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CONVEXITY ACCORDING TO MEANS

CONSTANTIN P. NICULESCU

�communicated by J. Mahwin�

Abstract. Given a function f : I � J and a pair of means M and N� on the intervals I and J
respectively, we say that f is MN -convex provided that f �M�x� y�� � N� f �x�� f �y�� for every
x , y � I . In this context, we prove the validity of all basic inequalities in Convex Function
Theory, such as Jensen’s Inequality and the Hermite-Hadamard Inequality.

1. Introduction

At the core of the notion of convexity is the comparison of means. By a mean �on
an interval I � we understand any function M : I � I � I which verifies the following
two properties:

�M1� inf fs� tg � M�s� t� � sup fs� tg �Intermediacy�
�M2� M�s� t� � M�t� s� �Symmetry�

for every pair �s� t� of elements of I . When I is one of the intervals �0��� , �0���
or ������� it is usual to add a third property, precisely

�M3� M�tx� ty� � tM�x� y� for all t � 0 �Homogeneity�

but this assumption is not really necessary in our paper. Instead, we shall restrict
ourselves to the case of continuous means �i.e., continuous in both arguments�.

Several examples of means �of strictly positive variables� are listed below.
Hölder’s means �also called power means�:

Hp�s� t� � ��sp � tp��2�1�p � for p �� 0

G�s� t� � H0�s� t� � lim
p�0

Hp�s� t� �
p

st�

Then A � H1 is the arithmetic mean and G is the geometric mean. The mean H�1 is
known as the harmonic mean.

Lehmer’s means:

Lp�s� t� � �sp � tp���sp�1 � tp�1��
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Note that L1 � A , L1�2 � G and L0 � H�1 . These are the only means that are both
Lehmer means and Hölder means.

Stolarsky’s means:

Sp�s� t� � ��sp � tp���ps � pt��1��p�1�� p �� 0� 1�

The limiting cases � p � 0 and p � 1 � give the logarithmic and identric means,
respectively. Thus

S0�s� t� � lim
p�0

Sp�s� t� �
s � t

log s � log t
� L�s� t�

S1�s� t� � lim
p�1

Sp�s� t� �
1
e

�
tt

ss

�1��t�s�

� I�s� t��

Notice that S2 � A and S�1 � G .
Of course, there are many other ways to introduce families of means. For example,

from known means we can generate new ones. In this respect we recall here the
Gaussian compound M � N of two means M and N , an iterative procedure which
extends the celebrated Gaussian arithmetic-geometric mean iteration,

�A�G� �s� t� � �π�2� �
Z π�2

0

�
s2 cos2 θ � t2 sin2 θ

��1�2
dθ �

See the paper of B. C. Carlson �8� for details.
A comprehensive account of the entire topics of means is given in �6�.
The aim of this paper is to discuss how functions behave under the action of means,

by considering a much more general concept of a convex function. Letting M and N
be two means defined on the intervals I and J respectively, a function F : I � J will
be called MN -convex provided that

F�M�F �� � N�F�F �� for every pairF of elements of I� �MN �

In the next section we shall describe the natural process of continuation of means
from pairs of real numbers to random variables, a fact which can be seen as a nonlinear
theory of integration. As a consequence we shall be able to extend �MN� to random
variables and thus to obtain a far reaching generalization of Jensen’s Inequality.

The idea to extend the theory of convexity in the form �MN� is not new. It goes
back to people like J. Hadamard, G. H. Hardy and P. Montel �14�, who considered it
under certain degrees of generality. See Section 3, which is devoted to the case where
M and N is one of the classical means A and G . Among the most recent contributions
to the extended theory of convexity we should notice here the papers by J. Matkowski
and J. Rätz �13�, and D. Borwein, J. Borwein, G. Fee and R. Girgensohn �4�.

In section 4 we discuss the connection of our results with the notion of comparative
convexity �in the sense of G. Hardy, J. E. Littlewood and G. Pólya �10��.
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2. The canonical continuation of a mean

In what follows we shall restrict ourselves to the case of continuous means and
continuous convex functions.

Under the presence of continuity the inequality �MN� can be refined to allow
weighted combinations: First, the dyadic combinations are defined as

M�x1� x2; 1�2� 1�2� � M�x1� x2�

M�x1� x2; 3�4� 1�4� � M�M�x1� x2�� x1�

M�x1� x2; 1�4� 3�4� � M�M�x1� x2�� x2�

and so on. Then, for λ � �0� 1� , we put

M�x1� x2; 1� λ � λ � � lim
n��

M�x1� x2; 1� dn� dn�;

here �dn�n is any sequence of dyadic numbers with λ � lim
n��

dn .

The weighted combinations M�x1� � � � � xn; λ1� � � � � λn� of length � 2 can be de-
fined in the same manner. For example,

M�x1� x2� x3; λ1� λ2� λ3� � M

�
M

�
x1� x2;

λ1

1� λ3
�

λ2

1� λ3

�
� x3; 1� λ3� λ3

�
�

EXAMPLE 1. If I is any interval and A denotes the arithmetic mean then

A�x1� � � � � xn; λ1� � � � � λn� �
nX

k�1

λkxk�

If I is any subinterval of �0��� and G denotes the geometric mean then

G�x1� � � � � xn; λ1� � � � � λn� �

nY
k�1

xλk
k �

We can bring together both examples above �as well as all Hölder’s means� by
considering the so called quasi-arithmetic mean,

Mϕ �s� t� � ϕ�1

�
1
2
ϕ�s� �

1
2
ϕ�t�

�
which is associated to a strictly monotone continuous mapping ϕ : I � R . For it,

Mϕ�x1� � � � � xn; λ1� � � � � λn� � ϕ�1

�
nX

k�1

λkϕ�xk�

�
�

An easy inductive argument leads us to the following result:

LEMMA 1. �The discrete form of Jensen’s inequality � . Under the presence of
continuity, for every MN -convex function F : I � J ,

F�M�x1� � � � � xn; λ1� � � � � λn�� � N��F�x1�� � � � � F�xn�; λ1� � � � � λn�� �J�

for every x1� � � � � xn � I and every λ1� � � � � λn � �0� 1� with
nP

k�1
λk � 1 .
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The continuous version of Jensen’s Inequality can be derived from the discrete
case, by noticing that

M�x1� � � � � xn; λ1� � � � � λn�

can be thought of as the mean M�h; µ� of the random variable

h : f1� � � � � ng � I� h�i� � xi for i � 1� � � � � n

with respect to the probability measure

µ : P�f1� � � � � ng�� �0� 1�� µ�A� �
X
i� A

λi�

If �X� Σ� µ� is an arbitrary probability field, it is still possible to define the mean
M�h; µ� for certain real random variables h � L1

R
�µ� with values in I . In fact, letting

�Σa�α a upward directed net of finite subfields Σ whose union is Σ , the mathematical
expectation E �FjΣa� of F � L1�µ� with respect to Σa gives rise to a positive contractive
projection

Pα : L1�µ�� L1�µ jΣa�� Pα �F� � E �FjΣa�

and
E �FjΣa�� F in the norm topology of L1�µ�;

due to the Lebesgue theorem on dominated convergence.
A real random variable h � L1

R
�µ� �with values in I� will be called M -intgrable

provided that the limit

M�h; µ� � lim
α

M�Pα �h�; µ jΣa�

exists whenever �Σa�α is a upward directed net of finite subfields Σ whose union is Σ .
For the quasi-arithmetic mean Mϕ �associated to a strictly monotone continuous

mapping ϕ : I � R� and the probability field associated to the restriction of the
Lebesgue measure to an interval �s� t � � I , the construction above yields

Mϕ

�
id�s�t �;

1
t � s

dx

�
� ϕ�1

�
1

t � s

Z t

s
ϕ�x� dx

�

which coincides with the so called integral ϕ -mean of s and t� also denoted Intϕ �s� t� .
As noticed M. E. Mayes �15�, the class of all integral means equals the class of all
differential means; recall that the differential ψ -mean of s and t �associated to a
strictly monotone differentiable and convex mapping ψ : I � R� is given by the
formula

Dψ �s� t� � �ψ ���1

�
ψ �t�� ψ �s�

t � s

�
�

THEOREM 1. �The continuous form of Jensen’s inequality � . Suppose that
F : I � J is a continuous MN -convex function and �X� Σ� µ� is a probability field.
Then

F�M�h; µ�� � N��F � h; µ�� �J�

for every h � L1
R
�µ� such that h is M -integrable and F � h is N -integrable.
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Proof. Pass to the limit in Lemma 1. �

COROLLARY 1. �The Hermite-Hadamard inequality � . Suppose that F : I � J is
a continuous function. Then F is MN -convex if, and only if, for every s � t in I and
every Radon probability measure µ on �s� t � we have the inequality

F�M�s; t�� � N��Fj�s� t �; µ��� �HH�

Proof. The necessity follows from Theorem 1 �applied to h � id�s�t �� . The
sufficiency represents the particular case where µ � �εs � εt��2 . �

It is worth to mention the possibility to extend Theorem 1 beyond the case of
probability measures. That can be done under the additional assumption of positive
homogeneity �both for the means M and N , and the involved function F � following
the model of Lebesgue theory, where formulae such asZ

R

f �x� dx � lim
n��

�
2n

�
1
2n

Z n

�n
f �x� dx

��

hold.
Given a measurable σ -field �X� Σ� µ� , a function h : X � R will be called

M -integrable provided the limit

M�h; µ� � lim
n��

�
µ�Ωn� 	M

�
hjΩn;

µ jΣ 
Ωn

µ�Ωn�

��
�Int�

exists for every increasing sequence �Ωn�n of elements of Σ with �Ωn � X . Then

F�M�h; µ�� � N��F � h; µ�� �J’�

for every h � L1
R
�µ� such that h is M -integrable and F�h is N -integrable. Restricting

�Int� to a suitable type of increasing sequences �Ωn�n with �Ωn � X , one can introduce
a concept of M -integrability in the sense of principal value, a case for which �J ’� still
works.

3. Convexity associated to A and G

In this section we shall illustrate the concept of MN -convexity in the simplest case
i.e., when M , N � fA� Gg .

Depending on which type of mean, arithmetic �A� , or geometric �G� , it is given
on the domain and the codomain of definition, we can encounter one of the following
four classes of functions:

AA� convex functions, the usual convex functions

AG� convex functions

GA� convex functions

GG� convex functions.
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Notice that while A makes no restriction about the interval I where it applies �it
is so because x� y � I� λ � �0� 1� implies �1� λ �x � λ y � I�� the use of G forces us
to restrict to the subintervals J of �0��� in order to assure that

x� y � J� λ � �0� 1�� x1�λ yλ � J�

The AG -convex functions �usually known as log -convex functions� are those
functions F : I � �0��� for which

x� y � I and λ � �0� 1�� F��1� λ �x � λ y� � F�x�1�λF�y�λ � �AG �

i.e., for which log F is convex.
The class of all GA -convex functions is constituted by all functions F : I � R

�defined on subintervals of �0��� � for which

x� y � I and λ � �0� 1�� F�x1�λ yλ � � �1� λ �F�x� � λ f �y�� �GA �

In the context of twice differentiable functions F : I � R , GA -convexity means
x2F�� � x f � � 0 , so that all twice differentiable nondecreasing convex functions are
also GA -convex.

The GG -convex functions �called in �16� multiplicatively convex functions� are
those functions F : I � J �acting on subintervals of �0��� � such that

x� y � I and λ � �0� 1�� F�x1�λ yλ � � F�x�1�λF�y�λ � �GG �

Due to the following form of the AM �GM Inequality,

a� b � �0���� λ � �0� 1�� a1�λbλ � �1� λ �a � λ b� �
 �
every log -convex function is also convex. The most notable example of such a function
is Euler’s gamma function,

Γ�x� �
Z �

0
tx�1e�t dt� x � 0�

See H. Bohr and J. Mollerup �3�; their argument is recalled by E. Artin �2�. See
also �16�.

The study of the class of all multiplicatively convex functions can be easily reduced
to that of all convex functions via a suitable change of variable and function �16�:

LEMMA 2. Suppose that I is a subinterval of �0��� and F : I � �0��� is a
multiplicatively convex function. Then

F � log �F � exp : log �I�� R

is a convex function. Conversely, if J is an interval and F : J � R is a convex function,
then

F � exp �F � log : exp �J�� �0���

is a multiplicatively convex function.
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An alternative characterization of multiplicative convexity of a function F is
“ log F�x� is a convex function of log x ”. See �16�, Lemma 2.1. Modulo this char-
acterization, the class of all multiplicatively convex functions was first considered by
P. Montel �14�, in a beautiful paper discussing the analogues of the notion of convex
function in n variables. However, the roots of the research in this area can be traced
long time before him. Let us mention two such results here:

HADAMARD’S THREE CIRCLES THEOREM. Let F be an analytical function in the
annulus a � jzj � b . Then log M�r� is a convex function of log r , where

M�r� � sup
jzj�r

jF�z�j�

G. H. HARDY’S MEAN VALUE THEOREM. Let F be an analytical function in the
annulus a � jzj � b and let p � �1��� . Then log Mp�r� is a convex function of
log r , where

Mp�r� �

�
1

2π

Z 2π

0
jF�reiθ �jp dθ

�1�p

�

As lim
n��

Mn�r� � M�r� , Hardy’s aforementioned result implies Hadamard’s. As

well known, Hadamard’s result is instrumental in deriving the celebrating Riesz-Thorin
Interpolation Theorem �see �10��.

The concept of multiplicative mean value and the multiplicative analogues of
Jensen’s Inequality and Hermite-Hadamard Inequality make the object of our paper
�17�.

4. The connection with relative convexity

The idea to introduce a notion of relative convexity appeared in the celebrated book
of G. H. Hardy, J. E. Littlewood and G. Polya �10�, p. 75: Suppose that F� g : I � J
are two continuous functions and g is strictly monotone. Then F is said to be convex
with respect to g �abbreviated, g �F� if F � g�1 is convex �in the usual sense� on the
interval g�I� .

EXAMPLE 2. Under appropriate assumptions on the domain and the range of a
function F , the following statements hold true:

i� F is convex if, and only if, id � F ;
ii� F is log -convex if, and only if, id � log F ;
iii� F is GG -convex if, and only if, log � log F ;
iv� F is GA -convex if, and only if, log �F .
As noticed G. T. Cargo �8�, in the context of C1 -differentiable functions, F is

convex with respect to an increasing function g if F ��g� is nondecreasing; in the
context of C2 -differentiable functions, F is convex with respect to g if, and only if,
F���F� � g���g� �provided the two ratios exist�.

The connection of relative convexity with the topic of our paper is expressed by
the following Hermite-Hadamard type inequality:
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PROPOSITION 1. If g � F , then

F�Intg�fa� bg�� � F

�
g�1

�
1

b� a

Z b

a
g�x� dx

��

�
1

b� a

Z b

a
F�x� dx�

for every a � b in the domain of F and g .

COROLLARY 2. �H. Alzer �1� � . Supose that F is a strictly increasing continuous
function such that 1�F�1 is convex. Then 1�x � F . As I1�x�fa� bg� coincides with the
logarithmic mean L�a� b� , it follows that

F�L�a� b�� �
1

b� a

Z b

a
F�x� dx�

Many other interesting applications of Proposition 1 can be easily deduced via the
paper �9�, by N. Elezović and J. Pečarić.

Relative convexity can clarify the meaning of certain cumbersome technical con-
ditions. For example, Theorem 2.1 in �12� can be restated as follows:

THEOREM 2. Let g be a positive increasing function on �0� 1� , Φ a positive
function of bounded variation on �0� 1� , and F : �0��� � R positive, convex and
differentiable such that �1� x�F��λ �1� x�� is convex with respect to Φ�x� for every
λ � 0� Then R 1

0 F�g�x�� dΦ�x�R 1
0 dΦ�x�

� F

�Z 1

0
g�x� dx

�
�
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