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In Indiscrete Thoughts [18], G.-C. Rota remarked, “The mystery, as well as the
glory of mathematics, lies not so much in the fact that abstract theories do turn out
to be useful in solving problems, but, wonder of wonders, in the fact that a theory
meant for one type of problem is often the only way of solving problems of entirely
different kinds, problems for which the theory was not intended. These coinci-
dences occur so frequently, that they must belong to the essence of mathematics.”
Indeed, it happens often that abstract mathematics leads to concrete applications,
and real-life problems constitute a source of inspiration for sophisticated theories.
The strong synergy between pure mathematics and its applications advocates for
teaching methods that intertwine physical intuition with mathematical abstraction,
and recognize the universality of mathematical laws throughout the sciences.

The identity

We aim to illustrate these ideas by surveying some encounters of the algebraic
identity :

(L1)

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
=

(
n∑

i=1

aibi

)2

+
∑

1≤i<j≤n

(aibj − ajbi)
2,

for ai, bi, i = 1, . . . , n, real or complex numbers.
Attributed to Joseph Louis Lagrange, with several fields of mathematics and

mechanics, a special case of (L1) is found in Fibonacci’s Book of Squares(Liber
Quadratorum, in the original Latin):

(F )
(
a21 + a22

) (
b21 + b22

)
= (a1b1 + a2b2)

2
+ (a1b2 − a2b1)

2
.

For integer values of the variables, this means that the product of sums of squares
is again a sum of squares (see Book 13, Problem 19, in Arithmetica of Diophantus
of Alexandria). Nowadays we can regard (F ) as a consequence of complex number
multiplication,

|a1 + ia2|2 |b1 + ib2|2 = |(a1 + ia2) (b1 + ib2)|2 .

In 1773 Lagrange introduced the component form of both the dot and the cross
product of vectors in R3 in order to study the geometry of tetrahedra and derived
a special case of the identity (L1):

∥u∥ ∥v∥ = |⟨u, v⟩|2 + ∥u× v∥2 for all u, v ∈ R3.

See [13], page 663, lines 6-8. However Lagrange did not single out his finding and
made no further comment on other, similar, results known to him.

The identity (L1) appears later on in the famous Cours d’Analyse of Cauchy
(without any mention of Lagrange: see [5], page 456, formula (31)). Cauchy used
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this identity to derive the inequality now bearing his name:

(C)

(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
for every two families a1, ..., an and b1, ..., bn of real numbers. Equality occurs if
and only if the two families are proportional.

The beautiful book of J. Michael Steele [19] dedicated to the art of mathematical
inequalities includes the above story (and many more), but leaves untouched a
natural question arising from the discovery of Cauchy’s inequality: Did Lagrange
really know the identity (L1) in that form?

A search of Lagrange’s works sheds some light on this matter. In 1783, outlining
an algorithm for finding the barycenters, Lagrange [14] proved an even more general
identity (we call it Lagrange’s second identity), as we shall see in the next section.
An immediate consequence is the generalization of Cauchy’s inequality in a vector-
scalar melange, given by formula (sC) below. However we could not find any
evidence that Lagrange made this last step to connect his findings. Thus it is very
likely that the first appearance in print of the identity (L1) is in Cauchy’s book.

In How to Solve It, George Pólya [17] mentions that much can be gained by
taking the time to reflect and look back at what we have done, what worked and
what didn’t. And last but not least, specialization is a valuable source of knowledge.

Lagrange’s second identity

We may arrive at Lagrange’s second identity through a problem of mass trans-
port, a subject initiated in 1781 by Gaspard Monge [16], the inventor of descriptive
geometry.

Suppose we have a number of sand piles located at x1, ..., xn ∈ R2. We seek a
point x at which to collect all the sand at a minimal cost. Assuming the cost of
transport of the unit mass is proportional to the square of the distance, the answer
is provided by an old result about finite configurations of weighted points in the
Euclidean space RN . (As usual, ∥·∥ denotes the natural norm, which is related to

the inner product ⟨·, ·⟩ by the formula ∥x∥ =
√
⟨x, x⟩.)

Weighted least squares. Given a family of points x1, ..., xn in RN and real
weights m1, ...,mn ∈ R with M =

∑n
k=1 mk > 0, then

(WLS) min
x∈RN

n∑
k=1

mk ∥x− xk∥2 =
1

M
·
∑
i<j

mimj ∥xi − xj∥2.

The minimum is attained at one point,

xG =
1

M

n∑
k=1

mkxk.

In the above variational problem, the weights mk do not have to be all positive.
However, when all mks are positive, the point xG represents the barycenter of the
mass system {(m1, x1) , . . . , (mn, xn)}.

A special case of (WLS) is the result of Giulio Carlo Fagnano concerning the
existence of a point P in the plane of a triangle ABC that minimizes the sum
PA2 + PB2 + PC2. (See [7], vol. 2.) It is worth noticing that his argument was
based on calculus and can be adapted easily to cover the general case.
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The solution to the weighted least squares problem was also known to Carl
Friedrich Gauss, who is credited with developing the foundations of the least-squares
analysis in 1795, at the age of eighteen. An early demonstration of the strength
of Gauss’s method came when it was used to predict the future location of the
newly discovered asteroid Ceres; see [22] for a detailed account. Gauss did not
publish the method until 1809, when it appeared in volume two of his work on
celestial mechanics, Theoria Motus Corporum Coelestium in sectionibus conicis
solem ambientium.

We get more insight into the weighted least squares problem by considering its
connection to certain polynomial identities that can be traced back to Christiaan
Huygens, Gottfried Wilhelm Leibniz and Joseph Louis Lagrange. (The argument
is essentially that of Lagrange; see [14], Theorem 2, page 539.)

Two polynomial identities. For every family of points x, x1, ..., xn in RN and
every family of real weights m1, ...,mn with M =

∑n
k=1 mk ̸= 0, the following two

identities hold:
(H-Le) the Huygens-Leibniz identity,

n∑
k=1

mk ∥x− xk∥2 = M

∥∥∥∥∥x− 1

M

n∑
k=1

mkxk

∥∥∥∥∥
2

+
n∑

k=1

mk∥xk − 1

M

n∑
j=1

mjxj∥2;

(L2) Lagrange’s second identity,

n∑
k=1

mk ∥x− xk∥2 = M

∥∥∥∥∥x− 1

M

n∑
k=1

mkxk

∥∥∥∥∥
2

+
1

M
·
∑

1≤i<j≤n

mimj ∥xi − xj∥2.

In the language of mass transport, the Huygens-Leibniz identity says that the
transport cost of the masses located at x1, . . . , xn to a point x equals the transport
cost of the total mass of the system from the barycenter to x plus the transport cost
of all masses located at x1, . . . , xn to the barycenter. Lagrange’s second identity
asserts that the same transport cost equals the transport cost of the total mass of
the system from its barycenter to x plus a supplementary cost

1

M
·
∑

1≤i<j≤n

mimj ∥xi − xj∥2,

due to the spreading of mass points around their barycenter. From Lagrange’s
second identity, one can immediately derive the formula (WLS).

Both identities (H-Le) and (L2) are invariant under translation (that is, under
the change of variables x → x + z and xk → xk + z for k = 1, ..., n). The pres-
ence of this symmetry allows us to reduce ourselves to the case

∑n
k=1 mkxk = 0.

Continuing the proof of the identity (H-Le),
n∑

k=1

mk ∥x− xk∥2 =

n∑
k=1

mk⟨x− xk, x− xk⟩

=
n∑

k=1

mk⟨x, x⟩ − 2
⟨
x,
∑n

k=1
mkxk

⟩
+

n∑
k=1

mk⟨xk, xk⟩

= M∥x∥2 +
n∑

k=1

mk∥xk∥2.
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As for the identity (L2), it suffices to note that∑
1≤i<j≤n

mimj ∥xi − xj∥2 =
1

2
·

n∑
i,j=1

mimj ⟨xi − xj , xi − xj⟩

=
1

2

n∑
i,j=1

mimj (⟨xi, xi⟩ − 2⟨xi, xj⟩+ ⟨xj , xj⟩)

= M
n∑

i=1

mi⟨xi, xi⟩ −

⟨
n∑

i=1

mixi,
n∑

j=1

mjxj

⟩

= M

n∑
k=1

mk∥xk∥2

= M
n∑

k=1

mk∥x− xk∥2 −M2∥x∥2.

This concludes the proof (H-Le) and (L2).
Substituting in (L2),

x = 0, mk = pka
2
k and xk = yk/ak,

for ak ̸= 0 (k = 1, ..., n), one obtains the following stronger version of the identity
(L1):

A vector-scalar melange of Lagrange’s identity. Given two families p1, ..., pn
and a1, ..., an of nonzero real numbers such that

∑n
k=1 pka

2
k ̸= 0, then

(sL1)

(
n∑

k=1

pka
2
k

)(
n∑

k=1

pk∥yk∥2
)

−

∥∥∥∥∥
n∑

k=1

pkakyk

∥∥∥∥∥
2

=
∑

1≤i<j≤n

pipj∥ajyi − aiyj∥2,

for every family y1, ..., yn of vectors in RN .

In turn, (sL1) easily yields Lagrange’s second identity (L2). Therefore these two
identities are equivalent.

An immediate consequence of (sL1) is the following extension of the Cauchy
inequality: Assuming

∑n
k=1 pka

2
k > 0,

(sC)

∥∥∥∥∥
n∑

k=1

pkakyk

∥∥∥∥∥
2

≤

(
n∑

k=1

pka
2
k

)(
n∑

k=1

pk∥yk∥2
)
,

with equality when ajyi = aiyj for all i, j ∈ {1, ..., n} .
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Some mechanical and probabilistic interpretations

Sometimes the identity (H-Le) is attributed solely to Leibniz, but we could not
find any concrete evidence in his works. However, there is an indirect argument
that Leibniz knew at least a particular case of it. In 1672, while in Paris on a
diplomatic mission, Leibniz met Huygens and persuaded him to give him lessons in
mathematics. No doubt Leibniz learned some facts about the moment of inertia, a
concept Huygens used in his mathematical analysis of pendulums [8].

Figure 1. The Huygens-Steiner theorem

The moment of inertia of an object measures how easily the object can rotate
about some specific axis. The moment of inertia of a system of mass points (xk,mk),
with k = 1, . . . , n, about a given axis is, by definition, the scalar I =

∑n
k=1 mkr

2
k,

where rk represents the perpendicular distance from xk to the axis. Assume that
we have a system of mass points lying on a light plate that rotates about a perpen-
dicular axis which meets the plate at a point x. Let xG be the position of the center
of mass and rG be the distance from xG to x. The Huygens-Steiner theorem in me-
chanics (also known as the parallel-axes theorem) says that the moment of inertia∑n

k=1 mkr
2
k about the axis through x equals the moment of inertia (

∑n
k=1 mk)r

2
G

of the total mass of the system placed at xG about the axis through x plus the
moment of inertia of the system

∑n
k=1 mk(rk − rG)

2 about a parallel axis through
xG. (See Figure 1.)

The Huygens-Steiner theorem implies that the period of a physical pendulum is
the same for all locations of the axis equidistant from the center of mass. A proof
can be found in [10], but this result is just a special case of the Huygens-Leibniz
identity.

The identity (H-Le) has also a nice mechanical interpretation in terms of kinetic
energy, a concept that was familiar to Leibniz. Indeed, he used the concept of vis
vita (Latin for living force) for twice the modern kinetic energy. He realized that
the total energy would be conserved in certain mechanical systems, and initiated a
famous dispute in epoch concerning the “force” of a moving body. (See [15].)

For a system of n particles xi of masses mi and velocities vi, the total kinetic
energy is

K =
1

2

n∑
i=1

mi∥vi∥2.
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Let vG be the velocity of the barycenter of the system and v′i = vi − vG be the
velocity of the particle of mass mi relative to the barycenter. Applying Leibniz’s
identity with (x,m) = (0, 0) we obtain

K =
1

2

(
n∑

i=1

mi

)
∥vG∥2 +

1

2

n∑
i=1

mi∥v′i∥2.

The quantity K ′ = (1/2)
∑n

i=1 mi∥v′i∥2 is called the rotational kinetic energy. If I
represents the moment of inertia of the system about an axis of rotation passing
through the center of mass, and ω represents the angular velocity about that axis,
then K ′ = (1/2)Iω2. Therefore

K =
1

2

(
n∑

i=1

mi

)
∥vG∥2 +

1

2
Iω2,

that is, the total kinetic energy equals the sum of the kinetic energy of the center
of mass motion and of the rotational kinetic energy. This formula was established
by Johann Samuel König in 1751. (See [12].)

In mechanics, there is another famous identity known as Lagrange’s identity,
relating the moment of inertia of a system of material points to its kinetic energy
and potential energy. For a system of bodies in a homogeneous potential U of
degree −1 (e.g., the Newtonian gravitational potential), that identity states that

d2I

dt2
= 4K − 2U.

See [3, 11]. An immediate consequence of this second Lagrange identity is the virial
theorem: if the time-average of d2I/dt2 is 0, then twice the time average of K equals
the time average of U . This theorem is used by astronomers to make estimates on
the total mass of galaxy clusters, as in this case d2I/dt2 has nearly zero average,
and the velocities of the component galaxies can be measured directly.

The moment of inertia of a mass distribution about a given axis is analogous to
the variance of a probability distribution. Indeed, if X is a discrete random variable
taking the values x1, . . . , xn ∈ RN with probabilities p1, . . . , pn, its variance var (X)
is

var (X) =

n∑
k=1

pk ∥xk − E(X)∥2 ,

where E(X) =
∑n

k=1 pkxk represents the expectation value of X. Notice that∑n
k=1 pk = 1. The variance is a measure of how far a set of points are spread out

from each other. Indeed, according to Theorem 1,

var (X) =
∑

1≤i<j≤n

pipj ∥xi − xj∥2.

In probabilistic terms, Lagrange’s identity relates the variance of a random vari-
able X to the variance of a perturbation X − x of it:

var (X − x) = ∥E(X)− x∥2 + var (X) .

This can be rephrased using standard deviation,

σ(X) =
√
var (X),

A useful property of standard deviation is that, unlike variance, it is expressed in
the same units as the data.
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A connection to metric geometry

Metric geometry exhibits many interesting formulas relating the side lengths
a, b, c of a triangle ∆ABC to the distances between different special points, such as
the centroid G , the center of the circumscribed circle O, the center of the inscribed
circle I, etc.

The following result (attributed to Leibniz) gives us a formula for the radius of
circumscribed circle:

R2 = OG2 +
1

9
(a2 + b2 + c2).

As a consequence,
a2 + b2 + c2 ≤ 9R2,

with equality if (and only if) the triangle is equilateral. This follows easily from
Lagrange’s second identity (L2), when applied to the family of vertices of the tri-
angle, with equal weights m1 = m2 = m3 = 1, and for the choice of x as the center
of the circumscribed circle.

If we consider the same family of points and the same choice of x, then weights

m1 = a/(a+ b+ c), m2 = b/(a+ b+ c) and m3 = c/(a+ b+ c),

leads us to the center I of the inscribed circle as a barycenter. This is a consequence
of the theorem on the angle bisectors in a triangle. In this case the Huygens-Leibniz
identity (H-Le) yields the equality

R2 = OI2 + 2Rr,

equivalently,
OI2 = R(R− 2r),

a formula discovered independently by W. Chapple (1746) and L. Euler (1765). As
usually, r denotes the radius of the inscribed circle. A consequence of this formula
is the celebrated inequality

2r ≤ R.

There are many interesting geometric consequences of the Huygens-Leibniz iden-
tity in higher dimensions too. For example, if R is the radius of the smallest ball
containing a finite family of points x1, . . . , xn ∈ RN , then

1

n

∑
i<j

∥xi − xj∥2
1/2

≤ R.

How general is Lagrange’s second identity?

Lagrange’s second identity (L2) and the Huygens-Leibniz identity (H-Le) are
equivalent and hold in any real vector space endowed with an inner product (or
just with a semi-definite symmetric bilinear form). How do these identities depend
on the metric on the underlying space?

The identity (L2) contains the parallelogram law as a particular case,

∥x1∥2 + ∥x2∥2 =
1

2
∥x1 − x2∥2 +

1

2
∥x1 + x2∥2,

which corresponds to a configuration {(x1, 1), (x2, 1)} of two points of equal weights,
and to the choice of x as the origin. Consequently, each of the identities (L2) and
(H-Le) can be viewed as higher dimensional generalizations of this identity. A
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classical result of P. Jordan and J. von Neumann ([6], pp. 151-152) asserts that
the parallelogram law distinguishes the Euclidean norm from all other norms on
a (finite dimensional) vector space. Consequently, if the identities (L2) and (H-
Le) work in a normed vector space then necessarily that space is isometric to the
Euclidean space of the same dimension. The same is true for the weighted least
squares formula (WLS). In fact, if a norm on RN satisfies the inequality

∥x1∥2 + ∥x2∥2 ≥ 1

2
∥x1 − x2∥2 +

1

2
∥x1 + x2∥2

for all x1, x2 ∈ RN , then that norm derives from an inner product (see [6], p. 152).
It is worth mentioning that Lagrange’s second identity has an analogue in the

space-time R× RN , endowed with the Minkowski inner product

⟨(t, x), (s, y)⟩M = −c2ts+ ⟨x, y⟩,

where c is the speed of light. Indeed, by applying (L2) to a = (ict, x) and b =
(ics, y), we obtain:

∥(t, x)∥M∥(s, y)∥M −⟨(t, x), (s, y)⟩2M = −c2
N∑
i=1

(tyi−sxi)
2+

∑
1≤i<j≤N

(xiyj −xjyi)
2.

The case of spaces with a curved geometry

Since Lagrange’s identity and the notion of a barycenter are closely tied to the
metric, it is natural to wonder: what is the effect of a curved metric on this identity?
And can one define a natural barycenter for a system of mass points in a curved
space?

A remarkable class of curved metric spaces are spaces with global nonpositive
curvature (global NPC spaces), which we discuss below. They have important
applications to the study of groups from a geometrical viewpoint, and to certain
rigidity phenomena in geometry. Informally, a global NPC space is characterized
by the fact that its triangles are not “fatter” than the corresponding triangles in
the Euclidean plane.

A starting point for the formal definition is the formula for the length of a median
in a triangle in R2. For a triangle with vertices x0, x1, z ∈ R2, the length of the
median from z is given by∥∥∥∥z − x0 + x1

2

∥∥∥∥2 =
1

2
∥z − x0∥2 +

1

2
∥z − x1∥2 −

1

4
∥x0 − x1∥2 .

This formula follows easily from the parallelogram law (and is actually equivalent
to it).

A global NPC space is a complete metric space E = (E, d) with the property
that for each pair of points x0, x1 ∈ E there exists a point y ∈ E such that for all
points z ∈ E,

(NPC) d2(z, y) ≤ 1

2
d2(z, x0) +

1

2
d2(z, x1)−

1

4
d2(x0, x1).

In a global NPC space E, each pair of points x0 and x1 can be connected by
a unique geodesic. The point y in (NPC) is the unique midpoint of the geodesic
segment [x0, x1].
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Every Hilbert space is a global NPC space, and the midpoint of [x0, x1] is given
by the usual formula

y =
x0 + x1

2
.

The upper half-plane H= {z ∈ C : Im z > 0}, endowed with the Poincaré metric,

ds2 =
dx2 + dy2

y2
,

is another example of a global NPC space. In this case the geodesics are the
semicircles in H perpendicular to the real axis and the straight vertical lines ending
on the real axis. The Gauss curvature of H is −1.

A Riemannian manifold (M, g) is a global NPC space if and only if it is complete,
simply connected and of nonpositive sectional curvature. Other important examples
of global NPC spaces are the Bruhat-Tits buildings (in particular, Bruhat-Tits
trees). See [2], [4], [9].

To measure the curvature of a global NPC space E, we compare triangles in E
to triangles in the space M2

−κ of constant curvature −κ, defined as the upper-half
plane H with the distance function scaled by a factor of 1/

√
κ, κ > 0. Given a

triangle ∆ in E, a comparison triangle ∆′ in M2
−κ is a geodesic triangle such that

the lengths of the edges of ∆ are equal to the lengths of corresponding edges of the
triangle ∆′. Given a point p on an edge [x, y] of ∆, a point p′ on the corresponding
edge [x′, y′] is a comparison point if d(x, p) = d(x′, p′). If we locally have that
for all pairs of points p, q on an edge of ∆, their comparison points p′, q′ on ∆′

satisfy d(p, q) ≤ d(p′, q′) we say that E has curvature ≤ −κ. If instead we have
d(p, q) ≥ d(p′, q′), then we say that E has curvature ≥ −κ. Thus the concept of
curvature of global NPC spaces is defined up to an inequality.

To define the barycenter of a mass point system we need a few preliminaries.
A subset C ⊂ E is said to be convex if γ([0, 1]) ⊂ C for each geodesic γ : [0, 1] →

E joining two points in C. A function f : C → R is called convex if the function
f ◦ γ : [0, 1] → R is convex whenever γ : [0, 1] → C, γ(t) = γt, is a geodesic, that is,

f(γt) ≤ (1− t)f(γ0) + tf(γ1)

for all t ∈ [0, 1].
All closed convex subsets of a global NPC space are themselves global NPC

spaces. The distance from a point z,

dz (x) = d(x, z),

provides a basic example of a convex function. Moreover, its square is uniformly
convex in the sense that

d2(γt, z) ≤ (1− t)d2(γ0, z) + td2(γ1, z)− t(1− t)d2(x0, x1)

for all geodesics γ : [0, 1] → C, γ(t) = γt, all points z ∈ E and all numbers
t ∈ [0, 1]. Technically this represents the extension of the inequality (NPC) from
the case of midpoints to that of an arbitrary convex combinations. (See [20]). As a
consequence, the balls in a global NPC space are convex sets (in the sense defined
above).

The concept of a barycenter can now be naturally defined for any probability
measure µ on E that admits finite moments of first order (i.e.,

∫
E
d(x, y)dµ(y) < ∞,

for all x ∈ E). Think of µ as a mass distribution over the space. By analogy with
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the case of weighted least squares (WLS), the barycenter of µ is defined as the
unique minimizer of a uniformly convex function, more precisely, of

Fy(z) =

∫
E

[
d2(z, x)− d2(y, x)

]
dµ(x).

This point is independent of the parameter y ∈ E and is usually denoted bµ.
If the support of µ is included in a convex closed set K, then bµ ∈ K.
This definition of a barycenter is justified by the fact it satisfies relation analogous

to the Huygens-Leibniz identity (H-Le). The difference is that one only obtains an
inequality relation, known as the variance inequality :

d2(z, bµ) ≤
∫
E

[
d2(z, x)− d2(bµ, x)

]
dµ(x),

for all z ∈ E.
It is remarkable that the ‘defect’ of this relation from being an identity gives

a measure of the curvature of the space. Assume that E is a global NPC space
whose curvature is bounded from below by −κ. Then the following reverse variance
inequality holds:∫

E

[
d2(z, x)− d2(z, bµ)− d2(bµ, x)

]
dµ(x) ≤ 2κ

3

∫
E

[
d4(z, bµ) + d4(bµ, x)

]
dµ(x).

See [20, 21] for details.
It is worth noticing that defining the barycenter through a variational problem,

as above, works satisfactorily outside the context of global NPC spaces as well, for
example in the case of Wasserstein spaces (see [1]). These spaces provide a natural
framework for the solution of the Monge-Kantorovich transport problem (see [23]).

It may seem quite surprising that the simple algebraic identity that we surveyed
in this paper appears in such a multitude of forms and levels of abstraction, across
the centuries, and in a wide range of areas of science. At a closer look, Lagrange’s
identity represents just a variant of the least action principle of classical mechanics.
Thus, one possible explanation for the versatility of this algebraic identity is that it
is deeply rooted in our physical reality. When one considers a more general model
for the physical universe, such as a space-time continuum, or a curved space, the
identity no longer survives, but is replaced by an inequality that seems to reflect in
a precise way the geometric characteristics of the model.
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[16] G. Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale
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