
Weak solutions via bipotentials in mechanics of deformable solids

Andaluzia Matei and Constantin P. Niculescu

Department of Mathematics, University of Craiova

A.I.Cuza 13, Craiova, RO-200585, Romania

26th September 2011

Abstract

We consider a displacement-traction boundary values problem for elastic materials, under the
small deformations hypothesis, for static processes. The behavior of the material is modelled by a
constitutive law involving the subdi¤erential of a proper, convex, and lower semicontinuous map.
The constitutive map and its Fenchel conjugate allow us to construct a bipotential function. Based on
this construction, we propose a weak formulation of our mechanical problem. Furthermore, we prove
the existence of at least one weak solution and we investigate the uniqueness of the weak solution. We
also comment on the relevance of our variational approach, by considering three signi�cant examples.

AMS subject classi�cation: 49J53, 49J52, 26B25, 74B20
Key words: elastic constitutive law, subdi¤erentiable constitutive map, bipotential, weak solution.

1 Introduction

The main purpose of this paper is to prove the weak solvability of the general displacement-traction
mechanical model for elastic materials. The behavior of the elastic materials is described by a sub-
di¤erential inclusion, with a constitutive map which is proper, convex and lower semicontinuous. The
envisaged processes are static and the calculus is performed under the small deformations hypothesis.

In our approach the weak formulation of the model yields a system of two variational inequalities
involving a bipotential which is attached to the constitutive map and its Fenchel conjugate; see Problem
2 below. The unknown is the pair consisting of the displacement vector and the Cauchy stress tensor
and we seek for it into a Cartesian product between a Hilbert space and a nonempty closed and convex
subset of a second Hilbert space. We focus on the existence and uniqueness of the weak solution.
However it is worth to mention that our results are suitable to discuss the numerical approximation
of this solution (that is, a simultaneous approximation of the displacement �eld and the Cauchy stress
tensor). In the classical approach the displacement �eld and the Cauchy stress tensor are treated
separately.

The presence of the bipotentials in mechanics of solid was noticed quite recently, but the literature
covering this subject is fast growing. The construction of several bipotential functions appears in
connection with Coulomb�s friction law [4] and Cam-Clay models in soil mechanics [14], cyclic plasticity
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[13], [2] and viscoplasticity of metals with non-linear kinematical hardening rule [8], Lemaitre�s damage
law [1], the coaxial laws [16], [18] etc. See also the overview paper [3]. In the present paper, we
illustrate the applicability of bipotentials by providing a new variational formulation for a general
model in elastostatics.

Our paper requires a background of mechanics of solid (which can be covered from [6, 17]), and also
some familiarity with calculus of variations (see [5, 10]).

In Section 2 we indicate the notation and some preliminaries, including some basic facts of convex
analysis. In Section 3 we state the mechanical model and we discuss its weak solvability, more precisely,
we prove the existence of at least one weak solution and we comment on the uniqueness of it; see Theorem
2 and Theorem 3 below. In Section 4 we discuss three examples, based on linear constitutive laws, single-
valued nonlinear constitutive laws and multi-valued nonlinear constitutive laws respectively. They make
clear that all basic facts known nowadays about the existence and uniqueness of the displacement �eld
are covered by our Theorem 2 and Theorem 3.

2 Notation and preliminaries

Throughout this paper S3 denotes the space of second order symmetric tensors on R3: Every �eld in
R3 or S3 is typeset in boldface. By � and j � j we denote the inner product and the Euclidean norm on
R3 and S3, respectively. Thus,

u � v = uivi; jvj = (v � v)1=2; u;v 2 R3;

� � � = �ij� ij ; j� j = (� � � )1=2; �; � 2 S3:
Here and below, the indices i and j run between 1 and 3 and the summation convention over repeated
indices is adopted.

Given a bounded domain 
 � R3 we attach to it the following four functional spaces on 
 :

H = fu = (ui) : ui 2 L2(
)g; H = f� = (�ij) : �ij = �ji 2 L2(
)g;
H1 = fu 2 H : ui;j + uj;i 2 L2(
)g; H1 = f� 2 H : �ij;j 2 L2(
)g;

where the index following a comma indicates a partial derivative (in weak sense) with respect to the
corresponding component of the independent variable.

The spaces H; H; H1 and H1 are real Hilbert spaces endowed with the inner products,

(u;v)H =

Z


uivi dx; (u;v)H1 = (u;v)H + ("(u); "(v))H;

(�; � )H =

Z


�ij� ij dx; (�; � )H1 = (�; � )H + (Div �;Div � )H ;

where " : H1 ! H is a continuous linear operator given by

"(u) = ("ij(u)); "ij(u) =
1

2
(ui;j + uj;i);

and Div : H1 ! H is given by
Div � = (�ij;j):

The associated norms on the spaces H, H, H1 and H1 are denoted by k � kH , k � kH, k � kH1 and
k � kH1 , respectively.
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We assume that the boundary of 
; denoted by �; is Lipschitz continuous. Thus the unit outward
normal vector � on the boundary is de�ned almost everywhere.

The Sobolev trace operator,

 : H1 ! L2(�)3;

is continuous and linear, and for each Lebesgue measurable subset �1 of �; of positive measure, we can
consider the Hilbert space

V = fv 2 H1 : 
v = 0 a.e. on �1g; (1)

endowed with the inner product

(�; �)V : V � V ! R; (u;v)V = ("(u); "(v))H:

The proof that V is indeed a Hilbert space is an easy consequence of Korn�s inequality which states
the existence of a constant cK = cK(
;�1) > 0 such that

k"(v)kH � cKkvkH1 ; for all v 2 V:

See e.g. [9], p. 79.
We end this section by recalling some elements of convex analysis in Hilbert spaces. The central

objects are the functionals � : X ! (�1;1] de�ned on a Hilbert space X (endowed with the scalar
product (�; �)X and the norm k � kX).

The e¤ective domain of such a functional � is the set dom(�) = fx 2 X : �(x) < 1g: The core of
the e¤ective domain, core(dom(�)); is the set of all x 2 dom(�) such that for any direction v 2 X; the
vector x+ tv lies in dom(�) for all small real t. This set clearly contains the interior of dom(�):

We say that � is proper if dom(�) is nonempty, and convex if

� ((1� �)x+ �y) � (1� �)� (x) + �� (y) ;

for all x; y 2 X and � 2 (0; 1); � is called strictly convex if the last inequality is strict whenever x 6= y:
We say that � is lower semicontinuous at u 2 X if

lim inf
n!1

'(un) � '(u)

for each sequence (un)n converging to u in X: The function ' is lower semicontinuous if it is lower
semicontinuous at every point u 2 X:

If � is convex, then for every point u in core(dom(�)); the right-hand directional derivative,

�0+(u; v) = lim
t!0+

�(u+ tv)� �(u)
t

; v 2 X;

is everywhere �nite and sublinear. This fact is very close to Gâteaux di¤erentiability. Indeed, �
is Gâteaux di¤erentiable at u if the two-sided limit exists for every v; and the map �0(u) : v !
limt!0

�(u+tv)��(u)
t de�nes a continuous linear functional on X. Since X is a Hilbert space, �0(u) is

necessarily of the form
�0(u)(v) = (r�(u); v)X ; for all v 2 X;

where r�(u) 2 X represents the gradient of � at u.

Lemma 1. Let � : X ! R be a Gâteaux di¤erentiable functional. Then the following statement are
equivalent:
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i) � is a convex functional;

ii) �(v)� �(u) � (r�(u); v � u)X , for all u; v 2 X;

iii) (r�(v)�r�(u); v � u)X � 0, for all u; v 2 X.

In the variant of strict convexity, the inequalities in ii) and iii) should be strict for u 6= v:

An important property of convex functionals is the existence of a nice substitute for di¤erentiability,
the subdi¤erential. The subdi¤erential of a functional � : X ! (�1;+1] at a point u 2 dom(�) is
the (possibly empty) set

@�(u) = f� 2 X : �(v)� �(u) � (�; v � u)X ; for all v 2 Xg :

An interesting remark is that, if � : X ! R is convex and Gâteaux di¤erentiable, then

@�(u) = fr�(u)g for all u 2 X: (2)

Furthermore, the convex functionals are the only functionals � : X ! (�1;+1] for which @�(u)
is nonempty at any point u 2 dom(�): More precisely, the following result holds true.

Lemma 2. If the subdi¤erential of � : X ! (�1;1] at any point u 2 dom(�) is nonempty, then � is
convex, proper and lower semicontinuous.

The proofs of Lemma 1 and Lemma 2 can be found in [5, 10].
The Fenchel conjugate of a functional � : X ! (�1;1] is the functional

�� : X ! (�1;1]; ��(x�) = sup
x2X

f(x�; x)� �(x)g :

Necessarily, �� is lower semicontinuous proper and convex, provided that � plays all these properties.

Theorem 1. Let � : X ! (�1;1] be a lower semicontinuous proper convex functional. Then:

i) for any x; y 2 X; we have �(x) + ��(y) � (x; y)X ;

ii) for any x; y 2 X we have the equivalences

y 2 @�(x), x 2 @��(y), �(x) + ��(y) = (x; y)X :

See [5, 10] for details.
A concept that will play an important role in our paper is that of bipotential.

De�nition 1. A bipotential is a function B : X �X ! (�1;1] with the following three properties:

i) B is convex and lower semicontinuous in each argument;

ii) for any x; y 2 X; we have B(x; y) � (x; y)X ;

iii) for any x; y 2 X; we have the equivalences

y 2 @B(�; y)(x), x 2 @B(x; �)(y), B(x; y) = (x; y)X :

The bipotentials are related to dissipation. A thorough presentation of their theory can be found
in [3].
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3 The model and its weak solvability

We consider a body that occupies the bounded domain 
 � R3; with Lipschitz boundary, partitioned in
two measurable parts, �1 and �2; such that the Lebesgue measure of �1 is positive. The unit outward
normal to � is denoted by � and is de�ned almost everywhere. The body 
 is clamped on �1, body
forces of density f0 act on 
 and surface traction of density f2 act on �2: In order to describe the
behavior of the materials, we use a constitutive law expressed by the subdi¤erential of a proper, lower
semicontinuous, convex functional. We denote by u = (ui) the displacement �eld, by " = "(u) the
in�nitesimal strain tensor and by � = (�ij) the Cauchy stress tensor. The precise statement of our
problem is as follows:

Problem 1. Find u : �
! R3 and � : �
! S3; such that

Div�(x) + f0(x) = 0 in 
; (3)

�(x) 2 @!("(u(x))) in 
; (4)

u(x) = 0 on �1; (5)

�(x)�(x) = f2(x) on �2: (6)

We assume that the densities of the volume forces and traction verify

f0 2 H and f2 2 L2(�2)3: (7)

Concerning the constitutive function ! we assume:

! : S3 ! R is a convex, lower semicontinuous functional;

there exists � > 0 : !(") � �j"j2 for all " 2 S3;

!(0S3) = 0:

9>>>>=>>>>; (8)

The Fenchel conjugate of the function !;

!� : S3 ! (�1;1]; !�(� ) = sup
�2S3

f� � � � !(�)g;

is convex, lower semicontinuous and, in addition, !�(0S3) = 0: Therefore,

!�(� ) � 0; for all � 2 S3: (9)

Under the previous hypotheses, (7) and (8), we are interested in the weak solvability of Problem 1.
For this, assume that (u;�) is a strong solution of Problem 1. Using the Green formula

(�; "(v))H + (Div �;v)H =

Z
�
�(x)�(x) � 
v(x) d�; for all v 2 H1; (10)

(see [7], p. 145), by taking into account (3), (5) and (6) we obtain

(�; "(v))H = (f0;v)H +

Z
�2

f2(x) � 
v(x)d�; for all v 2 V:
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By Riesz�s representation theorem, we infer the existence of a unique element f 2 V such that

(f ;v)V = (f0;v)H +

Z
�2

f2(x) � 
v(x)d� for all v(x) 2 V: (11)

Thus,
(�; "(v))H = (f ;v)V ; for all v 2 V:

Next, by (4) and Theorem 1 (applied to X = S3 and � = !); for almost every x 2 
;

�(x) 2 @!("(u(x))),"(u(x)) 2 @!�(�(x))
,!("(u(x))) + !�(�(x)) = �(x) � "(u(x));

(12)

and
!(� ) + !�(�) � � � � for all � ;� 2 S3: (13)

We are now in a position to associate to the constitutive map ! a new function B : S3 � S3 !
(�1;1] de�ned by the formula

B(� ;�) := !(� ) + !�(�); for all � ;� 2 S3: (14)

Lemma 3. The function B de�ned by (14) is a bipotential. In addition,

B(� ;�) � �j� j2; for all � 2 S3: (15)

Proof. Taking into account the properties of the functionals ! and !�; the function B de�ned by (14)
is convex and lower semicontinuous in each argument. Due to (13),

B(� ;�) � � � �; for all � ;� 2 S3:

Using Theorem 1, the last condition of De�nition 1 is also veri�ed. Finally, based on (8) and (9) we
get (15).

Using the bipotential B we de�ne b : V �H ! (�1;1] by the formula

b(v;�) :=

8><>:
R

B("(v(x));�(x))dx; if B("(v(�));�(�)) 2 L1(
)

1 otherwise:
(16)

By integrating (over 
) the equality which appears in (12) we obtain

b(u;�) = (�; "(u))H:

Moreover, since B is a bipotential, we get

b(v;�) � (�; "(v))H; for all v 2 V;� 2 H: (17)

In particular,
b(v;�) � (�; "(v))H; for all v 2 V;

and thus
b(v;�)� b(u;�) � (f ;v � u)V ; for all v 2 V: (18)
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Consider now the following subset of H:

� := f� 2 H : (�; "(v))H = (f ;v)V ; for all v 2 V g:

We note that 0H =2 � but � 2 �: Thus, � is nonempty. On the other hand, � is a convex and closed
subset of H: By (17),

b(v;�) � (f ;v)V ; for all v 2 V;� 2 �:

In particular,
b(u;�) � (f ;u)V ; for all � 2 �

and
b(u;�) = (�; "(u))H = (f ;u)V :

Consequently,
b(u;�)� b(u;�) � 0; for all � 2 �: (19)

Combining (18) and (19) we are led to the following weak formulation of Problem 1.

Problem 2. Find u 2 V and � 2 � such that

b(v;�)� b(u;�) � (f ;v � u)V ; for all v 2 V ;
b(u;�)� b(u;�) � 0; for all � 2 �:

De�nition 2. Any solution (u;�) 2 V � � of Problem 2 is called a weak solution of Problem 1.

Theorem 2. (Existence of weak solutions). Assume (7), (8) and (9): Then, Problem 2 has at least one
solution.

Proof. By the de�nition of the bipotential B; see (14), since ! and !� are convex functions, we infer
that the functional b; as de�ned by (16), is convex. In addition, taking into account that ! and !�

are lower semicontinuous functions, applying Fatou�s Lemma, we conclude that the functional b is also
lower semicontinuous. Furthermore, by (8) and (9), we deduce that there exists C > 0 such that

b(v;�) � Ckvk2V ; for all v 2 V;� 2 �: (20)

Consider now the functional L : V � �! (�1;1] de�ned by the formula

L(v;�) := b(v;�)� (f ;v)V :

Since the functional b is proper, convex and lower semicontinuous, the map

V � � 3 (v;�)! L(v;�) 2 (�1;1]

is proper, convex and lower semicontinuous, too. As a consequence of (20), L is also coercive.
Notice that V � � is a nonempty, closed, convex subset of the space V �H:
Therefore, there exists at least one pair (u�;��) such that

L(u�;��) = min
(v;�)2V��

L(v;�): (21)
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The functional L allows us to reformulate Problem 2 as follows: �nd (u;�) 2 V � � such that

L(u;�) � L(v;�) for all v 2 V

and

L(u;�) � L(u;�) for all � 2 �:

9>>>>=>>>>; (22)

It is straightforward to observe that any solution of the minimization problem (21) is a solution of
the problem (22). Thus, any minimizing pair (u�;��) is a solution of Problem 2.

We note that
b(v;�)� (f ;v)V � 0; for all v 2 V; for all � 2 �: (23)

Indeed, let v 2 V and � 2 �: If B("(v(�));�(�)) 2 L1(
) then

b(v;�) =

Z


B("(v(x));�(x))dx

�
Z


"(v(x)) � �(x)dx

= (f ;v)V :

Otherwise, (23) is clearly satis�ed.
Consequently,

min
(v;�)2V��

L(v;�) � 0:

Let us comment now on the uniqueness of the weak solution.
If ! is strictly convex, then the �rst component of the solution of Problem 2 is uniquely determined.

Indeed, let us consider the functional J : V ! (�1;1] de�ned by the formula

J(v) =

8><>:
R

 !("(v(x)))dx� (f ;v)V ; if !("(v(�))) 2 L1(
)

1; otherwise:
(24)

Obviously, J is a proper, strictly convex, lower semicontinuous and coercive functional. We note that,
taking into account (16) and (14), the inequality

b(v;��)� b(u�;��) � (f ;v � u�)V ; for all v 2 V

yields
J(v)� J(u�) � 0; for all v 2 V:

Thus, u� is the unique minimizer of the functional J:
On the other hand, if !� is strictly convex and coercive, then �� is the unique minimizer of the

functional ~J : �! (�1;1],

~J(� ) =

8><>:
R

 !

�(� (x))dx; if !�(� (�)) 2 L1(
)

1; otherwise:

The above discussion yields to the following uniqueness result:
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Theorem 3. (A uniqueness result) Assume (7), (8) and (9): If, in addition, !� is coercive and !; !�

are both strictly convex, then Problem 2 has a unique solution (u�;��) 2 V � �.
An important case when ! and !� are both strictly convex is outlined in [12], Theorem 11.13,

p. 483. Its essence is the duality (under the Fenchel conjugation) between di¤erentiability and strict
convexity.

4 The relevance of our approach

In this section we discuss three examples based on linear constitutive laws, single-valued nonlinear
constitutive laws and multi-valued nonlinear constitutive laws respectively.

Example 4.1. Let us consider

! : 
� S3 ! R; !(x; � ) :=
1

2
E� � � (25)

where E : S3 ! S3 is a fourth order tensor with the following two properties:8><>: E� � � = � � E� ; for all �; � 2 S3; a.e. in 
;

There exists M > 0 : E� � � �M j� j2 for all � 2 S3; a.e. in 
:
(26)

An example of such a tensor E = (Eijkl) is

Eijkl = ��ij�kl + �(�ik�jl + �il�jk); 1 � i; j; k; l � 3;

where � and � are positive constants.
Obviously, for this example (8) is veri�ed and the constitutive law (4) reduces to the well known

linear elastic constitutive law,
� = E"(u):

Problem 1 can be rewritten as follows,

(L)

8>>>>>>>>>>><>>>>>>>>>>>:

Find u : �
! R3 and � : �
! S3; such that

Div�(x) + f0(x) = 0 in 
;

�(x) = E"(u(x)) in 
;

u(x) = 0 on �1;

�(x)�(x) = f2(x) on �2:

Using the space V de�ned by (1), the element f ; de�ned by (11), and the Green formula (10), we
obtain the following weak formulation in displacements:

(wL) : Find u 2 V such that a(u;v) = (f ;v)V ; for all v 2 V;

where a : V � V ! R is the bilinear, continuous, V�elliptic, symmetric form

a(u;v) =

Z


E"(u(x)) � "(v(x))dx:

Due to Lax-Milgram Theorem, the problem (wL) has a unique solution.
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De�nition 3. Any solution u 2 V of the problem (wL) is called a weak solution of the problem (L):

Proposition 1. Let (u;�) be a weak solution of Problem 1 with the constitutive function ! given by
the formula (25). Then its �rst component u is the unique weak solution of the problem (L), while the
second component � veri�es the elastic constitutive law in the following weak form,

(�; "(v))H = (E"(u); "(v))H; for all v 2 V: (27)

Proof. Let (u;�) be a weak solution of Problem 1. Then

b(w;�)� b(u;�) � (f ;w � u)V ; for all w 2 V:

According to (16) and (14), we obtain

(E"(w); "(w))H � (E"(u); "(u))H � 2(f ;w � u)V ; for all w 2 V:

Let t > 0 and let v 2 V be arbitrarily �xed. Putting in the previous inequality w = u� tv; and taking
into account that

lim
t!0+

(E"(u� tv); "(u� tv))H � (E"(u); "(u))H
t

= 2(E"(u); "(v))H

we infer
(E"(u); "(v))H � �(f ;v)V for all v 2 V:

Therefore, u is the weak solution of the problem (L):On the other hand, since � 2 �; (27) is veri�ed.

Example 4.2. Consider the constitutive function

! : 
� S3 ! R; w(x; � ) :=
1

2
E� � � + �

2
j� � PK� j2; (28)

where E : 
�S3 ! S3 veri�es (26), � > 0 is a constant coe¢ cient of the material, K � S3 is a nonempty,
closed and convex set and PK : S3 ! K represents the projection operator on K:

The functional ! is Gâteaux di¤erentiable at any � 2 S3: Indeed,

lim
t!0

!(� + t�)� !(� )
t

= r!(� ) � � for all � 2 S3;

where
r!(� ) := E� + �(� � PK� );

see [11], Example d), pp. 8-9.
Moreover, it can be veri�ed that

!(� )� !(") � r!(") � (� � "); for all � ; " 2 S3:

Using Lemma 1 we conclude that the functional ! is convex. On the other hand, since ! is convex and
Gâteaux di¤erentiable, by (2) we get

@!(� ) = fE� + �(� � PK� )g for all � 2 S3:
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In addition, by Lemma 2 we conclude that w is lower semicontinuous. Notice that

!(� ) �M j� j2; for all � 2 S3

and
!(0S3) = 0:

Therefore, (8) and (9) are veri�ed for this second example too.
In this situation, the constitutive law (4) reduces to the following piecewise linear constitutive law

� = E"(u) + �("(u)� PK"(u));

which is discussed for example in [7] p. 124 and [17], p. 14. Thus, for this second example, Problem 1
can be rewritten as follows.

(PL)

8>>>>>>>>>>><>>>>>>>>>>>:

Find u : �
! R3 and � : �
! S3; such that

Div�(x) + f0(x) = 0 in 
;

�(x) = E"(u(x)) + �("(u(x))� PK"(u(x))) in 
;

u(x) = 0 on �1;

�(x)�(x) = f2(x) on �2:

For this problem we can introduce the following weak formulation,

(wPL) : Find u 2 V such that Au = f ;

where the operator A : V ! V is de�ned as follows: for any u 2 V; Au is the element of V that satis�es

(Au;v)V =

Z


E"(u(x)) � "(v(x))dx+ �

Z


("(u(x))� PK"(u(x))) � "(v(x))dx

for all v 2 V: Taking into account that the projector operator is nonexpansive, it can be veri�ed that
the operator A is a strongly monotone and Lipschitz continuous operator. We infer that the problem
(wPL) has a unique solution; see, for example, [19], p. 173.

De�nition 4. Any solution u 2 V of the problem (wPL) is called a weak solution of the problem
(PL):

Proposition 2. Let (u;�) be a weak solution of Problem 1 for the constitutive function ! given by
(28). Then its �rst component u is the unique weak solution of the problem (PL), and the second
component � veri�es the piecewise linear constitutive law in the following weak form,

(�; "(v))H = (E"(u) + �("(u)� PK"(u)); "(v))H for all v 2 V: (29)

Proof. Let (u;�) be a weak solution of Problem 1. Then,

b(w;�)� b(u;�) � (f ;w � u)V for all w 2 V:
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By (16), (14) and (28), we obtain

(E"(w); "(w))H � (E"(u); "(u))H + �
Z



�
j"(w(x))� PK("(w(x)))j2

� j"(u(x))� PK("(u(x)))j2
�
dx � (f ;w � u)V for all w 2 V:

Let t > 0 and let v 2 V be arbitrarily �xed. Putting in the previous inequality w = u � tv; and
taking into account the fact that

lim
t!0+

Z



hE"(u(x)� tv(x)) � "(u(x)� tv(x))� E"(u(x)) � "(u(x))
2t

+
�(j"(u(x)� tv(x))� PK("(u(x)� tv(x)))j2 � j"(u(x))� PK("(u(x)))j2)

t

i
dx

= (E"(u) + �("(u)� PK"(u)); "(v))H;

we infer that
(E"(u) + �("(u)� �PK("(u))); "(v))H � �(f ;v)V for all v 2 V:

This last inequality allows us to conclude that u is the unique weak solution of the problem (PL). On
the other hand, since � 2 �; we obtain (29).

Both examples presented before involve constitutive maps leading to single-valued constitutive laws.
Below we will discuss a more general example leading to possibly multi-valued constitutive laws.

Example 4.3. Assume now that ! is a constitutive map satisfying (8) such that (4) is a possibly
multi-valued constitutive law. In this situation, using again the space V and the element f ; by applying
Green�s formula (10), we obtain for Problem 1 the following weak formulation in displacements:

(wM) : Find u 2 V such that W (v)�W (u) � (f ;v � u)V for all v 2 V;

where W : V ! (�1;1] is de�ned by the formula

W (v) =

8><>:
R

 !("(v(x)))dx if !("(v(�))) 2 L1(
)

1 otherwise:

Obviously, this weak formulation is equivalent with the following problem of minimization: �nd u 2 V
such that

J(u) = min
v2V

J(v);

where J : V ! (�1;1] was de�ned by the formula (24). Since J is a proper, convex, lower semicon-
tinuous, coercive functional, the problem (wM) has at least one solution u 2 V .

Proposition 3. Let (u;�) be a weak solution of Problem 1 with a constitutive function ! that satis�es
(8). Then, its �rst component u is a solution of the problem (wM). In addition, the second component
� veri�es the possibly multi-valued nonlinear constitutive law in the following weak form,Z



!("(v(x)))dx�

Z


!("(u(x)))dx �

Z


� � ("(v(x))� "(u(x)))dx (30)

for each v 2 V such that !("(v(�))) 2 L1(
):

12



Proof. Let (u;�) be a weak solution of Problem 1. Then,

b(v;�)� b(u;�) � (f ;v � u)V for all v 2 V:

Therefore, taking into account the de�nition of W; by (14) and (16), we deduce

W (v)�W (u) � (f ;v � u)V for all v 2 V:

Thus, u is a solution of the problem (wM). Moreover, since � 2 �; we get

W (v)�W (u) �
Z


�(x) � ("(v(x))� "(u(x)))dx for all v 2 V;

and from this inequality, taking into account the de�nition ofW; it is straightforward to obtain (30).
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