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Introduction

After the publication of Principia, Newton�s calculus-based dynam-
ics became rapidly the standard model for most scienti�c theories. At
the beginning of the 20th Century, the ideas of Einstein re�ned New-
tonian dynamics and Bohr�s quantum theories were intended to remove
Newton�s classical determinism from the heart of the Physics. Despite
this apparent setback, the di¤erential equations of classical mechanics
are still widespread in physical modelling of the macroscopic world.
In fact, studies of the time evolution of mathematical models are al-
lowing the Newtonian ideal of di¤erential causality to grow in many
unexpected new directions such as economy, ecology, physiology etc.
It might have been supposed that, with the arrival of computers,

the mathematical theory of dynamical systems would simply come to
an end. A quick glance at the current research journals show that
in fact the contrary is true, namely the nonlinear dynamics is one of
the fastest growing �elds of applied mathematics. The explanation is
the recognition of complex, seemingly irregular motions of the deter-
ministic systems, characterized by a sensitive dependence on the initial
conditions i.e., by the possibility that two adjacent trajectories starting
close together to diverge and eventually to become uncorrelated. That
makes long term predictability impossible, a picture that contrasts with
the well-behaved systems of classical analysis.
The story received a great impetus in the early 60s, when the mete-

orologist E. N. Lorenz [20], interested in the limits of predictability of
weather prediction, found and plotted a chaotic attractor which exhib-
ited sensitive dependence on initial conditions. It arouses from a simple
looking quadratic system in three variables which was a truncation of
convection �ow. The physical origin and simple mathematical nature
of this system make it important for study.
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The system considered by E. N. Lorenz was8<: _x = ��x+ �y
_y = rx� y � xz
_z = �bz + xy

where �; r; b are three positive parameters (from which r represents
Rayleigh�s number); he took � = 10 and b = 8

3
; observing the structural

change of dynamics while increasing r.
A natural (and very popular) way to deal with continuous dynamical

systems of the type

(CDS) _x = F (x)

is the use of a discrete time integration scheme (the simplest one being
that due to Euler). For a small time step, �t; we can write �x =
F (x)�t; allowing us to make a small �nite step from point n to the
next step n+ 1 using

(DDS) xn+1 = xn + F (xn)�t

i.e., a recurrence of the form

xn+1 = f(xn):

So we encounter the problem of describing a continuous dynamical
systems through a discrete approximation of it.
The purpose of this paper is to argue that in the absence of a serious

qualitative analysis no conclusion valid for (DDS) can be extended to
(CDS). While solving problems by iteration on a computer is now very
popular, the reader should be aware of the pitfalls of such an approach.
The recent paper by Lanford [18] reporting computer experiments on
the orbit structure of some discrete maps is very instructive in this
respect.
The terminology and notation used in our paper are in full agreement

with Dictionary of Mathematical Analysis [35]. Of course, some basic
concepts will be recalled here.
First, few words about the discrete dynamical systems.
Technically, a discrete dynamical system acting on set M is the

sequence (fn)n of all iterates of a function f : M ! M . Recall that
the iterates of f are given by

f 0 = idM and fn = f � ::: � f| {z }
n times

; if n 2 N?:

Most of the authors use the formula �let f :M !M be a dynamical
system�for referring to the discrete dynamical system generated by f .
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The main problem concerning these systems is as follows: Given a
function f and an initial value a, what happen with the sequence

x0 = a; xn = f(xn�1) for n 2 N?;
of all iterates of f computed at a?
Call the sequence (fn (a)))n the trajectory of a, and the set of its

values, the orbit of a. Usually the orbit of a is denoted O (a) :
The theory of recurrent sequences considers separately each such an

object, while the theory of dynamical systems deals with the ensemble
of all trajectories of a system. It was H. Poincaré [29] who came �rst
to the idea of taking into consideration the global study of the iterates
(and thus started the qualitative study of dynamical systems).
Understanding the structure of orbits is not an easy task. However,

that proved basic at the computational level of mathematics. Not sur-
prisingly, many questions with an apparent innocent statement, puz-
zled the most gifted mathematicians of the 20th Century. Steve Smale
[34], whose numerous distinctions and honors include the Fields Medal,
has recently formulated a list of outstanding problems left open for the
21th Century. Some of them concern the dynamical systems, a fact
which led us to discuss here some basic facts on the contemporary
vision of recurrent sequences.

1. Invariant sets. Attractors

If there exists a number n 2 N? such that fn(a) = a; then a is called
a periodic point (of period n); the principal period of a periodic point
a is the smallest n 2 N? such that fn(a) = a: The orbit of any periodic
point is a �nite set. It reduces to a singleton if a is a �xed point of f
i.e., if

f(a) = a:

The identity of R admits all points of R as �xed points. The mapping
f(x) = �x; x 2 R; has a unique �xed point (which is the origin), all
others being periodic, of principal period 2.
The �xed points and the periodic orbits are examples of invariant

sets: Given a mapping f : M ! M as above, a subset A of M is said
to be invariant (for f) if

f(A) = A

and positively invariant if

f(A) � A;
in both cases, the orbits leaving at points of A remain in A.
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Figure 1

When the phase spaceM is an interval, we can outline the trajectories
of a discrete dynamical system f : M ! M; via the graphical analysis
of f (also called the step diagram).
The trajectory of a point a can be constructed as follows : Take a

perpendicular at a0 = a to the 0x axis until it meets the graph of f in
the point of coordinates (a0; f(a0)): The parallel through this point to
0x meets the �rst bisectrice in (f (a0) ; f(a0)): Then the parallel at 0y
through the last point meet the graph of f in (f (a0) ; f2(a0)) and so
on. The intersection of the graph of f with the �rst bisectrice reveals
the �xed points, i.e. the points whose trajectories are themselves. The
arrows show orientation, while the ascendant / descendent steps show
the monotonicity. See Fig. 1.
Calculus contributes signi�cantly to the graphical analysis and thus

to the study of dynamical properties.

1.1. Examples. i) Consider the mapping

f : [�1;1)! [�1;1); f(x) =
p
1 + x:

f has a unique �xed point, which is p = (1 +
p
5 )=2: The graphical

analysis reveals the convergence of all trajectories to p; more precisely,
if x0 < p then fn(x0) % p; while for x0 > p we have fn(x0) & p: See
Fig. 2.
ii) Consider the case of the family of mappings

f� : R! R; f�(x) = �x:

The origin is a �xed point for all of them, but varying the parameter
�; the dynamics near the origin can change drastically. See Fig. 3.

If � = 0; then fn(x0) = 0 for every x0 2 R and every n � 1:
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If � 2 (0; 1); then all trajectories go monotonically to 0 (increasingly,
if x0 < 0; decreasingly, if x0 > 0):
If � = 1; then R consists only of �xed points.
If � > 1; then the trajectory of each point x0 > 0 goes (increasingly)

to 1; while of each point x0 < 0; goes (decreasingly) to �1:
If � 2 (�1;�1); then the trajectories go o¤ the origin.
If � = �1; then all trajectories are periodic, of period 2.
If.� 2 (�1; 0); then all trajectories wrap 0.
The examples above outlined several types of behavior of �xed points.

It is worth to formulate them in an abstract setting:

1.2. De�nition. A �xed point p is said to be attractive (or, an
attractor) for the dynamical system f : M ! M if there exists a
neighborhood U of p in M such that

fnx0 ! p for every x0 2 U:

Call the set U which appears in De�nition 1.2, a basin of attraction
of p. If U can be chosen as the whole space M , then p is said to be the
global attractor of the dynamical system f :M !M:

1.3. De�nition. A �xed point p is said to be a repellor for the
dynamical system f : M ! M; if there exists a neighborhood U of p
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inM such that for every x0 2 U; x0 6= p; there exists a natural number
n for which fnx0 =2 U:
However, we have to notice the existence of indi¤erent �xed points,

which are not either attractive or repelling. This is the case for the
origin, with respect to the dynamical system generated by the identity
of R.
An important source of global attractors is the Contraction Mapping

Theorem. Recall that a mapping f : M ! M (de�ned on a metric
space M = (M;d)) constitutes a contraction if there exists a constant
C 2 [0; 1) such that

d(f(x); f(y)) � Cd(x; y)
for every x; y 2M:
1.4. The Contraction Mapping Theorem (also known as the
Banach-Cacciopoli Theorem). Let M be a complete metric space (e.g.,
a closed subset of the Euclidean space Rn) and let f : M ! M be a
contraction. Then f admits a unique �xed point p, which is also the
global attractor of f (viewed as a discrete dynamical system on M).
Moreover, p can be determined via the successive approximation

method : given an initial approximation x0; we consider the sequence
of successive approximations,

xn = f(xn�1); n � 1:
Then xn ! p; regardless the choice of x0:

The proof of the Contraction Mapping Theorem is well known. See
our monograph [27], pp. 124-126. The property of the unique �xed
point p to be the global attractor is equivalent with the fact that xn !
p; for every x0 2M:
Exercises

(1) Use graphical analysis to describe the dynamics of the mapping

f : R! R; f(x) = �x+ 3x2 � x3:
(2) The method of successive approximations is more general then

the principle of contraction. In other words, this method still
works for mappings which are not necessarily contractions. In
this respect, prove that for every a 2 R, the recurrent sequence
de�ned by the formula

x0 = a

xn+1 = sinxn; for n � 0
converges to 0, the unique �xed point of the sine function:
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(3) (B. P. Hillam [14]). Let f : [a; b] ! [a; b] be a mapping which
satis�es an estimate of the form

jf(x)� f(y)j � Cjx� yj for every x; y 2 [a; b];
such a mapping is usually called a Lipschitz mapping. Put

F : [a; b]! [a; b]; F (x) = (1� �)x+ �f(x)
where � = 1=(1 + C). Show that F is nondecreasing and for
every x0 2 [a; b]; the sequence de�ned by the formula

xn+1 = F
n(x0); n � 0

converges to one of the �xed points of f . See the paper of D.
F. Bailey [3], for recent results in this connection.

(4) (B. P. Hillam [15]). Let f : [0; 1] ! [0; 1] be a continuous
function. Let x0 be a point in [0; 1] and (xn)n denote the result-
ing sequence of successive approximations. Then the sequence
(xn)n converges (necessarily to a �xed point of f) if and only if
lim
n!1

(xn+1 � xn) = 0:

2. Sharkovski�s Theorem

In this section we will prove a remarkable theorem due A. N. Sharkov-
ski, which came as a surprise by its simplicity and strong conclusions.
In its simplest form it reads as follows:

2.1. Theorem (A. N. Sharkovski). Every continuous mapping f :
R! R;which admits periodic points of principle period 3, admits also
periodic points of any other period..

Proof. Follow the following four steps:
i) Let f : [a; b] ! R be a continuous function. Show that for each

compact interval B included in f([a; b]); there exists a compact interval
A, included in [a; b]; such that f(A) = B:
ii) Let f : [a; b] ! R be a continuous function and let A be a non-

empty compact interval included in [a; b]; with A � f(A): Prove there
exists a p in A such that f(p) = p:
iii) Let f : [a; b]! R be a continuous function for which there exists

a point c such that

f(a) = c; f(c) = b; f(b) = a:

For n 2 N; n � 2 consider the intervals I0 = ::: = In�2 = In = [a; b]
and In�1 = [a; c]: Show there exists a decreasing family A0 � A1 �
::: � An; of compact subintervals of [c; b]; such that fk(Ak) = Ik for
every k in f0; 1; :::; ng: Then, notice that by statement ii) above the
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function fn admits a �xed point in An i.e., a periodic point of principal
period n for f.
iv) Prove that every continuous function f : R!R; with periodic

points of principal period 3, has periodic points of any other principal
period. �
Actually the result proved by Sharkovski is much stronger (though

specialized for intervals). Consider on N? the so-called Sharkovski�s
ordering

3 B 5 B 7 B ::: B 2 � 3 B 2 � 5 B 2 � 7 B ::: B 22 � 3 B :::
B 23 B 22 B 2 B 1:

That is, �rst list all odd numbers except 1, followed by 2 times the
odds, 22 times the odds, 23 times the odds and so on. That exhausts
all the natural numbers with the exception of the power of 2, which we
list last, in the decreasing order.

2.2. Theorem (A. N. Sharkovski [22]). Suppose f : R!R is contin-
uous and f has a point of principal period m. If m B n in the above
ordering, then f also has a periodic point of principal period n.

The interested reader can �nd the details of Theorem 2.2 in the book
of R. Devaney [8], pp. 60-68. Theorem 2.1 was rediscovered by Li and
Yorke [19] in a celebrated paper where for the �rst time the term of
chaos was used as a label for intricate behavior. Their main result is
as follows:

2.3. Theorem (Li and Yorke [19]). Let I be an interval and let
f : I ! I be a continuous mapping which admits points of period 3.
Then there exists a uncountable subset S of I such that every orbit
issued from S is aperiodic and unstable.

Recall that an orbit O(a) is said to be aperiodic if it has in�nitely
many accumulation points.
The orbit O(a) is called unstable if there exist a number � > 0 such

that for every neighborhood V of a there are x 2 V and n 2 N? for
which

d (fn(x); fn(a)) > �:

Notice that the critical set S in Theorem 2.3 can be very �thin�,
even of Lebesgue measure 0, as shows the following example due to M.
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Martelli, M. Dang and T. Seph [21]:

F (x) =

8>><>>:
0; if x 2 [0; 1=4)
4x� 1; if x 2 [1=4; 1=2)
�4x+ 3; if x 2 [1:2; 3=4)
0; if x 2 [3=4; 1]

A stronger concept of chaotic behavior will be described in section 6
below.

3. The irrational rotation

The unit circle is the set

S1 = fz : z 2 C; jzj = 1g :
It admits a natural structure of an abelian compact group, with

respect to the metric topology

d(u; v) = ju� vj:
Given � 2 R, we de�ne the rotation of angle � on the unit circle as

the mapping
R� : S

1 ! S1; R� (z) = e
i� � z:

3.1. Lemma. If �=2� 2 Q; then all orbits of R� are periodic.
Proof. Assuming that � = 2� � p

q
; with p; q 2 N? and p; q relatively

prime, then
Rq� (z) = e

i q� � z = ei p2� � z = z;
for every z 2 S1: �
Apropos of Sharkovski�s Theorem limitations, notice that the rota-

tion R�; with � = 2�=3; has periodic points of period 3 but no periodic
points of any other principal period.

3.2. Theorem (C. G. J. Jacobi). If �=2� =2 Q; then every orbit of
R� is dense in S1.

Proof. As �=2� =2 Q; the elements of the sequence z; R� (z); R2� (z); :::
are pairwise distinct.
Because S1 is compact, every sequence of elements of S1 has a con-

vergent subsequence. Particularly, a subsequence
�
R
k(n)
� (z)

�
n
is con-

vergent. Given " > 0; there exists an N" 2 N such that

jRk(m)� (z)�Rk(n)� (z)j < "
for every m;n � N": Let N = k(N" + 1) � k(N"): Then, N > 0. As
rotations are isometries, we have
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jRN� (z)� zj = jRk(N")�

�
RN� (z)� z

�
j =

= jRk(N"+1)� (z)�Rk(N")� (z)j < "
so that by iterating this argument we infer that the points z; RN� (z);
R2N� (z); ::: cut S1 into arcs of diameters < ": Or, every point w of S1

belongs to such an arc, which yields the existence of an n = n(w; ") 2 N
for which jw �Rn� (z)j < ": �
The points with dense orbits are usually called topologically transitive

points (while the systems which admit topologically transitive points
are called topologically transitive systems). Their dynamics is typically
complicated. See section 6 below.
More details on the dynamics of mappings on the unit circle are to

be found in [8], [17].

4. Hyperbolicity

The aim of this section is to describe a condition (due to O. Per-
ron), under which the �xed points are either attractive or repelling.
As above, we shall restrict ourselves to the case where M is an in-
terval I and the dynamical system under attention is associated to a
C1�mapping f : I ! I: Recall that the membership in the class Cr;
with r � 1; means the existence and the continuity of the rth deriva-
tive.

4.1. De�nition. A �xed point p of the dynamical system f : I ! I
is said to be hyperbolic if

jf 0(p)j 6= 1:
The usefulness of De�nition 4.1 is outlined by the following result:

4.2. Theorem. Suppose that f : I ! I is a C1�mapping:
i) If jf 0(p)j < 1; then there exists a neighborhood U of p such that

f(U) � U and for every x of U we have
lim
n!1

fn(x) = p:

ii) If jf 0(p)j > 1; then there exists a neighborhood V of p such that
whenever x is in V n fpg, one can �nd an n in N for which fn(x) =2 V:
Proof. i) As f has continuous derivative and jf 0(p)j < C < 1; there
exists an " > 0 so that

jf 0(x)j < C on U = [p� "; p+ "] \ I:
According to the Mean Value Theorem, for every x in U we have

jf(x)� pj = jf(x)� f(p)j � Cjx� pj � jx� pj � ":
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Therefore f(x) belongs to U , and by iterating the above argument,
we are led to

jfn(x)� pj � Cn jx� pj;
which yields fn(x)! p:
The assertion ii) can be argued in a similar manner. �
It is important to extend the above considerations to the case of

positively invariant sets.

4.3 De�nition. A positively invariant set A; for the C1�mapping f :
I ! I; is said to be hyperbolic if

jf 0(a)j 6= 1 for every a 2 A:
A special case is that of periodic orbits. Let p be a periodic point, of

principal period m, for the mapping f : I ! I; of class C1: Then the
hyperbolicity condition for O(p) is

j(fm)0(p)j 6= 1:
In fact,

(fm)0(x) = (fm)0(p) for every x 2 O(p)
since for x 2 O(p) we have x = fk(p) for some k 2 f0; :::;m� 1g; and
thus

(fm)0(fk(p)) = f 0(fm�1(fk(p))) � f 0(fm�2(fk(p))) � ::: � f 0(fk(p)) =
= f 0(fm�1(p)) � f 0(fm�2(p)) � ::: � f 0(p):

Replacing f by fm in Theorem 4.2, we get the behavior of the hy-
perbolic periodic orbits (in the case of mappings acting on intervals),
which can be either an attractor or a repellor.
For example, the mapping

f : R! R; f(x) = �
�
x3 + x

�
=2

admits the origin as a hyperbolic attractor, with basin U = R n f�1; 1g;
the periodic orbit O(1) = f�1; 1g is also hyperbolic, but it constitutes
a repellor.
The theory exposed above can be easily generalized to the case where

f is a di¤erentiable mapping on a di¤erentiable manifold (particularly,
on an open subset of the Euclidean space Rn). In that case the deriv-
ative should be replaced by the di¤erential, and the hyperbolicity of
a �xed point p will mean that the spectrum of df(p) doesn�t intersect
the unit circle.
See [1], [6] and [7] for more details.

Exercises
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(1) Classify the periodic points of the following mappings (acting
on R) :

f1(x) = sin x

f2(x) = x3 � x
f3(x) = arctanx

f4(x) = ex:

(2) Call a di¤eomorphism f : [a; b] ! [a; b] a Morse-Smale di¤eo-
morphism if all its periodic orbits are hyperbolic. Prove that
f(x) = x3 + 3x=4, x 2 [�1=2; 1=2]; is such an example. Prove
that a Morse-Smale di¤eomorphism can have only �nitely many
periodic points.

5. An open problem concerning the 1-dimensional dynamics

In the theory of dynamical systems the points of interest are the so
called nonwandering points.

5.1. De�nition. Given a continuous mapping f : M ! M; call a
point a 2M nonwandering for f if for every neighborhood U of a there
exists a k 2 N? such that fk(U) \ U 6= ;:

The set 
(f); of all nonwandering points for f; includes Per (f); the
set of all periodic points for f , as well as the set of all topologically
transitive points for f .
The set 
(f) is closed and positively invariant. For the �rst asser-

tion, notice that M n
(f) is open, because together with a point a it
contains an entire neighborhood of a.

5.2. De�nition. A continuous mapping f : M ! M is said to be
hyperbolic if it veri�es the following two conditions:
i) The set 
(f) is hyperbolic;
ii) The set of all periodic points of f is dense in 
(f):

Letting Cr([0; 1]; [0; 1]) the space of all mappings f : [0; 1] ! [0; 1]
of class Cr; endowed with the Cr�metric;

dCr(f; g) =
rX

k=0

sup
x2 [0;1]

jDkf(x)�Dkg(x)j;

the following problem naturally arises:

5.3. Problem. Can every mapping f 2 Cr([0; 1]; [0; 1]) be approxi-
mated in the Cr�metric by hyperbolic mappings of class Cr ?
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This problem was settled in the a¢ rmative by M. Jakobson [16], in
the case where r = 1; see also [9]. Despite a lot of work, the case r > 1
is still open.

6. The sensitive dependence on the initial conditions

Iterating continuous mappings f :M !M (acting on metric spaces)
we can encounter bad surprises at computational level. The reason is
the initial conditions of a real system may be imprecise or even totally
unknown. Typically, instead of dealing with the true trajectory of a
point x0; we deal with the trajectory of a certain approximation �x0 of
it. The continuity of f assures us that for a given " > 0 we can �nd a
� > 0 so that

d(x0; �x0) < � implies d(f(x0); f(�x0)) < ":

However, nothing assures that

sup
n� 0

d(fn(x0); f
n(�x0)) < ":

On the contrary, simple examples such as the doubling angle map-
ping,

f : S1 ! S1; f(z) = z2;

show that exactly the opposite can happen! This phenomenon (much
stronger than that of the existence of unstable trajectories) imposes
the following de�nition:

6.1. De�nition (J. Guckenheimer [12]). A discrete dynamical system
f : M ! M shows sensitive dependence on the initial conditions if
there exists a number � > 0 such that for every point x 2M and every
neighborhood V of x one can �nd y 2 V and n 2 N? with

d (fn(x); fn(y)) > �:

Nowadays, terms such as chaotic behavior, chaotic dynamics, or
chaos are very popular. While there is no unanimously recognized
de�nition for the mathematical concept of chaos, all people agree that
the sensitive dependence on the initial conditions should be at the heart
of this concept.

6.2. De�nition (R. Devaney). A dynamical system f is called chaotic
if it satis�es the following three conditions:
(T ) f is topologically transitive;
(P ) The set of all periodic points is dense;
(S) f shows sensitive dependence on the initial conditions.

Actually, the third condition in De�nition 6.2 proved later extrane-
ous:
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6.3. Theorem (J. Banks, J. Brooks, G. Cairns, G. Davis and P.
Stacey [4]; see also [11], or [28]).

(T )& (P )) (S):

The main result of topological dynamics on intervals is as follows:

6.4. Theorem (L. S. Block and W. A. Coppel [6], p. 156). Let I
be an interval. Then every topologically transitive continuous mapping
f : I ! I is chaotic.

Theorem 6.4 still works for �nite unions of intervals. See I. Mel-
bourne, M. Dellnitz and M. Golubitsky [23] and C. Niculescu [26].
Another case of the appearance of chaos was noticed by E. Glasner

and B. Weiss [11], Lemma 1.2: If K is a compact metric space and
F : K ! K is a continuous, transitive and not an one-to-one mapping,
then F shows sensitive dependence to initial conditions.
A simple technique to prove the chaotic behavior of certain systems

is that by semiconjugation:

6.5. Theorem. Let X and Y be two metric spaces and let the com-
mutative diagram

X
f! X

h # # h
Y !

g
Y

consisting of continuous mappings. We assume that f is chaotic and
h is onto. Then g is chaotic too.

Proof. One veri�es immediately the conditions (T) and (P) (and thus
(S), according to Theorem 6.3). �
How di¢ cult is to verify that a certain mapping is chaotic and how

common are those mappings?
No doubt the most surprising case is that of the Chebyshev polyno-

mial of order 2,

T2(x) = 2x
2 � 1; x 2 R:

In order to simplify the computation is worth to notice that the
substitution x = cos � gives us T2(x) = cos 2�:
The points of R are either topologically transitive or eventually pe-

riodic for T2; recall that a point p is eventually periodic if T n2 (p) is
periodic for some n: The eventually periodic points of T2 are precisely
the points p of the form p = cos � where



16 CONSTANTIN P. NICULESCU

� =
k�

2n � 1 ; k 2 Z; n 2 N:
The chaotic behavior of the polynomial T2 follows from Theorem

6.5, applied to X = S1; Y = [�1; 1]; f =doubling angle mapping,
h(ei�) = cos � (the projection on the �rst coordinate) and g = T2:
From T2 one can infer in a similar manner (using the function h(x) =

1
2
(1� x) ) the chaotic behavior of the logistic mapping,

F4 : [0; 1]! [0; 1]; F4(x) = 4x(1� x):
A recent paper by M. Martelli, M. Dang and T. Seph [21] calls the at-

tention to many other possible de�nitions of the mathematical concept
of chaos, which might play a role in the future.

Exercises

(1) Show that in general all Chebyshev polynomials

Tn(x) = cos(n arccos x); x 2 [�1; 1]
of order n � 2 are chaotic.

(2) Indicate a direct argument (i.e., independent of Theorem 6.5
above) for the chaotic behavior of the polynomial T2.

(3) Prove that the function f(x) = � sin x; x 2 [0; �]; is chaotic.

7. Sensitivity on !�limit sets
The purpose of this section is to prove a generalization of Theorem

6.3 at the level of !�limit sets. The importance of this result is that
the post transient dynamics of a dissipative system is concentrated on
such sets.
As above, M will denote a (perfect) metric space and F : M ! M

will denote a continuous mapping.
Given x 2M; its !�limit set is the set !(x); consisting of all points

y 2 M for which there is an increasing sequence (k(n))n of positive
integers such that F k(n)x! y: Among the basic properties of !(x) we
mention:

!1) !(x) is closed;
!2) !(F (x)) = !(x);
!3) F (!(x)) � !(x); with equality if !(x) is compact.
Notice that !(x) 6= ; (and !(x) is compact) if the orbit of x is

relatively compact.
An important remark about !(x) is the following property of topo-

logical transitivity: If y; z 2 !(x) and U and V are open neighborhoods
of y and respectively z; then F n(U) \ V 6= ; for some n � 1:
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An attractor for F is any !�limit set A such that for any open
neighborhood U of A there is a smaller open neighborhood V of A
such that

F n(V ) � U for all n 2 N:
The following result raised in a discussion with Prof. Benjamin

Weiss, at the Hebrew University, Jerusalem, in November 1998.

7.1 Theorem. Suppose that F : M ! M is a continuous mapping
and x 2 M is a point whose !�limit set !(x) has the following two
properties:

(R) !(x) is contained in the closure of all regular points of F ;
(NM) !(x) contains a proper positively invariant compact subset K:
Then there exists an " > 0 such that for every y 2 !(x) and every

� > 0 one can �nd a z 2M with d(z; y) < � such that

sup
n� 1

d(F nz; F ny) � ":

Recall that a point a 2 M is said to be regular for F (or generic,
in the terminology of [10]) if there exists an F�invariant probability
measure � (on the Borel subsets of M) such that �(U) > 0 for every
neighborhood U of a:
Regular points include the uniformly recurrent (equivalently, the al-

most periodic) points and thus the periodic points.

Proof. Suppose that the contrary is true i.e., for every " > 0 there exist
a point y" 2 !(x) and a number � > 0 such that

z 2M; d(z; y") < � ) sup
n2N

d(F nz; F ny") < ":

There are two possibilities:
1) y" 2 K:
2) y" =2 K: Choose " > 0 with " < diam (!(x) nK) =10: Let d(F n0x; y") <

� and let n1 > n0 with d(F n1x;K) � 5": Put y1 = F n1�n0y" and choose
a regular point q in B�(y") such that

d(z; q) < � ) d(F n1�n0z; F n1�n0q) < "

Because q is regular, there must exist some F�invariant measure �
with � (B�(y")) > 0: Then

J = fm : �
�
F�m(B�(y")) \B�(y")

�
> 0g

is a syndetic subset (i.e., a set with bounded gaps) of N. See [10] for
more information on this type of subsets. If m 2 J; then

Fmz 2 B�(y") for some z 2 B�(y"):
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so that
d(Fm+n1�n0z; y1) < ":

Then

(*) d(Fm+n1�n0y"; y1) < d(F
m+n1�n0y"; F

m+n1�n0z )+
+d(Fm+n1�n0z; y1) < 2":

Or,

d(y1; K) � d(F n1x; K)� d(F n1�n0F n0x; F n1�n0y") > 5"� " = 4"
and

d(Fm+n1�n0y"; K) � d(y1; K)� d(Fm+n1�n0y"; y1) � 4"� 2" = 2"
on a syndetic set of m�s, which leads to a contradiction with (*). �

8. Numerical algorithms and chaotic behavior

As well known, most evolution equations can be solved only by nu-
merical methods. Recently, ideas from dynamical system theory have
begun to open new avenues in numerical analysis. See the proceedings
volume [30]. In fact, the accuracy of the numerical approximation of
the solutions can be determined by analyzing the dynamics of a scalar
mapping depending on one parameter, the step size.
We shall consider here the simplest case of Euler�s algorithm of ap-

proximating solutions of di¤erential equations of the form

dx

dt
= f(x):

Under this algorithm we take a discrete set of points t0 = 0; t1 =
h; t2 = 2h; ::: of constant step size h. Next, we compute inductively

approximate values of the solution x = x(t) at these points. For,
dx

dt
(tn)

is replaced by
xn+1 � xn

h
and we are led to the recurrent sequence (xn)n;

where

x0 = x(0)

xn+1 = xn + h � f(xn):
Consider now the particular case of logistic equation

dx

dt
= ax(1� x)

where a is a positive parameter. Its trajectories are of the form

x(t) =
x(0) � eat

1� x(0) + x(0) � eat
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which makes x = 1 an attracting �xed point.
Letting b = ha; the Euler�s algorithm applied to the logistic equation

becomes

xn+1 = bxn(
1 + b

b
� xn):

The study of this discrete dynamical system can be subordinated to
that of logistic mapping. In fact, letting xn = 1+b

b
� yn; we are led to

the iterative process

yn+1 = (1 + b)yn(1� yn):
For a = 1000:000 and h = 0:003 we get 1 + b = 4; so the iterates

behave chaotically. In particular, for this choice of parameters, the
existence of the attracting point x = 1 cannot be revealed numerically.
Recently, O. E. Lanford III [18], called the attention to yet another

subtleties of numerical treatment of discrete dynamical systems.
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