
A MULTIPLICATIVE MEAN VALUE AND ITS APPLICATIONS

CONSTANTIN P. NICULESCU

Abstract. We develop a parallel theory to that concerning the concept of
integral mean value of a function, by replacing the additive framework with
a multiplicative one. Particularly, we prove results which are multiplicative
analogues of the Jensen and Hermite-Hadamard inequalities.

1. Introduction

Many results in Real Analysis exploits the property of convexity of the subinter-
vals I of R;
(A) x; y 2 I; � 2 [0; 1] implies (1� �)x+ �y 2 I
which is motivated by the vector lattice structure on R: By evident reasons, we
shall refer to it as the arithmetic convexity.
As well known, R is an ordered �eld and the subintervals J of (0;1) play a

multiplicative version of convexity,

(G) x; y 2 J; � 2 [0; 1] implies x1��y� 2 J:
which we shall refer to as the geometric convexity. Moreover, the pair exp� log
makes possible to pass in a canonical way from (A) to (G) and vice-versa.
As we noticed in a recent paper [8], this fact opens the possibility to develop

several parallels to the classical theory involving (A), by replacing (A) by (G) (or,
mixing (A) with (G)).
The aim of the present paper is to elaborate on the multiple analogue of the

notion of mean value. In order to make our de�nition well understood we shall
recall here some basic facts on the multiplicatively convex functions i.e., on those
functions f : I ! J (acting on subintervals of (0;1)) such that
(GG) x; y 2 I and � 2 [0; 1] implies f(x1��y�) � f(x)1��f(y)�;
the label (GG) is aimed to outline the type of convexity we consider on the domain
and the codomain of f: Under the presence of continuity, multiplicative convexity
means

f(
p
xy) �

p
f(x) f(y) for all x; y 2 I

which motivates the alternative terminology of convexity according to the geometric
mean for (GG). Another equivalent de�nition of the multiplicative convexity (of a
functionf) is log f(x) is a convex function of log x: See [8], Lemma 2.1. Modulo
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this remark, the class of all multiplicatively convex functions was �rst considered
by P. Montel [7], in a beautiful paper discussing the analogues of the notion of a
convex function in n variables.
As noticed in [8], the class of multiplicatively convex functions contains a broad

range of functions from the elementary ones, such as

sinh; cosh; exp; on (0;1)
tan; sec; csc; 1=x� cotx; on (0; �=2)

arcsin; arccos; on (0; 1]

� log(1� x); 1 + x
1� x ; on (0; 1)

to the special ones, such as �j[1;1); Psi;L (the Lobacevski function), Si (the inte-
gral sine) etc.
The notion of a strictly multiplicatively convex function can be introduced in

a natural way and we shall omit the details here. Notice that the multiplicatively
a¢ ne functions are those of the form Cx�; with C > 0 and � 2 R:
Some readers could be frustrated by the status of 0 (of being placed outside

the theory of multiplicative convexity). This can be �xed each time we work with
functions f such that f(0) = 0 and f(x) > 0 for x > 0.
There is a functorial device to translate the results for the (A)-type of convexity

to the (G)�type and vice-versa, based on the following remark:

Lemma 1.1. Suppose that I is a subinterval of (0;1) and f : I ! (0;1) is a
multiplicatively convex function. Then

F = log �f � exp : log (I)! R

is a convex function. Conversely, if J is an interval and F : J ! R is a convex
function, then

f = exp �F � log : exp (J)! (0;1)
is a multiplicatively convex function.

In the standard approach, the mean value of an integrable function f : [a; b]! R
is de�ned by

M(f) =
1

b� a

Z b

a

f(t) dt

and the discussion above motivates for it the alternative notation MAA(f); as it
represents the average value of f according to the arithmetic mean.
Taking into account Lemma 1 above, the multiplicative mean value of a function

f : [a; b]! (0;1) (where 0 < a < b) will be de�ned by the formula

MGG(f) = exp

 
1

log b� log a

Z log b

log a

log f(et)dt

!
equivalently,

MGG(f) = exp

 
1

log b� log a

Z b

a

log f(t)
dt

t

!

= exp

�
L(a; b)M

�
log f(t)

t

��



3

where

L(a; b) =
b� a

log b� log a
represents the logarithmic mean of a and b.
In what follows, we shall adopt for the multiplicative mean value of a function

f the (more suggestive) notation M�(f):
The main properties of the multiplicative mean are listed below:

M�(1) = 1

m � f �M ) m �M�(f) �M
M�(fg) =M�(f)M�(g):

It is worth noticing that similar schemes can be developed for other pairs of
types of convexity, attached to di¤erent averaging devices. See [11]. We shall not
enter the details here, but the reader can verify easily that many other mean values
come this way. For example, the geometric mean of a function f;

exp

 
1

b� a

Z b

a

log f(t)dt

!
is nothing but the mean value MAG(f); corresponding to the pair (A)�(G). The
geometric mean of the identity of [a; b];

I(a; b) =
1

e

�
bb

aa

�1=(b�a)
:

(usually known as the identric mean of a and b) appears many times in computing
the multiplicative mean value of some concrete functions.
Notice that the multiplicative mean value introduced here escapes the classical

theory of integral f�means. In fact, it illustrates, in a special case, the usefulness
of extending that theory for normalized weighted measures.
The aim of this paper is to show that two major inequalities in convex function

theory, namely the Jensen inequality and the Hermite-Hadamard inequality, have
multiplicative counterparts. As a consequence we obtain several new inequalities,
which are quite delicate outside the framework of multiplicative convexity.

2. The multiplicative analogue of Jensen�s Inequality

In what follows we shall be concerned only with the integral version of the Jensen
Inequality.

Theorem 2.1. Let f : [a; b]! (0;1) be a continuous function de�ned on a subin-
terval of (0;1) and let ' : J ! (0;1) be a multiplicatively convex continuous
function de�ned on an interval J which includes the image of f: Then

' (M�(f)) �M�(' � f):

Proof. In fact, using constant step divisions of [a; b] we have

M�(f) = exp

 
1

log b� log a

Z b

a

log f(t)
dt

t

!

= lim
n!1

exp

 
nX

k=1

log f(tk)
log tk+1 � log tk
log b� log a

!
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which yields, by the multiplicative convexity of ';

' (M�(f)) = lim
n!1

'

 
exp

 
nX

k=1

log f(tk)
log tk+1 � log tk
log b� log a

!!

� lim
n!1

 
exp

 
nX

k=1

log(' � f)(tk)
log tk+1 � log tk
log b� log a

!!
= M�(' � f): �

The multiplicative analogue of Jensen�s Inequality is the source of many inter-
esting inequalities. We notice here only a couple of them. First, letting ' = exp t�

(� > 0) ; we are led to the following concavity type property of the log function: 
1

log b� log a

Z b

a

log f(t)
dt

t

!�
� log

 
1

log b� log a

Z b

a

f�(t)
dt

t

!
for every � > 0 and every function f as in the statement of Theorem 2.1 above.
Particularly, for f = et; we have

L(a; b)� � log
 

1

log b� log a

Z b

a

e� t
dt

t

!
whenever � > 0:
Our second illustration of Theorem 2.1 concerns the pair ' = log t and f = et;

' is multiplicatively concave on (1;1); which is a consequence of the AM-GM
Inequality. The multiplicative mean of f = et is exp

�
b�a

log b�log a

�
; so that we have

L(a; b) � exp
 

1

log b� log a

Z b

a

log log t
dt

t

!
= I(log a; log b)

for every 1 < a < b: However, as J. Sándor pointed out to me, a direct application
of the Hermite-Hadamard inequality gives us (in the case of the exp function) a
better result:

L(a; b) >
p
ab > log

p
ab > I(log a; log b):

The problem of estimating from above the di¤erence of the two sides in Jensen�s
Inequality,

M�(' � f)� ' (M�(f))

can be discussed by adapting the argument in [10]. We leave the details to the
reader.

3. The multiplicative analogue of the Hermite-Hadamard Inequality

The classical Hermite-Hadamard Inequality states that if f : [a; b] ! R is a
convex function then

(HH) f

�
a+ b

2

�
�M(f) � f(a) + f(b)

2
;

which follows easily from the midpoint and trapezoidal approximation to the middle
term. Moreover, under the presence of continuity, equality occurs (in either side)
only for linear functions.
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Interesting applications of (HH) are to be found in [12], pp. 137-151. Update
information on the entire topics related to (HH) is available on the site of Research
Group in Mathematical Inequalities and Applications (http://rgmia.vu.au).
The next result represents the multiplicative analogue of the Hermite-Hadamard

Inequality and it is a translation (via Lemma 1.1) of the classical statement:

Theorem 3.1. Suppose that 0 < a < b and let f : [a; b] ! (0;1) be a continuous
multiplicatively convex function. Then

(�HH) f(
p
ab) �M�(f) �

p
f(a)f(b):

The left side inequality is strict unless f is multiplicatively a¢ ne, while the right
side inequality is strict unless f is multiplicatively a¢ ne on each of the subintervals
[a;
p
ab] and [

p
ab; b]:

As noticed L. Féjer [2] (see also [3]), the classical Hermite-Hadamard Inequality
admits a weighted extension by replacing dx by p(t)dt, where p is a non-negative
function whose graph is symmetric with respect to the center (a+ b)=2: Of course,
this fact has a counterpart in (�HH); where dt=t can be replaced by p(t) dt=t, with
p a non-negative function such that p(t=

p
ab) = p(

p
ab=t):

In the additive framework, the mean value veri�es the equality

M(f) =
1

2

�
M(f j [a; a+ b

2
]) +M(f j [a+ b

2
; b])

�
which can be checked by an immediate computation; in the multiplicative setting
it reads as follows:

Lemma 3.2. Let f : [a; b] ! (0;1) be an integrable function, where 0 < a < b:
Then

M�(f)
2 =M�(f j [a;

p
ab]) �M�(f j [

p
ab; b]):

Corollary 3.3. The multiplicative analogue of the Hermite-Hadamard Inequality
can be improved upon

f(a1=2b1=2) <
�
f(a3=4b1=4)f(a1=4b3=4)

�1=2
< M�(f)

<
�
f(a1=2b1=2)

�1=2
f(a)1=4f(b)1=4

< (f(a)f(b))
1=2
:

A moment�s re�ection shows that by iterating Corollary 3.3 one can exhibit
approximations of M�(f) from below (or from above) in terms of (G)-convex com-
binations of the values of f at the multiplicatively dyadic points a(2

n�k)=2nbk=2
n

;
k = 0; :::; 2n; n 2 N:
For f = exp j [a; b] (where 0 < a < b) we have M�(f) = exp

�
b�a

log b�log a

�
: Ac-

cording to the Corollary 3.3 above we obtain the inequalities

a3=4b1=4 + a1=4b3=4

2
<

b� a
log b� log a <

1

2

�
a+ b

2
+
p
ab

�
;

�rst noticed by J. Sándor [13].
For f = � j [a; b] (where 1 � a < b) we obtain the inequalities

(�) log �
�
a1=2b1=2

�
<

1

log b� log a

Z b

a

log �(x)

x
dx <

1

2
log �(a)�(b)
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which can be strenghtened via Corollary 3.3.
The middle term can be evaluated by Binet�s formula (see [16], p. 249), which

leads us to
log �(x)

x
= log x� 1� 1

2
� log x
x

+
log
p
2�

x
+
�(x)

x
where � is a decresing function with limx!1 �(x) = 0: In fact,

�(x) =

Z 1

0

�
1

et � 1 �
1

t
+
1

2

�
e�xt

1

t
dt

=
1X
k=1

B2k
2k(2k � 1)x2k

=
1

12x2
� 1

360x4
+

1

1260x6
� :::

where the B2k�s denote the Bernoulli numbers. Then

logM�(� j [a; b]) =
1

log b� log a

Z b

a

log �(t)

t
dt

=
�2(b� a)
ln b� ln a �

1

4
ln ab+ ln

p
2� +

(ln b) b� (ln a) a
ln b� ln a

+
1

log b� log a

Z b

a

�(x)

x
dx

= �L(a; b)� 1
4
ln ab+ ln

p
2� + L(a; b) log I(a; b) + �(c)

for a suitable c 2 (a; b):
We pass now to the problem of estimating the precision in the Hermite-Hadamard

Inequality. For, we shall need a preparation.
Given a function f : I ! (0;1) (with I � (0;1)) we shall say that f is

multiplicatively Lipschitzian provided there exist a constant L > 0 such that

max

�
f(x)

f(y)
;
f(y)

f(x)

�
�
�y
x

�L
for all x < y in I; the smallest L for which the above inequality holds constitutes
the multiplicative Lipschitz constant of f and it will be denoted by jjf jj?Lip:

Remark 3.1. Though the family of multiplicatively Lipschitz functions is large
enough (to deserve attention in its own), we know the exact value of the multiplica-
tive Lipschitz constant only in few cases:
i) If f is of the form f(x) = x�; then jjf jj?Lip = �:
ii) If f = exp j[a; b] (where 0 < a < b); then jjf jj?Lip = b:
iii) Clearly, jjf jj?Lip � 1 for every non-decreasing functions f such that f(x)=x

is non-increasing. For example, this is the case of the functions sin and sec on
(0; �=2):
iv) If f and g are two multiplicatively Lipschitzian functions (de�ned on the same

interval) and �; � 2 R; then f�g� is multiplicatively Lipschitzian too. Moreover,
jjf�g� jj?Lip � j�j � jjf jj?Lip + j�j � jjgjj?Lip:

The following result can be easily derived (via Lemma 1.1) from the standard
form of the Ostrowski Inequality for Lipschitzian functions as stated in [1], Corollary
2, p. 345:



7

Theorem 3.4. Let f : [a; b] ! (0;1) be a multiplicatively convex continuous
function. Then

f(
p
ab) �M�(f) � f(

p
ab)

�
b

a

�jjf jj?Lip=4
and

M�(f) �
p
f(a)f(b) �M�(f)

�
b

a

�jjf jj?Lip=4
:

A generalization of the second part of this result, based on Theorem 3.1 above,
will make the subject of the next section.

For f = exp j[a; b] (where 0 < a < b); we have M�(f) = exp
�

b�a
log b�log a

�
and

jjf jj?Lip = b: By Theorem 3.4, we infer the inequalities

0 <
b� a

log b� log a �
p
ab <

b

4
(log b� log a)

0 <
a+ b

2
� b� a
log b� log a <

b

4
(log b� log a) :

For f = sec (restricted to (0; �=2)) we have jjf jj?Lip = 1 and

M�(sec j[a; b]) = exp

 
�1

log b� log a

Z b

a

ln cosx

x
dx

!

= exp

 
1

log b� log a

Z b

a

�
1

2
x+

1

12
x3 +

1

45
x5 +

17

2520
x7 + :::

�
dx

!

= exp

�
1

log b� log a

�
b2 � a2
4

+
b4 � a4
48

+
b6 � a6
270

+ :::

��
for every 0 < a < b < �=2: According to Theorem 3.4, we have

sec(
p
ab) < M�(sec j[a; b]) < sec(

p
ab) �

�
b

a

�1=4
and

M�(sec j[a; b]) <
p
sec a sec b < M�(sec j[a; b]) �

�
b

a

�1=4
for every 0 < a < b < �=2:

4. Approximating M�(f) by geometric means

As the reader already noticed, computing (in a compact form) the multiplicative
mean value is not an easy task. However, it can be nicely approximated. The
following result, inspired by a recent paper of K. Jichang [6], outlines the possibility

to approximate M�(f) (from above) by products
�

nQ
k=1

f(xk)

�1=n
for a large range

of functions:

Theorem 4.1. Let f : I ! (0;1) be a function which is multiplicatively convex
or multiplicatively concave.
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If I = [1; a] (with a > 1) and f is strictly increasing, then

(A1)

 
nY
k=1

f(ak=n)

!1=n
>

 
n+1Y
k=1

f(ak=(n+1))

!1=(n+1)
> M�(f)

for every n = 1; 2; 3; :::
The conclusion remains valid for I = [a; 1] (with 0 < a < 1) and f a strictly

decreasing function as above.
The inequalities (A1) should be reversed in each of the following two cases:
I = [1; a] (with a > 1) and f is strictly decreasing;
I = [a; 1] (with 0 < a < 1) and f a strictly increasing

Proof. Let us consider �rst the case of strictly increasing multiplicatively convex
functions. In this case, for each k 2 f1; :::; ng we have

f(ak=(n+1)) = f(akn
2=(n+1)n2) < f(a(nk�k+1)=n

2

)

= f(a
k�1
n � k�1n +(1� k�1

n )� kn )

�
�
f(a(k�1)=n)

�(k�1)=n �
f(ak=n)

�1�(k�1)=n
:

By multiplying them side by side we get
nY
k=1

f(ak=(n+1)) <
nY
k=1

��
f(a(k�1)=n)

�(k�1)=n �
f(ak=n)

�1�(k�1)=n�

=

 
nY
k=1

f(ak=n)

!(n+1)=n
f(a);

i.e., the left hand inequality in the statement of our theorem.
Consider now the case where f is strictly increasing multiplicatively concave.

Then

f(ak=n) = f(ak(n+1)
2=n(n+1)2) > f(ak(n+2)=(n+1)

2

)

= f(a
k

n+1 �
k+1
n+1+(1�

k
n+1 )�

k
n+1 )

�
�
f(a(k+1)=(n+1))

�k=(n+1) �
f(ak=(n+1)

�1�k=(n+1)
for each k 2 f1; :::; ng; which leads to

nY
k=1

f(ak=n) >
nY
k=1

��
f(a(k+1)=(n+1))

�k=(n+1) �
f(ak=(n+1)

�1�k=(n+1)�

=
nY
k=1

��
f(a(k+1)=(n+1))

�k=(n+1) �
f(ak=(n+1)

�(n�k+1)=(n+1)�

= (f(a))
n=(n+1) �

 
nY
k=1

f(ak=(n+1)

!n=(n+1)

=

 
n+1Y
k=1

f(ak=(n+1)

!n=(n+1)
i.e., again to the left hand inequality in (A1).
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To end the proof of the �rst part of our theorem, notice that

lim
n!1

 
nY
k=1

f(ak=n)

!1=n
= exp

 
lim
n!1

1

n

nX
k=1

log f(ak=n)

!

= exp

 
1

log a

Z log a

0

log f(et)dt

!
= M�(f):

As the sequence �n =
�Qn

k=1 f(a
k=n)

�1=n
is strictly decreasing we conclude that

�n > M�(f) for every n = 1; 2; 3; :::
The remainder of the proof follows by a careful inspection of the argument above.

�
As was noticed in [8], p.163, � is strictly multiplicatively convex on [1;1):

According to Theorem 4.1, for each a > 1 and each natural number n we have 
nY
k=1

�(ak=n)

!1=n
>

 
n+1Y
k=1

�(ak=(n+1))

!1=(n+1)
> exp

�
1

log a

Z a

1

log �(t)

t
dt

�
:

The same argument, applied to the multiplicatively concave functions sin �x2 and
cos �x2 (cf. [8], p.159) gives us 

nY
k=1

sin(
�

2
ak=n)

!1=n
<

 
n+1Y
k=1

sin(
�

2
ak=(n+1))

!1=(n+1)

< exp

�
1

log a

Z a

1

log sin(�t=2)

t
dt

�
and  

nY
k=1

cos(
�

2
ak=n)

!1=n
>

 
n+1Y
k=1

cos(
�

2
ak=(n+1))

!1=(n+1)

> exp

�
1

log a

Z a

1

log cos(�t=2)

t
dt

�
for every a 2 (0; 1); they should be added to a number of other curiosities noticed
recently by G. J. Tee [14].
The following result answers the question how fast is the convergence which

makes the subject of Theorem 4.1 above:

Proposition 4.2. Let f : [a; b] ! (0;1) be a strictly multiplicatively convex con-
tinuous function. Then�

f(b)

f(a)

�1=(2n)
<

 
nY

k=1

f(xk)

!1=n
/M�(f) <

�
b

a

�jjf jj?Lip=(2n)
where xk = a1�k=nbk=n for k = 1; :::; n

Proof. According to (�HH); for each k = 1; :::; n; we have

f(
p
xk�1xk) < exp

 
n

log (b=a)

Z xk

xk�1

log f dt

!
<
p
f(xk)f(xk+1)
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which yields 
nY

k=1

f(
p
xk�1xk)

!1=n
< M�(f) <

 
nY

k=1

f(xk)

!1=n,�
f(b)

f(a)

�1=(2n)
i.e., �

f(b)

f(a)

�1=(2n)
<

 
nY

k=1

f(xk)

!1=n
/M�(f) <

<

 
nY

k=1

f(xk)=f(
p
xk�1xk)

!1=n
:

Or,  
nY

k=1

f(xk)=f(
p
xkxk+1)

!1=n
�

nY
k=1

�
xk
xk�1

�jjf jj?Lip=(2n)
: �

For f(x) = ex; x 2 [1; a]; the last result gives

a� 1
2n

<
1

n

nX
k=1

ak=n <
a

log a
+
a

2n

for all n = 1; 2; 3; :::
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