AN EXTENSION OF TWO BASIC RESULTS IN REAL
ANALYSIS

DORIN ERVIN DUTKAY, CONSTANTIN P. NICULESCU, AND FLORIN POPOVICI

ABSTRACT. Based on the existence of well behaved partitions, we extend the
Denjoy-Bourbaki Theorem and Leibniz-Newton Formula to a context where
the lack of derivability is supplied by the property of negligible semivariation.

1. INTRODUCTION

In what follows [a, b] denotes a nondegenerate compact interval and E denotes
a Banach space.

A subpartition of [a,b] is a collection P = (I;)}'_, of nonoverlapping closed
intervals in [a, b]; if Ux I}, = [a, b], we say that P is a partition. A tagged subpartition
of [a,b] is a collection of ordered pairs (Iy,%;)p_; consisting of intervals I, that
form a subpartition of [a,b], and tags ty € Iy, for k =1,...,n. If § is a gauge (that
is, a positive function) on a subset A C [a,b] we say that a tagged subpartition
(I, te)}—y is (0, A)-fine if all tags ty belong to A and I C (tx — 6(tx), tx + d(tx))
for k =1,...,n. A result known as Cousin’s Lemma asserts the existence of (4, [a, b])-
fine tagged partitions for each § : [a,b] — (0,00). See [1], page 11. This result is
equivalent to many other basic results such as the Fundamental Lemma of Analysis
on R (see [8]). In what follows we shall need a slightly more general version of
Cousin’s Lemma:

Lemma 1. Let § be a gauge on [a,b] and assume that A is a family of subintervals
[/, 2"] C [a,b] which satisfies the following two conditions:

i) for every z € [a,b) and every ' € (z — §(z), 2] N [a,b] there exists " € (z,D]
such that [z, 2] € A;

i1) for every «' € (b —6(b),b) N [a,b], the interval [z',b] belongs to A.

Then there exists a partition of [a,b] consisting of intervals in A.

Proof. Consider the set C of all points ¢ of [a, b] such that [a, c] admits a partition
consisting of intervals in A. Put z = supC. According to i), z > a. By reductio ad
absurdum we infer that actually z = b. Then 4i) assures that b € C. O

The original result of Cousin corresponds to the case where A is the family of
all nondegenerate intervals [2’, 2] such that

[2',2"] C (2 — 6(2),z + 6(2)) Na,b] for some z € [a,b].
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A related result, also extending Cousin’s Lemma, is as follows:

Lemma 2. Let ¢ be a gauge on [a,b] and assume that A is a family of subintervals
[/, 2"] C [a,b] which satisfies the following three conditions:

i) there is " € (a,b] such that [a,2"] € A;

i1) for every z € (a,b] and every z' € (z—0(z),z)N]a,b], there is " € [z,b] such
that [',2"] € A.

i19) for every [z, x"] € A with " < b there is y € (z”,b] such that [',y] € A.

Then there exists a partition of [a,b] consisting of intervals in A.

The two lemmata above are instrumental in our extension of the following two
results in Real Analysis:

(DB) The Denjoy-Bourbaki Theorem (which in turn is a generalization of the
Mean Value Theorem). This theorem was first published in [2], p. 23-
24, with an argument adapted from a celebrated paper of A. Denjoy [4],
dedicated to the Dini derivatives. A nice account on it is available in [5],
Ch. 8, Section 5.2.

(LN) The Leibniz-Newton Formula for Lebesgue integrable right derivatives. See
[7], p- 298-299, or [12].

A function F : [a,b] — E is said to have negligible variation on a set A C [a,b]
(and we write F' € NVy([a,b], E)) if, for every € > 0 there exists a gauge d. on A
such that if D = {([ug, vk]), ¢}y, is any (6., A)-fine tagged subpartition of [a, b],
then

Var (F; D) = Z |1E(vg) — F(ug)|| <e.
k=1

Analogously, F' : [a,b] — FE is said to have negligible semivariation on a set
A C [a,b] (and we write F' € NSV4([a,b], E)) if, for every ¢ > 0 there exists
a gauge 0. on A such that if D = {([ug,vs]),tk}r_; is any (d., A)-fine tagged
subpartition of [a, b], then

> (F(ve) = Fug))

k=1

<E.

For real-valued functions the two notions agree,
NSV4([a,b],R) = NV4([a,b],R).

Clearly, if F' € NVy4([a,b], E), then F is continuous at every point of A. Con-
versely, if C' is a countable set in [a, b] and F : [a,b] — F is continuous at every point
of C, then F' € NV¢([a,b], E). However, when Z C [a,b] is a Lebesgue negligible
set, there are continuous functions on [a, b] that do not belong to NSVz([a,b], E).
See [1], page 233, for an example.

Given a scalar function ¢ : [a,b] — R, one can attach to it the Dini derivatives.
In what follows we are interested in the upper right derivative,

plz+h) —p(z)

DT p(x) = limsup for x € [a,b)
h10 h
and the lower left derivative,
(x4 h) = o(x)
D_y(z) = hr’rl%nf — for z € (a,b)].
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We are now in a position to state our generalization of the Denjoy-Bourbaki
Theorem:

Theorem 1. Let F : [a,b] — F and ¢ : [a,b] — R be two continuous functions
which fulfil the following three conditions with respect to a suitable disjoint decom-
position [a,b] = A1 U Ay U A3 :

i) F and ¢ have negligible semivariation on Ag;

it) F' has a right derivative F_ at all points of Ay and HFJ’FH < D%y on Ay;

i1i) F has a left derivative F' at all points of Az and ”FLH < D_¢p on As.

Then

IF(b) - F(a)]| < 9(b) — p(a).

The details will be given in Section 2.

The classical case corresponds to the situation where A; is at most countable
and both F and ¢ have a right derivative at all points of Ay = [a,b)\A4;. In that
case the condition ) is automatically satisfied.

Under the assumption that F' and ¢ are both differentiable outside Ay, Theorem
1 has been proved in [9].

The Dini derivatives take values in R. Theorem 1 proves that a continuous func-
tion ¢ : [a,b] — R cannot have an infinite upper right derivative at all points, even
excepting a countable subset (or, more generally, a subset on which ¢ has negligible
variation).

The case where F' = 0 in Theorem 1 is an improvement of an old criterion of
monotonicity mentioned by S. Saks in his monograph [11], p. 204:

Corollary 1. Let ¢ : [a,b] — R be a continuous functions for which there exists a
disjoint decomposition [a,b] = Ay U Ay U As such that:

i) ¢ has negligible variation on As;

it) DT >0 on As;

iti) D_¢ >0 on As.

Then ¢ is nondecreasing.

An immediate consequence of Theorem 1 (for p(z) = M(x — a)) is the following:

Corollary 2. Let F : [a,b] — E be a continuous function for which there exists a
subset A C [a,b] such that:
i) F has negligible semivariation on A;
i) F has a right deriwvative F at all points of [a,b)\A and |F\|| < M on
[a, b)\ A.
Then
I1F(b) = F(a)l < M(b—a).

Corollary 1 allows us to retrieve the following classical result due to L. Scheefer:

Proposition 1. Suppose that F : [a,b] — R and G : [a,b] — R are two continuous
functions which admit finite upper right derivatives except on a countable subset C
and DYF = DTG at all points of [a,b]\C. Then F — G is a constant function.

Proof. In fact, from G = (G — F) + F' we infer that
DYG < D" (G- F)+ D'F,

so by our hypothesis we get Dt (G — F) > 0 on [a,b]\C. As C is countable, G — F
has negligible semivariation on C' and thus G — F' is nondecreasing by Corollary 1.
Changing the role of F' and G we conclude that F' — G is constant. (]
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The discussion above suggests us to consider the following generalization of the
concept of a primitive function:

Definition 1. Given a function f : [a,b] — E, by a right primitive of f we mean
any continuous function F : [a,b] — E which verifies the following two conditions:
i) F' has a right derivative F'_ at all points of [a,b] except for a Lebesgue negligible
subset A on which F has negligible semivariation;
it) F. = f on [a,b]\A.

The concept of a left primitive can be introduced in the same manner.

By using Lemma 1 one can prove that any two right primitives of a function
differ by a constant.

The importance of Definition 1 above is outlined by the following generalization
of the classical Leibniz-Newton Formula:

Theorem 2. Let f : [a,b] — E be a function which is integrable in the sense of
Henstock and Kurzweil and admits right primitives. Then

b
/ f(t) dt = F(b) — F(a)

for every right primitive F' of f.

Recall that a function f : [a,b] — E is said to be integrable in the sense of
Henstock and Kurzweil if there exists a vector I € FE such that for every ¢ > 0
one can find a gauge 0 : [a,b] — (0,00) such that for every (0, [a,b])-fine tagged
partition {([ux,vx]), ¢k }p—; of [a,b], we have

<E.

=) flte) (o —ur)
k=1

The vector I is unique with the above properties. It represents the integral of f
over [a, b], usually denoted by f: f(t)dt.

In the context of Lebesgue integrability, a special case of Theorem 2 has been
proved by E. Hewitt and K. Stromberg [7]. See also [12] for a simple proof. A nice
application is the fact that

/ fi(®)dt = () — f(a)

for every continuous convex function f : [a,b] — R.

Theorem 2 yields Corollary 2. This is clear in the case where £ = R. In the
general case, notice that we may restrict to the case of real Banach spaces and then
use the formula

(hoF) =hoF| forevery heE.

In Section 3 we shall prove a result which extends Theorem 2.

Finally, it is worth noticing that the entire theory above can be extended to
the framework of relative derivatives. Given a function F' : [a,b] — E, a subset
A C [a,b] and a point z € [a,b] (assumed to be a limit point of A), we define the
derivative of F at z relative to A by the formula

F(x)—F
F'(z;A) = lim Flz) = F(z)
z€A r—=z
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provided that the limit exists. In a similar manner one can define the relative
Dini derivatives DY F(z; A), Dy F(z;A), D™ F(z; A) and D_F(z; A). The details
concerning the extension of Theorems 1 and 2 to this framework will be presented
elsewhere.

2. PROOF OF THEOREM 1

Suppose there is given € > 0.
By the assumption ), there exists a gauge ¢ : Ay — (0,00) such that for every
(6, Ay)-fine subpartition ([ux,vx]),_, we have

n

SO () — F )| <2/4 and Y lo(or) — ¢ ()| < /4

k=1 k=1
We shall denote by A; the family of all subintervals [z/, "] of [a, b] such that

[Ilv ZBH] C (y - 5(2/)7 Yy + 5(y))
for suitable y € [/, 2"] N A;.
According to i1), for each z € A,

@ggquF@ wmwa>wudnlﬁ¢@§Q

T —z x—z
which yields an y € (z,b] such that

(2.1)

HF(y) — F(2) ‘ ply) —elz) e
y—z Yy—z 2(b— a)’
equivalently,
0= 55 a2~ IFW) ~ FE + (o) ~ 9(2)) > 0.

Since the functions F' and ¢ are continuous at z, there exists a positive number
d1(z) such that for every 2’ € (z — d1 (%), 2] N [a, b] we have

IF(@") = F(2)| <a/4 and  [o(2') = o(2)] < a/4
and for every z” € [y,y + 61 (2)) N [a, b] we have
IF(") = F(y)l <a/4 and |o(z") — o(y)] < a/4.

Then
ﬁ(i’?” — ') —||F(2") — F(2")| + (o(2") —¢(z") >a—4-a/4 =0,
that is,
22 IFE) - Pl - (ple") - ple) < gl =)

We denote by A; be the family of all intervals |2/, 2”'] which appear this way.
Similarly, for every z € As,

Jim sup ( Fx) - F(z)

r—z— xr—Zz

_ ‘P(Z; : f(Z)) = ||F.(2)|| = D_¢(2) <0,

and thus there exists a positive number §1(z) such that for every 2’ € (2—91(2), 2)N
[a, b], we have

1 (2) = F(2')ll = (p(2) — 9(a")) <
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Then

2(%-@@ — ) = [|F(2) = F(@)|| + (p(2) — p(a")) > 0.

Since F' and ¢ are continuous on [a,b], we can find a positive number J» such
that

8=

IF(") = F(2) <B/2 and  |p(z") - ¢(2)] < B/2
for every z” € [z, 2z + 02) N [a,b]. Then
ﬂj;aﬁﬂ‘wﬁ*HF@@‘JWfW+%ﬂfU*¢@ﬂ)>5*2%W2:0
that is,
€

9 F(z") — F(2) — nmo_ ’ "_ .y
23 P - P - (e - o) < e~ )
This reasoning yields a new family A3 of subintervals of [a, b].

The family

A=AUA3UA;3
verifies the hypothesis of Lemma 2 and thus there exists a partition D = ([z;, ©;41])
of [a, b] into subintervals of A.
By (2.1), (2.2) and (2.3), we get

1E(0) = F(a)l| = (¢(b) = ¢(a)) <

n—1
=0

<|| Y (Flir)-F@)|+ D le@i) —el@)

[zi,wip1]€AL [zi,xip1]€AL

+ Y (IF@m) = F@)l = (p(zin) = o))

[zi,xi41]€A\AL

9 9 9
<—+-+

)<
1717 20—a (@i —@i) <&,

) [zi,zip1]€A\AL

which means that | F'(b) — F(a)| — (¢(b) — ¢(a)) < €. As € > 0 was fixed arbitrary,
we conclude that||F(b) — F(a)|| — (¢(b) — ¢(a)) < 0.

3. A GENERAL LEIBN1Z-NEWTON FORMULA
The aim of this section is to prove the following generalization of Theorem 2:

Theorem 3. Let F : [a,b] — E and f : [a,b] — R be two functions for which there
exists a disjoint decomposition [a,b] = Ay U Ay U A3 such that:

i) F is continuous on [a,b] and has negligible semivariation on Ay;

it) I has a right derivative F, at all points of Ay and a left derivative F' at all
points of As;

iit) f is integrable in the sense of Henstock-Kurzweil and

0 Zf.TEAl
fl@)=1< Fi(z) ifxe A

Then .
/ f(z)dz = F(b) — F(a).

When A; is Lebesque negligible, the condition f =0 on A1 can be removed.
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Proof. Let € > 0 be arbitrarily fixed. Since the function f is integrable, there
is a gauge d1 : [a,b] — (0,00) such that for every ¢;-fine tagged partition D =
{([wi—1, @), ti}iw, of [a,b], we have

<

(3.1) /f dﬂc— f( )T —xi—1)

DN ™

Since F' € NSV, ([a,b], E), we can choose a gauge ds : [a,b] — (0, ) such that
82 < 61 on Ay and for any (d2, A;)-fine tagged subpartition D = {([z},z}]),s;}i—,
of [a, b], we have

n

Y (F(z)) = F(al)

3
< -,

(3.2) :

We shall denote by A; the family of all subintervals of [a,b] for which there are
points z € [z/,2"”] N Ay such that

[z, 2"] C (2 — 02(2), 2 + 62(2)) .

Clearly, A; consists of §;-fine intervals.
Suppose that z € As. By i), we can choose a number 02(z) € (0,01(z)] such
that

Yy € (2,2 +02(2)) N [a, b] implies ) : 5(2) 1)) < 4 (bg— a)
The last inequality says that
0= =g WD IF0) - FE) ~ f2) -2 >0,

so that by the continuity of F' we may choose a number
@
03(z,y) € <O,min {z +01(2) — vy, })
A0+

2’ € (2 = 8a(2,y), 2] N [a,b] mplies |F(@") = F(z)] < 7

for which

and
" € [y.y — ds(zy)) N[a.8] implies |F(a") = F(y)] < 5.

Therefore for all 2’ € (z — d3(z,y), 2] N [a,b] and all 2" € [y, y + d5(2,¥)) N [a,b]
we have
€

4(b—a)

and thus
(3.3) [F (") — F(z') — f(2) (2" = 2)|| <

(2" —a') = |[F(2") = F(2') = f(2) (2" = 2/)[| > a = 4- % =0

5
4(b—a)

We shall denote by Aj the set of all intervals [¢/, 2] that appear by the preceding
reasoning.

Suppose that z € As. By i), we can choose a number d2(z) € (0,d1(z)] such
that

(.TN _ xl) .

y € (z = d2(2),2) N [a,b] implies
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The last inequality says that

€
B = m(z—y)—||F(z)—F(y)—f(z)(z—y)H >0,
so that by the continuity of F' we may choose for each &’ € (z — d2(2),2) N [a,b] a
number
: g
d3(z,2') € <0,m1n {62(2), _—
21+
for which
z" € [z,2 + 63(2,2")] N [a,b] implies ||F(z") — F(z2)| < g
Therefore for all 2" € [z, z + d3(z,2")] N [a, b] we have
€ " / 1 / 1 / 6
& @) ||F(z") - F(z') — - 9.2
e )~ IFE) ~ F@) = () @ =) > 5 =2 § =0
and thus
4 Fl2") — F(2') — "o € "y
B P~ FE) - ) @ )] < g @ )
We shall denote by Az the new set of intervals [z, "] that appear by the last
reasoning.

The family of intervals
A=A UAUA;
n—1

fulfils the hypotheses of Lemma 2 and thus there is a partition D = ([x;, zi+1]);_,
of [a, b] consisting of intervals of A. Clearly, D is §;-fine. By the relation (4) we get

- /b f(x)dx

n—1

o) = Fla) — £z (@i —0)]|[+| S £ @it — / I
=0 =0
< Z [F(zit1) — Fz) — f(21) (Tip1 — 2)]|| + %
=0

On the other hand, by (5)-(7) and the fact that f|4, = 0, we get

< > (F(@is1) — F(w:))
{i|[zi,@it1]€AL}

+ > [ F(@i+1) — F(zi) — f(z) (Tit1 — )|

{i|[zi,zip1]€A\ALY

F(ziv1) — F(xi) = f(2i) (@ig1 — 23)]

:O

n—1

5 5 5
<1+m;($i+1—$i)—§

and the proof ends by noticing that ¢ > 0 was arbitrarily fixed. (]
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Letting A3 = () in Theorem 3 we get the assertion of Theorem 2. Actually,
Theorem 2 can be proved via a direct argument based on Lemma 1.
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