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1. Introduction

The aim of this paper is to extend classical results in Complex Analysis to the
general setting of elliptic operators. This idea originates to the mathematicians
of the XIXth century, especially to Cauchy and Riemann, who developed a par-
allel between analytic functions of one variable and harmonic functions in planar
domains. Nowadays, books like those of L. Hörmander [6], R. Narasimhan [7] or
R. O. Wells [14], go further and illustrate how the basic ideas of classical Analysis
evolved into Analysis of Differential Operators.

Given a linear elliptic operator P , we can attach to it several function spaces.
The first one is A(P ) = Ker P, the space of the so called P -analytic functions.
That allows us to bring together several important classes of functions such as the
usual analytic functions (the case where P = ∂) and the harmonic functions (the
case where P = ∆). As we shall show in Section 3, the convergence of the sequences
of P -analytic functions has some special features, noticed in particular cases by a
number of mathematicians such as K. Weierstrass, G. Vitali, H. Harnack et al. A
sample of the results in this area is the classical theorem due to K. Weierstrass,
which asserts that uniform convergence on compacta preserves analyticity.

The Bergman space (of index 2 and weight w) associated to a linear elliptic
operator P and a continuous weight w is the space of all square integrable P -
analytic functions i.e.,

Bg2(P,w dx) =
{

u ∈ A(P ) :
∫

Ω

|u(x)|2 w(x) dx < ∞
}

.

In Section 4 we shall show that Bg2(P, w dx) is a closed subspace in the corre-
sponding L2 space associated to w dx and that will be used to infer the denseness
of A (P1)⊗A (P2) into A (P1 £ P2) ; here P1 £P2 represents the Fubini product (in
the sense of [10]) of the two linear elliptic operators P1 and P2.

The paper ends by discussing some aspects of Bergman space theory based on
Bergman kernel and Bergman projection.
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2. Preliminaries on elliptic operators

Throughout this section Ω will denote a bounded open subset of RN and C∞(Ω, r)
will denote the Fréchet space C∞(Ω,Cr), endowed with the family of seminorms

||u||Kn =
∑

|α| ≤n

1
α!

sup
x∈K

|Dαu(x)| ,

where n runs over N and K runs over the compact subsets of Ω.
We shall consider linear elliptic operators P : C∞(Ω, r) → C∞(Ω, s) of order m,

i.e. operators of the form

(Pu)(x) =
∑

|α| ≤m

aα(x)(Dαu)(x)

whose leading symbols

σP (x, ξ) =
∑

|α|= m

aα(x)ξα : Cr → Cs

are injective, whenever x ∈ Ω and ξ ∈ Rr \ {0} ; all coefficients are supposed to be
C∞.

The simplest examples of linear elliptic operators are

dp

dxp
, ∂ =

1
2

(
∂

∂x
+ i

∂

∂y

)
, ∆ =

N∑

k = 1

∂2

∂x2
k

, ∆p

and their perturbations by lower order terms.
Much of the theory of elliptic operators depends upon the powerful methods of

Functional Analysis and in this connection an important role is played by Sobolev
spaces.

For m ∈ N, the Sobolev space Hm(Ω, r) is the space of all functions u ∈
L2 (Ω, r) = L2(Ω,Cr), whose distributional derivatives of order≤ m are in L2 (Ω, r) .
This is a Hilbert space for the norm

||u||Hm(Ω,r) =


 ∑

|α| ≤m

∫

Ω

|Dαu(x)|2 dx




1/2

.

Notice that Hm(Ω, r) can be described alternatively as the completion of
{

u ∈ C∞(Ω, r) : ||u||Hm(Ω,r) < ∞
}

with respect to ||·||Hm(Ω,r) .

According to Sobolev Embedding Theorem [12], if m > N
2 + j, then for every

compact subset K of Ω there exists a constant C1 > 0 such that

||u||Kj ≤ C1 ||u||Hk(Ω,r)

whenever u ∈ C∞(Ω, r). This theorem shows that every u ∈ Hm(Ω, r) is a. e. equal
to a function of class Cm−[N/2]−1.

A basic result on linear elliptic operators is the Friedrichs’ Inequality [5]: If P
is as above, then for every relatively compact open subset Ω′ of Ω there exists a
constant C2 > 0 such that

||u||Hm+k(Ω′ ,r) ≤ C2

(
||Pu||Hk(Ω,r) + ||u||H0(Ω,r)

)
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for every k ∈ N and every u ∈ C∞(Ω, r) for which the right hand side is finite.
Elliptic operators of the type considered above have nice regularity properties.

Particularly they are hypoelliptic, i.e. if u ∈ L2
loc(Ω, r) and Pu = 0 (in the sense of

distributions), then u is a.e. equal to a C∞-function.

3. C∞- convergence of sequences of P - analytic functions

As above, P : C∞(Ω, r) → C∞(Ω, s) will denote a linear elliptic operator of
order m. Attached to it will be the vector space

A(P ) = Ker P

of the so called P -analytic functions. The usual analytic functions correspond to
the case where P = ∂. For P = dp

dxp , A(P ) consists of all polynomials of degree
≤ p, while for P = ∆ we retrieve the case of harmonic functions.

The convergence of sequences of P -analytic functions has some special features,
noticed in particular cases by a number of mathematicians such as K. Weierstrass,
G. Vitali, H. Harnack et al. A sample of the results in this area is Weierstrass’
theorem, which asserts that uniform convergence on compacta preserves analyticity.

In order to develop a unifying approach in the framework of P -analyticity, we
have to make the following basic remark, which combines Friedrichs’ inequality and
Sobolev embedding theorem:

Let (un)n be a sequence of elements of C∞(Ω, r) such that:
i) (Pun)n is a converging sequence in C∞(Ω, s);
ii) lim

j, k→∞
∫

K
|uk − uj |2 dx = 0

for every compact subset K of Ω.
Then (un)n is a converging sequence in C∞(Ω, r).
Lemma 3.1 yields a number of criteria of C∞-convergence, which provide them-

selves very useful in concrete applications:
(Vitali’s Criterion of C∞-convergence). Suppose that (un)n is a sequence of P -

analytic functions such that:
i) (un)n is pointwise convergent to a function u : Ω → Cr;
ii) (un)n is uniformly bounded on each compact subset of Ω.
Then u is P -analytic and un → u in C∞(Ω, r).

Proof. Use the theorem of Lebesgue on dominated convergence. ¥
(Weierstrass’ Criterion of C∞-convergence). If (un)n is a sequence of P -analytic

functions and un → u uniformly on each compact subset of Ω, then u is P -analytic
and un → u in C∞(Ω, r).

The discussion above shows that A(P ) constitutes a Fréchet space (and also a
closed subspace of C∞(Ω, r)) when endowed with the family of seminorms

||u||K = sup
x∈K

|u(x)|

where K runs over the compact subsets of Ω.
(Stieltjes-Vitali Criterion of Compactness). Every sequence of P− analytic func-

tions which is bounded on compacta contains a converging subsequence.
In other words, A(P ) is a Fréchet-Montel space.
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Proof. First notice that Ω can be represented as the union of an increasing sequence

of compact subsets e.g., Ω =
∞⋃

n=1
Ωn where

Ωn = {x ∈ Ω : |x| ≤ n and dist (x, ∂Ω) ≥ 1/n}
for each n ∈ N?.

By the Sobolev embedding theorem, we get uniform estimates for the derivatives
of the un’s on each subset Ωn. In particular, the functions un are equicontinuous.
By the Arzela-Ascoli theorem we can choose a uniformly converging subsequence
on each Ωn and using a diagonal argument we obtain a subsequence converging
uniformly an each compact subset of Ω.

To end the proof it remains to apply to that subsequence the result of Corollary
3.3 above. ¥

As a consequence of Theorem 3.4 we obtain that condition i) in Vitali’s criterion
of C∞-convergence can be weakned as:

i′) (un(x))n is convergent for x in a dense subset of Ω.

How far is pointwise convergence from C∞-convergence in the case of P−analytic
functions? The answer is given by the following theorem, which extends a result
due to W. F. Osgood [9]:

Let (un)n be a sequence of P -analytic functions which is pointwise converging
to a function u : Ω → Cr. Then u is P -analytic in a dense open subset Ω1 ⊂ Ω and
convergence is uniform on compact subsets of Ω1.

Proof. Let K be an arbitrary closed ball included in Ω. Then K =
∞⋃

n = 1
Kn, where

the Kn’s are closed subsets defined as

Kn = {x ∈ K : |uk(x)| ≤ n for every k} .

By the Baire category theorem some Km must have non-empty interior. For
this m the sequence (un)n is uniformly bounded on Int Km, hence by Corollary 3.2
above it converges uniformly on compact subsets of Int Km. Thus u is P -analytic
on Int Km. Since the argument can be applied to any closed ball, it follows that
u is P -analytic on a dense open subset Ω1 ⊂ Ω. The fact that the convergence is
uniform on compacta contained in Ω1 is standard and we omit the details. ¥

A natural question arising in connection with Theorem 3.5 is how thin can the
subset Ω1 be? One can prove easily that for each open subset Ω of RN and each
ε > 0 there must exist a dense open subset Ωε ⊂ Ω whose Lebesgue measure is < ε.
The problem is how to fix the convergence aspects as in Theorem 3.5.

The following example could be useful to settle that problem. Let λ ∈ (0, 1/2).
From the closed unit square K0 = [0, 1]× [0, 1] delete [0, 1]×(λ, 1− λ)∪(λ, 1− λ)×
[0, 1] , thus leaving a set K1 of 4 closed squares. Continue in a similar manner so
that at the nth stage we are left with a set Kn of 4n closed squares, whose centers
we denote zn,k (k = 1, ..., 4n) . Then K∞ =

⋂
n Kn is a totally disconnected set, of

planar Lebesgue measure zero. Letting

f(z) = lim
n→∞

1
4n

4n∑

k = 1

1
z − zn,k

we obtain a function continuous on K0, which has no analytic continuation off
K0 \K∞.



FUNCTION SPACES ATTACHED TO ELLIPTIC OPERATORS 5

Notice that the Hausdorff dimension of the exceptional set K∞ is − log 4/ log λ,
a quantity which goes to 2 as λ → 1/2.

The example above shows that the implication

u = continuous & P (u) = 0 a.e. ⇒ P (u) = 0 everywhere

fails even for P = ∂. However, for P = ∂ one can prove the following result on
removable singularities:

(A. S. Besicovitch [2]) . If Ω is an open subset of C and u : Ω → C is a continuous
function such that ∂u = 0 except on a thin subset, then ∂u = 0 everywhere i.e., u
is analytic.

Recall that a subset of RN is called thin if it has σ−finite (N − 1)−dimensional
Hausdorff measure.

Open Problem. Does Theorem 3.6 above extend to all elliptic operators?

4. Approximation of P -analytic functions of several variables

According to Weierstrass approximation theorem, if Ωj ⊂ CNj are open subsets
and xj are points in CNj (j ∈ {1, 2}) , then the finite linear combinations

∑
n

u(1)
n (x1)⊗ u(2)

n (x2)

with u
(j)
n ∈ C∞(Ωj , rj) (j ∈ {1, 2}) are dense in C∞(Ω1 × Ω2, r1r2); notice that

Cr1r2 = Cr1 ⊗ Cr2 . In other words, C∞(Ω1 × Ω2, r1r2) is the completion of

C∞(Ω1, r1)⊗ C∞(Ω2, r2).

We shall show in the sequel that similar results are valid in the context of
P−analytic functions. Our approach, inspired by the case of functions of several
variables as treated in [7], makes use of some functional spaces.

Let Ω ⊂ RN be an open subset and let w : Ω → (0,∞) be a continuous function
(reffered to as a weight). L2(w dx, r) denotes the Hilbert space of all functions
u : Ω → Cr, which are square integrable with respect to the Lebesgue weighted
measure w dx; L2(w dx, r) is endowed with the norm

||u||L2(w dx, r) =
(∫

Ω

|u(x)|2 w(x) dx

)1/2

.

The Bergman space (of index 2 and weight w) associated to a linear elliptic
operator P : C∞(Ω, r) → C∞(Ω, s) and a continuous weight w is the space of all
square integrable P−analytic functions i.e.,

Bg2(P, w dx) =
{

u ∈ A(P );
∫

Ω

|u(x)|2 w(x) dx < ∞
}

.

Bg2(P ) will stand for Bg2(P,w dx), when w = 1.
Bg2(P,w dx) is closed in L2(wdx, r) and thus it constitutes a Hilbert space when

endowed with the induced norm.
Proof. In fact, w is bounded from below on each compact space and thus the results
in the section 2 show that for every compact subset K ⊂ Ω there exists a constant
CK > 0 such that

(*) sup
x∈K

|u (x)| ≤ CK ||u||L2(wdx,r)

for every u ∈ A(P ). ¥
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A similar argument yields the following result:
Let (ϕn)n be an orthonormal basis of Bg2(P,w dx). Then every u ∈ Bg2(P, w dx)

can be approximated uniformly on compact subsets of Ω by finite linear combina-
tions

∑
n cnϕn with complex coefficients.

Suppose now there are given two elliptic operators

Pj : C∞(Ωj , rj) → C∞(Ωj , rj) (j ∈ {1, 2})
of the same order m and consider their Fubini product,

P1 £ P2

which acts from

(C∞(Ω1, r1)⊗ C∞(Ω2, r2))⊕ (C∞(Ω1, r1)⊗ C∞(Ω2, r2))

into
(C∞(Ω1, r1)⊗ C∞(Ω2, r2))⊕ (C∞(Ω1, r1)⊗ C∞(Ω2, r2))

by the formula

(P1 £ P2) (u1 ⊗ u2 ⊕ v1 ⊗ v2) =

= (P1u1 ⊗ u2 − v1 ⊗ P ?
2 v2)⊕ (u1 ⊗ P2u2 + P ?

1 v1 ⊗ v2) .

(R. S. Palais [10], ch. IV, §8) . P1 £ P2 is an elliptic operator, of order m.
Proof. In fact, P1 £ P2 can be represented as

(
P1 ⊗ idr2 −idr1 ⊗ P ?

2

idr1 ⊗ P2 P ?
1 ⊗ idr2

)

where idrk
is the identity of C∞(Ωk, rk). Then

(P1 £ P2)
? = (−1)m

(
P ?

1 ⊗ idr2 idr1 ⊗ P ?
2

−idr1 ⊗ P2 P1 ⊗ idr2

)

which yields that (P1 £ P2)
? (P1 £ P2) has the form

(−1)m

(
P ?

1 P1 ⊗ idr2 + idr1 ⊗ P ?
2 P2 0

0 idr1 ⊗ P2P
?
2 + P1P

?
1 ⊗ idr2

)

and thus it is a uniformly elliptic operator of order 2m. Consequently P1 £ P2 is
an elliptic operator of order m. ¥
A (P1)⊗A (P2) is dense in A (P1 £ P2) .

Proof. In fact, every function in A (P1 £ P2) belongs to a certain space Bg2(P1 £
P2, wdx). Using the splitting techniques described in [7], we may assume that

wdx = w1dx1 + w2dx2.

Or,

Bg2(P1 £ P2, w1dx1 + w2dx2) = Bg2(P1, w1dx1)⊗̂Bg2(P2, w2dx2)

where ˆ represents the completion under the projective tensor product topology. If
we take orthonormal bases (ϕ(k)

n )n in Bg2(Pk, wkdxk) (k ∈ {1, 2}) then

(ϕ(1)
k ⊗ ϕ

(2)
j )k,j

will constitute an orthonormal basis of Bg2(P1, w1dx1)⊗̂Bg2(P2, w2dx2). The con-
clusion follows now from Lemma 4.2. ¥
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5. The Bergman kernel

A useful tool for studying the Bergman space and the underlying geometry of
the domain is a reproducing kernel, whose existence is motivated by the inequalities
(∗).

In fact, the point evaluation at any x ∈ Ω is a finite rank operator on the
Bergman space so that the Riesz representation theorem yields a unique function
Kx in Bg2(P ) such that

u(x) =
∫

Ω

Kx(y)? u(y) dy

for every u ∈ Bg2(P ). Let K : Ω× Ω → L(Cr,Cr) be the function defined by

K(x, y) = Kx(y).

We call K the Bergman kernel (or the reproducing kernel) of Bg2(P ) because
the equality

u(x) =
∫

Ω

K(x, y)u(y) dy

”reproduces” every u ∈ Bg2(P ).
Let (ϕn)n be an orthonormal basis of Bg2(P ). Then the Bergman kernel verifies

the equality

K(x, y) =
∑

n
ϕn(x)⊗ ϕn(y).

Proof. For each compact subset H of Ω we have

sup
{(∑

n
|ϕn(x)|2

)1/2

: x ∈ H

}
=

= sup
{∣∣∣

∑
n

cnϕn(x)
∣∣∣ : x ∈ H,

∑
n
|cn|2 ≤ 1

}

= sup
{
|u(x)| : x ∈ H, ||u||L2Ω,r) ≤ 1

}
≤ CK

and thus the series
∑

n ϕn(x)⊗ ϕn(y) converges uniformly for x and y in compact
subsets. If u ∈ Bg2(P ), then

u =
∑

n
< u,ϕn > ϕn

the series being uniformly convergent on the compact subsets of Ω. Particularly,

u(x) =
∑

n
< u,ϕn > ϕn(x) =< u,

∑
n

ϕn(x)⊗ ϕn >

for every x ∈ Ω. Since
∑

n ϕn(x) ⊗ ϕn ∈ Bg2(P ), the uniqueness of the Riesz
representation shows that

Kx(y) =
∑

n
ϕn(x)⊗ ϕn(y)

i.e., K(x, y) =
∑

n ϕn(x)⊗ ϕn(y). ¥
The original Bergman space corresponds to the case where

Ω = D = {z ∈ C; |z| < 1} and P = ∂.
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Because the functions
√

n+1
π · zn (n ∈ N) constitutes an orthonormal basis of

the corresponding Bergman space Bg2(P ), the reproducing kernel is

K(z, w) =
∞∑

n=0

n + 1
π

znwn =
1

(1− zw)2
.

As follows from the proof of Proposition 5.1, the Bergman kernel is always con-
tinuous and self-adjoint.

Because Bg2(P,wdx) is a closed subspace of the Hilbert space L2(wdx,Cr), it
must be the image of an orthogonal projection P from L2(wdx, r) onto Bg2(P, wdx);
by evident reasons, we call πBg the Bergman projection. It is easy to verify that
πBg is given by the formula

(πBgu) (x) =
∫

Ω

K(x, y)u(y) w(y) dy.

The Bergman projection is connected to the Dirichlet Problem:
Suppose that Ω is a bounded open subset of RN , with smooth boun-dary, so

that P admits a right inverse G : C∞(Ω, r) → C∞(Ω, r) with

P (Gu) = u

Gu|∂Ω = 0.

Then
πBg = I − P ?GP.

Proof. If ϕ ∈ C∞(Ω, r) then u = P ?Gϕ is the unique solution of the problem
Pu = ϕ with u orthogonal to Bg2(P ). ¥

References

[1] S. Bell: Mapping problems in complex analysis and the ∂− problem, Bull. Amer. Math. Soc.,
22 (1990), 233-259.

[2] A. S. Besicovitch: On sufficient conditions for a function to be analytic and on behaviour of
analytic functions in the neighbourhood of non-isolated singular points, Proc. London Math.
Soc., 32 (1931), 1-9.

[3] D. Gilbart and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, 3rd
Printing, Springer-Verlag, New York, 1996.

[4] J. D. Gray and S. A. Morris: When is a function that satisfies the Cauchy-Riemann equations
analytic ?, The Amer. Math. Monthly, 85 (1978), 246-256.

[5] K. O. Friedrichs: On the differentiability of the solutions of linear elliptic differential equa-
tions, Commun. Pure Appl. Math., 6 (1953), 299-325.
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