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Abstract. We discuss a scale of necessary conditions for the integrability of
a function f : [a;1)! R; based on the concept of limit in density.

In 1827, L. Olivier [12] published a paper claiming that the harmonic series
represents a sort of "boundary" case with which other potentially convergent series
of positive terms could be compared. More precisely, he asserted that a positive
series

P
an whose terms are monotone decreasing is convergent if and only if nan !

0. One year later, Abel [1] disproved this convergence test by considering the case
of the (divergent) positive series

P
n�2

1
n lnn . However the necessity part survived

the scrutiny of Abel and became known as Olivier�s Theorem:

Theorem 1. If
P
an is a convergent positive series and (an)n is monotone de-

creasing, then nan ! 0:

A nice account on Abel�s contribution to the nonexistence of "boundary" positive
series can be found in the paper of M. Goar [5].
Simple examples show that the monotonicity condition is vital for Olivier�s The-

orem. See the case of the series
P
an; where an =

logn
n if n is a square, and an = 1

n2

otherwise.
In 2003, T. �alát and V. Toma [13] made the interesting remark that the

monotonicity condition in Theorem 1 can be dropped if the convergence of the
sequence (nan)n is weakened to convergence in density.
In order to explain the terminology, recall that a subset A of N has zero density

if

d(A) = lim
n!1

jA \ [1; n]j
n

= 0:

Here j�j stands for cardinality.
A sequence (xn)n of real numbers converges in density to a number x (abbre-

viated, (d)-limn!1 xn = x) if for every " > 0 the set A(") = fn : jxn � xj � "g
has zero density. �alát and Toma [13] called this statistical convergence, but we
adopted here the terminology of H. Furstenberg [4].
Of course, the above concepts have natural integral analogues. For simplicity,

we will consider here only the case of Lebesgue measure m on R.
A measurable subset A of R has zero density (at in�nity) if

lim
r!1

m (A \ (�r; r))
r

= 0:
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Clearly, the intervals (a � r; a + r) centered at any other point a of R will do
the same job. In fact, every set of �nite measure has zero density. The union of
intervals

S1
n=1(n; n+ 1=n) provides an example of a set of in�nite measure having

zero density.
Given a real-valued function f de�ned on an interval [�;1), its limit in density

at in�nity,
` = (d)- lim

x!1
f(x);

is de�ned by the condition that each of the sets ft � � : jf(t)� `j � "g has zero
density, whenever " > 0: Equivalently, ` = (d)-limx!1 f(x) means the existence of
a subset I � R of zero density such that for every " > 0 there is a positive number
� for which jf(x)� `j < " whenever x 2 (�;1)nI.
The above notions can be traced back to a famous paper by B. O. Koopman

and J. von Neumann [8], dedicated to weakly mixing transformations. Their basic
remark concerns the connection between convergence in density and convergence of
certain arithmetic means. We recall it here in a slightly more general formulation
(and with a simpli�ed argument).

Theorem 2. Suppose that f : [0;1)! R is a nonnegative locally integrable func-
tion. Then

lim
x!1

1

x

Z x

0

f(t)dt = 0 implies (d)- lim
x!1

f(x) = 0:

and the converse holds if in addition f belongs to one of the spaces Lp(0;1), for
p 2 [1;1].1

Proof. Assuming limx!1
1
x

R x
0
f(t)dt = 0; we consider for each " > 0 the set A" =

fx > 0 : f(x) � "g : Each of these sets has zero density since
m ([0; x] \A")

x
� 1

x

Z x

0

f(t)

"
dt

� 1

"x

Z x

0

f(t)dt! 0

as x!1. Therefore (d)-limx!1 f(x) = 0:
Conversely, if (d)-limx!1 f(x) = 0; then for " > 0 arbitrarily �xed there is a set

J of zero density outside which f < ": For every x > 0;

1

x

Z x

0

f(t)dt =
1

x

Z
[0;x]\J

f(t)dt+
1

x

Z
[0;x]nJ

f(t)dt

� 1

x

Z
[0;x]\J

f(t)dt+ ":

If f 2 Lp(0;1) for some p 2 (1;1); then

1

x

Z
[0;x]\J

f(t)dt � 1

x1�1=q

�
m ([0; x] \ J)

x

�1=q �Z 1

0

fp(t)dt

�1=p
;

by Hölder�s inequality; here 1=p+1=q = 1. Since J is a set of zero density, the limit
limx!1

m([0;x]\J)
x equals 0, which forces limx!1

1
x

R x
0
f(t)dt = 0. For the other

1Corrected version, September 26, 2011.
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two cases, notice that

1

x

Z
[0;x]\J

f(t)dt � 1

x

Z 1

0

f(t)dt;

when f 2 L1(0;1); and
1

x

Z
[0;x]\J

f(t)dt � m ([0; x] \ J)
x

kfkL1 ;

when f 2 L1(0;1): �
Corollary 1. If f 2 L1(0;1), then (d)-limx!1 f(x) = 0:

Remark 1. If f 2 L1(0;1) and T : (0;1) ! (0;1) is a measurable map
which preserves the Lebesgue measure, then also f � T 2 L1(0;1) and thus (d)-
limx!1 f(T (x)) = 0:

Even when f is also continuous the conclusion of Corollary 1 cannot be improved
to usual convergence to 0. However this happens in two important particular cases:
a) f is uniformly continuous (this case is covered by Barb¼alat�s Lemma [2]); and
b) f 2 L1(0;1) is a nonnegative nonincreasing function (since limx!1 xf(x) =
0; according to the integral analogue of Olivier�s Theorem). The monotonicity
assumption in case b) can be slightly relaxed by asking only the existence of a
constant C > 0 such that f(t) � Cf(x) for any t 2 [x; 2x] and any x > 0. See [10].
It is worth to notice that the aforementioned result of �alát and Toma can be

obtained easily from the discrete version of Theorem 2. Details are to be found
in [11] (which contains also an account on the history of convergence in density).
Apparently that short argument cannot be adapted in the integral. However we
will be able to establish the integral analogue of the result of �alát and Toma by
a di¤erent strategy, which has the advantage to cover (with obvious modi�cations)
both the integral and the discrete case.

Theorem 3. If f 2 L1(0;1); then
(d)- lim

x!1
xf(x) = 0:

Theorem 3 allows us easily to conclude that certain oscillatory continuous func-
tions such as sin x

x are not Lebesgue integrable on (0;1):
In the variant of Lebesgue integrable functions de�ned on cones in Rn; the con-

clusion of Theorem 3 reads as

(d)- lim
jxj!1

xf(x) = 0:

The main ingredient in the proof of Theorem 3 is the following technical result:

Lemma 1. If g : (0;1) ! R is a decreasing positive function such that � =
inf fxg(x) : x > 0g > 0; then every measurable subset A on which g is integrable
has zero density.

Proof. Indeed, if m(A) < 1, then clearly A has zero density. Suppose now that
m(A) =1: Since g is decreasing and integrable on A; then necessarily
(1) lim

x!1
g(x) = 0:

This conclusion can be strengthened to

(2) lim
x!1

m (A \ (0; x]) g(x) = 0:
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In fact for " > 0 arbitrarily �xed we can �nd x1 > 0 such thatZ
A\[x1;1)

g(x)dx < "=2;

while (1) yields an x2 2 (x1;1) for which

g(x) <
"

2x1
whenever x > x2:

Thus for x > x2 we get

m (A \ (0; x]) g(x) = m (A \ (0; x1]) g(x) +m(A \ (x1; x])g(x)

< x1g(x) +

Z
A\(x1;1)

g(x)dx

<
"

2
+
"

2
= ";

and the proof of (2) is done.
The proof of Lemma 1 ends by noticing that

0 � m (A \ (0; x])
x

=
m (A \ (0; x]) g(x)

xg(x)

� 1

�
m (A \ (0; x]) g(x)! 0;

as x!1: �
Once Lemma 1 is established, the proof of Theorem 3 can be completed easily

by considering the measurable sets

S" = fx : x jf(x)j � "g ;
associated to " > 0: Since

"

Z
S"

dx

x
�
Z
S"

jf(x)j dx <1;

by Lemma 1 applied to g(x) = 1=x; we infer that S" has zero density. Consequently
(d)-limx!1 xf(x) = 0. �
In order to discuss the higher order analogues of the above results we will adopt

the notation used in dynamical system theory for the iterates of a function f =
f(x) :

f (0)(x) = x and f (n)(x) = (f � f � � � � � f| {z })
n times

(x) for n � 1:

Proposition 1. (The higher order Olivier criterion): If f : [a;1) ! R is a non-
negative integrable function such that

�Qn
k=0 ln

(k) x
�
f(x) is decreasing, then

lim
x!1

�Yn+1

k=0
ln(k) x

�
f(x) = 0:

Proof. The case where n = 0 is an immediate consequence of the following estimate
of (x lnx) f(x);Z x

p
x

f(t)dt =

Z x

p
x

tf(t)
dt

t
� xf(x)

Z x

p
x

dt

t
=
1

2
(x lnx) f(x);

valid for all x � 2: The proof can now be completed by mathematical induction. �
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If we discard the hypothesis on monotonicity, then the conclusion of Proposition
1 is no longer true. Instead one may use the higher order analogues of Theorem 3.

Theorem 4. If f 2 L1(0;1); then

(dh)- lim
x!1

(x lnx) f(x) = 0:

Here dh stands for the harmonic density,

dh(A) = lim
r!1

1

ln r

Z
A\[1;r)

dt

t
;

and the limit in harmonic density, (dh)-limx!1 g(x) = `; means that each of the
sets ft : jg(t)� `j � "g has zero harmonic density, whenever " > 0:

Proof. We start by noticing the following analogue of Lemma 1: If g : (1;1)! R
is a measurable positive function such that xg(x) is decreasing and

inf f(x lnx) g(x) : x > 1g = � > 0;

then every measurable subset A of (1;1) on which g is integrable has zero harmonic
density.
To prove this assertion, it su¢ ces to consider the case where m(A) =1 and to

show that

(3) lim
x!1

 Z
A\[1;x]

dt

t

!
xg(x) = 0:

The details are very similar to those used in the proof of Lemma 1 and thus they
are omitted.
Having (3) at hand, the proof of Theorem 4 can be completed by considering for

each " > 0 the measurable set

S" = fx � 1 : (x lnx) jf(x)j � "g ;

Since

"

Z
S"

dx

x lnx
�
Z
S"

jf(x)j dx <1;

then by the aforementioned analogue of Lemma 1, applied to g(x) = 1= (x lnx) ; we
infer that S" has zero harmonic density. Consequently (dh)-limx!1 (x lnx) f(x) =
0; and the proof is done. �

Since
d(A) = 0 implies dh(A) = 0;

(see [6], Lemma 1, p. 241), it follows that the existence of limit in density assures
the existence of limit in harmonic density.
A result known in measure theory as the layer cake representation (see [9], The-

orem 1.13, p. 26) asserts that every nonnegative function f 2 L1(0;1) veri�es the
formula Z 1

0

f(x)dx =

Z 1

0

m (fx : f(x) > tg) dt:

According to the integral form of Olivier�s Theorem,

lim
t!1

tm (fx : f(x) > tg) = 0;
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while Theorem 4 yields the apparently better conclusion,

(dh)- lim
t!1

(t ln t)m (fx : f(x) > tg) = 0:

A similar remark works for the decreasing rearrangement of any function f 2
L1(0;1): Details concerning the rearrangement of sets and functions may be found
in the book of Lieb and Loss [9], Section 3.1.
Iterating the idea behind Theorem 4, we arrive at the conclusion that actually

the membership to L1(0;1) imposes a sequence of necessary conditions in terms
of limit in density,

(dn) - lim
x!1

h�Yn

k=0
ln(k) x

�
f(x)

i
= 0;

where dn stands for the density of order n: Precisely, d0 = d; d1 = dh and, in
general,

dn(A) = lim
r!1

1

ln(n) r

Z
A\[exp(n�1) 1;r)

dtQn�1
k=0 ln

(k) t
;

for every measurable subset A and every n � 1:
Under these circumstances it is natural to ask whether any continuous positive

function g : [0;1)! R such that

lim
x!1

�Yn

k=0
ln(k) x

�
g(x) = 0 for every n � 1

is necessarily integrable. The answer is negative as follows from an old paper by P.
Du Bois-Reymond [3] (see also [7]).
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