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Abstract. Fan�s minimax inequality is extended to the context of metric
spaces with global nonpositive curvature. As a consequence, a much more
general result on the existence of a Nash equilibrium is obtained.

1. Preliminaries

Suppose that C is a nonempty compact and convex subset of a linear topological
space. Fan�s minimax inequality asserts that any function f : C�C ! R+ which is
quasi-concave in the �rst variable and lower semicontinuous in the second variable
veri�es the minimax inequality,

(F ) min
y2C

sup
x2C

f(x; y) � sup
z2C

f(z; z):

As is well known, this result is equivalent to the Brouwer Fixed Point Theorem.
See [2], pp. 205-206.
The aim of this work is to extend Fan�s minimax inequality to the framework of

global NPC spaces, that is, to the complete metric spaces with global nonpositive
curvature.

De�nition 1. A global NPC space is a complete metric space E = (E; d) for which
the following inequality holds true: for each pair of points x0; x1 2 E there exists a
point y 2 E such that for all points z 2 E;

(NPC) d2(z; y) � 1

2
d2(z; x0) +

1

2
d2(z; x1)�

1

4
d2(x0; x1):

In a global NPC space each pair of points x0; x1 2 E can be connected by a
geodesic (that is, by a recti�able curve 
 : [0; 1]! E such that the length of 
j[s;t]
is d(
(s); 
(t)) for all 0 � s � t � 1). Moreover, this geodesic is unique. The point
y that appears in the inequality (NPC) is the midpoint of x0 and x1 and has the
property

d(x0; y) = d(y; x1) =
1

2
d(x0; x1):

Every Hilbert space is a global NPC space. In this case the geodesics are the
line segments.
A Riemannian manifold (M; g) is a global NPC space if and only if it is complete,

simply connected and of nonpositive sectional curvature. Besides manifolds, other
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important examples of global NPC spaces are the Bruhat-Tits buildings (in partic-
ular, the trees). See [3]. More information on the global NPC spaces is available in
[1] and [4].
In what follows E will denote a global NPC space.

De�nition 2. A set C � E is called convex if 
([0; 1]) � C for each geodesic

 : [0; 1]! C joining 
(0); 
(1) 2 C.
A function ' : C ! R is called convex if the function ' � 
 : [0; 1]! R is convex

for each geodesic 
 : [0; 1]! C; 
(t) = 
t; that is,

'(
t) � (1� t)'(
0) + t'(
1)

for all t 2 [0; 1]: The function ' is called concave if �' is convex.

All closed convex subsets of a global NPC space are in turn spaces of the same
nature. In a global NPC space, the distance function is convex with respect to both
variables, a fact which implies that every ball is convex in the sense of De�nition 2.
An important feature of global NPC spaces is the possibility of introducing a

well behaved concept of a barycenter of a probability measure. See [7] for details.
For the convenience of the reader, we shall recall here some basic facts.
P1(E) denotes the set of all Borel probability measures � on E with separable

support, which verify the conditionZ
E

d(x; y)d�(y) <1

for some (and hence for all) x 2 E. The barycenter of a measure � 2 P1(E) is
the unique point z 2 E which minimizes the uniformly convex function Fy : z !R
E

�
d2(z; x)� d2(y; x)

�
d�(x); this point is independent of y 2 E and is also denoted

as b(�):
If the support of � is included in a convex closed set K; then b(�) 2 K:
P1(E) can be made a metric space with respect to the Wasserstein distance,

dW (�; �) = inf

ZZ
E�E

d(x; y)d�(x; y);

where the in�mum is taken over all � 2 P1(E � E) with marginals � and �. With
respect to this metric the barycenter map is nonexpansive, that is,

d(b(�); b(�)) � dW (�; �)

for all �; � 2 P1(E):
In what follows we shall be interested also in a more general class of convex like

functions, based on their behavior under the action of means.
The weighted Mp-mean is de�ned for pairs of positive numbers x; y by the for-

mula

Mp(x; y; 1� t; t) =

8>><>>:
((1� t)xp + typ)1=p; if p 2 Rnf0g

x1�tyt; if p = 0
minfx; yg; if p = �1
maxfx; yg; if p =1;

where t 2 [0; 1]: If p is an odd number, we can extend Mp to pairs of real numbers.
The unweighted means Mp(x; y) correspond to the case where � = 1=2:
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De�nition 3. We say that a function ' : C �! R is Mp-concave if for each
geodesic 
 : [0; 1]! C;

'(
t) �Mp('(
0); '(
1); 1� t; t); for all t 2 [0; 1]:

Thus the M1-concave functions are the usual concave functions, while the M1-
concave functions are precisely the quasi-concave functions.
The aim of this work is to prove the following analogue of Fan�s inequality:

Theorem 1. Let C be a compact convex subset of a global NPC space E.
i) If f : C � C ! R+ is quasi-concave in the �rst variable and lower semicon-

tinuous in the second variable, then

(F ) min
y2C

sup
x2C

f(x; y) � sup
z2C

f(z; z):

ii) If p 2 R and f : C � C ! R+ is Mp-concave and lower semicontinuous in
each variable, then

(pF ) min
y2C

sup
x2C

Mp
p (f(x; y); f(y; x); 1� t; t) � sup

z2C
fp(z; z);

for all t 2 (0; 1).

For p an odd number, the function f may take negative values.
The "�at" version of Theorem 1 (ii) is discussed in our paper [6].

2. The KKM Lemma

The Knaster-Kuratowski-Mazurkiewicz Lemma (abbreviated, as the KKM-Lemma)
is an important result in nonlinear analysis, equivalent to the Brouwer Fixed Point
Theorem. Recall here its statement:

Lemma 1. (Knaster-Kuratowski-Mazurkiewicz). Suppose that for every point x in
a nonempty set X; of a linear Hausdor¤ topological space E; there is an associated
closed subset M(x) � X such that

co F �
[

x2F
M(x)

holds for all �nite subsets F � X. Then for any �nite subset F � X we have\
x2F

M(x) 6= ;:

Hence if some subset M(z) is compact, we have\
x2X

M(x) 6= ;:

The proof of the KKM Lemma follows from the basic fact that the convex hull
coF; of any �nite set F; lies in a �nite dimensional space and thus it is also compact.
This makes possible to apply the Brouwer �xed point theorem and to conclude that
coF has the �xed point property. See [2], pp. 185-186. Recall that a topological
space K has the �xed point property if every continuous map f : K ! K has a
�xed point.
In the context of global NPC spaces we will adopt a similar strategy, based on

the remark that in a locally compact global NPC space, the closed convex hull of
each �nite family of points has the �xed point property. As a consequence, in a
global NPC space every compact convex set has the �xed point property (and this
fact can be used to prove the analogue of the Schauder Fixed Point Theorem).
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Recall that the notion of a convex hull is introduced via the formula

co F =
[1

n=0
Fn;

where F0 = F and for n � 1 the set Fn consists of all points in E which lie on
geodesics which start and end in Fn�1:

Lemma 2. The KKM Lemma extends to any global NPC space E; provided that
the closed convex hull of every nonempty �nite family of points of E has the �xed
point property.

Proof. We will concentrate here on the case where some of the sets M(x) are com-
pact.
Assuming

T
x2XM(x) = ;; this yields the existence of a �nite family of points

x1; : : : ; xN 2 X such that \N

i=1
M(xi) = ;:

Then the map x ! �x =
PN

i=1 d(x;M(xi))�xi=
PN

i=1 d(x;M(xi)) is continuous
(from E into P1(E)) and supp�x � K = co fx1; : : : ; xNg :
According to our hypothesis, the composite map P : x! �x ! b�x should have

a �xed point �x 2 K. Via a permutation, we may assume that d(x;M(xi)) > 0
for i = 1; :::; j and d(x;M(xi)) = 0 for i > j. This shows that actually x 2
co fx1; : : : ; xjg �

Sj
i=1M(xi): Equivalently, x 2M(xi) for some i � j, a fact that

contradicts the choice of j. Therefore the intersection
T
x2XM(x) is nonempty. �

3. Proof of the main result

We actually prove a much more general result:

Theorem 2. Suppose that p 2 R and f : C � C ! R+ is a function which is
Mp-concave and lower semicontinuous in each variable. Then for every continuous
a¢ ne onto function g : C ! C and every t 2 (0; 1),
min
y2C

sup
x2C

Mp
p (f(x; y); f(y; x); 1� t; t) � sup

z2C
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t):

This result has a straightforward variant for the Mp-convex functions which are
upper semicontinuous with respect to each variable.

Recall that a function g : X ! Y between geodesic metric spaces is called a¢ ne
if it maps the geodesics to geodesics. For more details, see [5].
Theorem 1 represents the particular case where g is the identity of C.

Proof. We attach to each t 2 [0; 1] a family of sets (M(g(x))x2C ; where M(g(x))
consists of all y 2 C such that

Mp
p (f(x; y); f(y; x); 1� t; t) � sup

z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t):

We will show that this family satis�es the hypothesis of Lemma 2. In fact,
g(x) 2M(g(x)) for every x 2 C and

co F �
[
x2F

M(g(x))

for every �nite subset F � C. For example, if F consists of two elements x1 and
x2, we have to show that the geodesic � joining the points g(x1) and g(x2) veri�es

(3.1) �� 2M(g(x1)) [M(g(x2))
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for every � 2 (0; 1). Our argument is by reductio ad absurdum.
If (3.1) fails, then for some � 2 (0; 1) we have

(3.2) Mp
p (f(x1; ��); f(��; x1); 1� t; t) > sup

z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t);

and

(3.3) Mp
p (f(x2; ��); f(��; x2); 1� t; t) > sup

z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t):

The Intermediate Value Theorem yields an element 
�1 of the geodesic 
; joining
x1 and x2, such that

g(
�1) = ��:

Since f is Mp-concave in each variable, it follows that the number

Mp
p (f(
�1 ; g(
�1)); f(g(
�1); 
�1); 1� t; t)

exceeds

(1� t)((1� �1)fp(x1; ��) + �1fp(x2; ��)) + t((1� �1)fp(��; x1) + �1fp(��; x2))
= (1� �1)((1� t)fp(x1; ��) + tfp(��; x1)) + �1((1� t)fp(x2; ��) + tfp(��; x2))
= (1� �1)Mp

p (f(x1; ��); f(��; x1); 1� t; t) + �1Mp
p (f(x2; ��); f(��; x2); 1� t; t)

> (1� �1) sup
z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t)

+ �1 sup
z
Mp
p (f(z; g(z)); f(g(z); �t); 1� t; t)

= sup
z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t);

which is a contradiction. Thus (3.1) follows.
By Lemma 2 we infer that

T
xM(g(x)) 6= ;; which yields the existence of y 2 C

such that

Mp
p (f(x; y); f(y; x); 1� t; t) � sup

z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t);

for every x 2 C, or equivalently,
sup
x
Mp
p (f(x; y); f(y; x); 1� t; t) � sup

z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t):

In conclusion,

min
y
sup
x
Mp
p (f(x; y); f(y; x); 1� t; t) � sup

z
Mp
p (f(z; g(z)); f(g(z); z); 1� t; t):

�

4. Further results

As above, E denotes a global NPC space.
The following nonsymmetric version of Theorem 2 can be proved in a similar

manner:

Theorem 3. Let C1 and C2 be two nonempty compact and convex subsets of E;
and let g be a continuous a¢ ne onto function g : C1 ! C2. Then for every
function f : C1 � C2 ! R+ which is quasi-concave in the �rst variable and lower
semicontinuous in the second variable, the following inequality holds:

min
x2C1

sup
y2C2

f(x; y) � sup
z2C1

f(z; g(z)):
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If f : C1 � C2 ! R+ is quasi-convex with respect to the second variable and upper
semicontinuous in the �rst variable, then

max
x2C1

inf
y2C2

f(x; y) � inf
z2C1

f(z; g(z)):

Proof. In the �rst case, apply Lemma 2 to the following family of sets:

M(g(x)) = fy 2 C2 : f(x; y) � sup
z2C1

f(z; g(z))g; for all x 2 C1:

�

An important application of Theorem 3 is the existence of a g-equilibrium, a fact
that generalizes the well known result on the Nash equilibrium:

Theorem 4. Let C = C1 � C2 � ::: � Cn be a Cartesian product of n nonempty
compact and convex subsets of E, let g = (g1; g2; :::; gn) : C ! C be a continuous
a¢ ne onto function and let f1; : : : ; fn : C ! C be lower semicontinuous functions
such that each of the maps xi ! fi(y1; :::; gi(xi); :::; yn) (i = 1; :::; n) is quasi-convex
for every y 2 C. Then there exists an �y 2 C such that

fi(�y) � fi(�y1; :::; gi(xi); :::; �yn));

for every xi 2 Ci; i = 1; :::; n:

Proof. Let f(x; y) =
Pn

i=1(fi(y)� fi(y1; :::; gi(xi); :::; yn)). It is easy to see that f
satis�es the assumptions of Theorem 3. This yields an �y 2 C such that

sup
x2C

f(x; �y) � sup
z2C

f(z; g(z)) = 0:

Letting x = (�y1; :::; xi; :::; �yn) (i = 1; :::; n) in the last inequality we conclude that

fi(�y)� fi(�y1; :::; gi(xi); :::; �yn)) � 0

for every xi 2 Ci; i = 1; :::; n: �
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