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Abstract. Several analogues of Fan�s inequality are proved in the context of
Mp-convexity.As a consequence, a Nash equilibrium theorem is obtained.

1. Introduction

In what follows we are interested in a class of functions having a nice behavior
under the action of means.
The weighted Mp-mean is de�ned for pairs of positive numbers x; y by the for-

mula

Mp(x; y; 1� �; �) =

8>><>>:
((1� �)xp + �yp)1=p; if p 2 Rnf0g

x1��y�; if p = 0
minfx; yg; if p = �1
maxfx; yg; if p =1;

where � 2 [0; 1]: If p is an odd number, we can extend Mp to pairs of real numbers.
Let E be a linear topological space and assume that C is a nonempty compact

and convex subset of E.

De�nition 1. We say that a function f : C �! R is Mp-concave if

f((1� �)x+ �y) �Mp(f(x); f(y); 1� �; �)
for all x; y 2 C and � 2 (0; 1):

Thus the M1-concave functions are the usual concave functions, while the M1-
concave functions, are precisely the quasi-concave functions.
A celebrated result due to Ky Fan asserts that any function f : C � C ! R+

which is quasi-concave in the �rst variable and lower semicontinuous in the second
variable veri�es the inequality

(1.1) min
y2C

sup
x2C

f(x; y) � sup
z2C

f(z; z):

The aim of this paper is to prove a complementary result, precisely:

Theorem 1. Suppose that f : C�C ! R+ is a function which is Mp-concave and
lower-semicontinuous in each variable. Then

min
y2C

sup
x2C

Mp
p (f(x; y); f(y; x); 1� �; �) � sup

z2C
fp(z; z);

for all � 2 (0; 1) and p 2 R.
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Our technics yields also the following fact:

Theorem 2. Let C be a nonempty compact and convex subset of E; and let f :
C � C ! R+ be a function which is Mp-concave in the �rst variable and lower-
semicontinuous in the second variable. Then

min
y2C

max
x2C

Mp
p (f(y; y); f(x; x); 1� �; �) � sup

z2C
fp(z; z)

for all � 2 (0; 1) and p 2 R.

For p an odd number f is allowed to take negative values.

2. Proof of the main result

We actually prove a much more general result:

Theorem 3. Assume f : C � C ! R+ is a function which is Mp-concave and
lower-semicontinuous in each variable and let g : C ! C be a continuous onto
function. Then

min
y2C

sup
x2C

Mp
p (f(x; y); f(y; x); 1� �; �) � sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� �; �);

for all � 2 (0; 1) and p 2 R.

Theorem 1 represents the particular case where g is the identity of C:
The proof of Theorem 3 is based on the KKM-Theorem, whose statement is

recalled here for the convenience of the reader:

Theorem 4. (Knaster-Kuratowski-Mazurkievicz). Suppose that for every point x
in a nonempty set X � E there is an associated closed subset M(x) � X such that

conv F �
[
x2F

M(x)

holds for all �nite subsets F � X. Then for any �nite subset F � X we have\
x2F

M(x) 6= ;:

Hence if some subset M(z) is compact, we have\
x2X

M(x) 6= ;:

Theorem 4 is one of the many results known to be equivalent to Brouwer�s �xed
point theorem. See [1].
Proof of Theorem 3. We attach to g : C ! C and � 2 [0; 1] the family of sets

(M(x))x2C ; where M(x) consists of all y 2 C such that

Mp
p (f(x; y); f(y; x); 1� �; �) � sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� �; �):

We will show that this family satis�es the hypothesis of the KKM-Theorem. In
fact, g(x) 2M(g(x)) for every x 2 C and

conv F �
[
x2F

M(g(x))
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for every �nite subset F � C. For example, if F consists of two elements g(x1) and
g(x2), we have to show that

(2.1) u = (1� �)g(x1) + �g(x2) 2M(g(x1)) [M(g(x2))

for every � 2 (0; 1). Our argument is by reductio ad absurdum.
If (2.1) fails, then for some � 2 (0; 1) we have

(2.2) Mp
p (f(x1; u); f(u; x1); 1� �; �) > sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� �; �);

and

(2.3) Mp
p (f(x2; u); f(u; x2); 1� �; �) > sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� �; �):

The Intermediate Value Theorem yields a � 2 [0; 1] such that x� = �x1 + (1 �
�)x2 2 C veri�es

g(x�) = u = (1� �)g(x1) + �g(x2):
Since f is Mp-concave in each variable it follows that

Mp
p (f(x� ; g(x�)); f(g(x�); x�); 1� �; �)

= (1� �)fp((1� �)x1 + �x2; u) + �fp(u; (1� �)x1 + �x2)

is not less than

(1� �)((1� �)fp(x1; u) + �fp(x2; u)) + �((1� �)fp(u; x1) + �fp(u; x2))
= (1� �)((1� �)fp(x1; u) + �fp(u; x1)) + �((1� �)fp(x2; u) + �fp(u; x2))
= (1� �)Mp

p (f(x1; u); f(u; x1); 1� �; �) + �Mp
p (f(x2; u); f(u; x2); 1� �; �)

> (1� �) sup
z2C

Mp
p (f(z; g(z)); f(g(z); z); 1� �; �)

+ � sup
z2C

Mp
p (f(z; g(z)); f(g(z); z); 1� �; �)

= sup
z2C

Mp
p (f(z; g(z)); f(g(z); z); 1� �; �);

a contradiction. Thus (2.1) follows.
By the KKM-Theorem we infer that\

x2C
M(g(x)) 6= ;;

which means the existence of y 2 C such that

Mp
p (f(x; y); f(y; x); 1� �; �) � sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� �; �);

for every x 2 C, equivalently,

sup
x2C

Mp
p (f(x; y); f(y; x); 1� �; �) � sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� �; �):

In conclusion,

min
y2C

sup
x
Mp
p (f(x; y); f(y; x); 1��; �) � sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1��; �): �
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3. A nonsymmetric extension of Fan�s Theorem

The aim of this section is to prove the following result:

Theorem 5. Let D and F be two two nonempty, compact and convex subsets of
E and let g be a continuous onto function g : D ! F . Then for every function f :
D�F ! R+ which is quasi-concave in the �rst variable and lower-semicontinuous
in the second variable the following inequality holds:

min
y2F

sup
x2D

f(x; y) � sup
z2D

f(z; g(z)):

This result extends Fan�s Theorem (which corresponds to the case where D = F
and g(z) = z for all z 2 D):
Proof. Consider the family of sets

M(g(x)) = fy 2 F : f(x; y) � sup
z2D

f(z; g(z))g; for x 2 D:

We will show that this family veri�es the assumptions of the KKM-Theorem. In
fact, it is easy to see that g(x) 2 M(g(x)); for x 2 D. Let A be a nonempty �nite
subset of F; say A = fg(x1); g(x2)g for simplicity. We have to prove that

(3.1) conv A �
[

g(x)2A

M(g(x));

that is,
(1� �)g(x1) + �g(x2) 2M(g(x1)) [M(g(x2));

for all � 2 (0; 1):
Indeed, if the contrary is true, then for a suitable � 2 (0; 1) we have

f(x1; (1� �)g(x1) + �g(x2)) > sup
z2D

f(z; g(z))

and
f(x2; (1� �)g(x1) + �g(x2)) > sup

z2D
f(z; g(z)):

The intermediate Value Theorem yields an � 2 [0; 1] such that x� = �x1 + (1�
�)x2 2 D veri�es

(1� �)g(x1) + �g(x2) = g(x�):
Then

f(x�; g(x�)) = f(�x1 + (1� �)x2; (1� �)g(x1) + �g(x2))
� min ff(x1; (1� �)g(x1) + �g(x2)); f(x2; (1� �)g(x1) + �g(x2))g
> sup

z2D
f(z; g(z));

a contradiction that shows that (3.1) works. By the KKM-Theorem, \x2DM(g(x)) 6=
;; and this fact assures the existence of a y0 2 F such that

f(x; y0) � sup
z2D

f(z; g(z)) for every x 2 D:

Consequently supx2D f(x; y0) � supz2D f(z; g(z)), which yields
min
y2F

sup
x2D

f(x; y0) � sup
z2D

f(z; g(z)): �

A similar argument yields the following theorem in the case of Mp-convex func-
tions:
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Theorem 6. Let C be a nonempty, compact and convex subset of E and let g
be a continuous onto function g : C ! C. Then for every Mp-convex function
f : C � C ! R+ which is upper-semicontinuous with respect to each variable we
have

max
x2C

inf
y2C

Mp
p (f(x; y); f(y; x); 1� �; �) � inf

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� �; �);

for all � 2 (0; 1).
In the same manner we can prove the following result for the quasi-convex func-

tions:

Theorem 7. Let D and F be two nonempty, compact and convex subsets and let
g be a continuous onto function g : D ! F . Let f : D�F ! R+ be a quasi-convex
function in the second variable and upper-semicontinuous in the �rst variable. Then
we have

max
x2D

inf
y2F

f(x; y) � inf
z2D

f(z; g(z)):

Remark 1. We impose the condition that g is an onto function in order to assure
the applicability of KKM-Theorem.

4. Further results

An important application of Theorem 5 is the existence of a g-equilibrium, a fact
that generalizes the existence of a Nash equilibrium.

Theorem 8. 1Let C = C1 �C2 � :::�Cn, where Ci; i = 1; : : : ; n are nonempty,
compact and convex subsets of E, let g = (g1; g2; :::; gn) : C ! C be a continuous
onto function and let f1; : : : ; fn : C ! C be lower-semicontinuous functions such
that x !

Pn
i=1 fi(y1; :::; g(xi); :::yn) is quasi convex for each y 2 C. Then there

exists an y 2 C such that

fi(y) � fi(y1; :::; g(xi); :::; yn));
for every xi 2 Ci; i = 1; :::; n:
Proof. Let f(x; y) =

Pn
i=1(fi(y) � fi(y1; :::; g(xi); :::; yn)). It is easy to see that

f satis�es the assumptions of Theorem 5. This yields an y 2 C such that
sup
x2C

f(x; y) � sup
z2C

f(z; g(z)) = 0:

Letting x = (y1; y2; :::; xi; :::yn) (i = 1; :::; n) in the last inequality we conclude that

fi(y)� fi(y1; :::; g(xi); :::; yn)) � 0
for every xi 2 Ci; i = 1; :::; n: �
The following result due to M. Sion [5] has important applications in convex

analysis and games theory:

Theorem 9. Let D and F be two nonempty, compact and convex subsets and let
f : D � F ! R+ be a function which is upper-semicontinuous and quasi-concave
function in the �rst variable, and lower-semicontinuous and quasi-convex in the
second variable. Then

min
y2F

max
x2D

f(x; y) = max
x2D

min
y2F

f(x; y):

1Corrected, February 12, 2009. The authors thank Professor S. Park for calling their attention
to a mistake in the original version of this theorem.
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This result can be derived via Theorems 5 and 7 above provided that

(4.1) inf
z2D

f(z; g1(z)) = sup
z2D

f(z; g2(z)):

for suitably chosen continuous onto functions g1 and g2: In fact, the hypothesis of
Sion�s theorem make possible to apply Theorems 5 and 7 and thus

inf
z2D

f(z; g1(z)) � max
x2D

min
y2F

f(x; y) � min
y2F

max
x2D

f(x; y) � sup
z2D

f(z; g2(z));

for all continuous onto functions g1; g2 : D ! F . While the topological condition
(4.1) can be easily veri�ed in a number of particular cases, we do not know how
general is it. Results of this type, concerning the existence of continuous onto maps
relating compact convex sets, may be found in [2].
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