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1 Introduction

The elementary symmetric functions of n variables are defined by

60(.’61,56'2,...,:(]”) =1
e1(r1,22,---,Tp) =21 + T2+ ... + T
62($17x27"'7xn) = Z LT

i< j
en(T1,%2,...,%Tpn) = T1L2 ... Tn.

The different ey, being of different degrees, are not comparable. However,
they are connected by nonlinear inequalities, mostly due to Newton. To state
them, it is more convenient to consider their averages,

Ey(z1,22,...,2,) = ek(ml,mz,...,mn)/(Z)

and to write Ey, for Ey(x1,22,...,Ty,) in order to avoid excessively long formulae.
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Theorem 1. (Newton [10] and Maclaurin [7]). Let F be an n-tuple of non-
negative numbers. Then:

(N) EXF) > Ep-1(F) - Ex41(F), 1<k < n-1 unless all entries of F
coincide;

(M) E\(F) > E;/Q(f) >..> E}/n(]-') unless all entries of F coincide.

Actually, Newton’s inequalities () work for n-tuples of real, not necessarily
positive elements. An analytic proof along Maclaurin’s ideas appeared in the
famous book of G. H. Hardy, J. E. Littlewood and G. Pdlya [4]. The same
book contains the following solution to the problem of comparing monomials in
El, ceey En :

Theorem 2. (See [4], Theorem 77, page 64). Let a1,...,an,B1,...,Bn be non-
negative numbers. Then

EX(F)-...-E2»(F) < EP(F)-... - E»(F)
for every n-tuple F of positive numbers if, and only if,
o+ 20mp1+ ...+ (m—m+Dap > Pn+28mt1+...+(n—m+1)8,
for 1 < m < n, with equality when m = 1.

An alternative proof, also based on the Newton Inequalities (N) is given in [8],
p- 93, where the final conclusion is derived by a technique from the majorization
theory. The essence of Theorem 2 is the log concavity of the functions k — Ey,
which we give here in the formulation of [11]:

Theorem 3. Suppose that o, 8 € Ry and j, k € N are numbers such that
a+B=1 and ja+kBe€{0,...,n}
Then
Eja+is(F) 2 B (F) - B{(F),
for every n-tuple F of non-negative real numbers. Moreover, equality occurs if

and only if all entries of F are equal.

It turned out by S. Rosset [14] and C. P. Niculescu [11] that Newton’s in-
equalities (V) are only the first in a family of sequences of inequalities. For each
natural number n > 2, one can indicate a sequence (N,) of homogeneous in-
equalities in terms of Ej, each one being stronger than the previous one. In this
respect (N2) coincides with (N) and (N3) consists of the inequalities

6EEi1Ery2Erys +3Ep, Ep, o > 4B, B}, 5 + EREp 3 + 4B, 1 B3 (Ns)

for k = 0,1,2,...,card F — 3; as usually, F denotes the n-tuple for which the
different E;’s are computed.
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As (N3) can be rewritten as
AEi 12 — Er1Biys)(Bi 1 — ExBiy2) > (Bpy1 Erya — EpEpys)?

one can show easily that (N3) = (N2).
The basic fact (discovered by J. Sylvester [17], [18]) concerns the semi-algebraic
character of the set of real polynomials with all roots real:

Theorem 4. For each natural number n > 2 there exists a set of at most n — 1
polynomials with integer coefficients,

Rui(z1,...,20), -, Rypm) (@1, .-, 2n), (Ryn)
such that the monic real polynomials of order n,
P(z) = 2" +a12" ' + ... + ap,
which have only real Toots are precisely those for which

Rn,l(al,...,an) Z 0, ey Rnik(n)(al,...,an) > 0.

The above result can be seen as a generalization of the well known fact that
the roots of a quadratic polynomial x> + a1z + az are real if, and only if, its
discriminant

Dy(1,a1,a2) = af — 4as, (D2)

18 mon-negative .

Theorem 4 is built on the Sturm method of counting real roots, taking into
account that only the leading coefficients enter the play. It turns out that they are
nothing but the principal subresultant coefficients (with convenient signs added),
which are determinants extracted from the Sylvester matrix. See [1] or [11] for
details.

By evident reasons, we shall call a family {R, 1,..., Ry k(n)} (as in the state-
ment of Theorem 4 above) a discriminant family, of order n. In Sylvester’s
approach, Ry, 1(a1,-..,a,) equals the discriminant Dy, of the polynomial P(z) =
2" + a2 ' + ... + a, that is,

Dn=Dn(La,...,an)= [ (zi—g;)

1<i<j<n
where z1,...,, are the roots of P(x); D, is a polynomial (of weight n? —n) in
Zlay, - - -, ay,] as being a symmetric and homogeneous (of degree n?—n) polynomial
in Z[z1,...,z,]. See, for details, [1] or [6]. Unfortunately, at present no compact

formula for Dy, is known. According to [15], the number of non-zero coeflicients in
the expression for the discriminant increases rapidly with the degree; for example,
Dy has 26095 terms!

To give a better understanding how fast the family (V,,) grows up, we shall
recall here the form of (N,), as it was computed in [11]:
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(BB 4 B~ S BE Pl — 6 B By — 8 ER
+81 EyEj o Era — 2T By By y + 36 R Ep LB,
+108 ExEpy1 Ep 2B} 3 + 108 B} Epy 2 Ep 4 Epys — 54 ER (B} Erya

) —180 EkEk+1Eg+2Ek+3Ek+4 + 54 EgEk+2E2+3Ek+4—

_6EkE13+1EI%+3Ek+4
+54 EkEI%-i—l Ek+2E,%+4 —12 EI%Ek+1Ek+3E,%+4 > 0.
OF2E2,, + 4 E2 By Fyys — 20 Ex B2, Fy o + 12 EL, | — E}Ejys >0
| Efy1 — ExEry2 >0

for k=0,1,2,...,card F — 4.

Because of the fast grow of the gaps, not every inequality involving homoge-
neous polynomials appears the way described above.

In fact, when restricted to the n-tuples of non-negative numbers, the different
monomials (of a given weight) in Ey, E», F3, ... can be listed via (N3) as follows:

E} > By

E} > E\E> > Ej

E{ > E}E, > E; > E1E3; > E4

E} > E}Ey > E\E2 > E?Es > max{F\E,, ExE3} >
> min{E 1 Ey, E3E3} > Es

Notice the phenomenon of incomparable monomials (starting with the quintic
case).

All other inequalities constituting the different families (NV,,) with n > 3, in-
terpolate in the appropriate row of inequalities displayed above. For example, the
inequalities (IV3) interpolate in the following sequence of homogeneous monomials
of degree 4k + 6 :

EI§+1E1%+2 2 EkE,%_,_z, E,%+1Ek+3, EI%EI%+3 2 EpEpy1 EpioEpys.

A moment’s reflection shows that the process of listing the different families
(N,,) missed an infinity of inequalities, which are to be recovered by interpolation.
An example is the cubic inequality (first noticed by G. Peano),

3E? + FE3 > 4E B, ()
which for triplets reduces to the following inequality:
o’ +y° +2° +3ayz > ay(w +y) +yz(y + 2) + 23(2 + 2) (@)

for every z,y, z > 0. The inequality (C") represents the case a@ = 1 of the following
classical inequality:

Lemma 1. (See [4], Theorem 80, page 64). Suppose that z,y,z > 0 and o € R.

Then
Zxa(a: —y)(xz—2)>0

unless t =y = z.
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Then (C) can be recovered from (C') via mathematical induction. See Lemma
4 below. A Calculus based approach of (C) can be built on the following result
due to N. Sato [16]:

Lemma 2. Let ay,...,a, be real numbers. Then the polynomial
n
P(wla v awn) = Z akE?ikEk
k=1

attaints its infimum over the compact set
K ={(z1,...,2n) € [0,00)"; 21 +...+z, =1}

at a point Q, = (1/k,...,1/k,0,...,0), for some k € {1,...,n}.
—_——
k times

Lemma 2 yields easily an algorithm to check the positivity of the polynomials
P as in Lemma 2 above:

P >0 on K if and only if P(Qy) > 0 for all points Q.
The cubic case reads as follows:
Proposition 1. The inequality
aE? + bE\Ey + cE3 >0
holds for every n-tuple F of non-negative numbers with n > 3 if, and only if,
a>0,4a+3b>0anda+b+c>0.
Proof: The Necessity is immediate, checking the inequality for the families
{1,0,0}, {1/2,1/2,0} and {1/3,1/3,1/3}.

The Sufficiency. According to Lemma 2, it suffices to verify the inequality
aE} +bE; +cE1E> > 0 for all n-tuples of the form (1/k,...,1/k,0,...,0), where
1/k repeats k times (k € {1,...,n}). O

Corollary 1. For every n-tuple F of non-negative numbers (n > 3), we have

3 1
ZE? + ZE3 > EE»

and A = 3/4 is the smallest value of X in [0,1] such that
ME} + (1= NEs; > E\FE,

holds for all F as above.
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Proof: The optimality of A = 3/4 follows by considering the triplet {1,1,0}.
0

In section 3 we shall indicate a third proof of Proposition 1, based on a
downward induction argument and the quadratic analogue of Proposition 1:

Lemma 3. The inequality
aE} +bEy > 0

holds for all n-tuples of non-negative numbers (n > 2) if and only if
a>0anda+b>0.

At this point it is natural to ask whether the entire problem of displaying all
positively homogeneous symmetric real polynomials of nth degree can be settled
in terms of finite sets of universal inequalities. The delicate question is the nature
of these inequalities. The aim of this paper is to give support for the following
conjecture we presented to The Fifth Congress of Romanian Mathematicians,
Pitegti, June 22-28, 2003 [12]:

Conjecture 1. For each natural number n > 1, the set of all positively ho-
mogeneous symmetric real polynomials P(xy,...,%,), of degree n, which take
non-negative values for all x1,...,x, > 0, has a semi-algebraic character. In
other words, there is a finite set Qn,1,- .-, Qn k(n) of real polynomials with integer
coefficients, such that a positively homogeneous symmetric real polynomial

P(z1,...,%,) = aE} + bEM?Es + ...,
is positive for all x1,...,z, > 0 if, and only if,

Qna(a,b,...) >0, ..., Qn,k(n)(a,b, ...)>0.

Attached to this Conjecture is the problem to find out an algorithm for gen-
erating the polynomials Qn 1, ..., Qn k(n) for each n > 2. Lemma 3 shows that
k(2) = 2 and

Q2,1(a,b) = a and Q22(a,b) = a+b,

while Proposition 1 shows that k(3) = 3 in the cubic case and the corresponding
test family consists of

Qs,1(a,b,¢) = a, Qs,2(a,b,c) =4a+ 3b and Q33(a,b,c) =a+b+c.

In Section 4 we shall prove the validity of this conjecture in the quartic case.
This will be done by applying a descending technique that reduces the whole
business to the case of three variables, where a previous result due to O. Bottema
and J. T. Groenman [2] can be applied. The process of writing down a concrete
test family is based on the quartic case of another open problem:
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Conjecture 2. Consider the set A of all (n + 1)-tuples (ag,ay,...,a,) € R*1,
with the following property:

ao + a1z + ...+ apz™ > 0 for every x > 0.

Then there exists a finite family of polynomials P;; € Z[Xo, X1,...,X,] such
that
A=U; ﬂj {(ao,al,. ..,an) S Rn—H;Pi,j (ao,al,. ..,an) - 0}

Here > can be either > or > .
Letting P(z) = ap + a1z + ... + anz™, it is clear that
P(z) >0 forallz>0

if and only if ag = P(0) > 0 and P(z) is non-negative at all non-negative zeros of
its derivative P'(z). The problem is to prove the semi-algebraic character of this
solution that is, to embed the inequality ag = P(0) > 0 into a full test family
(Qig)i-

A solution to Conjecture 2 will solve in principle the problem of finding an
algorithm for all metric inequalities in a triangle that can be expressed in terms
of s (the semiperimeter),  (the radius of the inscribed circle) and R (the radius
of the circumscribed circle).

The last, but not the least, our results extends mutatis mutandis to the context
of Banach lattices. For example, using the well known functional calculus with
elements in a Banach lattice (which works for positively homogeneous functions
of degree 1; see [5], Vol. 2), Proposition 1 can be extended as follows:

Theorem 5. Ifa > 0,4a+3b>0 anda+ b+ c >0 then

1 1/3 ’ 1 1/3 2 1/3 1/3

i<k
6 1/3 1/3 1/3
c| ———— x, "x, x >0 1
+ n(n —1)(n —2) Z 3Tk - (1)
J<k<l
for every family x1,...,x, (n > 3) of positive elements in an arbitrary Banach

lattice.

2 Preliminaries on the functions F,

According to Rolle’s Theorem, if all roots of a polynomial P € R[X] are real
(respectively, real and distinct), then the same is true for its derivative P'. Given
an n-tuple F = (x1,...,2,), we shall attach to it the polynomial

P}—(m) - (-’1:—.731)(33 —.'L'n) = Z (_1)k (Z)Ek(.’lfl,...,.’l,‘n) mn_l_k.

k=0
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The (n — 1)-tuple 7' = {y1,...,Yn—1}, consisting of all roots of the derivative
of Pr(z) will be called the derived n-tuple of F. Because

DRI B DY (i R P

k=0
and
1 dP
(@=y1).. (@ =ynr) = - ()
L -k (n
=Y (2 Ey(z1,. .., 2n) 2™ k1
P Lk
n—1 n—l
— (—1)k< & )Ek(wl,...,wn)wnlk
k=0

we are led to the following result, which enables us to reduce the number of
variables when dealing with symmetric functions:

Lemma 4. Ey(F) = Ei(F') for every k € {0,...,|F| — 1}. Moreover, if F
consists of non-negative numbers, so does F'.

Another useful remark, which can be checked by a simple computation, is as
follows:

Lemma 5. Suppose that F is an n-tuple of real numbers and 0 ¢ F. Put F~! =
{1/a|a € F}. Then
Ey(FY) = B, (F) | Eo(F)

for every k € {0,...,n}.

The two lemmas above were used in [11] to prove Theorem 3 and other classical
results.

3 The descending technique in the cubic case

The aim of this section is to indicate a new proof of Proposition 1. Our approach
is based on a technique of reducing the numbers of variables, up to a point where
the solution is a consequence of the semi-algebraic character of certain sets of real
polynomials in one variable.

According to Lemma 4, we may restrict ourselves to the case of triplets F =
{z,y, 2z} of non-negative numbers. Also, we may assume that

z= XNz +y)
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for a suitable A\ > 0 (that is, one variable will be replaced by a parameter). Then
the symmetric functions Ey, E», E3 corresponding to F can be expressed by the
symmetric functions Ey, Ey corresponding to F = {z,y}, as follows:

z+y+Az+y) 201+

E = = FE
1 3 3 1
zy+ Az +y)? 1~ 4\,

E :—:—E _E
2 3 gt gh

An easy computation yields
aEf +bE 1 Es + cE3 = <6E’f +ZE2) El,

where .
a= 5 [8a(1+ A)® + 24bA(1 + N)]

and
~ 1

b= o [Bb(1+X) + 54c)].

According to Lemma 3,
aF} + bE\Ey 4+ cE3 > 0
for every z,y,z > 0 if and only if
@>0anda+5b>0

for all A > 0, which (after suitable simplification) means the conjunction of the
following two inequalities:

a(1+ )% +3bA >0 (2)

and
4aX? + 12(a + b)A* + (12a + 156+ 27c)A +4a +3b > 0 (3)

for all A > 0.
This leads us to the semi-algebraic problem of deciding when a quadratic or
a cubic real polynomial P(z) verifies the condition

P(z) > 0 for all z > 0.

However, we shall prefer a straightforward argument, noticing that 3 yields
(respectively for A =0, 1/2 and o) the following set of necessary conditions:

4a+3b>0, a+b+c¢>0and a > 0.
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It turns out that these conditions are also sufficient for the validity of both 2
and 3. In fact,

a1+ N2 +3A=a(A=1)2+ (4a+3b) A >0
and the left hand side of 3 can be rewritten as
aX (4N —4X+1) +27(a+ b+ )X + (da + 3b) (4X> —4X + 1),

which is a sum of non-negative numbers.

4 Proof of Conjectures 1 and 2 in the Quartic Case

We start with some preparation concerning the case of quartic polynomials of
three variables. Our first goal is to restate a result due to O. Bottema and J. T.
Groenman [2] (see [13] for a simple proof) in order to prove the following fact:

Lemma 6. The inequality
aE! + bE}E> + cE5 + dE1FE3 > 0
holds for every triplet of non-negative numbers if, and only if,
a>0, 16a+120+9¢ >0, a+b+c+d>0 and (RQ)
5a + 3b > —+/a(16a + 12b + 9c).

Notice that the last inequality can be restated as follows:
5a 4+ 3b> 0, or 5a +3b < 0 and (a + b)*> — ac < 0.

Proof: The basic idea is to switch to another basis of the space of all positively
homogeneous quartic polynomials of three variables), constituted by the Muir-
head polynomials:

T(4,0,0) =2 2" =162E{ — 216 E{ E, + 36E} + 24F, Fj
T(3,1,0)= > 2°(y + 2) = 2TE{E, — 18E3 — 3E, F3
T(2,2,0) =Y 2°y’> = 18E; — 12E, E;

T(2,1,1)= 2:cyzz:c = 6E:1 E3.

1
E\E; = 6T(2 1,1)

E; = ET(2,2,0)+ 9T(2,1,1)
1 5
E2E=—T 1 T(2,2 —T(2,1,1
142 27 (37 70) 27 (7 70)+54 (7 ) )

1 4
Ef = 55 T(4,0,0) + o T(3,1,0) +

1 1
—T(2,2 -T(2,1,1
= (2,2,0)+ £ T(2,1,1),

27
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the Muirhead polynomials form really a basis. Muirhead noticed that

which represents part of the inequalities involving the normalized elementary
functions Ey :

6E] + 2F; + E\FE3 > 9E?E,
3E}E> + E\E3 > AE:
E2 > E\Es.

We now consider the polynomials:
1 1

_ 4_ 3 _t _ Z
A=) =N 2Py +2)+ayz ) 2 5 T(4,0,0) = T(3,1,0) + 5 T(2,1,1)
B=Y a*y+2)—2) &y’ =T(3,1,0)—T(2,2,0)

. 1 1

_ 2,2 _
C= Z;v Y —xyzZ;c = §T(2,2,0) — 5T(2,1,1).

Then:

M+ uB+vC = %T(4,0,0) +(p—NT(3,1,0)

+ U r(,0,0)+ 200

= 81IAE} + (27u — 1350 EZ E»
+ (36X — 361+ 9v)E3 + (18X + 9u — 3v)E B3

T(2,1,1)

which shows that
aT'(4,0,0) + bT'(3,1,0) + cT'(2,2,0) — (a + b+ ¢)T(2,1,1)
equals 2aA + (2a + b)B + (4a + 2b+ 2¢)C.
A result of O. Bottema and J. T. Groenman [2], as restated by J. F. Rigby
[13], asserts that
A + uB + vC > 0 for positive z,y,z < A, v > 0 and pu > —\/)\_1/,
equivalently,
aT(4,0,0) +bT(3,1,0) + ¢T(2,2,0) — (a+ b+ ¢)T(2,1,1) > 0
for positive z,y, z if and only if

a>0,2a+b+c>0and 2a+b>-2va(2a+b+c).
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Finally, an easy computation yields the desired conclusion:
aE} + bE?Es + cE3 — (a+ b+ c)E1E3 > 0 for every z,y,z > 0
if and only if
a>0, 16a + 12b+ 9¢ > 0 and
5a 4+ 3b > —+/a(16a + 12b+ 9c).

Our next goal is to settle the quartic case of Conjecture 2:

Proposition 2. The set
{(a,B,7,0,¢) € B°; az* + B2® + y2*> + dz + ¢ > 0 for every z > 0}
has o semi-algebraic character.

Proof: We shall consider here only the subset of all (a,3,7,6,¢) with a > 0.
Put

P(z) = az* + Bz® +y2® + 6z + <.
As P(0) > 0, we infer that & > 0. The derivative of P(z) can have one or three
real roots, depending on the sign of the discriminant of P'(z). More precisely,
P'(x) has only one real root, say u, if and only if the discriminant D of 4az® +
3Bx3 + 2yx + § verifies the inequality

D>0

which has a semi-algebraic character.

When D > 0, and u < 0, the polynomial P(z) is increasing on [0, 00), which
yields P(z) > P(0) for z > 0.

When D > 0, and u > 0, we have to impose the condition P(u) > 0. This is
a semi-algebraic condition as

P=PQ+R

yields P(u)

= R(u) and R is a quadratic polynomial.
When D <0

, we have to look at the largest root of P"(x),

= =38 + /952 — 24ary
- 12 '

Clearly, P(z) is increasing for > v. If v < 0, then everything is OK. If v > 0,
then we have to impose the condition

P(v) > 0.

The proof ends by noticing that this is a semi-algebraic restriction. a
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Coming back to the proof of Conjecture 1 in the case n = 4, we start with
the remark (motivated by Lemma 4) that we may restrict ourselves to the case

of where F = {z,y, 2,t}. Clearly, we may also assume that

t=XMz+y+2)

for a suitable \ > 0 (that is, one variable will be replaced by a parameter). Then
the symmetric functions ), E,, E3, Ey, corresponding to F, can be expressed by
the symmetric functions E;, Es, F3, corresponding to F =

r+y+z+Az+y+2) 3(1+A)E

{z,y, 2}, as follows:

b= 4 -1
Ezzxy+yz+z$+)\(x+y+z)2:1E2+QE3
6 2 2
> _wyz+ Nz +y+2) (zy +yz+2x)
5 4
1~ 9\ ~
=-FE3+ —FEs.
1 3+ g e

An easy computation yields

aE! + bE2E; + ¢E3 + dEyEs + eBy = aE! + bE2E; + CE2 + dE, Es,

where
G %6 [9a(1 + A)* + 24bA(1 + A)? + 64¢?]
7= 332 [3b(1 + A)? + 16\ + 18A(L + A)d]
"
=1
d= 1% [A(L + \) + 167e].

Now the truth of Conjecture 1 in the quartic case is a consequence of Lemma,

6 and Proposition 2.

5 Interpolation Inequalities in the Quartic Case

While we know the existence of a test family in the quartic case, the problem of

writing down a concrete family remains open.
By Lemma 6, the inequality

aE} + bE}Es + cE2 + dE1F3 > 0



80 Constantin P. Niculescu

holds for every n-tuple of non-negative numbers (n > 4) if, and only if,
a>0,9+6b+4c>0,a+b+c+d>0and
15a + 8b > —4+/a(9a + 6b + 4c).
This remark is complemented by Lemma 2, which yields the following fact:
Proposition 3. The inequality
aE} + bE}Ey + dE1F3 +eEy > 0

holds for every n-tuple F of non-negative numbers (n > 4) if, and only if, the
coefficients verify the following set of conditions:

a>0, 3a+2b>0, 27a+24b+16d>0, a+b+d+e>0.
The above discussion leaves out important inequalities such as
12E! —24F?Ey +9E2 +4E FE3 — E4 > 0,

which is a component of the family (Ny), for k = 0, mentioned in the Introduction.
Instead, it is easy to write down the interpolating inequalities associated to
each triplet of quartic monomials in the following list:

E{ > E}E, > Ej > E\Es > Ej. 4)
Indeed, for A € [0, 1], the following statements hold true:

1. AE{+(1=)\)E,E3 > E?E, for all n-tuples of non-negative numbers (n > 3)
if and only if A € [3/4,1];

2. AE} + (1 — N\ E, > E}E, for all n-tuples of non-negative numbers (n > 4)
if and only if A € [8/9,1];

3. AE{ + (1 = M\)E; > E, E; for all n-tuples of non-negative numbers (n > 4)
if and only if A € [16/27, 1];

4. N\E2E5+(1—\)E4 > E; E; for all n-tuples of non-negative numbers (n > 4)
if and only if A € [2/3,1];

5. AE} + (1 — N\)E2 > E?E, for all n-tuples of non-negative numbers (n > 2)
if and only if A € [1/2,1];

6. AE} + (1 — \)Ey E3 > E2 for all n-tuples of non-negative numbers (n > 3)
if and only if A € [9/16,1];

7. AE} + (1 — A\)E4 > E? for all n-tuples of non-negative numbers (n > 4) if
and only if A > 64/81;
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8. AE?E5+(1—)\)E 1 E3 > EZ for all n-tuples of non-negative numbers (n > 3)
if and only if A > 3/4;

9. AE2E> + (1 — X)E4 > E2 for all n-tuples of non-negative numbers (n > 4)
if and only if A > 8/9;

10. AE2 + (1 — \)E4 > E, E; for all n-tuples of non-negative numbers (n > 4)
if and only if A > 3/4.

Most of these statements admit straightforward arguments. For example, the
inequality (5) can be put in the form

(AE} — (1= \)E,) (Ef — E2) >0

and thus it works for A > 1/2. On the other hand, the case F = {1,1,0} makes
this condition also necessary.
Also simple is inequality (8). It can be restated in the form

A (Z zy(2® +9%) — 2 Zx2y2) +(4X-3) (Z 22y? — zzy Zx) >0
which represents a linear combination of two non-negative expressions. The opti-
mality of the value A = 3/4 can be checked by considering the triplet F = (1, 1,0).

The inequality (6) is a bit more involving. The caseF = {1,1,0} yields
A > 9/16. For A = 9/16, this inequality is equivalent to

Zm4 +4Zx3(y—|—z) —|—$yzz:17— 102372312 > 0 for all z,y,z > 0.

Or, the left hand side equals

[Zw4 + a:ysz - Z:c3(y + z)] +5 [2503(11 +2)— 2Zx2y2]

that is,
Y @ —y)z—2)+5Y zylz—y)’
and the conclusion follows from Lemma 1, applied for a = 2. If X\ € [9/16,1],
then
AE{ + (1 - N\ E{E; — E; = [9/16 - E{ + 7/16 - E, E5 — E3 |
+ (A —9/16) [E{ — E, B3]

is a combination of non-negative expressions and the proof of (6) is done.

The proof of the inequality (7) follows a different route. For A = 64/81 this
inequality is equivalent to

(z+y+2z+t) +68zyzt—9 (zy + 22 + ot + yz + yt + 2t)*> > 0 for all z,y, 2, > 0,

a fact which can be established via the Lagrange multiplier method. The optimal-
ity of the value 64/81 can be checked by considering the 4-tuple F = {1,1,1,0}.

The inequalities (1)-(10) above can be combined. For example, from the
inequalities (1) and (6) we infer the following result:
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Proposition 4. For every n-tuple F of non-negative numbers (n > 3), and every
A € [0,1] we have

3A+9 7T—3A
16 16

Moreover, if A, i € [0,1] are such that

E} + E\E3 > AE}Ey + (1 — \)E3.

pE{ + (1= p)E\Es > AE} By + (1 - M) E3
for every F as above, then > (3A +9) /16.

References

[1] R. BENEDETTI AND J.-J. RISLER, Real algebraic and semi-algebraic sets,
Hermann, Editeurs des Sciences et des Arts, Paris, 1990.

[2] O. BoTTEMA AND J. T. GROENMAN, On some triangle inequalities, Univ.
Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No. 577 - No. 598 (1977),
11-20.

[3] M. D. CHori, T. Y. LAM AND B. REZNICK, Even symmetric sextics, Math.
7., 195 (1987), 559-580.

[4] G. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge
Mathematical Library, 2nd Ed., 1952.

[5] J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach spaces, Vol. 1
(1977), Vol. 2 (1979), Springer-Verlag, Berlin.

[6] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford
University Press, 1979.

[7] C. MACLAURIN, A second letter to Martin Folkes, Esq.; concerning the roots
of equations, with the demonstration of other rules in algebra, Phil. Trans-
actions 36 (1729), 59-96.

[8] A. W. MARSHALL AND I. OLKIN, Inequalities: Theory of Majorization and
Its Applications, Academic Press, New York, 1979.

[9] J. McKAY, On Computing Discriminants, Amer. Math. Month. 94 (1987),
523-527.

[10] I. NEWTON, Arithmetica universalis: sive de compositione et resolutione
arithmetica liber, 1707.

[11] C. P. NICULESCU, A New Look at Newton’s Inequalities, J. Inequal. in Pure
and Appl. Math. (JIPAM) 1 (2000), paper no. 17. Also presented to the
Symposium on Order Structures in Functional Analysis, Bucharest, June 29,
2000.



Interpolating Newton’s Inequalities 83

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C. P. NicurLescu, The Wonderful World of Convezity. Communication to
The Fifth Congress of Romanian Mathematicians, Pitesgti, June 22-28, 2003.

J. F. RIGBY, Quartic and sextic inequalities for the sides of triangles, and
best possible inequalities, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat.
Fiz., No. 602 - No. 633 (1978), 195-202.

S. ROSSET, Normalized Symmetric Functions, Newton’s Inequalities and a
New Set of Stronger Inequalities, Amer. Math. Soc. 96 (1989), 815-820.

T. SAsaki, Y. KANADA AND S. WATANABE, Calculation of discriminants
of higher degree equations, Tokyo J. Math. 4 (1981), 493-503.

N. Saro, Symmetric Polynomial Inequalities, Crux Mathematicorum with
Mathematical Mayhem 27 (2001), 529-533.

J. SYLVESTER, On Newton’s Rule for the discovery of imaginary roots of
equations, Proc. of the Royal Society of London, xiv (1865), 268-270. See
also The Collected Mathematical Papers of James Joseph Sylvester, vol. 11
(1854-1873), pp- 493-494, Cambridge Univ. Press, 1908.

J. SYLVESTER, On an elementary proof and generalization of Sir Isaac New-
ton’s hitherto undemonstrated rule for discovery of imaginary roots, Proc.
of the London Math. Soc. vol. 1 (1865-1866), 1-16. See also The Collected
Mathematical Papers of James Joseph Sylvester, vol. I1 (1854-1873), pp.
498-513, Cambridge Univ. Press, 1908.

Received: 19 June 2004

University of Craiova,
Department of Mathematics,
Sreet A. I. Cuza 13,

Craiova 200585, Romania

E-mail: cniculescu@central.ucv.ro



