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Abstract. W. J. Blundon has proved in 1965 that��p2 � �2R2 + 10Rr � r2��� � 2(R� 2r)pR(R� 2r);
where R, r and p are respectively the radii of the circumcircle, the incircle and
the semiperimeter of a triangle. The aim of this paper is to outline the con-
nection of these inequalities with some deep results in real algebraic geometry.

1. Introduction

Let R, r and p be respectively the radii of the circumcircle, the incircle and the
semiperimeter of a triangle. W. J. Blundon [2] has proved in 1965 that

(B) 2R2 + 10Rr � r2 � 2(R� 2r)
p
R(R� 2r) � p2 �

� 2R2 + 10Rr � r2 + 2(R� 2r)
p
R(R� 2r):

The equality occurs in the left-side inequality if and only if the triangle is either
equilateral or isosceles, having the basis greater than the congruent sides; the equal-
ity occurs in the right-side inequality if and only if the triangle is either equilateral
or isosceles, with the basis less than the congruent sides.
Following a frequently used technique to prove geometric inequalities by algebraic

means (e.g., see [3]), we shall prove that W. J. Blundon�s inequalities are a direct
consequence of an algebraic inequality involving elementary symmetric functions:

Theorem A. Let x; y; z 2 C be such that x+ y + z; xy + yz + zx; xyz 2 R: Then
x; y; z 2 R; if and only if
(x+ y + z)

2
(xy + yz + zx)

2
+ 18 (x+ y + z) (xy + yz + zx)xyz �

� 4 (x+ y + z)3 xyz + 4 (xy + yz + zx)3 + 27x2y2z2.
Moreover, the above inequality is strict unless x = y = z:

In any triangle we have:

a+ b+ c = 2p

ab+ bc+ ca = p2 + r2 + 4Rr

abc = 4Rrp

so that, for

x = p� a; y = p� b and z = p� c
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we have

x+ y + z = p

xy + yz + zx = r(4R+ r)

xyz = pr2

Now (after reducing the appropriate terms) we can write the inequality in Theorem
A as

(*) p4 � 2
�
2R2 + 10Rr � r2

�
p2 + 64rR3 + 48r2R2 + 12r3R+ r4 � 0;

i.e., �
p2 � 2R2 � 10Rr + r2

�2 � 4R (R� 2r)3
which implies both Euler�s inequality R � 2r and W. J. Blundon�s inequality.
Theorem A leads also to the inequality (*) in any of the following cases:

x =
1

a
; y =

1

b
; z =

1

c
; x = tg

A

2
; y = tg

B

2
; z = tg

C

2
;

x = ra ; y = rb; z = rc :

Inequalities between elementary symmetric functions (the best known being the
AM-GM inequality) are treated in details in many books such as those by G. Hardy,
J. E. Littlewood and G. Polya [4] and A. W. Marshall and I. Olkin [6]. However
we have to mention that the present paper is based on an idea initiated by Newton
[7] and his disciple Maclaurin [5] (and accomplished later by J. J. Sylvester [10]),
It is the fact that the roots of an algebraic equation are real may be expressed in
terms of inequalities for the coe¢ cients of the equations, i.e., in terms of elementary
symmetric functions. See Theorem B below.

2. Proof of Theorem A

The well-known result upon establishing the nature of the roots of a second de-
gree trinomial with real coe¢ cients by the sign of the discriminant, can be extended
for third degree algebraic equations.

Lemma 1. Let a1; a2; a3 2 R: The roots x1; x2; x3 of the equation
x3 � a1x2 + a2x� a3 = 0

are real numbers if and only if the following inequality holds

D = (x1 � x2)2 (x2 � x3)2 (x3 � x1)2 � 0:
The quantity D appearing in the statement of Lemma 1 is called the discriminant

(of the polynomial x3 � a1x2 + a2x � a3 ). The connection with Theorem A is
immediate, once we see that

D = det

0@0@ 1 1 1
x1 x2 x3
x21 x22 x23

1A �
0@ 1 x1 x21
1 x2 x22
1 x3 x23

1A1A =

= det

0@ 3
P
xk

P
x2kP

xk
P
x2k

P
x3kP

x2k
P
x3k

P
x4k

1A =

= 18a1a2a3 + a
2
1a
2
2 � 4a31a3 � 4a32 � 27a23

the last equality being motivated by Viète relations.
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Proof of Lemma 1. If the roots x1; x2; x3 are real, it is then clear that D � 0;
moreover, D = 0 if and only if x1 = x2 = x3:
If the equation has not all roots real, then necessarily two are complex conjugate

and the third is real, for instance

x1 = a+ bi; x2 = a� bi; x3 = c
where a; b; c 2 R and b 6= 0. In such a case,

D = �b2[(a� c)2 + b2] < 0: �
For algebraic equations of degree � 4, the notion of discriminant is no longer

su¢ cient to describe the nature of the roots. See the case of a 4th degree equation
with two pairs of complex conjugate roots. The role is taken by the discriminant
families. In this way, the generalization of Theorem A is actually the following
result due to by J. J. Sylvester [11], [12]:

Theorem B. For each integer n � 1 there is a set of at most n � 1 polynomials
with integer coe¢ cients

Rn;1(x1; :::; xn); ::: ; Rn;k(n)(x1; :::; xn)

having the property that the polynomials with real coe¢ cients,

P (x) = xn � a1xn�1 + :::+ (�1)nan;
that have real roots are precisely those for which

Rn;1(a1; :::; an) � 0; ::: ; Rn;k(n)(a1; :::; an) � 0 :
The algorithmic procedure shown by the proof of this result, allows us to choose

the Rn;j 0s as determinants extracted from the Sylvester matrix associated to P (x);
particularly, R1(x1; :::; xn) is the discriminant of order n. See [1]. Unfortunately
the inequalities we get are excessively long because the numbers of terms of a
discriminant grows very fast with its order. For instance, the 8th order discriminant
has no less than 26095 terms! See [9].
For n = 4; a simple proof of Theorem B can be found in [8].

3. The analytic approach of Theorem A. Newton�s inequalities.

A well-known consequence of the Rolle theorem (due to C. Maclaurin [5] and
mentioned also by the mathematical analysis textbooks) asserts that if a polynomial
has only real roots, then its derivative also has only real roots.

Lemma 2. Let a1; a2; a3 2 R: The necessary and su¢ cient condition for the roots
x1; x2; x3 of the equation

(E) x3 � a1x2 + a2x� a3 = 0
to be real is that

18a1a2a3 + a
2
1a
2
2 � 4a31a3 � 4a32 � 27a23 � 0:

Proof. The roots of the equation (E) are real if and only if the roots of the reduced
equation

y3 � py + q = 0
(which is obtained by the change of variable x = y + a1=3); are real. Notice that

p =
1

3
a21 � a2 and q =

1

3
a1a2 � a3 �

2

27
a31 :
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Then, Rolle�s technique shows that the reduced equation has only real roots if
and only if �p

3

�3
�
�q
2

�2
:

Replacing p and q in terms of a1; a2; a3 we get the stated condition. �
If the polynomial x3 � a1x2 + a2x � a3 has only real roots, then its derivative

3x2 � 2a1x+ a2 also has this property. Therefore a21 � 3a2:
By applying the same procedure to the equation obtained with the change of

variable y = 1=x, we get the inequality a22 � 3a1a3: The inequalities
(N) a21 � 3a2 and a22 � 3a1a3
have been noticed for the �rst time by Newton [7] and bear his name. Maclaurin
[5], to whom the above approach is due, has noticed that they yield

(a1=3)
3 � a3

equivalently, �
x+ y + z

3

�3
� xyz;

when x; y; z � 0: This fact represents the AM�GM inequality for families of three
real numbers. Following the above idea, he proved the AM �GM inequality in the
general case, settling also with the equality case. A century later, A.-L. Cauchy
gave his well-known proof by induction for this inequality. See [4].

Example. According to the discussion above, the condition in Lemma 2 implies
Newton inequalities (N). Is the converse true ? The answer is negative. For,
consider the equation

x3 � 8:9x2 + 26x� 24 = 0;
In this case a1 = 8:9; a2 = 26; a3 = 24: This equation has (approximatively) the

roots

x1 = 1: 8587; x2 = 3: 5207� 0: 71933i; x3 = 3: 5207 + 0: 71933i:

It is interesting to observe that it represents a �small�perturbation of a �well
behaved�equation,

x3 � 9x2 + 26x� 24 = (x� 2)(x� 3)(x� 4) = 0:
Newton inequalities still work here because

a21 � 3a2 = (8:9)
2 � 3 � 26 = 1: 21 and a22 � 3a1a3 = (26)

2 � 3 � 8:9 � 24 = 35: 2
but, due to the presence of the complex roots, the condition of Lemma 2 is no more
veri�ed.
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