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The Krein-Milman Theorem in Global NPC Spaces
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Abstract

We extend the Krein-Milman Theorem to the context of global NPC
spaces.
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An important result concerning the behavior of a continuous convex function
defined on a compact convex subset K (of a locally convex Hausdorff space)
asserts that its maximum is attained at an extreme point. The proof is an easy
consequence of the Krein-Milman Theorem. The aim of this note is to prove that
the Krein-Milman Theorem (and thus the aforementioned property of convex
functions) still works in the context of some spaces with a curved geometry.

We need some preparation.

Definition 1. A global NPC space is a complete metric space M = (M,d)
for which the following inequality holds true: for each pair of points xq,x1 € M
there exists a point y € M such that for all points z € E,

P(ey) < 5 (m) + 3P (m) — (Plaom).  (NPC)

In a global NPC space each pair of points zg,z7 € F can be connected by
a geodesic (that is, by a rectifiable curve v : [0,1] — E such that the length of
Vs, i d(v(s),v(t)) for all 0 < s <t < 1). Moreover, this geodesic is unique.
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The point y that appears in the inequality (NPC) is called the midpoint of x
and x; and has the property

1
d($07y> = d(y,.’l,‘1> = §d($0,.’1?1>-

Every Hilbert space is a global NPC space. In this case the geodesics are the
line segments.

The upper half-plane H= {z € C : Im z > 0}, endowed with the Poincaré met-
ric,

dx? + dy?
ds?® = 7y2 ,

constitutes a very instructive example of a global NPC space, where the geodesics
are the semicircles in H perpendicular to the real axis and the straight vertical
lines ending on the real axis.

A Riemannian manifold (M, g) is a global NPC space if and only if it is com-
plete, simply connected and of nonpositive sectional curvature. Besides manifolds,
other important examples of global NPC spaces are the Bruhat-Tits buildings (in
particular, the trees). See [2]. More information on global NPC spaces is available
in [1] and [4].

In what follows M will denote a global NPC space.

Definition 2. A subset C C M is called convex if v([0,1]) € C for each
geodesic 7 : [0,1] — C joining two points in C.

A function ¢ : C — R is called convex if the function ¢ o : [0,1] — R is
convex whenever v : [0,1] — C, ¥(t) = 7, is a geodesic, that is,

() < (1 =t)e(vo) +te(r1)

for all t € [0,1]. The function ¢ is called concave if —yp is conver.

All closed convex subsets of a global NPC space are in turn spaces of the same
nature. In a global NPC space, the distance from a point x,

p:x—d(x,x),

provides a basic example of a convex function. Moreover, its square is strictly
convex. See [6], Proposition 2.3 and Corollary 2.5. As a consequence, the balls
in a global NPC space are convex sets in the sense of Definition 2.

In the case of flat spaces, the Krein-Milman Theorem is derived as a conse-
quence of the geometric form of the Hahn-Banach Theorem. See [3], [5]. In the
framework of global NPC spaces we shall use a separation argument based on
convex functions.

Let K be a convex subset of a global NPC space M. A subset A C K is called
an extremal subset if it is nonempty, closed and verifies the following property:
If z,y € K and the geodesic v joining = and y meets A at a point -, for some
t € (0,1), then both endpoints z,y should be in A.
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A point z € K is called an extreme point of K if {z} is an extremal subset
(equivalently, if z is not interior for any geodesic with endpoints in K).

Theorem 1. Let K be a nonempty compact convex subset of a global NPC space
M. Then K is the closed convex hull of the set Ext K, of all extreme points of
K.

Proof: We start by noticing that every extremal subset of K contains at least
one extreme point. In particular, Ext K # ().

In fact, let us consider an extremal subset S that contains at least two points,
say xo and yo. The function x — d?(x, x¢) is strictly convex and not constant on
S, therefore

So = {x: d*(x,20) = M :=supd?(k,z0)}
kesS
is a closed proper subset of S. Sy is also an extremal subset; if 2/, 2" € S and Sy
contains a point x;, interior to the geodesic joining x’ and z”’, then

M = d?(z4,20) < (1 —t)d* (2, 20) + td*(z", 20) — t(1 — t)d* (', ")
<M —t(1 —t)d*(«’, 2",

which forces 2’ = 2" € S,.
By Zorn’s Lemma, every extremal subset includes a minimal extremal subset.
The discussion above shows that the minimal extremal subsets are one-point sets.
To end the proof we have to show that conv(Ext K) = K. Clearly, conv(Ext K)
C K. If this inclusion were strict, then the set

To = {z € K : d(x,conv(Ext K)) = sup d(y,conv(Ext K))}
yeK

is an extremal one. The argument is based on the fact that the function x —
d(xz,conv(Ext K)) is convex (which follows from the geodesic comparison, Corol-
lary 2.5 in [6]).

According to a remark above, Ty must intersect Ext K. Or,

To Nconv(Ext K) = (.

Consequently conv(Ext K) = K. O
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