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CONVEXITY ACCORDING TO MEANS
CONSTANTIN P. NICULESCU

(communicated by J. Mahwin)

Abstract. Given afunction f : 1 — J and apair of means M and N, ontheintervals | and J
respectively, we say that f is MN -convex provided that f(M(x,y)) < N(f(x), f(y)) for every
X, y € |. In this context, we prove the validity of all basic inequalities in Convex Function
Theory, such as Jensen’s Inequality and the Hermite-Hadamard Inequality.

1. Introduction

At the core of the notion of convexity is the comparison of means. By amean (on
aninterval | ) weunderstand any function M : | x | — | which verifies the following
two properties:

(M1) inf{st} <M(st) <sup{st} (Intermediacy)
(M2)  M(s't) = M(t, s) (Symmetry)

for every pair (s t) of elementsof 1. When | isone of theintervals (0, ), [0, c0)
or (—oo, 00), itisusual to add athird property, precisely

(M3)  M(tx, ty) = tM(X,y) foralt > 0 (Homogeneity)

but this assumption is not really necessary in our paper. Instead, we shal restrict
ourselves to the case of continuous means (i.e., continuous in both arguments).
Several examples of means (of strictly positive variables) are listed below.
Holder’'s means (also called power means):

(L +tP)/2)YP, for p#0
Ho(s t) = limHp(s t) = VL.

Hp(s t)
G(st)

Then A = Hj isthearithmetic mean and G isthe geometric mean. Themean H_; is
known as the harmonic mean.
Lehmer’s means:

Lp(s 1) = (& + ) /(S + P74,
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Notethat L; = A, Ly, = G and Lo = H_;. These are the only means that are both
Lehmer means and Holder means.

Solarsky’s means:

S(st) = [ —t°)/(ps—pt)]/P~Y,  p#0L

The limiting cases (p = 0 and p = 1) give the logarithmic and identric means,
respectively. Thus

s—t

S(st) = ‘Li_'”{(‘) S(st) = fogs —logt L(s't)
ty 1/(t—s)
sy = Imseo-3(g) -l

Noticethat S, = A and S_; = G.

Of course, there are many other waysto introduce families of means. For example,
from known means we can generate new ones. In this respect we recal here the
Gaussian compound M @ N of two means M and N, an iterative procedure which
extends the cel ebrated Gaussian arithmetic-geometric mean iteration,

A®G) (st = (”/2)//071/2 [ cos? 0+ t2sin2 6] * do.

See the paper of B. C. Carlson [8] for detalls.

A comprehensive account of the entire topics of meansis givenin [6].

Theaim of this paper isto discuss how functionsbehave under the action of means,
by considering a much more general concept of a convex function. Letting M and N
be two means defined on the intervals | and J respectively, afunction F : 1 — J will
be called MN -convex provided that

FIM(Z)) < N(F(&#)) forevery pair & of elementsof |. (MN)

In the next section we shall describe the natural process of continuation of means
from pairs of real numbersto random variables, afact which can be seen as anonlinear
theory of integration. As a consequence we shall be able to extend (MN) to random
variables and thus to obtain afar reaching generalization of Jensen’s Inequality.

The idea to extend the theory of convexity in the form (MN) is not new. It goes
back to people like J. Hadamard, G. H. Hardy and P. Montel [14], who considered it
under certain degrees of generality. See Section 3, which is devoted to the case where
M and N isoneof theclassical means A and G. Among the most recent contributions
to the extended theory of convexity we should notice here the papers by J. Matkowski
and J. Rétz [13], and D. Borwein, J. Borwein, G. Fee and R. Girgensohn [4].

In section 4 we discuss the connection of our resultswith the notion of comparative
convexity (in the sense of G. Hardy, J. E. Littlewood and G. Pélya[10]).
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2. The canonical continuation of a mean

In what follows we shall restrict ourselves to the case of continuous means and
continuous convex functions.
Under the presence of continuity the inequality (MN) can be refined to alow
weighted combinations: First, the dyadic combinations are defined as
M(X1, X2; 1/2,1/2) = M(X1, X2)
M(X1, X2; 3/4, 1/4) = M(M(X1, X2), X1)
M(X1, X2; 1/4, 3/4) = M(M(X1, X2), X2)
andsoon. Then, for A € [0, 1], we put
M(xy, X2; 1 — A, A) = nIim M (X1, X2; 1 — dp, dn);

here (dn)n isany sequence of dyadic numberswith A = nIim dn.

— 00

The weighted combinations M(xy, . .., Xn; A1, ..., 4q) Of length > 2 can be de-
fined in the same manner. For example,
*2 > , X3;1—7L37/13> .

L
1-A3"1- 23
ExAMPLE 1. If | isany interval and A denotes the arithmetic mean then

M (X1, X2, X3; A1, A2, Azg) = M <|V| <X17 X2;

n
A(X1, oy Xnj ALy ooy Ap) = Z Xk
k=1
If | isany subinterval of (0, cc) and G denotes the geometric mean then
n
G(X1, ., X Ad, - ooy Ap) = Hxﬁk.
k=1

We can bring together both examples above (as well as al Holder's means) by
considering the so called quasi-arithmetic mean,

o (s =0 (3009 + 5000

which is associated to a strictly monotone continuous mapping ¢ : | — R. Forit,

n
Mo (X1, .oy Xnj AL, -y An) = @ (Z /lkw(xk)> :
k=1

An easy inductive argument leads us to the following result:

LEMMA 1. (The discrete form of Jensen’s inequality ). Under the presence of
continuity, for every MN -convex function F : | — J,

FIM(X1, ..., Xn; A1, -+, An)) S N((F(X1), ..., F(Xn); A1y - .-, An)) J

n
for every Xa,...,xn € | andevery Aq, ..., Ay € [0, 1] with > Ak = 1.
k=1
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The continuous version of Jensen’s Inequality can be derived from the discrete
case, by noticing that
M(X1, - -y Xn; ALy -+ -5 An)

can be thought of asthe mean M(h; u) of the random variable
h:{%....,n} =1, h(i)=x for i=1...,n

with respect to the probability measure
w2l ) =01, uA) =Y A

ieA
If (X %, u) isan arbitrary probability field, it is still possible to define the mean

M(h; u) for certain real random variables h € L1 (u) with valuesin | . Infact, letting
(2a) aupward directed net of finite subfields = whose unionis X, the mathematical
expectation & (F|Z,) of F € LY(u) withrespectto X, givesrisetoapositivecontractive
projection

Po : Ll(.“) - Ll(.“|2a)a Po(F) = &(F|Za)
and

&(F|Zq) — F inthe norm topology of LY(u);

due to the L ebesgue theorem on dominated convergence.
A real random variable h € L} (1) (with valuesin I) will be called M -intgrable
provided that the limit

M(h ) = lim M (Pq (h); u[e)

existswhenever (X,), isaupward directed net of finite subfields ¥ whoseunionis X.

For the quasi-arithmetic mean 9, (associated to a strictly monotone continuous
mapping ¢ : | — R) and the probability field associated to the restriction of the
Lebesgue measureto aninterval [s, t] C |, the construction aboveyields

. 1 (1 [
M, <|d[st]; mdx) =0 <m/ o(X) dx)
S

which coincideswiththeso calledintegral ¢ -meanof s and t, alsodenoted Int,, (s t).
As noticed M. E. Mayes [15], the class of all integral means equals the class of all
differential means; recall that the differential w-mean of s and t (associated to a
strictly monotone differentiable and convex mapping v : | — R) is given by the

formula .
Dy (s 1) = (¥) (7"’( — (S)) :

THEOREM 1.  (The continuous form of Jensen’'s inequality ). Suppose that

F : 1 — J isacontinuous MN -convex function and (X X, u) is a probability field.
Then

F(M(h;u)) < N((Foh;u)) ()

for every h € L} (u) suchthat h is M -integrableand F o h is N -integrable.
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Proof. PasstothelimitinLemmal. O

COROLLARY 1. ( The Hermite-Hadamard inequality ) . Supposethat F: | — J is
a continuous function. Then F is MN -convex if, and only if, for every s< t in | and
every Radon probability measure u on [s, t] we havethe inequality

F(M(st)) < N((F[s, t]; u))- (HH)

Proof. The necessity follows from Theorem 1 (applied to h = idisy). The
sufficiency represents the particular case where u = (&s + &)/2. O

It is worth to mention the possibility to extend Theorem 1 beyond the case of
probability measures. That can be done under the additional assumption of positive
homogeneity (both for the means M and N, and the involved function F) following
the model of Lebesgue theory, where formulae such as

/R f(x)dx = nlero]o {Zn (2—];1 nn f(x) dx)}
hold.

Given a measurable o-field (X X, u), afunction h : X — R will be called
M -integrable provided the limit

Do . CUZENQy
M(h; u) = nlLTo [M(Qn) M <h|£2n, ) )] (Int)
exists for every increasing sequence (Qn)n of elementsof X with UQ, = X. Then
F(M(h; u)) < N((Foh;u)) (J)

forevery h € L (u) suchthat h is M -integrableand Foh is N -integrable. Restricting
(Int) to asuitabletype of increasing sequences (Qy), with UQ, = X, onecanintroduce
aconcept of M -integrability in the sense of principal value, acase for which (J') till
works.

3. Convexity associated to A and G

Inthis section we shall illustrate the concept of MN -convexity in the ssimplest case
i.e,when M, N € {A G}.

Depending on which type of mean, arithmetic (A), or geometric (G), it isgiven
on the domain and the codomain of definition, we can encounter one of the following
four classes of functions:

AA — convex functions, the usual convex functions
AG — convex functions
GA — convex functions
GG — convex functions.
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Notice that while A makes no restriction about the interval | where it applies (it
issobecause x,y € I, A € [0, 1] implies (1 —A)x+ Ay € 1), theuseof G forcesus
to restrict to the subintervals J of (0, co) in order to assure that

X, ye€J A €01 =x"*y €l

The AG-convex functions (usually known as log-convex functions) are those
functions F : | — (0, oo) for which

x,yel and A €01 =F((1-A)x+1y) <FX)F(y)*, (AG)

i.e., for which logF is convex.
The class of al GA-convex functions is constituted by all functions F : | — R
(defined on subintervals of (0, co) ) for which

x,yel and A €[0 1 = Fxy*) < (1-A)F(X) +Af(y). (GA)

In the context of twice differentiable functions F : | — R, GA-convexity means
x2F"" 4+ xf’ > 0, so that all twice differentiable nondecreasing convex functions are
also GA-convex.

The GG-convex functions (called in [16] multiplicatively convex functions) are
those functions F : | — J (acting on subintervals of (0, o) ) such that

x,y€l and A €01 = F(x**y*) < FX) ' F(y)*. (GG)
Due to the following form of the AM — GM Inequality,
abe(0,00), A €[0,1] = al"*b* < (1—A)a+Ab, (%)
every log-convex functionisalso convex. The most notable exampleof such afunction
is Euler's gamma function,

I'(x) :/ t*~le~'dt, x> 0.
0

See H. Bohr and J. Mollerup [3]; their argument is recalled by E. Artin [2]. See
aso [16].

The study of the class of all multiplicatively convex functionscan beeasily reduced
to that of al convex functions via a suitable change of variable and function [16]:

LEMMA 2. Suppose that | is a subinterval of (0,00) and F : | — (0,00) isa
multiplicatively convex function. Then

F =logoFoexp:log(l) — R

isa convexfunction. Conversely, if J isaninterval and F : J — R isaconvexfunction,
then
F = expoFolog: exp(J) — (0, oc)

isa multiplicatively convex function.
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An alternative characterization of multiplicative convexity of a function F is
“logF(x) isa convex function of logx”. See [16], Lemma 2.1. Modulo this char-
acterization, the class of all multiplicatively convex functions was first considered by
P. Montel [14], in a beautiful paper discussing the analogues of the notion of convex
function in n variables. However, the roots of the research in this area can be traced
long time before him. Let us mention two such results here:

HADAMARD'’S THREE CIRCLES THEOREM. Let F be an analytical function in the
annulus a < |z] < b. Then logM(r) isa convex function of logr , where

G. H. HARDY’'S MEAN VALUE THEOREM. Let F be an analytical function in the
annulus a < |z < b andlet p € [1, 00). Then logMp(r) is a convex function of

logr, where
1 2r i0 0
Mor) = (57 [ IF(re")pao

As nIim Mn(r) = M(r), Hardy's aforementioned result implies Hadamard's. As
well known, Hadamard'sresult isinstrumental in deriving the celebrating Riesz-Thorin
Interpolation Theorem (see [10]).

The concept of multiplicative mean value and the multiplicative analogues of
Jensen’s Inequality and Hermite-Hadamard Inequality make the object of our paper
[17].

1/p

4. The connection with relative convexity

Theideato introduceanation of relative convexity appeared in the cel ebrated book
of G. H. Hardy, J. E. Littlewood and G. Polya [10], p. 75: Supposethat F,g: 1 — J
are two continuous functionsand g is strictly monotone. Then F is said to be convex
with respect to g (abbreviated, g<F) if Fog~! isconvex (inthe usual sense) onthe
interval g(1).

ExXAMPLE 2. Under appropriate assumptions on the domain and the range of a
function F, the following statements hold true:

i) F isconvexif,andonly if, id<F;

i) F islog-convexif, andonly if, id<logF;

iii) Fis GG-convexif, and only if, log<logF;

iv) F is GA-convexif, and only if, log<F.

As noticed G. T. Cargo [8], in the context of C!-differentiable functions, F is
convex with respect to an increasing function g if F’/g' is nondecreasing; in the
context of C?-differentiable functions, F is convex with respect to g if, and only if,
F"/F" < d"/d (provided the two ratios exist).

The connection of relative convexity with the topic of our paper is expressed by
the following Hermite-Hadamard type inequality:
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ProrPosITION 1. If g<F, then

b
Finty({a b)) = F (gl (b%a / g(x)dx))

1 b
< —— )
< b—a/a F(x) dx

for every a < b inthedomainof F and g.

COROLLARY 2. (H. Alzer [1]). Suposethat F isa strictly increasing continuous
function suchthat 1/F~* isconvex. Then 1/x<F. As I, ({a, b}) coincideswith the
logarithmic mean L(a, b), it follows that

b-a

Many other interesting applications of Proposition 1 can be easily deduced viathe
paper [9], by N. Elezovi¢ and J. PeCaric.

Relative convexity can clarify the meaning of certain cumbersome technical con-
ditions. For example, Theorem 2.1in [12] can be restated as follows:

FlLab) < 5oy | " E o

THEOREM 2. Let g be a positive increasing function on [0,1], ® a positive
function of bounded variation on [0, 1], and F : (0,00) — R positive, convex and
differentiable such that (1 — x)F'(A (1 — x)) is convex with respect to ®(x) for every

A > 0. Then fl (90 () .
o F(9(x)) dd(x
o </ o dX) |
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