ≥ n0. (49)

Proof. From (22)

θm
T ,N =

N−
k=1

dmk (T ,N)e−λkt

=
1

‖pmT − rmT ,N‖
2
L2(0,T )

(pmT − rmT ,N) (50)

where rmT ,N is the orthogonal projection of pmT over EN(m, Λ, T ).
On the other hand, from (12),

θm
T (t) =

−
k≥1

dmk e
−λkt =

1
‖pmT − rmT ‖

2
L2(0,T )

(pmT − rmT ) (51)

where rmT is the projection of pmT over the space E(m, Λ, T ).
Now, remark that

rmT ,N → rmT as N → ∞ in L2(0, T ). (52)

Indeed, since ⟨rmT − rmT ,N , e−λjt⟩ = 0 for any 1 ≤ j ≤ N , we have
that

‖rmT − rmT ,N‖
2
L2(0,T )

= ⟨rmT − rmT ,N , rmT − rmT ,N⟩L2(0,T )

= ⟨rmT − rmT ,N , rmT ⟩L2(0,T )

=


rmT − rmT ,N , rmT −

N−
n=1, n≠m

αne−λnt


L2(0,T )

.

Now, since rmT ∈ E(m, Λ, T ) =


N≥1 EN(m, Λ, T ), we deduce that
(52) holds. From formulas (50) and (51) we deduce that θm

T ,N → θm
T

as N → ∞ in L2(0, T ) and, consequently,

dmk (T ,N) = ⟨θm
T ,N , θ k

T ,N⟩ → dmk as N → ∞. (53)

By taking into account estimates (38) and (39) from Proposi-
tions 3.2 and 3.3 respectively, we obtain from (53) the conclusion
of the theorem. �

4. Control theoretical consequences

In this section we deduce some consequences of the estimates
in Theorem 3.2 for the controllability of (1).
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4.1. Control for one mode

Let us consider the case in which the initial data y0 of (1)
to be controlled is the n-th eigenfunction Φn. It follows from
Proposition 2.2 that the corresponding HUM control is given by

u(t) =
(−1)n

2nπ
e−n2π2T θn

T (T − t)

=
(−1)n

2nπ

−
k≥1

dnke
−(n2+k2)π2Tek

2 π2 t . (54)

Moreover, the Fourier coefficients (b0,nm )m≥1 of the initial data
G(y0) = ϕ0,n which gives the HUM control corresponding to y0,
may be computed by using (17):

b0,nm =
(−1)n+m

2 nmπ2
e−n2π2Tdnm m ≥ 1. (55)

From (55) and estimates (48)–(49) from Theorem 3.2, we
immediately obtain the following properties of the Fourier
coefficients (b0,nm )m≥1.

Corollary 4.1. Let (b0,nm )m≥1 be the Fourier coefficients of G(Φn).
Then

|b0,nm | ≤
C
nm

e−π2T n2+π(m+n)
∀m ≥ 1. (56)

Moreover, if n ≥ n0, then

|b0,nm | ≥
1

64π2(n2 + m2)
e−π2T n2+π(m+n)

∀m ≥ n0. (57)

The constants C > 0 and n0 are those given by Theorem 3.2, are
independent of n and m but depend on T .

Remark 4.1. Estimates (57) from Corollary 4.1 show that, for any
n ≥ n0, the initial data G(Φn) of (3), which gives the HUM control
for the n-th eigenfunction Φn, has a very low regularity. Indeed,
for any m ≥ 2πT n2, we obtain that |b0,nm | ≥ e

π
2 m and therefore

G(Φn) does not belong to any Sobolev space of negative order.
Also, note that the first Fourier coefficients b0,nm , corresponding to
m ≤ απT n2, with α < 1, are exponentially small for n → ∞. �

4.2. Controls for initial data in L2(0, 1)

Let us now study the regularity of the HUM controls for initial
data in L2(0, 1). We have the following result.

Corollary 4.2. For any y0 ∈ L2(0, 1) and ε > 0 there exists y0ε ∈

L2(0, 1) and a positive constant C, depending only on T and ε, such
that

‖y0 − y0ε‖L2(0,1) < ε (58)

|b0ε,mk
| ≥

C
m2

k
eπ mk ∀k ≥ 1, (59)

where (b0ε,m)m≥1 are the Fourier coefficients of G(y0ε) and (mk)k≥1 is
an increasing sequence of positive integers.
Proof. Let G(y0) =

∑
∞

m=1 b
0
m sin(mπx) and n0 be the positive

integer from Theorem 3.2. We define y1 = y0 + ε sin(n0πx) and
remark that G(y1) = G(y0) + εG(Φn0), where G(Φn0) was studied
in Corollary 4.1. If (b1m)m≥1 are the Fourier coefficients of G(y1), we
deduce from (55) that

b1m = b0m + εb0,n0m = b0m + ε
(−1)n0+m

2 n0 mπ2
e−n20π

2Tdn0m m ≥ 1. (60)

Consequently, max{|b0m|, |b1m|} ≥
ε|d

n0
m |

4 n0 mπ2 e−n20π
2T and, by tak-

ing into account (49) from Theorem 3.2, we deduce that

max{|b0m|, |b1m|} ≥
ε

128π2(n2
0 + m2)

e−n20π
2Teπ(m+n0)

∀m ≥ n0. (61)

Thus, at least one of the sequences (b0m)m≥1 or (b1m)m≥1 has
a subsequence which verifies (59). If this is (b0m)m≥1, we choose
y0ε = y0. Otherwise, we take y0ε = y1. In both cases y0ε verifies (58)
and (59) and the proof ends. �

Remark 4.2. Corollary 4.2 shows that the set of initial data y0
whose HUM controls are given by a minimizer G(y0) of J which
do not belong to any Sobolev space of negative order is dense in
L2(0, 1). �

4.3. Monochromatic controls

Another natural question is the reciprocal of the one addressed
in the paragraph 4.1: which is the regularity of the initial datum y0
of (1) whose HUM control is given by the solution of (3) with initial
datumϕ0

= sin(mπx) containing one single Fourier component?
The following corollary shows that y0 is highly irregular.

Corollary 4.3. The initial data y0 =
∑

∞

n=1 an sin(nπx), whose HUM
control is given by the solution of (3)with initial dataϕ0

= sin(mπx),
verifies

|an| ≥ C
mn

m2 + n2
eT π2 n2

∀n ≥ 1, (62)

where C is a positive constant independent of n and m.

Remark 4.3. This result confirms that the data for which the
controls are smooth are irregular. This complements our previous
results showing that the control associated with smooth data are
highly irregular. This also shows that the operator G : L2(0, 1) →

H defined in Proposition 1.1 is injective but not surjective. �

Proof. From (19) we deduce that

(−1)mmπe−λmt
=

∞−
n=1

(−1)n
an
2nπ

e−Tπ2 n2θn
T (t) (63)

and consequently an = (−1)n+m2 nmπ2 eTπ2 n2
⟨pnT , p

m
T ⟩L2(0,T )

from which (62) follows immediately. �
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