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FINITE TIME BLOW-UP SOLUTIONS FOR AN

EVOLUTIONARY PROBLEM
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Abstract. In this paper we study a class of nonlinearities for which a non-
local parabolic equation with Neumann-Robin boundary conditions, for p-
Laplacian, has �nite time blow-up solutions.

1. Introduction

It is a well known fact that convexity plays an important role in the di¤erent
parts of mathematics, including the study of boundary value problems. The aim
of our paper is to introduce a new class of generalized convex functions and to
illustrate its usefulness in establishing a su¢ cient condition for the existence of
�nite time blow-up solutions for the evolutionary problem

(1.1)

8>><>>:
ut ��pu = f(juj)� 1

m(
)

Z



f(juj) dx in 


jrujp�2 @u@n = 0 on @
 ;

with the initial conditions

(1.2) u(x; 0) = u0(x) on 
; where
Z



u0 dx = 0:

Here 
 � RN is a bounded regular domain of class C2, f : [0;1) 7! [0;1) is
a locally Lipschitz function, m(
) represents the Lebesgue measure of the domain

; and �p = div(jrujp�2ru), for p � 2, is the p-Laplacian operator.
The particular case where p = 2 was recently considered by Sou�, Jazar and

Monneau [19], and Jazar and Kiwan [11] (under the assumption that f is a power
function of the form f(u) = u�; with � > 1); and also by the present authors [15]
(for f belonging to a larger class of nonlinearities).
The problems of type (1.1) & (1.2) arise naturally in mechanics, biology and

population dynamics. See [2], [5], [6], [8] and [10]. For example, if we consider
a couple or a mixture of two equations of the above type, the resulting problem
describes the temperatures of two substances which constitute a combustible mix-
ture, or represents a model for the behavior of densities of two di¤usion biological
species which interact each other.
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2. Generalized convexity of order �

According to the classical Hermite-Hadamard inequality, the mean value of a
continuous convex function f : [a; b]! R lies between the value of f at the midpoint
of the interval [a; b] and the arithmetic mean of the values of f at the endpoints of
this interval, that is,

(HH) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x) dx � f(a) + f(b)

2
:

Moreover, each side of this double inequality characterizes convexity in the sense
that a real-valued continuous function f de�ned on an interval I is convex if its
restriction to each compact subinterval [a; b] � I veri�es the left hand side of (HH)
(equivalently, the right hand side of (HH)). See [1] and [14] for details.
In what follows we will be interested in a class of generalized convex functions

motivated by the right hand side of the Hermite-Hadamard inequality.

De�nition 1. A real-valued function f de�ned on an interval [a;1) belongs to the
class GC� (for some � > 0), if it is continuous, nonnegative, and

(2.1)
1

�+ 1
f(t) � 1

t� a

Z t

a

f(x) dx for t large enough.

Using calculus, one can see easily that the condition (2.1) is equivalent to the
fact that the ratio

(2.2)
1
t�a

R t
a
f(x) dx

(t� a)�

is nondecreasing for t bigger than a suitable value A � a: In turn, this implies that
the mean value 1

t�a
R t
a
f(x) dx has a polynomial growth at in�nity.

According to the Hermite-Hadamard inequality, every nonnegative, continuous
and convex function f : [a;1) ! R with f(a) = 0 belongs to the class GC1: The
converse is not true because the membership of a function f : [a;1) ! R to the
class GC� yields only an asymptotic inequality of the form

1

�+ 1
f(t) +

�

�+ 1
f(a) � 1

t� a

Z t

a

f(x) dx for t large enough.

If g 2 C1([0;1)) and g is nondecreasing, then the function f(x) = g(x)(x� a)�
belongs to the class CG� ([0;1)) ; whenever � > 0. In fact,

1

t� a

Z t

a

f(x)dx =
(t� a)�
�+ 1

g(t)� 1

t� a

Z t

a

g0(x)
(x� a)�+1

�+ 1
dx

� 1

�+ 1
f(t):

As a consequence, (x+ sinx)x provides an example of function of class GC1 on
[0;1) which is not convex.
No positive constant can be a function of class GC� for any � > 0.
Also, the restriction of a function f : [a;1) ! R of class GC� to a subinterval

[b;1) is not necessarily a function of class GC�:
In the sequel we will describe some other classes of functions of class GC�:
The following concept of generalized convexity is due to S. Varosanec [20] and

generalizes the usual convexity, s-convexity, the Godunova�Levin functions and
P -functions.
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De�nition 2. Suppose that h : [0; 1]! R is a function such that h(�)+h(1��) � 1
for all � 2 [0; 1]: A nonnegative function f de�ned on an interval I is called h-convex
if

(2.3) f(�x+ (1� �)y) � h(�)f(x) + h(1� �)f(y):

whenever � 2 [0; 1], and x; y 2 I.

Proposition 1. Suppose that f is a nonnegative continuous function de�ned on
an interval [a;1) such that the following two conditions are ful�lled:
i) f(a) = 0;

ii) f is h-convex with respect to a function h with
R 1
0
h(�) d� � 1

�+1 , for some
� > 0:
Then f belongs to the class GC�.

Proof. In fact,

1

t� a

Z t

a

f(x) dx =

Z 1

0

f((1� �)a+ �t) d�

� f(t)
Z 1

0

h(�) d�+ f(a)

Z 1

0

h(1� �) d�

� 1

�+ 1
f(t):

�

An important class of nonlinearities in partial di¤erential operators theory is
that of regularly varying functions, introduced by Karamata in [12].

De�nition 3. A positive measurable function f de�ned on interval [a;1) (with
a � 0) is said to be regularly varying at in�nity, of index � 2 R (abbreviated,
f 2 RV1(�)), provided that

lim
x!1

f(tx)

f(x)
= t� for all t > 0:

All functions of index � are of the form

f(x) = x� exp

�
a(x) +

Z x

0

"(s)

s
ds

�
;

where a(x) and "(x) are bounded and measurable, a(x)! � 2 R and "(x)! 0 as
x!1: In particular, so are

x� log x; x� log log x; x� exp

�
log x

log log x

�
; x� exp

�
(log x)

1=3
�
cos (log x)

1=3
��
:

See [4] for details.
Semilinear problems with nonlinearities in the class of regularly varying functions

have been studied by many people. See the paper by Cîrstea and R¼adulescu [7] and
the references therein.

Proposition 2. If f 2 RV1(�) with � > 0; then

lim
x!1

F (x)

xf(x)
=

1

� + 1
;
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where

(2.4) F (x) :=

Z x

0

f(s) ds:

As a consequence, if f is also continuous, then f is of class GC�; whenever � 2
(0; �):

Proof. To prove this, consider the change of variable s = tx which yields

F (x) =

Z x

0

f(s) ds =

Z 1

0

xf(tx) dt:

The continuity of f and the fact that f 2 RV1(�) assure the existence of a � > 0
such that for every x > � we have

f(tx)

f(x)
� t� + 1;

whence the integrability of the function t! f(tx)
f(x) on [0; 1]. Then

lim
x!1

F (x)

xf(x)
= lim

x!1

Z 1

0

f(tx)

f(x)
dt

=

Z 1

0

lim
x!1

f(tx)

f(x)
dt =

Z 1

0

t�dt =
1

� + 1
:

The commutation of the limit with the integral is motivated by the Lebesgue dom-
inated convergence theorem. �

Another important class of nonlinearities which appear in connection with the
study of boundary blow-up problems for elliptic equations is the class of functions
satisfying the Keller-Osserman condition. See [16], [9], [18] and [15].

De�nition 4. A nonnegative and nondecreasing function f 2 C1([0;1)) with
f(0) = 0 satis�es the generalized Keller-Osserman condition of order p > 1 if

(2.5)
Z 1

1

1

(F (t))1=p
dt <1;

where F is the primitive of f given by the formula (2.4).

If f 2 RV1(�+1) with �+2 > p > 1 is a nondecreasing and continuous function,
then F 2 RV1(� + 2) and F�1=p 2 RV1((�� � 2)=p). Since (�� � 2)=p < �1, we
infer that F�1=p 2 L1([1;1)) and thus f satis�es the generalized Keller-Osserman
condition.
It is worth to notice that the function exp(t) is not regularly varying at in�nity

though satis�es the generalized Keller-Osserman condition and belongs also to any
class GC� with � > 0.
Necessarily, if a function f satis�es the generalized Keller-Osserman condition

of order p > 1, then

(2.6) lim
t!1

F (t)

tp
=1;

while F (t)
tp may be (or may be not) a monotonic function.

If F (t)tp is nondecreasing for some p > 2, then the function f belongs to the class
GCp�1. In particular, this is the case of the function f(t) = ptp�1 log(t+ 1) + tp

t+1
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(whose primitive is F (t) = tp log(t+ 1)): Notice that this function does not satisfy
the generalized Keller-Osserman condition of order p:
We end this section by discussing the connection De�nition 1 with a class of

functions due to W. Orlicz.

De�nition 5. An N-function is any function M : [0;1)! R of the form

M(x) =

Z x

0

p(t) dt;

where p is nondecreasing and right continuous, p(0) = 0; p(t) > 0 for t > 0; and
limt!1 p(t) =1:
An N -function M satis�es the �2-condition if there exist constants k > 0 and

x0 � 0 such that
M(2x) � kM(x) for all x � x0:

Any N -function M is convex and plays the following properties:

N1) M(0) = 0 and M(x) > 0 for x > 0;
N2) M(x)

x ! 0 as x! 0 and M(x)
x !1 as x!1:

Two examples of N -functions which satisfy the �2-condition are xp

p (for p � 1)
and t(log t)+.
The N -functions which satisfy the �2-condition are instrumental in the theory

of Orlicz spaces (which extend the Lp(�) spaces). Their theory is available in many
books, such as [13] and [17], and has important applications to interpolation theory
[3] and Fourier analysis [21].
According to [13], page 23, the constant k which appears in the formulation of

�2-condition is always greater than or equal to 2.

Proposition 3. Every N -functionM : [0;1)! R which satis�es the �2-condition
belongs to the class GC�; whenever � 2 (0; 2 log2 k).

Proof. Since M is nondecreasing,

M(tx) =M(2log2 tx) �M(2[log2 t]+1x);

and taking into account the �2-condition we infer that

M(tx) �M(x)k[log2 t]+1 �M(x)klog2 t+1

�M(x)t2 log2 k;

for x big enough and t � 2: Hence,Z t

0

M(x)dx =

Z 1

0

tM(ts)ds

�
Z 1

0

tM(t)s2 log2 kds =
1

2 log2 k + 1
tM(t)

and the proof is done. �
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3. An application to the existence of finite time blow-up solutions

This section is devoted to the existence of �nite time blow-up solutions of the
evolutionary p-Laplacian problem

(3.1) ut ��pu = f(juj)�
1

m(
)

Z



f(juj) dx in 


with Neumann-Robin boundary values,

(3.2) jrujp�2 @u
@n

= 0 on @
 ;

and the initial conditions

(3.3) u(x; 0) = u0(x) on 
; where
Z



u0 dx = 0:

As was mentioned in the introduction, we restrict ourselves to the case where

 � RN is a bounded regular domain of class C2, and f : [0;1) 7! [0;1) is a
locally Lipschitz function; m(
) represents the Lebesgue measure of the domain 
;
and �p, for p � 2, is the p-Laplacian operator.
The purpose of this section, is to extend a natural energetic criterion for the

blow-up in �nite time of solutions of (3:1)� (3:3): Our proof relies on the same idea
used by Jazar and Kiwan [11] in the case where p = 2 and f is a power function.
We start by noticing that each solution u of the problem above has the propertyZ




u dx = 0

because the integral in the right hand side of (3.1) is 0 and

d

dt

�Z



u dx
�
=

Z



ut dx =

Z



�pu dx

=

Z



div(jrujp�2ru) dx = 0:

Hence, by the initial condition (3.3), we have
R


u dx = 0.

Next, it is easy to see that for p > 1 the energy

E(u(t)) =

Z



�1
p
jrujp �

Z u

0

f(j� j) d�
�
dx;

of any solution u of our evolutionary problem is nonincreasing in time. In fact,

dE(u(t))

dt
=

Z



�
jrujp�2rutru� utf(juj)

�
dx

=

Z
@


@u

@n
jrujp�2ut d� �

Z



ut�pu dx�
Z



ut f(juj) dx

= �
Z



ut(�pu+ f(juj)) dx = �
Z



u2t dx;

and by integrating both sides over [0; t] we obtain the formula

(3.4) E(u(t)) = E(u0)�
Z t

0

Z



u2t dxdt; for all t > 0:
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According to this formula, if the initial energy E(u0) is nonpositive, then E(u(t))
is nonpositive for all t > 0: In the case of generalized convex functions of order �,
with � > 1

p�1 we have

(3.5) C

Z



uf(juj) dx �
Z



Z u

0

f(jtj) dtdx � 1

p

Z



jrujp;

where C = 1
1+� 2 (0;

1
p(p�1) ).

Theorem 1. (The energetic criterion for blow-up in �nite time, case p � 2) As-
sume that f : [0;1) 7! [0;1) is a locally Lipschitz function belonging to the class
GCa, with � > p2 � p � 1, and let u be a solution of the problem (3:1) � (3:3)
corresponding to an initial data u0 2 C(
), u0 not identically zero.
If E(u0) � 0; then u; as a function of t; cannot be in L1((0; T );L2(
)) for all

T > 0. In other word, there is T > 0 such that

(3.6) lim sup
t!T�

ku(t)kL2 =1:

Notice that the condition E(u0) � 0 in Theorem 1 is also necessary for the
blow-up in �nite time (of the L2 norm of u(t)): In fact, (3.6) forces that

inf fE(u(t)) : 0 < t < Tg = �1:
This can be argued by contradiction. If E(u(t)) � �C0, for some C0 > 0, then the
function

h(t) :=
1

2

Z



u2(x; t) dx

veri�es the condition
1

2
h0(t) =

Z



uutdx �
1

2

Z



�
u2 + u2t

�
dx

=
1

2
(h(t)� E0(u(t)));

which yields

(h(t) + E(u(t)) + C0)
0 � h(t) � h(t) + E(u(t)) + C0:

Therefore

h(t) � h(t) + E(u(t)) + C0 � (h(0) + E(u0) + C0)et; for all t 2 (0; T );
and thus the L2-norm of u(t) is bounded.
The proof of Theorem 1 needs a preparation.

Lemma 1. Under the assumptions of Theorem 1, for C = 1=(1 + �); the two
auxiliary functions

h(t) :=
1

2

Z



u2(x; t) dx and H(t) :=

Z t

0

h(s) ds

verify the following three conditions:

h0(t) � 1

C

Z t

0

Z



u2t dt;(3.7)

h0(t) � 2
� 1
Cp

� p+ 1
�
�h(t), for some � > 0;(3.8)

1

2C

�
H 0(t)�H 0(0)

�2
� H(t)H 00(t);(3.9)
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Proof. In fact,

h0(t) =

Z



utu dx =

Z



u(�pu+ f(juj)) dx

�
Z



�
� (p� 1)jrujp + 1

C

Z u

0

f(jtj) dt
�
dx

= � 1
C

Z



�1
p
jrujp �

Z u

0

f(jtj) dt
�
dx+

� 1
Cp

� p+ 1
�Z




jrujp dx:

Hence,

h0(t) � � 1
C
E(u) +

� 1
Cp

� p+ 1
�Z




jrujp dx

� � 1
C
E(u)

= � 1
C
E(u0) +

1

C

Z t

0

Z



u2t dxdt

� 1

C

Z t

0

Z



u2t dxdt:

On the other hand, by the Poincaré inequality, we have

h0(t) �
� 1
Cp

� p+ 1
�Z




jruj2 dx

�
� 1
Cp

� p+ 1
�
�

Z



u2 dx

= 2
� 1
Cp

� p+ 1
�
�h(t);

where � is a suitable positive constant.
We pass now to the proof of (3.9). Since

H 0(t)�H 0(0) =

Z t

0

h0(s) ds =

Z t

0

Z



uut dxdt

�
�Z t

0

Z



u2 dxdt
�1=2�Z t

0

Z



u2t dxdt
�1=2

� (2H(t))1=2(Ch0(t))1=2 = (2CH(t)H 00(t))1=2;

by (3.7) we infer that

H 0(t)�H 0(0) =

Z t

0

h0(s) ds � 0;

and thus
1

2C

�
H 0(t)�H 0(0)

�2
� H(t)H 00(t):

�

Proof of Theorem 1. Suppose, by reduction ad absurdum, that the solution
u(x; �) exists in

L1((0; T );L2(
))

for all T > 0. By (3.8),

(3.10) lim
t!1

H 0(t) = lim
t!1

h(t) =1;
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which yields, for each � 2 (0; 1=C); the existence of a number T0 > 0 such that for
all t > T0,

�H 0(t)2 � 1

C

�
H 0(t)�H 0(0)

�2
:

Now, by (3.9) we obtain

�H 0(t)2 � 2H(t)H 00(t):

We will show, by considering the function G(t) = H(t)�q, for a suitable q > 0;
that the last inequality leads to a contradiction. In fact,

G00(t) = qH(t)�q�2
�
(q + 1)(H 0(t))2 �H(t)H 00(t)

�
� qH(t)�q�2

�2(q + 1)
�

� 1
�
H(t)H 00(t);

for all t � T0; so that for � 2 (0; 1=C) and q 2 (0; 1=(2C)� 1) with 2(q + 1) < � <
1=C; the corresponding function G(t) is concave.
By (3.10), limt!1H(t) = 1, whence limt!1G(t) = 0. Thus G provides an

example of a concave and strictly positive function which tends to 0 at in�nity,
a fact which is not possible. Consequently u; as a function of t; cannot be in
L1((0; T );L2(
)) for all T > 0. The proof of Theorem 1 is done.
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