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The Krein-Milman Theorem in Global NPC Spa
es
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Abstra
t

We extend the Krein-Milman Theorem to the 
ontext of global NPC
spa
es.
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An important result 
on
erning the behavior of a 
ontinuous 
onvex fun
tion

de�ned on a 
ompa
t 
onvex subset K (of a lo
ally 
onvex Hausdor� spa
e)

asserts that its maximum is attained at an extreme point. The proof is an easy


onsequen
e of the Krein-Milman Theorem. The aim of this note is to prove that

the Krein-Milman Theorem (and thus the aforementioned property of 
onvex

fun
tions) still works in the 
ontext of some spa
es with a 
urved geometry.

We need some preparation.

De�nition 1. A global NPC spa
e is a 
omplete metri
 spa
e M = (M,d)
for whi
h the following inequality holds true: for ea
h pair of points x0, x1 ∈ M

there exists a point y ∈ M su
h that for all points z ∈ E,

d2(z, y) ≤
1

2
d2(z, x0) +

1

2
d2(z, x1) −

1

4
d2(x0, x1). (NPC)

In a global NPC spa
e ea
h pair of points x0, x1 ∈ E 
an be 
onne
ted by

a geodesi
 (that is, by a re
ti�able 
urve γ : [0, 1] → E su
h that the length of

γ|[s,t] is d(γ(s), γ(t)) for all 0 ≤ s ≤ t ≤ 1). Moreover, this geodesi
 is unique.
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The point y that appears in the inequality (NPC) is 
alled the midpoint of x0

and x1 and has the property

d(x0, y) = d(y, x1) =
1

2
d(x0, x1).

Every Hilbert spa
e is a global NPC spa
e. In this 
ase the geodesi
s are the

line segments.

The upper half-planeH= {z ∈ C : Im z > 0}, endowed with the Poin
aré met-

ri
,

ds2 =
dx2 + dy2

y2
,


onstitutes a very instru
tive example of a global NPC spa
e, where the geodesi
s

are the semi
ir
les in H perpendi
ular to the real axis and the straight verti
al

lines ending on the real axis.

A Riemannian manifold (M, g) is a global NPC spa
e if and only if it is 
om-

plete, simply 
onne
ted and of nonpositive se
tional 
urvature. Besides manifolds,

other important examples of global NPC spa
es are the Bruhat-Tits buildings (in

parti
ular, the trees). See [2℄. More information on global NPC spa
es is available

in [1℄ and [4℄.

In what follows M will denote a global NPC spa
e.

De�nition 2. A subset C ⊂ M is 
alled 
onvex if γ([0, 1]) ⊂ C for ea
h

geodesi
 γ : [0, 1] → C joining two points in C.

A fun
tion ϕ : C → R is 
alled 
onvex if the fun
tion ϕ ◦ γ : [0, 1] → R is


onvex whenever γ : [0, 1] → C, γ(t) = γt, is a geodesi
, that is,

ϕ(γt) ≤ (1 − t)ϕ(γ0) + tϕ(γ1)

for all t ∈ [0, 1]. The fun
tion ϕ is 
alled 
on
ave if −ϕ is 
onvex.

All 
losed 
onvex subsets of a global NPC spa
e are in turn spa
es of the same

nature. In a global NPC spa
e, the distan
e from a point x0,

ϕ : x → d(x, x0),

provides a basi
 example of a 
onvex fun
tion. Moreover, its square is stri
tly


onvex. See [6℄, Proposition 2.3 and Corollary 2.5. As a 
onsequen
e, the balls

in a global NPC spa
e are 
onvex sets in the sense of De�nition 2.

In the 
ase of �at spa
es, the Krein-Milman Theorem is derived as a 
onse-

quen
e of the geometri
 form of the Hahn-Bana
h Theorem. See [3℄, [5℄. In the

framework of global NPC spa
es we shall use a separation argument based on


onvex fun
tions.

Let K be a 
onvex subset of a global NPC spa
e M . A subset A ⊂ K is 
alled

an extremal subset if it is nonempty, 
losed and veri�es the following property:

If x, y ∈ K and the geodesi
 γ joining x and y meets A at a point γt for some

t ∈ (0, 1), then both endpoints x, y should be in A.
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A point z ∈ K is 
alled an extreme point of K if {z} is an extremal subset

(equivalently, if z is not interior for any geodesi
 with endpoints in K).

Theorem 1. Let K be a nonempty 
ompa
t 
onvex subset of a global NPC spa
e

M . Then K is the 
losed 
onvex hull of the set ExtK, of all extreme points of

K.

Proof: We start by noti
ing that every extremal subset of K 
ontains at least

one extreme point. In parti
ular, ExtK 6= ∅.
In fa
t, let us 
onsider an extremal subset S that 
ontains at least two points,

say x0 and y0. The fun
tion x → d2(x, x0) is stri
tly 
onvex and not 
onstant on

S, therefore

S0 = {x : d2(x, x0) = M := sup
k∈S

d2(k, x0)}

is a 
losed proper subset of S. S0 is also an extremal subset; if x′, x′′ ∈ S and S0


ontains a point xt, interior to the geodesi
 joining x′ and x′′, then

M = d2(xt, x0) ≤ (1 − t)d2(x′, x0) + td2(x′′, x0) − t(1 − t)d2(x′, x′′)

≤ M − t(1 − t)d2(x′, x′′),

whi
h for
es x′ = x′′ ∈ S0.

By Zorn's Lemma, every extremal subset in
ludes a minimal extremal subset.

The dis
ussion above shows that the minimal extremal subsets are one-point sets.

To end the proof we have to show that conv(ExtK) = K. Clearly, conv(ExtK)
⊂ K. If this in
lusion were stri
t, then the set

T0 = {x ∈ K : d(x, conv(ExtK)) = sup
y∈K

d(y, conv(ExtK))}

is an extremal one. The argument is based on the fa
t that the fun
tion x →
d(x, conv(ExtK)) is 
onvex (whi
h follows from the geodesi
 
omparison, Corol-

lary 2.5 in [6℄).

A

ording to a remark above, T0 must interse
t Ext K. Or,

T0 ∩ conv(ExtK) = ∅.

Consequently conv(ExtK) = K.
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