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Abstract. We consider a simple model arising in the control of noise. We assume that the
two-dimensional cavity Ω = (0, 1)× (0, 1) is occupied by an elastic, inviscid, compressible fluid. The
potential φ of the velocity field satisfies the linear wave equation. The boundary of Ω is divided in
two parts Γ0 and Γ1. The first one, Γ0 is flexible and occupied by a vibrating string that obeys to
the one-dimensional wave equation. On Γ0 the continuity of the normal velocities of the fluid and the
string is imposed. The subset Γ1 of the boundary is assumed to be rigid and therefore, the normal
velocity of the fluid vanishes. This constitutes a conservative system of two coupled wave equations
in dimensions two and one respectively.

The control (an elastic force or an exterior source of noise) is assumed to act on the flexible part
of the boundary. We are interested on the controllability problem: Given a large enough control time,
what are the initial conditions we can drive to the equilibrium by means of, say, L2− controls ? By
using Fourier series the problem is decomposed into an infinite number of one-dimensional control
problems that we solve by classical methods that combine HUM, multiplier techniques and Ingham
type inequalities. Putting these one-dimensional results together we give a precise characterization
of the space of controllable data in terms of Fourier series.
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1. Introduction. Let Ω be the two-dimensional square Ω = (0, 1)×(0, 1) ⊂ IR2.

We assume that Ω is filled with an elastic, inviscid, compressible fluid whose
velocity field

→
v is given by the potential φ = φ(x, y, t) :

→
v = ∇φ. By linearization we

assume that the potential φ satisfies the linear wave equation in Ω× (0,∞).

The boundary Γ = ∂Ω of Ω is divided in two parts: Γ0 = {(x, 0) : x ∈ (0, 1)}
and Γ1 = Γ\Γ0. The subset Γ1 is assumed to be rigid and we impose zero normal
velocity of the fluid on it. The subset Γ0 is supposed to be flexible and occupied by
a flexible string that vibrates under the pressure of the fluid on the plane where Ω
lies. The displacement of Γ0, described by the scalar function W = W (x, t), obeys the
one-dimensional wave equation. On the other hand, on Γ0 we impose the continuity
of the normal velocities of the fluid and the string. The string is assumed to satisfy
Neumann boundary conditions on its extremes. All deformations are supposed to
be small enough so that linear theory applies. Under natural initial conditions for
φ and W the linear motion of this system is described by means of the following
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plutense, 28040 Madrid, Spain, (zuazua@sunma4.mat.ucm.es). Supported by grant PB93-1203 of the
DGICYT (Spain) and CHRX-CT94-0471 of the European Union.

1



2 S. MICU AND E. ZUAZUA

coupled wave equations:




φtt −∆φ = 0 in Ω× (0,∞)
∂φ
∂ν = 0 on Γ1 × (0,∞)
∂φ
∂y = −Wt on Γ0 × (0,∞)
Wtt −Wxx + φt = 0 on Γ0 × (0,∞)
Wx(0, t) = Wx(1, t) = 0 for t > 0
φ(0) = φ0, φt(0) = φ1 in Ω
W (0) = W 0,Wt(0) = W 1 on Γ0.

(1.1)

By ν we denote the unit outward normal to Ω.
In (1.1) we have chosen to take the various parameters of the system to be equal

to one.
The system (1.1) is well-posed in the energy space X = H1(Ω)×L2(Ω)×H1(Γ0)×

L2(Γ0) for the variables (φ, φt, W,Wt). The energy

E(t) =
1
2

∫

Ω

[| ∇φ |2 + | φt |2
]
dxdy +

1
2

∫

Γ0

[| Wx |2 + | Wt |2
]
dx(1.2)

remains constant along trajectories.
We study the controllability of system (1.1) under the action of an exterior force

or source of noise on the flexible part of the boundary Γ0. The control is given by a
scalar function β = β(x, t), and the controlled system reads as follows:





φtt −∆φ = 0 in Ω× (0,∞)
∂φ
∂ν = 0 on Γ1 × (0,∞)
∂φ
∂y = −Wt on Γ0 × (0,∞)
Wtt −Wxx + φt = β on Γ0 × (0,∞)
Wx(0, t) = Wx(1, t) = 0 for t > 0
φ(0) = φ0, φt(0) = φ1 in Ω
W (0) = W 0,Wt(0) = W 1 on Γ0.

(1.3)

It is easy to see that the equilibria of these systems are of the form

(φ, φt,W,Wt) = (c1, 0, c2, 0),(1.4)

c1 and c2 being constant functions.
In view of the finite speep of propagation of the wave equation satisfied by φ, the

geometry of Ω and the support of the control β (the subset Γ0 of the boundary of Ω)
the minimal controllability time for system (1.3) is T0 = 2.

We choose the control β to be in the space H−2(0, T ;L2(Γ0)). Of course this is
an arbitrary choice and many others make sense. However this is the most natural
one when solving the control problem by means of J. L. Lions’ HUM (see [10]), as we
will do.

The problem of controllability can be formulated as follows: Given T > 2, find
the space of initial data (φ0, φ1,W 0, W 1) that can be driven to an equilibrium of the
form (1.4) in time T by means of a suitable control β ∈ H−2(0, T ; L2(Γ0)).

The control set Γ0 does not satisfy the necessary geometric conditions for control-
lability given by Bardos, Lebeau and Rauch in [6]. Indeed, any segment of the form
{(x, `) : x ∈ (0, 1)} with 0 < ` < 1, constitutes a ray of geometric optics that never
intersects the control region Γ0. Therefore, we can not expect the space of controllable
initial data to be an energy space.
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In this paper we give a complete characterization of the controllable space in
terms of Fourier series. This space consists on initial data whose Fourier coefficients,
roughly, decay exponentially as the frequency increases.

The Fourier analysis of the system is possible because of the boundary conditions
we have chosen for W . Indeed, W is assumed to satisfy Neumann type boundary
conditions which are compatible with those of φ to develop solutions in Fourier series.

Indeed, let us decompose the control β, the solutions φ,W and the initial data in
the following way





β =
∞∑

n=0

βn(t) cos(nπx),

Φ =
∞∑

n=0

ψn(y, t) cos(nπx), (φ0, φ1) =
∞∑

n=0

(ψ0
n(y), ψ1

n(y)) cos(nπx),

W =
∞∑

n=0

Vn(t) cos(nπx), (W 0,W 1) =
∞∑

n=0

(V 0
n , V 1

n ) cos(nπx).

(1.5)

With this decomposition, system (1.3) can be split into the following sequence of
one-dimensional controlled systems for n = 0, 1, . . .:





ψn,tt − ψn,yy + n2π2ψn = 0 for (y, t) ∈ (0, 1)× (0,∞)
ψn,y(1, t) = 0 for t > 0
ψn,y(0, t) = −Vt(t) for t > 0
Vn,tt(t) + n2π2Vn(t) + ψn,t(0, t) = βn(t) for t > 0
ψn(0) = ψ0

n, ψn,t(0) = ψ1
n in (0, 1)

Vn(0) = V 0
n , Vn,t(0) = V 1

n .

(1.6)

First we will study the controllability of system (1.6) by using classical methods
that combine HUM, multiplier techniques and Ingham type inequalities (see [9] and
[8]). Combining these one-dimensional results with the Fourier decomposition (1.5),
the controllability result for system (1.3) will be proved. Although the techniques we
use are well known the obtention of sharp estimates for the controls requires the use
of them in a rather refined way.

The control β we obtain is of the form β =
∂2

∂t2
γ, with γ ∈ L2 (Γ0 × (0, T ))

having compact support in time. Therefore
∫ T

0

β = 0. Taking this fact into account

it is easy to see that the constants c1, c2 of the equilibrium we reach at time t = T
are determined a priori by the initial data. Indeed, integrating the first equation of

(1.3) in Ω we obtain that
∫

Ω

φtdxdy−
∫

Γ0

Wdx remains constant in time. Therefore,

necessarily,

c2 =
∫

Γ0

W 0dx−
∫

Ω

φ1dxdy.(1.7)

On the other hand, integrating the equation satisfied by W on Γ0× (0, T ) and taking

into accont that
∫ T

0

β = 0 we deduce that

∫

Γ0

Wt(T )dx +
∫

Γ0

φ(x, 0, T )dx =
∫

Γ0

W 1dx +
∫

Γ0

φ0(x, 0)dx
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and therefore

c1 =
∫

Γ0

(
W 1 + φ0(x, 0)

)
dx.(1.8)

In terms of the Fourier coefficients (1.5) these constants can be written in the
following way:

c1 = V 1
0 + ψ0

0(0), c2 = V 0
0 −

∫ 1

0

ψ1
0(y)dy.(1.9)

Therefore, the constants c1 and c2 of the equilibrium we may reach are uniquely de-
termined by the Fourier coefficients of the initial data corresponding to the frequency
n = 0 in the x-variable.

This fact is related to the different nature of systems (1.6) for n = 0 and n ≥ 1.
While for any n ≥ 1 system (1.6) is exactly controllable to zero at any time T >
2, when n = 0 we can only control the system to the equilibrium given by (1.9) in
terms of the initial data.

The system under consideration can be viewed as a hybrid system coupling a fluid
with an elastic structure. From a mathematical point of view the system couples a
two-dimensional wave equation with a one-dimensional one. This type of systems is
rather common when studying the vibrations of structures connecting several flexible
bodies of different dimensions. Examples of this type can be found, for instance, in
[11], [7] and [16]. However in all these cases the coupling is of a different nature
since the continuity of displacements is imposed, and not the continuity of normal
velocities.

The model under consideration is inspired in and related to that of H. T. Banks
et al. in [5]. However, there are some important difference between these two models.
In [5] the flexible part of the boundary Γ0 is occupied by a flexible damped beam
instead of a flexible string. But the main difference is related to the nature of the
controls. In [5] the control acts on the system through a finite number of piezoceramic
patches located on Γ0. This restricts very much the set of admissible controls, that
are essentially second derivatives of Heaviside functions, and much weaker controlla-
bility results have to be expected. In [5] the controllability problem is not addressed.
Instead, they consider a quadratic optimal control problem. More recently in [3] a
Riccati equation for the optimal control is derived. The problem of the controllability
of one-dimensional beams with piezoelectric actuators has been succesfully addressed
by M. Tucsnak [17]. However, to our knowledge, there are no rigorous results on the
controllability of fluid-structure systems under such controls. To our knowledge the
present paper represents the first attempt to solve the controllability problem for the
two dimensional system although, as we said above, we do not address the problem
in which the control is made through piezoelectric patches.

The authors in [13] have addressed the problem of the feedback stabilization of
system (1.3) with a damping term concentrated on Γ0. The results in [13] show that,
in such a situation, every trajectory converges towards an equilibrium as time goes to
infinity but that the decay rate is not uniform. A more detailled discussion on the lack
of uniform decay can be found in [12]. More recently, in [2], the system introduced
in [5] has been considered in which the condition ∂Φ

∂ν = −Wt on the continuity of the
velocity fields has been replaced by a dissipative condition of the form ∂Φ

∂ν = −Wt+Φt.
In [2] it is proved that when Ω is a general smooth bounded domain and the subset Γ0

of the boundary is sufficiently large (in the spirit of the geometric conditions arising
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in the boundary stabilization of the wave equation), then the energy decays uniformly
to zero. In [13] the existence of periodic solutions of this dissipative system on the
presence of a periodic source of noise acting on the system through the flexible part of
the boundary is considered too. Due to the very weak effect that the damping located
on Γ0 has on the fluid inside Ω, in order to guarantee the existence of such periodic
solutions of finite energy, the exterior source of noise has to be assumed to belong to
a rather small class of functions with rapidly decreasing Fourier coefficients. In this
sense, this result is very close to the controllability one we present in this paper. For
a detailled discussion see [12].

The rest of the paper is organized as follows. In section 2 we present rigorously
the main results of this paper and make a discussion on their optimality. In section 3
we address the one-dimensional control problem (1.6). First, distinguishing the cases
n = 0 and n ≥ 1, we derive the necessary observability inequalities. Then, applying
HUM, the one-dimensional controllability result is deduced. In section 4, combining
the results of the previous one, we derive the controllability result for system (1.3).

In an Appendix at the end of the paper we give a detailled proof of a Ingham
type inequality that provides explicit estimates of the constants appearing in it.

Acknowledgements. This work is part of the Doctoral dissertation of Sorin Micu
at Universidad Complutense de Madrid in February 1996. Most of this work was
done while this author was visiting Universidad Complutense with the financial sup-
port of the European Tempus Program “Matarou”. The authors acknowledge the
responsables of this Program and, in particular, Doina Cioranescu for their continu-
ous support.

2. The main results: statements and discussion. As we said in the in-
troduction the controllability problem of system (1.3) is reduced to study the one-
parameter family of one-dimensional systems (1.6). When n ≥ 1 we have the following
controllability result for (1.6):

Theorem 2.1. Let Y be the space H1(0, 1) × L2(0, 1) × IR × IR. Assume that
T > 2 and n ≥ 1. Then, for any (ψ1, ψ0, V 1, V 0) ∈ Y, there exists a control β ∈
H−2(0, T ) with compact support such that the solution (ψ, V ) of (1.6) satisfies

ψ(T ) = ψt(T ) ≡ 0 in (0, 1), V (T ) = Vt(T ) = 0.(2.1)

Remark 1. In the statement of Theorem 2.1 and in the sequel we drop the index
n from the unknowns (ψ, V ) to simplify the notation.

The solution (ψ, V ) is defined by transposition. Therefore (2.1) has to be under-
stood in a suitable weak sense. We will return to this question in the proof of the
theorem.

The proof of Theorem 2.1 provides the continuous dependence of the control β on
the initial data. More precisely

‖β‖2H−2(0,T ) ≤ Cn

{‖(ψ1, ψ0, V 1, V 0)‖2Y′+ | ψ0(0) |2}(2.2)

for any initial data (ψ0, ψ1, V 0, V 1) as in the statement of Theorem 2.1. By Y ′ we
denote the dual of the space Y. The constant Cn in (2.2) will be evaluated in the next
section (see also Remark 4).

As we said in the introduction, when n = 0 one can not expect the same cotrolla-
bility result due to the conservation of the quantities (1.9) along the trajectories. In
this case the controllability result reads as follows:
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Theorem 2.2. Assume that T > 2 and n = 0. Then, for any
(
ψ1, ψ0, V 1, V 0

) ∈
Y there exists a control β ∈ H−2(0, T ) with compact support such that the solution
(ψ, V ) of (1.6) satisfies:

ψ(T ) = V 1 + ψ0(0), ψt(T ) = 0 in (0, 1), V (T ) = V 0 −
∫ 1

0

ψ1dy, Vt(T ) = 0.(2.3)

Remark 2. This result asserts that, when n = 0, any solution of (1.6) can
be driven to an equilibrium configuration which is a priori determined by the initial
data.

Let us now state the controllability results for the two-dimensional system (1.3).
We use the Fourier decomposition method described in the Introduction. Thus

we develop the initial data
(
φ0, φ1,W 0, W 1

)
to be controlled in Fourier series:





φ0 =
∞∑

n=0

ψ0
n(y) cos(nπx), φ1 =

∞∑
n=0

ψ1
n(y) cos(nπx)

W 0 =
∞∑

n=0

V 0
n cos(nπx), W 1 =

∞∑
n=0

V 1
n cos(nπx).

(2.4)

We assume that for every n = 0, 1, . . . the initial data satisfy the assumptions of
Theorem 2.1 and Theorem 2.2. We set

ρ0
n = ψ0

n, ρ1
n = −ψ1

n + V 0
n δ0, µ

0 = −V 0
n , µ1

n = V 1
n + ψ0

n(0).(2.5)

We introduce the following space of initial data:

H =

{
(
φ0, φ1,W 0, W 1

) ∈ X :

:
∞∑

n=0

Cn

∥∥(
ρ1

n, ρ0
n, µ1

n, µ0
n

)∥∥2

Y′ =
∥∥(

φ0, φ1, W 0,W 1
)∥∥2

H
< ∞

}(2.6)

where the constants Cn are those appearing in (2.2).
Theorem 2.3. Assume that T > 2. Then, for every initial data

(
φ0, φ1, W 0,W 1

)
in H there exists a control β ∈ H−2(0, T ;L2(0, 1)) such that the solution (φ,W ) of
(1.3) satisfies





φ(T ) ≡ µ1 =
∫ 1

0

W 1(x)dx +
∫ 1

0

ψ0(x, 0)dx, φt(T ) ≡ 0

W (T ) ≡< ρ1, 1 >=
∫ 1

0

W 0(x)dx−
∫ 1

0

∫ 1

0

ψ1(x, y)dxdy, Wt(T ) ≡ 0.

(2.7)

Moreover there exists a constat C > 0 such that

‖β‖H−2(0,T ;L2(0,1)) ≤ C‖ (
φ0, φ1,W 0, W 1

) ‖H .(2.8)

Remark 3. The control time T > 2 is optimal. Indeed, when T < 2 it is easy
to see that the set of controllable data is not dense in the space of finite energy data.
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Actually, when T < 2 none of the one-dimensional problems (1.6) is approximately
controllable, i.e. the space of controllable data is no even dense in Y ′.

Remark 4. The developments of this article allow to show that Cn = O (
enα)

as n → ∞ for any α > 1. Thus, roughly speaking, the Fourier coefficients in the
x−variable have to decay exponentially to guarantee the controlabillity. Let us explain
with some more details why this result is natural.

From the definition (2.6) of H and from the fact that Cn grows exponentially it is
clear that there is no Sobolev space that might be contained in H (observe that Sobolev
spaces correspond roughly to polynomial weights Cn). But this is known apriori. In-
deed, as we said in the introduction, our control problem does not verify the geometric
control property given in [6] and, as a consequence of this, no Sobolev space of initial
data may be exactly controllable with β in H−2(0, T ;L2(0, 1)).

After the first version of this paper was written, B. Allibert in [1] has obtained
some complementary results. In [1] it is proved that for any ε there exists T (ε) > 0
such that system (1.3) is controllable in time T (ε) for all initial data in the space
H(ε) which is defined as in (2.6) but with Cn = exp(εn) as n →∞. Thus, the result
in [1] shows roughly that as t → ∞ the system is controllable in a larger and larger
class of analytic functions. The results in [1] are an extention of previous results by
the same author on the controllability of the classical wave equation in the square Ω
and with control in Γ0. Observe that all these problems have in common the fact
that the geometric control condition of [6] is not satisfied. The structure of the set of
controllable data in those situations is mainly unknown.

Since the constants Cn in our estimates are of order enα

we can control all the
initial data which belong to the Gevrey classes of exponent α > 1 in the x−variable.

Remark 5. Finally, let us mention that if a second control α ∈ L2(0, T ) is
allowed to act in the system through the condition of continuity of the velocity fields

∂Φ
∂y

= −Wt + α, in Γ0 × (0, T )(2.9)

the same result hold with Cn = O(n4e2nπ). This is a consequence of Proposition
3.2 bellow. From the proof of Proposition 3.2 it follows that this constant is sharp.
However introducing controls of the form (2.9) does not seem to be realistic. This is the
reason for using only the control β which requires important additional developments.

3. Controllability of the one-dimensional systems. This section is devoted
to prove the controllability results for the one-dimensional systems (1.6) that are
necessary to derive the controllability of system (1.3). In a first paragraph, by using
classical multiplier techniques, we derive some hidden regularity results. In the second
paragraph, with the same techniques we get the first observability inequalities. In a
third paragraph, by using Ingham’s inequalities, we obtain a refined version of these
observability inequalities. Finally, in the last paragraph we apply HUM and prove
the controllability result for (1.6).

3.1. Hidden regularity. Let us consider the system




ηtt − ηyy + n2π2η = f in (0, 1)× (0, T )
ηy(1) = 0 for t ∈ (0, T )
ηy(0) = ut for t ∈ (0, T )
utt + n2π2u− ηt(0) = g for t ∈ (0, T )
η(0) = η0, ηt(0) = η1 in (0, 1)
u(0) = u0, ut(0) = u1.

(3.1)
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System (3.1) is the adjoint of (1.6) . The unknowns are η = η(y, t) and u = u(t).
Of course, since the coefficients of the system depend on n = 0, 1 . . . , solutions (η, u)
depend on n too. However, in order to simplify the notations we will not use the
index n to distinguish the solutions of (3.1) for the different values of n.

The energy space for system (3.1) is the Hilbert space Y = H1(0, 1)× L2(0, 1)×
IR× IR.

It is easy to see that for any (η0, η1, u0, u1) ∈ Y and (f, g) ∈ L1(0, T ; L2(0, 1)×IR)
system (3.1) has a unique solution in the class

η ∈ C
(
[0, T ];H1(0, 1)

) ∩ C1
(
[0, T ]; L2(0, 1)

)
; u ∈ C1([0, T ]; IR).(3.2)

In other words (η, ηt, u, ut) ∈ C ([0, T ];Y).
The energy of the system

F (t) =
1
2

∫ 1

0

[| ηt |2 + | ηy |2 +n2π2η2
]
dy +

1
2

[| ut |2 +n2π2 | u |2](3.3)

satisfies

dF (t)
dt

=
∫ 1

0

f(y, t)ηt(y, t)dy + g(t)ut(t).(3.4)

Therefore, when f ≡ 0 and g ≡ 0, the energy F remains constant along trajectories.
We observe that when n ≥ 1 the square root of F defines a norm in Y equivalent

to the canonical norm ‖ · ‖Y of Y:

‖(u, v, w, z, )‖Y =
[∫ 1

0

(| uy |2 + | u |2 + | v |2) dy + w2 + z2

]1/2

.(3.5)

However, when n = 0 this is not the case. Actually, for n = 0, (η, u) = (c1, c2) with
c1, c2 real constants are stationary solutions of (3.1) with f ≡ 0, g ≡ 0 for which the
energy F vanishes.

We have the following “hidden regularity” result:

Proposition 3.1. For any T > 0 there exists a constant C(T ) > 0 independent
of n = 0, 1, . . . such that

(∫ T

0

| utt | dt

)2

+
∫ T

0

[| ut |2 +(1 + n4π4)u2 + (1 + n2π2)η2(0, t)
]
dt

≤ C
(
n4 + 1

) [
‖ (

η0, η1, u0, u1
) ‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T )

](3.6)

for any (η0, η1, u0, u1) ∈ Y, f ∈ L1(0, T ; L2(0, 1))and g ∈ L1(0, T ).
If g ∈ L2(0, T ), then u ∈ H2(0, T ) and we also have

∫ T

0

| utt |2 dt ≤
≤ C(n4 + 1)

[
‖(η0, η1, u0, u1)‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L2(0,T )

]
.

(3.7)

Remark 6. This proposition shows that u is more smooth than what (3.2) guar-
antees. This is due to the structure of the second order (in time) equations that u
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satisfies. The fact that the constant in (3.6) and (3.7) do not depend on the index n
is worth mentioning.
Proof of Proposition 3.1: It is enough to consider smooth solutions since a classical
density argument allows to extend inequalities (3.6) and (3.7) to any solution with
finite right hand side. We use a classical multiplier technique (see, for instance, [10]).
We multiply the first equation in (3.1) by (1− y)ηy and integrate over (0, 1)× (0, T ).
Integrating by parts we obtain

1
2

∫ T

0

[| ηt |2 + | ηy |2 −n2π2η2
]
(0, t)dt = −

∫ 1

0

ηt(1− y)ηydy

∣∣∣∣
T

0

+

+
1
2

∫ T

0

∫ 1

0

[
η2

t + η2
y − n2π2η2

]
dydt +

∫ T

0

∫ 1

0

f(1− y)ηydydt = X.

In this identity we use the notation L |T0 = L(T ) − L(0). The right hand side of this
identity can be easily bounded as follows

| X |≤ 1
2

∫ 1

0

[
η2

t + η2
y

]
(y, 0)dy +

1
2

∫ 1

0

[
η1

t + η2
y

]
(y, T )dy +

∫ T

0

F (t)dt+

+
1
2

[
‖f‖2L1(0,T ;L2(0,1)) + ‖ηy‖2L∞(0,T ;L2(0,1))

]
≤ F (0) + F (T ) +

∫ T

0

F (t)dt+

+‖F (t)‖L∞(0,T ) +
1
2
‖f‖2L1(0,T ;L2(0,1)) ≤ C

[
‖F‖L∞(0,T ) + ‖f‖2L1(0,T ;L2(0,1))

]
,

with C > 0 independent of n.
In the sequel, if some constant in the inequalities depends on n, we will make it

explicit by means of an index n on that constant.
On the other hand, from identity (3.4) and using Gronwall’s inequality it is easy

to deduce that

‖F‖2L∞(0,T ) ≤ C
[
‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T ) + F (0)

]
.

Since H1(0, 1) is continuously embedded in C([0, 1]; IR) we also have
∫ T

0

η2(0, t)dt ≤ C

∫ T

0

F (t)dt ≤ C
[
‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T ) + F (0)

]
.

Combining these inequalities we deduce that
∫ T

0

[| ηt |2 + | ηy |2 +n2π2η2
]
(0, t)dt

≤ C(n2 + 1)
[
‖(η0, η1, u0, u1)‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T )

]
.(3.8)

On the other hand

n4π4

∫ T

0

u2(t)dt ≤ 2n2π2

∫ T

0

F (t)dt

≤ Cn4
[
‖(η0, η1, u0, u1)‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T )

]
.(3.9)
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Inequalities (3.6) and (3.7) are a direct consequence of (3.8) and (3.9) and the
coupling conditions between η and u given in system (3.1), i.e.

ηy(0, t) = ut(t); utt(t) = g(t) + ηt(0, t)− n2π2u(t) for t ∈ (0, T ).(3.10)

2

3.2. Observability inequalities. In this paragraph we consider the adjoint
system (3.1) in the particular case where f ≡ 0 and g ≡ 0. More precisely, assume
that η and u solve:





ηtt − ηyy + n2π2η = 0 in (0, 1)× (0, T )
ηy(1, t) = 0 for t ∈ (0, T )
ηy(0, t) = ut(t) for t ∈ (0, T )
utt(t) + n2π2u(t)− ηt(0, t) = 0 for t ∈ (0, T )
η(0) = η0, ηt(0) = η1 in (0, 1)
u(0) = u0, ut(0) = u1.

(3.11)

We have the following observability result:

Proposition 3.2. For any T > 2 there exists a constant C > 0 which is inde-
pendent of n = 0, 1, . . . such that

2F (0) + ‖η0‖2L2(0,1)+ | u0 |2≤ Ce2nπ

∫ T

0

[| utt |2 + | ut |2 +

+(1 + n4π4) | u |2 + (1 + n2π2) | η(0, t) |2] dt

(3.12)

for any solution of (3.11).

Remark 7. Let ρ : (0, T ) → [0, 1] be a non-negative smooth function with compact
support and ρ ≡ 1 in (ε, T − ε) with ε > 0 small enough such that T − 2ε > 2. In
view of the time invariance of system (3.11) we deduce that

2F (ε) + ‖η(ε)‖2L2(0,1)+ | u(ε) |2≤ Ce2nπ

∫ T

0

ρ(t)
[| utt |2 + (1 + n4π2) | u |2 +

+ (1 + n2π2) | η(0, t) |2] dt.

Using the conservation of energy we deduce that

‖(η0, η1, u0, u1)‖2Y ≤ 2F (0) + ‖η0‖2L2(0,1)+ | u0 |2

≤ Ce2nπ

∫ T

0

ρ(t)
[| utt |2 + | ut |2 +(1 + n4π4) | u |2 +

+(1 + n2π2) | η(0, t) |2] dt.(3.13)

This estimate will allow us to construct controls with compact support in time.
Proof of Proposition 3.2: The proof of this result is obtained by means of a gen-
uinely one-dimensional method which consists roughly on viewing the wave equation
in (3.11) as being an evolution equation with respect to y, while t plays the role of
the space variable. This argument was used in [18] when studying the controllability
of the one-dimensional semi-linear wave equation.

For any 0 ≤ y ≤ 1 we define

G(y) =
1
2

∫ T−y

y

[| ηt |2 + | ηy |2 +n2π2 | η |2] (y, t)dt.
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We have

G(0) =
1
2

∫ T

0

[| ηt |2 + | ηy |2 +n2π2 | η |2] (0, t)dt.(3.14)

On the other hand

G′(y) =
∫ T−y

y

[| ηyyηy + ηtyηt + n2π2ηyη
]
(y, t)dt

−1
2

∑

t=y,T−y

[| ηy(y, t) |2 + | ηt(y, t) |2 +n2π2 | η(y, t) |2]

and

∫ T−y

y

ηty(y, t)ηt(y, t)dt = −
∫ T−y

y

ηy(y, t)ηtt(y, t)dt + ηy(y, t)ηt(y, t)

∣∣∣∣∣

t=T−y

t=y

.

Therefore

G′(y) =
∫ T−y

y

[
ηyy − ηtt + n2π2η

]
ηy(y, t)dt + ηy(y, t)ηt(y, t)

∣∣∣∣∣

t=T−y

t=y

− 1
2

∑

t=y,T−y

[| ηy(y, t) |2 + | ηt(y, t) |2 +n2π2 | η(y, t) |2] .(3.15)

Using the first equation in (3.11) we have that
∫ T−y

y

[
ηyy − ηtt + n2π2η

]
ηy(y, t)dt = 2n2π2

∫ T−y

y

ηηy(y, t)dt

and on the other hand

ηy(y, t)ηt(y, t)
∣∣∣∣
t=T−y

t=y

− 1
2

∑

t=y,T−y

[| ηy(y, t) |2 + | ηt(y, t) |2 +n2π2 | η(y, t) |2] ≤ 0.

Combining these identities with (3.15) we deduce that

G′(y) ≤ 2n2π2

∫ T−y

y

ηηy(y, t)dt

≤ nπ

∫ T−y

y

[| ηy |2 +n2π2 | η |2] (y, t)dt ≤ 2nπG(y).

Thus G(y) ≤ e2nπG(0), for all y ∈ (0, 1) and therefore
∫ 1

0
G(y) ≤ e2nπG(0).

In particular

(T − 2)F (T ) =
∫ T−1

1

F (t)dt =

1
2

∫ T−1

1

{[∫ 1

0

| ηy |2 + | ηt |2 +n2π2η2

]
dy+ | ut |2 +n2π2u2

}
dt ≤

≤
∫ 1

0

G(y)dy +
1
2

∫ T−1

1

[| ut |2 +n2π2u2
]
dt ≤
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≤ e2nπ

2

∫ T

0

[| ηy |2 + | ηt |2 +n2π2η2
]
(0, t)dt +

1
2

∫ T

0

[| ut |2 +n2π2u2
]
dt.(3.16)

Using the relations (3.11) at y = 0 we deduce that (3.12) holds when n ≥ 1.
When n = 0, it is sufficient to add in (3.16) the extra quantity∫ T

0

[| η |2 (0, t)+ | u |2 (t)
]
dt to deduce that (3.12) holds in that case too. 2

Remark 8. When n = 0, inequality (3.12) shows that

‖η0
y‖2L2(0,1) + ‖η1‖2L2(0,1)+ | u1 |2≤ C

∫ T

0

[| utt |2 + | ut |2
]
dt.(3.17)

This inequality does not provide any estimate on u0. This is related to the fact that,
when n = 0, system (1.6) can not be driven exactly to zero but rather to the equilibrium
given by the constants c1, c2 in (1.9).

3.3. Improved observability inequalities. The goal of this section is to ob-
tain observability inequalities of the form (3.12) but, in which, the only term appear-

ing in the right hand side is
∫ T

0

| utt |2 dt. As we will see this is related to the

controllability of system (1.6) using the sole control β. We have the following:
Theorem 3.3. Assume that T > 2. Then,
(i) For any n ≥ 1 there exists a constant C = C(T, n) > 0 such that

‖(η0, η1, u0, u1)‖2Y ≤ C(T, n)
∫ T

0

| utt |2 dt(3.18)

for any solution of (3.11). Moreover C(T, n) = O (
enα)

, for any α > 1.
(ii) If n = 0 there exists a constant C = C(T ) > 0 such that

‖η0
y‖2L2(0,1)+ | u1 |2≤ C(T )

∫ T

0

| utt |2 dt,(3.19)

for any solution of (3.11).
Remark 9. As observed in Remark 7, in estimates (3.18) and (3.19) one can

replace the right hand side by the quantity
∫ T

0

ρ(t) | utt(t) |2 dt where ρ is a smooth

non-negative function with compact support in (0, T ) and such that ρ ≡ 1 in (ε, T −
ε) with ε > 0 small enough such that T − 2ε > 2.

To prove Theorem 3.3 we need the following refined version of a result by A.
Haraux [8] on non-harmonic Fourier series.

Theorem 3.4. Let f = f(t) be of the form f(t) =
∑

n∈ZZ aneiλnt where λn is
a sequence of real numbers. We assume that there exist N ∈ IN, γ > 0 and γ∞ > 0
such that

λn+1 − λn ≥ γ∞ > 0 if | n |> N(3.20)

λn+1 − λn ≥ γ > 0 for any n ∈ ZZ.(3.21)

Let J = [0, T ] ⊂ IR be a finite interval with T > 2π
γ∞

. Then, there exist two positive
constants C1, C2 > 0 such that

C1

∑

n∈ZZ

| an |2≤
∫

J

| f(t) |2 dt ≤ C2

∑

n∈ZZ

| an |2,(3.22)
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for all (an)n ∈ l2.
More precisely C1 = C1(2N + 1) and C2 = C2(2N + 1) where Ci(j), i = 1, 2 are

given by the following recurrent formulas:




C1(j + 1) =
[(

2C2(j)
| J | + 1

)
4

C1(j)(| J | γ∞ − 2π)2γ2
+

2
| J |

]−1

C2(j + 1) = 2 (| J | (j + 1) + C2(0)) , j = 0, 1, . . .

(3.23)

and C1(0), C2(0) are such that (3.22) holds in the particular case in which γ∞ = γ >
0.

Remark 10. (a) When γ∞ = γ, a sequence on the conditions of Theorem 3.4
satisfies λn+1 − λn ≥ γ > 0 , ∀n ∈ ZZ. In this particular case the classical result by A.
E. Ingham [9] shows the existence of c1, c2 > 0 such that (3.22) holds when | J |> 2π

γ .
Theorem 3.4 allows to deduce that (3.22) holds when the length of the interval

J is smaller. Indeed, it suffices | J |> 2π/γ∞, γ∞ being the “asymptotic gap” of the
sequence {λn}, which is in general larger than γ. This relaxed gap condition was
shown to be sufficient for (3.22) in [4]. Later on A. Haraux in [8] gave a constructive
proof which allows to give explicit estimates on the constants C1 and C2. Following
the construction in [8] one can easily see that (3.23) suffice. In the Appendix at the
end of this paper we give all the details of this construction.

(b) Clearly, the constants C1 and C2 degenerate as N → ∞. More precisely,
C2(N) = O(N) while γ2N (C1(N))−1 = O

(
eNα

)
for any α > 1. Indeed we have:

(C1(N))−1 ≤ 2C2(N)
|J |

4
(| J | γ∞ − 2π)2γ2

(C1(N − 1))−1 =
16N(C1(N − 1))−1

(| J | γ∞ − 2π)2γ2
.

Hence

γ2N (C1(N))−1 ≤
(

16
(| J | γ∞ − 2π)2γ2

)N

N ! (C1(0))−1 ≤ eNα

(C1(0))−1.

In order to apply Theorem 3.4 and deduce that Theorem 3.3 holds we need precise
estimates on the spectrum of (3.11). We look for solutions of (3.11) in separated vari-
ables of the form (η, u) = eνt(ϕ(y), ω) with ϕ = ϕ(y) and ω ∈ IR. Due to the conser-
vative character of the system we know that all eigenvalues ν are purely imaginary. On
the other hand, the spectrum is symmetric with respect to the real axis. Thus, for any
n = 0, 1, . . . there exists a sequence of eigenvalues νn,m with νn,m = −νn,m = ν−n,m.

We have the following estimates:
Theorem 3.5. (see [12] and [14]) For any n = 0, 1, . . . and m ∈ ZZ such that

| m |> n we have




∣∣∣νn,m −
√

m2 + n2πi
∣∣∣ ≤ 24√

m2 + n2π
if m > n

∣∣∣νn,m +
√

m2 + n2πi
∣∣∣ ≤ 24√

m2 + n2π
if m < −n.

(3.24)

Remark 11. This theorem shows that, for sufficiently high frequences, the eigen-
values of (3.11) are uniformly close to the eigenvalues λ = ±√m2 + n2πi of the wave
equation with Neumann boundary conditions

{
ηtt − ηyy + n2π2η = 0 in (0, 1)× (0,∞)
ηy(0, t) = ηy(1, t) = 0 for t > 0.

(3.25)
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Clearly, system (3.25) corresponds to the decomposition of the wave equation with
Neumann boundary conditions in the square Ω following the development (1.5) in
Fourier series. In other words, Theorem 3.5 asserts that the spectrum of the adjoint
system of (1.1), i.e.





φtt −∆φ = 0 in Ω× (0,∞)
∂φ
∂ν = 0 on Γ1 × (0,∞)
∂φ
∂y = Wt on Γ0 × (0,∞)
Wtt −Wxx − φt = 0 on Γ0 × (0,∞)
Wx(0, t) = Wx(1, t) = 0 for t > 0

at high frequencies is uniformly close to the eigenvalues of the wave equation with
Neumann boundary conditions on the whole boundary of the cavity Ω:

{
φtt −∆φ = 0 in Ω× (0,∞)
∂φ
∂ν = 0 on ∂Ω× (0,∞).

This means roughly that the effect of the flexible boundary in the interior of the cavity is
neglectible for high frequencies. However it is worth mentioning that the high frequency
asymptotics are of a different nature in the region | m |≤ n.

From Theorem 3.5 it is easy to get explicit bounds on the gaps γ and γ∞ associ-
ated to the sequence {νn,m}m∈ZZ for each n = 0, 1, . . .

Proposition 3.6. Given any n = 0, 1, . . . and 0 < δ < π we have

| νn,m+1 − νn,m |≥ π − δ(3.26)

for any m with | m |≥ N(n, δ) where

N(n, δ) = max

[√
96
πδ

− n2,
2nπ

δ
− n− 1

2

]
.(3.27)

On the other hand
{ | νn,m+1 − νn,m |≥ π

4 , ∀m ∈ ZZ if n = 0, 1

| νn,m+1 − νn,m |≥ π
1+2n , ∀m ∈ ZZ if n ≥ 2.

(3.28)

Furthermore, (3.22) holds for functions f of the form

f(t) =
∑

m∈ZZ?

an,me−νn,mt + a?
ne−ν?

nt + a??
n e−ν??

n t(3.29)

with C2 = C2(2N(n, δ) + 1) = O(n) and (C1)−1 = (C1(2N(n, δ) + 1))−1. Moreover,
C2 = O(n) and (C1)−1 = O

(
enα

)
for any α > 1.

Proof: In view of (3.24) we have

| νn,m+1 − νn,m |≥
≥ π

∣∣∣
√

(m + 1)2 + n2 −√m2 + n2
∣∣∣− 24

π

[
1√

(m+1)2+n2
+ 1√

m2+n2

]

≥ (2|m|+1)π
(2|m|+1)+2n − 48

π
√

m2+n2 ≥ π −
[

48
π
√

m2+n2 + 2nπ
2|m|+1+2n

]
.
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It is easy to see that when | m |≥ N(n, δ), where N(n, δ) is given by (3.27), then

48
π
√

m2 + n2
+

2nπ

2 | m | +1 + n
≤ δ.

This concludes the proof of (3.26).
To prove (3.28) we observe that, for any n = 0, 1, . . . the eigenvalues νn,m with

m > 0 are of the form

νn,m =
√

z2
n,m + n2π2,(3.30)

where zn,m are the zeros (ordered so that zn,m increases as m does) of the equation

tgz =
z2 + n2π2

z3
.(3.31)

There are also two eigenvalues that we denote by ν?
n and ν??

n that do not satisfy
(3.30). Indeed, they are given by

ν?
n =

√
n2π2 − (z?

n)2;(3.32)

where z?
n is the unique real positive solution of

e2z =
z3 − z2 + n2π2

z3 + z2 − n2π2
(3.33)

when n ≥ 1 and ν?
0 = 0, and ν??

n = ν?
n.

By analyzing the graphs of the functions in (3.31) and (3.33) it is easy to see that
(3.28) holds. We refer to [14] for a detailled proof.

To finish the proof we have to apply Theorem 3.4 for γ = min
{

π

4
,

π

1 + 2n

}
and

γ∞ = π − δ. We obtain that (3.22) holds for functions f of the form (3.29).
In order to evaluate the constants we use the recurrent formulas (3.23). We have:

C2 = C2(2N(n, δ) + 1) = 2(T (N(n, δ) + 1) + C2(0)) = O(n).

On the other hand

(C1)−1 = (C1(2N(n, δ) + 1))−1 ≤ 8C2(N(n, δ) + 1)(C1(2N(n, δ)))−1

T (Tγ∞ − 2π)2γ2
≤

≤ Mn3(C1(2N(n, δ)))−1 ≤ M2N(n,δ)+1((N(n, δ) + 1)!)3(C1(0))−1 ≤ C(α)enα

,

where M is a positive constant and α > 1. 2
Now we have all the ingredients to prove Theorem 3.3.

Proof of Theorem 3.3: Let us consider first the case n ≥ 1. In view of Proposition
3.2 it is sufficient to show the existence of a constant C (depending on n and T ) such
that

∫ T

0

[| ut |2 +n4π4 | u |2 +n2π2 | η(0, t) |2] dt ≤ C

∫ T

0

| utt |2 dt(3.34)

holds for any solution of (3.11).
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Let U(t) = (η(t), ηt(t), u(t), ut(t)) be the vector valued unknown associated to
(3.11) viewed as first order (in time) system. Let us denote by ξν = (ξ1

ν , ξ2
ν , ξ3

ν , ξ4
ν) the

vector valued eigenfunction of system (3.11) associated to the eigenvalue ν.
The solutions η and u of (3.11) can be written as follows

η(t) =
∑

m∈ZZ?

an,me−νn,mtξ1
n,m + a?

ne−ν?
ntξ1

ν?
n

+ a??
n e−ν??

n tξ1
ν??

n
,

u(t) =
∑

m∈ZZ?

an,me−νn,mtξ3
n,m + a?

ne−ν?
ntξ3

ν?
n

+ a??
n e−ν??

n tξ3
ν?

n
,

where the coefficients {an,m, a?
n, a??

n } are those associated to the development of the
initial data on the orthogonal basis generated by the eigenfunctions.

To get the bounds in (3.34) we first observe that

η(0, t) =
∑

m∈ZZ?

an,me−νn,mtξ1
n,m(0) + a?

ne−ν?
ntξ1

ν?
n
(0) + a??

n e−ν??
n tξ1

ν?
n
(0)

and

ηt(0, t) = −
∑

m∈ZZ?

an,mνn,me−νn,mtξ1
n,m(0)− a?

nν?
ne−ν?

ntξ1
ν?

n
(0)− a??

n ν??
n e−ν??

n tξ1
ν??

n
(0).

In view of Proposition 3.6 we can apply Theorem 3.4 to these series in any time
interval J = (0, T ) with T > 2. Therefore, taking into account that | ν?

n |= min{|
νn,m |, | ν?

n |, | ν??
n |}, we have

∫ T

0

| η(0, t) |2 dt ≤ C2

( ∑

m∈ZZ?

| an,mξ1
n,m(0) |2 + | a?

nξ1
ν?

n
(0) |2 + | a??

n ξ1
ν??

n
(0) |2

)

≤ C2

| ν?
n |2

( ∑

m∈ZZ?

| an,mξ1
n,m(0) νn,m |2 + | a?

nξ1
ν?

n
(0) ν?

n |2 + | a??
n ξ1

ν??
n

(0) ν??
n |2

)

≤ C2

C1 | ν?
n |2

∫ T

0

| ηt(0, t) |2 dt.

On the other hand, from the equation that u satisfies in (3.11) we have
∫ T

0

(ηt(0, t))2 dt ≤ 2
∫ T

0

[| utt |2 +n4π4 | u |2] dt.

Thus, in order to conclude (3.34) it is sufficient to show that
∫ T

0

[| ut |2 +n4π4u2
]
dt ≤ C

∫ T

0

| utt |2 dt

holds. The argument we have used to bound
∫ T

0

| ψ(0, t) |2 dt allows us to show that

∫ T

0

| u |2 dt ≤ C2

C1 | ν?
n |4

∫ T

0

| utt |2 dt and
∫ T

0

| ut |2 dt ≤ C2

C1 | ν?
n |2

∫ T

0

| utt |2 dt.
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Combining these results we deduce that (3.34) holds with a constant C of the order
of

C =
C2

C1

{
1

| ν?
n |2

+
n4π4

| ν?
n |4

(
1 +

2C1

C1 | ν?
n |2

)
+

2C2

C1 | ν?
n |2

}
(3.35)

where C1 = C1(2N + 1), C2 = C2(2N +1) are given by (3.23) with N = N(n, δ) as in
(3.27) and δ > 0 such that T = 2π

π−δ .
We pass now to estimate the constant C of (3.35). In [14] we prove that ν?

n ∼ nπ.
On the other hand, from Proposition 3.3 we have that C2(C1)−1 = O

(
enα

)
. Finally

we obtain that C = O
(
enα

)
for all α > 1.

Let us consider now the case n = 0. In view of (3.17) we have

‖η0
y‖2L2(0,1) + ‖η1‖2L2(0,1)+ | u1 |2≤ 1

T − 2

∫ T

0

[| utt |2 +2 | ut |2
]
dt.(3.36)

Therefore, it is sufficient to show that

∫ T

0

| ut |2 dt ≤ C

∫ T

0

| utt |2 .(3.37)

Proceeding as above we see that (3.37) holds with C = C2/C1 | νn,1 |2 where C1 =
C1(2N + 1), C2 = C2(2N + 1) and N = N(0, δ) with δ > 0 such that T = 2π

π−δ .

2

3.4. Controllability in one space dimension for n ≥ 1: Proof of Theorem
2.1. In this section, applying HUM, we prove Theorem 2.1 as a consequence of the
observability inequality (3.18).

Given any (η0, η1, u0, u1) ∈ Y we solve the adjoint system (3.11).
We fix, some non-negative smooth function ρ : (0, T ) → IR with compact support

such that ρ ≡ 1 in (ε, T − ε) with T − 2ε > 2.
We then solve the backward system





ψtt − ψyy + n2π2ψ = 0 in (0, 1)× (0, T )
ψy(1, t) = 0 for t ∈ (0, T )
ψy(0, t) = −Vt(t) for t ∈ (0, T )
Vtt + n2π2V + ψt(0, t) = − d2

dt2 (ρ(t)utt(t)) for t ∈ (0, T )
ψ(T ) = ψt(T ) = 0 in (0, 1)
V (T ) = Vt(T ) = 0.

(3.38)

The solution of (3.38) is defined by transposition (see [10]). If we multiply in (3.38) by
any solution (η̃, ũ) of (3.1) and integrate (formally) by parts we obtain the following
identity:

∫ T

0

ρ(t)utt(t)ũtt(t)dt +
∫ T

0

∫ 1

0

f̃ψdydt−
∫ T

0

g̃V dt =
∫ 1

0

[−ψt(0)η̃(0)+

ψ(0)η̃t(0)] dy + V (0)η̃(0, 0) + ψ(0, 0)ũ(0)− V (0)ũt(0) + Vt(0)ũ(0).(3.39)

Notice that in the obtention of (3.39) we have used the fact that ρ and its first
derivative vanish for t = 0 and T .
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We adopt (3.39) as definition of weak solution in the sense of transposition
of (3.38). More precisely we say that (ψ, V ) solve (3.38) if (3.39) holds for any
(η̃0, η̃1, ũ0, ũ1) ∈ Y and (f̃ , g̃) ∈ L1(0, T ; L2(0, 1)× IR).

We observe that (3.39) can be rewritten in the following way
∫ T

0

ρ(t)utt(t)ũttdt−
∫ T

0

∫ 1

0

f̃ψdydt +
∫ T

0

g̃V dt = − < ψt(0) + V (0)δ0, η̃(0) > +

+ < ψ(0), η̃t(0) > + (Vt(0) + ψ(0, 0)) ũ(0)− V (0)ũt(0)
(3.40)
where < ·, · > denotes both the duality pairing between (H1(0, 1))′ and H1(0, 1) and
the scalar product in L2(0, 1) and δ0 ∈ (H1(0, 1))′ denotes the Dirac delta at y = 0.

We have the following existence and uniqueness result of solutions in the sense of
transposition:

Proposition 3.7. System (3.38) has a unique solution in the sense of transpo-
sition. More precisely, for any solution (η, u) of (3.11) with initial data in Y, there
exists a unique (ψ, V ) ∈ C([0, T ];L2(0, 1))×L2(0, T ), ρ0 ∈ L2(0, 1), ρ1 ∈ (H1(0, 1))′,
µ0 ∈ IR, µ1 ∈ IR satisfying

∫ T

0

ρ(t)utt(t)ũttdt =
∫ T

0

∫ 1

0

f̃ψdydt−
∫ T

0

g̃V dt

+ < ρ1, η̃(0) > + < ρ0, η̃t(0) > +µ1ũ(0) + µ0ũt(0)

(3.41)

for any solution (η̃, ũ) of (3.1) with

(η̃0, η̃1, ũ0, ũ1) ∈ Y, f̃ ∈ L1
(
0, T ; L2(0, 1)

)
, g̃ ∈ L2(0, 1).(3.42)

Remark 12. In the identity (3.41) ρ0, ρ1, µ0 and µ1 play respectively the role of
ψ(0),−ψt(0) + V (0)δ0,−V (0) and Vt(0) + ψ(0, 0). It is easy to see that, in the frame
of smooth functions, there is a one to one correspondence between

(
ρ0, ρ1, µ0, µ1

)
and

(ψ(0), ψt(0), V (0), Vt(0)).

Proof of Proposition 3.7: In view of Proposition 3.1 we know that the map
(
η̃0, η̃1, ũ0, ũ1, f̃ , g̃

)
−→

∫ T

0

ρ(t)utt(t)ũtt(t)dt

is linear and continuous from Y × L1
(
0, T ;L2(0, 1)

)× L2(0, T ) into IR. This implies
the existence and uniqueness of

(
ρ1, ρ0, µ1, µ0

)× (ψ, V ) ∈ Y ′ × L∞
(
0, T ; L2(0, 1)

)×
L2(0, T ) such that (3.41) holds. Moreover, there exists a constant C > 0 such that

‖(ψ, V )‖L∞(0,T ;L2(0,1))×L2(0,T ) + ‖ (
ρ1, ρ0, µ1, µ0

) ‖Y′ ≤ C‖utt‖L2(0,T )

≤ C‖ (
η0, η1, u0, u1

) ‖Y′ .(3.43)

The fact that ψ ∈ C
(
[0, T ];L2(0, 1)

)
can be deduced from (3.43) by a classical density

argument. 2

Remark 13. When the data of (3.11) are smooth, the solution (η, u) is smooth
too. It is easy to see that (3.38) has a finite energy solution. In this case one can
check that the element

(
ρ0, ρ1, µ0, µ1

) ∈ Y ′ obtained in Proposition 3.7 is such that

ρ0 = ψ(0), ρ1 = −ψt(0) + V (0)δ0, µ
0 = −V (0), µ1 = Vt(0) + ψ(0, 0).
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By a density argument one can then deduce that the solution (ψ, V ) obtained in
Proposition 3.7 is such that the traces

ψ |t=0,−ψt + V δ0|t=0 ,−V |t=0, Vt + ψ(0, t)|t=0

are well defined and coincide with
(
ρ0, ρ1, µ0, µ1

)
.

The same arguments allows us to show that the traces are also well defined at
t = T . This suffices to assert that the weak solution of (3.38) we have constructed by
transposition is at rest at t = T .

We can now complete the proof of Theorem 2.1.

End of the proof of Theorem 2.1.
In view of Proposition 3.7 and Remark 13 we can define a linear and continuous

map Λ from Y into Y ′ such that

Λ
(
η0, η1, u0, u1

)
= (−ψt + V δ0 |t=0, ψ(0), Vt + ψ(0, t) |t=0,−V |t=0) .

Taking in (3.41), f̃ ≡ 0, g̃ ≡ 0 and (η̃, ũ) = (η, u), we deduce that

< Λ
(
η0, η1, u0, u1

)
,
(
η0, η1, u0, u1

)
>=

∫ T

0

ρ(t) |utt(t)|2 dt

and in view of Theorem 3.3 and Remark 9 we deduce that there exists C > 0 such
that

< Λ
(
η0, η1, u0, u1

)
,
(
η0, η1, u0, u1

)
>≥ C

∥∥(
η0, η1, u0u1

)∥∥2

Y .

Actually, C = [C(T, n)]−1
, where C(T, n) is as in (3.18).

This implies that Λ is an isomorphism.
This shows that given any

(
ρ1, ρ0, µ1, µ0

) ∈ Y ′ there exists
(
η0, η1, u0, u1

)
=

Λ−1
(
ρ1, ρ0, µ1, µ0

)
such that the corresponding solution of (3.38) in the sense of trans-

position satisfies

ψ(0) = ρ0,−ψt + V δ0

∣∣
t=0 = ρ1,−V

∣∣
t=0 = µ0, Vt + ψ(0, t)

∣∣
t=0 = µ1.(3.44)

If we want this to be equivalent to the initial data of (1.6) we have to take

ρ0 = ψ0, ρ1 = −ψ1 + V 0δ0, µ
0 = −V 0, µ1 = V 1 + ψ0(0).(3.45)

This makes sense when the data
(
ψ0, ψ1, V 0, V 1

)
is in Y.

The control we have obtained is of the form β = − d2

dt2
(ρutt), where u corresponds

to the solution (η, u) of (3.11) with data
(
η0, η1, u0, u1

)
= Λ−1

(
ρ1, ρ0, µ1, µ0

)
, where(

ρ0, ρ1, µ0, µ1
)

is given by (3.44).
From the identities above we see that

‖β‖2H−2(0,T ) ≤ ‖ρutt‖2L2(0,T ) ≤ C‖ (
ρ1, ρ0, µ1, µ0

) ‖2Y′
≤ C

{‖ (
ψ1, ψ0, V 1, V 0

) ‖2Y′+ | ψ0(0) |2}

where C = C(T, n) is the constant obtained in (3.18). 2
Remark 14. In fact, in some sense, we obtain a stronger result since we prove

that we can control the problem (3.41) for any initial data
(
ρ0, ρ1, µ0, µ1

) ∈ Y ′. In
order to give an interpretation of the control problem in terms of the initial data(
ψ1, ψ0, V 1, V 0

)
we have to assure that ψ0(0) makes sense. For this reason we con-

sider that
(
ψ1, ψ0, V 1, V 0

) ∈ Y.
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3.5. Controllability in one space dimension for n = 0: Proof of Theorem
2.2. First of all we observe that proving Theorem 2.2 is equivalent to showing that
for any initial data as in the statement of Theorem 2.2 and satisfying the further
assumptions

V 1 + ψ0(0) = 0, V 0 −
∫ 1

0

ψ1(y)dy = 0(3.46)

then, there exists a control β such that

ψ(T ) = ψt(T ) ≡ 0 in (0, 1), V (T ) = Vt(T ) = 0.(3.47)

Indeed, this is an immediate consequence of the remark made in the introduction that
shows that when β is of zero average the following identities hold

Vt(T ) + ψ(0, T ) = V 1 + ψ0(0), V (T )−
∫ 1

0

ψt(y, T )dy = V 0 −
∫ 1

0

ψ1(y)dy.(3.48)

Thus, in the sequel we focus on initial data
(
ψ0, ψ1, V 0, V 1

)
satisfying (3.46). For

the adjoint system




ηtt − ηyy = 0 in (0, 1)× (0, T )
ηy(1) = 0 for t ∈ (0, T )
ηy(0) = ut for t ∈ (0, T )
utt − ηt(0) = 0 for t ∈ (0, T )
η(0) = η0, ηt(0) = η1 in (0, 1)
u(0) = u0, ut(0) = u1

(3.49)

we consider initial data in the following subspace Y0 of Y:

Y0 =
{(

η0, η1, u0, u1
) ∈ Y : u1 − η0(0) = 0,

∫ 1

0

η1dy + u0 = 0
}

.(3.50)

It is easy to see that the subspace Y0 is invariant under the flow generated by
(3.49).

Given
(
η0, η1, u0, u1

) ∈ Y0 we solve first (3.49) and then the backward system:





ψtt − ψyy = 0 in (0, 1)× (0, T )
ψy(1, t) = 0 for t ∈ (0, T )
ψy(0, t) = −Vt(t) for t ∈ (0, T )
Vtt(t) + ψt(0, t) = − d2

dt2 (ρ(t)utt(t)) for t ∈ (0, T )
ψ(T ) = ψt(T ) = 0 in (0, 1)
V (T ) = Vt(T ) = 0

(3.51)

where ρ is as in the proof of Theorem 2.1.
Proceeding as in the proof of Proposition 3.7 one can show that (3.51) has a

unique solution defined by transposition such that the traces (3.47) are well defined.
On the other hand, integrating the equations in (3.51) we deduce that

∫ 1

0

ρ1(y)dy = 0;µ1 = 0.(3.52)
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Let us denote by Z the subspace of Y ′ satisfying (3.52). More precisely.

Z =
{(

ρ1, ρ0, µ1, µ0
) ∈ Y ′ : (3.52) holds

}
.(3.53)

It is easy to check that Z is actually the dual of Y0. Indeed, the dual of Y0 is a cocient
space of Y ′ and there is a one-to-one correspondence between Z and this cocient space
in the sense that, in Z, we have chosen the unique element of each class of the cocient
space satisfying (3.52).

As in the proof of Theorem 2.1 we can define a linear and continuous opera-
tor Λ : Y0 −→ Z that associates the trace

(
ρ1, ρ0, µ1, µ0

) ∈ Z in (3.41) to each(
η0, η1, u0, u1

) ∈ Y0.
We also have

< Λ
(
η0, η1, u0, u1

)
,
(
η0, η1, u0, u1

)
>=

∫ T

0

ρ(t) |utt(t)|2 dt.

In view of Theorem 3.3 and Remark 9 we deduce the existence of a constant C > 0
such that

< Λ
(
η0, η1, u0, u1

)
,
(
η0, η1, u0, u1

)
>≥ C

∥∥(
η0, η1, u0, u1

)∥∥2

Y′ , ∀
(
η0, η1, u0, u1

) ∈ Y0

since the quantity
[
‖η0

y‖2L2(0,1) + ‖η1‖2L2(0,1)+ | u1 |2
]1/2

defines a norm in Y0 which
is equivalent to the norm induced by Y.

We deduce that Λ : Y0 −→ Z is an isomorphism.
Then, given initial data as in the statement of Theorem 2.2 and such that (3.46)

holds we define
(
ρ1, ρ0, µ1, µ0

) ∈ Z by (3.45). The control we are looking for is

β = − d2

dt2
(ρ(t)utt(t)) where u is the second component of the solution (η, u) of (3.49)

with initial data
(
η0, η1, u0, u1

)
= Λ−1

(
ρ1, ρ0, µ1, µ0

)
.

This concludes the proof of Theorem 3.5. 2

4. Controllability of the two-dimensional system: Proof of Theorem
2.3. In view of Theorems 2.1 and 2.2 for any n = 0, 1, . . . there exists a control
βn ∈ H−2(0, T ) such that the solution (ψn, Vn) of (1.6) satisfies

ψn(T ) ≡ ψn,t(T ) = 0 in (0, 1), Vn(T ) = Vn,t(T ) = 0(4.1)

for n ≥ 1 and

ψ0(T ) = µ1, ψ0,t(T ) = 0 in (0, 1), V0(T ) =< ρ1, 1 >, V0,t(T ) = 0(4.2)

when n = 0.
On the other hand

‖βn‖2H−2(0,T ) ≤ Cn

∥∥(
ρ1

n, ρ0
n, µ1

n, µ0
n

)∥∥2

Y′ .(4.3)

We construct the following control for the two-dimensional system:

β(x, t) =
∞∑

n=0

βn cos(nπx).(4.4)



22 S. MICU AND E. ZUAZUA

We have, in view of (4.3),

‖β‖2H−2(0,T ;L2(0,1)) =
∞∑

n=0

‖βn(t)‖2H−2(0,T )

≤
∞∑

n=0

Cn

∥∥(
ρ1

n, ρ0
n, µ1

n, µ0
n

)∥∥2

Y′ =
∥∥(

ψ0, ψ1,W 0,W 1
)∥∥2

H
< ∞.

Therefore β ∈ H−2
(
0, T ; L2(0, 1)

)
. On the other hand,

ψ(x, y, t) =
∞∑

n=0

ψn(y, t) cos(nπx), W (x, t) =
∞∑

n=0

Vn(t) cos(nπx)

solves (1.3) with the control β given in (4.4) and satisfies (2.7) at time t = T .
This concludes the proof of this Theorem. 2
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5. Appendix: Proof of Theorem 3.4. First of all we recall a classical result
due to A.E. Ingham.

Theorem A. (see Ingham [9], Theorems 1 and 2) Let f = f(t) be of the form
f(t) =

∑
n∈ZZ aneiλnt where λn is a sequence of real numbers.

We assume that there exists γ > 0 such that

λn+1 − λn ≥ γ, ∀n ∈ ZZ.(5.1)

Let J = [0, T ] with T > 2π
γ . Then, there exist two positive constants C0

1 , C0
2 > 0

such that

C0
1

∑

n∈ZZ

| an |2≤
∫

J

| f(t) |2 dt ≤ C0
2

∑

n∈ZZ

| an |2(5.2)

for all an ∈ `2

Remark 15. The constants C0
1 and C0

2 depend only on T − 2π
γ .

To prove (3.22) we follow the ideas of Haraux [8], paying special attention to the
evaluation of the constants appearing there.

The second inequality of (3.22) results, with C2 = 2C0
2 +2|J |(2N+1), immediately

using Theorem A. Indeed we have:

∫

J

|f(t)|2 dt =
∫

J

∣∣∣∣∣∣
∑

|n|>N

aneiλnt +
∑

|n|≤N

aneiλnt

∣∣∣∣∣∣

2

≤

≤ 2
∫

J




∣∣∣∣∣∣
∑

|n|>N

aneiλnt

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣
∑

|n|≤N

aneiλnt

∣∣∣∣∣∣

2

 .

Applying now Theorem A to the function g(t) =
∑
|n|≥N aneiλnt we obtain:

∫

J

|f(t)|2 dt ≤ 2C0
2

∑

|n|>N

|an|2 + 2|J |

 ∑

|n|≤N

|an|



2

≤

≤ 2C0
2

∑

|n|>N

|an|2 + 2|J |(2N + 1)
∑

|n|≤N

|an|2 ≤
(
2C0

2 + 2|J |(2N + 1)
) ∑

n∈ZZ

|an|2.

We pass now to prove the first inequality of (3.22). We do this by induction in p,
the number of indexes n ∈ ZZ for which λn+1 − λn < γ∞.

If p = 0 the result follows from Theorem A with C1 = C1(0) = C0
1 . Suppose now

that p > 0.
We write the function f in the form f(t) =

∑
n 6=0 aneiλnt + a0e

iλ0t where λ0 is
one of those values for which λn+1 − λn < γ∞. Moreover, without loss of generality,
we may suppose that λ0 = 0 (since we can consider the function f(t)e−iλ0t instead
of f(t)). We apply now the induction hypotesis for the function g(t) =

∑
n6=0 aneiλnt

and we obtain that:

C1(p− 1)
∑

n6=0

|an|2 ≤
∫

J

|g(t)|2 ≤ C2(p− 1)
∑

n6=0

|an|2.(5.3)
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We know that C2(p−1) = 2C0
2 +2|J |(p−1). Let ε > 0 be so that T ′ = T−ε > 2π

γ∞
.

We have
∫ ε

0

(f(t + η)− f(t)) dη =
∑

n6=0

an

(
eiλnε − 1

iλn
− ε

)
eiλnt, ∀t ∈ [0, T ′].

Applying the induction hypotesis to the function h(t) =
∫ ε

0

(f(t + η)− f(t)) dη

we obtain that:

C1(p− 1)
∑

n 6=0

∣∣∣∣
eiλnε − 1

iλn
− ε

∣∣∣∣ |an|2 ≤
∫ T ′

0

∣∣∣∣
∫ ε

0

(f(t + η)− f(t)) dη

∣∣∣∣
2

.(5.4)

We evaluate now the coefficients
eiλnε − 1

iλn
− ε. We have:

∣∣eiλnε − 1− εiλn

∣∣2 = |cos(λnε)− 1|2 + |sin(λnε)− λnε|2 =

= 4sin4

(
λnε

2

)
+ (sin(λnε)− λnε)2 ≥





4
(

λnε
2 arctg

(
π
2

))4
, if |λn|ε ≤ π

2

(|λn|ε− 1)2 , if |λn|ε > π
2 .

Finally, taking into account that |λn| ≥ γ, we obtain that, for ε small enough,

∣∣∣∣
eiλnε − 1

iλn
− ε

∣∣∣∣
2

≥ γ2ε4.

We return now to (5.4) and we get that:

γ2ε4C1(p− 1)
∑

n 6=0

|an|2 ≤
∫ T ′

0

∣∣∣∣
∫ ε

0

(f(t + η)− f(t)) dη

∣∣∣∣
2

(5.5)

On the other hand
∫ T ′

0

∣∣∣∣
∫ ε

0

(f(t + η)− f(t)) dη

∣∣∣∣
2

≤
∫ T ′

0

ε

∫ ε

0

|f(t + η)− f(t)|2 dη ≤

≤ 2ε

∫ T ′

0

∫ ε

0

(
|f(t + η)|2 + |f(t)|2

)
dη ≤ 2ε2

∫ T

0

|f(t)|2 +

+2ε
∫ ε

0

∫ T ′

0

|f(t + η)|2 dt dη ≤ 4ε2

∫ T

0

|f(t)|2 .

From (5.5) it follows that

∑

n6=0

|an|2 ≤ 4
ε2γ2C1(p− 1)

∫ T

0

|f(t)|2 .(5.6)
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Observe that:

|a0|2 =

∣∣∣∣∣∣
f(t)−

∑

n 6=0

aneiλnt

∣∣∣∣∣∣

2

=
1
T

∫ T

0

∣∣∣∣∣∣
f(t)−

∑

n6=0

aneiλnt

∣∣∣∣∣∣

2

dt ≤

≤ 2
T




∫ T

0

|f(t)|2 +
∫ T

0

∣∣∣∣∣∣
∑

n6=0

aneiλnt

∣∣∣∣∣∣

2

 ≤ 2

T




∫ T

0

|f(t)|2 + C2(p− 1)
∑

n 6=0

|an|2

 ≤

≤
(

2
T

+
8C2(p− 1)

Tε2γ2C1(p− 1)

) ∫ T

0

|f(t)|2 .

From (5.6) we get that

∑

n∈ZZ

|an|2 ≤
[

4
ε2γ2C1(p− 1)

(
2C2(p− 1)

T
+ 1

)
+

2
T

] ∫ T

0

|f(t)|2 .

We obtain the desired result and a recurrent formula to compute the constant
C1(p):

C1(p) =
[

4
ε2γ2C1(p− 1)

(
2C2(p− 1)

T
+ 1

)
+

2
T

]−1

.

2


