FAN’S INEQUALITY IN GEODESIC SPACES

CONSTANTIN P. NICULESCU AND IONEL ROVENTA

ABSTRACT. Fan’s minimax inequality is extended to the context of metric
spaces with global nonpositive curvature. As a consequence, a much more
general result on the existence of a Nash equilibrium is obtained.

1. PRELIMINARIES

Suppose that C' is a nonempty compact and convex subset of a linear topological
space. Fan’s minimax inequality asserts that any function f : C' x C' — R, which is
quasi-concave in the first variable and lower semicontinuous in the second variable
verifies the minimax inequality,

(F) min sup f(z,y) < sup f(z 2).

yeC zeC 2€C
As is well known, this result is equivalent to the Brouwer Fixed Point Theorem.
See [2], pp. 205-206.

The aim of this work is to extend Fan’s minimax inequality to the framework of
global NPC spaces, that is, to the complete metric spaces with global nonpositive
curvature.

Definition 1. A global NPC space is a complete metric space E = (E,d) for which
the following inequality holds true: for each pair of points xo,x1 € E there exists a
point y € E such that for all points z € F,

1 1 1
(NPC) d2(z,y) < §d2(z,m0) + §d2(z,a?1) — ZdQ(aso,ajl).

In a global NPC space each pair of points zg,z; € E can be connected by a
geodesic (that is, by a rectifiable curve « : [0, 1] — E such that the length of v/ 4
is d(~y(s),v(t)) for all 0 < s <t < 1). Moreover, this geodesic is unique. The point
y that appears in the inequality (N PC) is the midpoint of xo and x; and has the
property

1
d(wo,y) = d(y,z1) = §d(9€0,$1)-

Every Hilbert space is a global NPC space. In this case the geodesics are the
line segments.

A Riemannian manifold (M, g) is a global NPC space if and only if it is complete,
simply connected and of nonpositive sectional curvature. Besides manifolds, other
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important examples of global NPC spaces are the Bruhat-Tits buildings (in partic-
ular, the trees). See [3]. More information on the global NPC spaces is available in
[1] and [4].

In what follows E will denote a global NPC space.

Definition 2. A4 set C C FE is called convex if v([0,1]) C C for each geodesic
v :[0,1] — C joining v(0),~(1) € C.

A function ¢ : C — R is called convez if the function oo~ :[0,1] — R is convex
for each geodesic vy : [0,1] — C, v(t) = v, that is,

(7)) < (1= t)p(v0) + (1)

for all t € [0,1]. The function ¢ is called concave if —¢ is convez.

All closed convex subsets of a global NPC space are in turn spaces of the same
nature. In a global NPC space, the distance function is convex with respect to both
variables, a fact which implies that every ball is convex in the sense of Definition 2.

An important feature of global NPC spaces is the possibility of introducing a
well behaved concept of a barycenter of a probability measure. See [7] for details.
For the convenience of the reader, we shall recall here some basic facts.

PL(E) denotes the set of all Borel probability measures p on E with separable
support, which verify the condition

/ﬁmww@<m
E

for some (and hence for all) z € E. The barycenter of a measure u € PY(E) is
the unique point z € F which minimizes the uniformly convex function Fy : z —
fE [d2 (z,7) — d*(y, m)] du(z); this point is independent of y € F and is also denoted
as b(p).

If the support of 4 is included in a convex closed set K, then b(p) € K.

PL(E) can be made a metric space with respect to the Wasserstein distance,

(e =inf [[ depire.),

where the infimum is taken over all A € P}(E x E) with marginals 4 and v. With
respect to this metric the barycenter map is nonexpansive, that is,

d(b(u), b(v)) < d" (p,v)

for all u,v € PL(E).

In what follows we shall be interested also in a more general class of convex like
functions, based on their behavior under the action of means.

The weighted M,-mean is defined for pairs of positive numbers z,y by the for-
mula

(1 = t)zP +ty?)Y/P, if p € R\{0}

7ty ifp=0
My(z,y;1 = t,1) = min{z, y}, if p=—o0
max{z,y}, if p = o0,

where ¢ € [0, 1]. If p is an odd number, we can extend M, to pairs of real numbers.
The unweighted means M, (x,y) correspond to the case where A =1/2.
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Definition 3. We say that a function ¢ : C — R is Mp-concave if for each
geodesic v : [0,1] — C,

o) = My(p(0),(n); 1 —t,t), forallt € [0,1].

Thus the M;-concave functions are the usual concave functions, while the M-
concave functions are precisely the quasi-concave functions.
The aim of this work is to prove the following analogue of Fan’s inequality:

Theorem 1. Let C be a compact convex subset of a global NPC' space E.
i) If f: C x C — Ry is quasi-concave in the first variable and lower semicon-
tinuous in the second variable, then
(F) min sup f(z,) < sup f(2, ).
yeC zeC z€C
i) IfpeRand f: C x C — Ry is My-concave and lower semicontinuous in
each variable, then

(pF) min sup Mg(f($7y)vf(y7x)7 1- t7t) S sup fp(Z,Z),
yel zeC zeC

for allt € (0,1).

For p an odd number, the function f may take negative values.
The "flat" version of Theorem 1 (ii) is discussed in our paper [6].

2. THE KKM LEMMA

The Knaster-Kuratowski-Mazurkiewicz Lemma (abbreviated, as the KKM-Lemma)
is an important result in nonlinear analysis, equivalent to the Brouwer Fixed Point
Theorem. Recall here its statement:

Lemma 1. (Knaster-Kuratowski-Mazurkiewicz). Suppose that for every point x in
a nonempty set X, of a linear Hausdorff topological space E, there is an associated
closed subset M (x) C X such that

co FCU eFM(QC)

holds for all finite subsets F* C X. Then for any finite subset F C X we have
rEF M(:L') 7& (Z)
Hence if some subset M (z) is compact, we have

reX

The proof of the KKM Lemma follows from the basic fact that the convex hull
co F, of any finite set F) lies in a finite dimensional space and thus it is also compact.
This makes possible to apply the Brouwer fixed point theorem and to conclude that
co F has the fixed point property. See [2], pp. 185-186. Recall that a topological
space K has the fized point property if every continuous map f : K — K has a
fixed point.

In the context of global NPC spaces we will adopt a similar strategy, based on
the remark that in a locally compact global NPC space, the closed convex hull of
each finite family of points has the fixed point property. As a consequence, in a
global NPC space every compact convex set has the fixed point property (and this
fact can be used to prove the analogue of the Schauder Fixed Point Theorem).
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Recall that the notion of a convexr hull is introduced via the formula
co F'= = F,,

n=0
where Fy = F and for n > 1 the set F),, consists of all points in £ which lie on
geodesics which start and end in F;,_;.

Lemma 2. The KKM Lemma extends to any global NPC space E, provided that
the closed convex hull of every nonempty finite family of points of E has the fized
point property.

Proof. We will concentrate here on the case where some of the sets M(x) are com-
pact.

Assuming (), oy M(z) = 0, this yields the existence of a finite family of points
r1,...,xNy € X such that

N
(), M(z:) =0.

Then the map © — p, = Zfil d(x, M(x;))os,/ sz\; d(x, M(x;)) is continuous
(from E into P}(E)) and supp p C K =¢0 {z1,...,2N} -

According to our hypothesis, the composite map P :  — u, — b, should have
a fixed point Z € K. Via a permutation, we may assume that d(z, M (z;)) > 0
for i = 1,...,j and d(Z,M(z;)) = 0 for ¢ > j. This shows that actually T €
e {z1,...,2;} C Ul_; M(x;). Equivalently, T € M(x;) for some i < j, a fact that
contradicts the choice of j. Therefore the intersection (), y M (z) is nonempty. [0

3. PROOF OF THE MAIN RESULT
We actually prove a much more general result:

Theorem 2. Suppose that p € R and f : C x C — Ry is a function which is
M,,-concave and lower semicontinuous in each variable. Then for every continuous
affine onto function g : C — C and every t € (0,1),

min sup MJ (f(z,y), f(y,2); 1 —t,t) < sup M (f(2,9(2)), f(9(2),2);1 = t, ).
yel zec zeC

This result has a straightforward variant for the My-convex functions which are
upper semicontinuous with respect to each variable.

Recall that a function g : X — Y between geodesic metric spaces is called affine
if it maps the geodesics to geodesics. For more details, see [5].
Theorem 1 represents the particular case where g is the identity of C.

Proof. We attach to each t € [0,1] a family of sets (M (g(x))zec, where M(g(z))
consists of all y € C' such that

MY (f(x,y), f(y,x);1 —t,1) < sup Mp(f(z,9(2)), f(g(2),2); 1 —t,1).

We will show that this family satisfies the hypothesis of Lemma 2. In fact,
g(z) € M(g(z)) for every x € C' and

co F C U M(g(z))
zeF

for every finite subset F' C C. For example, if F' consists of two elements x; and
X2, we have to show that the geodesic § joining the points g(x1) and g(z2) verifies

(3.1) Bo € M(g(z1)) UM (g(z2))
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for every 6 € (0,1). Our argument is by reductio ad absurdum.
If (3.1) fails, then for some 6 € (0,1) we have

(3.2)  MP(f(z1,B0), f(Bo, x1);1 — L, 1) > SgpM;’(f(z,g(Z)%f(g(Z),Z); 1-t,1),
and

(3.3)  Mp(f(x2, B9), /(Bp w2); 1 = 1,1) > sup My(f(2, 9(2)), F(g(2), 2); 1 — ;).

The Intermediate Value Theorem yields an element ~y, of the geodesic v, joining
x1 and x9, such that
9(ve,) = Bo-
Since f is M,-concave in each variable, it follows that the number

Mll’j(f(’yel?g(’y@l))v f(g(791)7701); 1-— t,t)
exceeds

(1 =t)((1 = 601) f"(z1, Bo) + 01" (22, Bo)) + t((1 — 01) f*(Bo, x1) + 01 f7(Bo, x2))

=1 —=01)((1 =) fP(z1,B89) +tfP(Bo, 1)) + 01((1 — 1) fP (22, Bo) + Lf*(Bo, 72))

= (1= 01)Mp(f(x1,B0), f(Bo,x1); L — t, 1) + 1 M (f(22,B80), f(Bo,x2); 1 — L,)
> (1= 00 sup My(f(z,9(2)), fg(2), 2): 1 — £,1)

+ 01 SLZIp Mg(f(zag(z))7 f(g(Z), at); 1—t,t)
= sup MP(f(z,9(2)), f(9(2),2);1 = t,1),

which is a contradiction. Thus (3.1) follows.
By Lemma 2 we infer that (0, M(g(z)) # 0, which yields the existence of y € C
such that

MY (f(x,y), f(y,2);1 —t,1) < sup Mp(f(z,9(2)), f(g(2),2); 1 —t,t),
for every = € C, or equivalently,
sup MEP(f(x,y), f(y,x);1 —t,1) < sup MP(f(z,9(2)), f(g(2),2);1 = t,1).
In conclusion,

myinsgp My (f(z,y), f(y,x);1 —t,t) < sup Mp(f(z,9(2)), f(g(2),2); 1 —t,1).

O

4. FURTHER RESULTS

As above, E denotes a global NPC space.
The following nonsymmetric version of Theorem 2 can be proved in a similar
manner:

Theorem 3. Let Cy and Cs be two monempty compact and convex subsets of E,
and let g be a continuous affine onto function g : C; — Cs. Then for every
function f : C; x Cy — Ry which is quasi-concave in the first variable and lower
semicontinuous in the second variable, the following inequality holds:

min sup f(z,y) < sup f(z,g(2)).
z€C1 yeC, zeCy
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If f: C1 x Cy — Ry is quasi-convex with respect to the second variable and upper
semicontinuous in the first variable, then

inf > inf .
2€Ch yeCy f@y) 2 eCy 1z 9(2))

Proof. In the first case, apply Lemma 2 to the following family of sets:
M(g(z)) ={yeCs: f(z,y) < sué) f(z,9(2)}, forallze Cy.
zeCy

O

An important application of Theorem 3 is the existence of a g-equilibrium, a fact
that generalizes the well known result on the Nash equilibrium:

Theorem 4. Let C = C; x Cy x ... x C}, be a Cartesian product of n nonempty
compact and convex subsets of E, let g = (g1,92,-..,9n) : C — C be a continuous
affine onto function and let f1,..., fn : C — C be lower semicontinuous functions
such that each of the maps x; — fi(y1, ..., §i(X:), .., yn) (i = 1,...,n) is quasi-convex
for every y € C. Then there exists an § € C' such that

[i@) < filrs s Gi(T6)5 s Un))s

for everyx; € Ciy i =1,...,n.

P?"OOf. Let f(xay) = Z?:l(fl(y) - fi(yla 791(371)7 7yn)) It is easy to see that f
satisfies the assumptions of Theorem 3. This yields an § € C such that

sup f(x,9) < sup f(z,9(2)) = 0.
zeC zeC

Letting = = (71, ... (i =1,...,n) in the last inequality we conclude that

s Ly enny gn)
fi@) = fi(G, - gi(@i), -, 9n)) <0

for every z; € C;, i =1,...,n. |
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