
THE HERMITE-HADAMARD INEQUALITY FOR LOG-CONVEX
FUNCTIONS

CONSTANTIN P. NICULESCU

Abstract. We discuss the existence of a strengthening of Hermite-Hadamard
inequality in the case of log-convex functions. Unlike the classical case, which
belongs to the �eld of linear functional analysis, this analogue involves nonlin-
ear means such as the geometric mean and the logarithmic mean.

1. Introduction

A good mathematical result is one which continues to surprise us by pointing
out new entanglements, new implications and also new open questions. No doubt,
everyone has his/her favorite list of such beauties of mathematics. My list includes
the Hermite-Hadamard inequality, a result �rst noticed by Ch. Hermite in 1883 and
rediscovered ten years later by J. Hadamard. A complete account on the history of
this inequality may be found in the paper by D. S. Mitrinovíc and I. B. Lackovíc
[6], or in the recent book by me and L.-E. Persson [13].
The Hermite-Hadamard inequality asserts that the mean value of a continuous

convex function f : [a; b] ! R lies between the value of f at the midpoint of the
interval [a; b] and the arithmetic mean of the values of f at the endpoints of this
interval, that is,

(HH) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x) dx � f(a) + f(b)

2
:

Moreover, each side of this double inequality characterizes convexity in the sense
that a real-valued continuous function f de�ned on an interval I is convex if its
restriction to each compact subinterval [a; b] � I veri�es the left hand side of (HH)
(equivalently, the right hand side of (HH)). See [1] and [13] for details.
A remarkable fact is the connection of Hermite-Hadamard inequality with Cho-

quet�s theory, brie�y recalled here for the convenience of the reader. Full details
are available in [13] and [15].
Choquet�s theory deals with compact convex subsets of a locally convex Haus-

dor¤ space E: Given a Borel probability measure � on such a subset K; one can
prove the existence of a unique point b� 2 K (called the barycenter of �) such that

(B) x0(b�) =

Z
K

x0(x) d�(x)

for all continuous linear functionals x0 on E.
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Since (B) works also for all continuous a¢ ne functions on K; it follows that

(LHH) f(b�) �
Z
K

f(x) d�(x)

for every continuous convex function f : K ! R: See [13], Lemma 4.1.8, pp. 181-
182. This extends the left hand side of the classical Hermite-Hadamard inequality
(which corresponds to the case where K is the interval [a; b] and � is the normalized
Lebesgue measure dx

b�a ; the barycenter of � is in this case the midpoint (a+ b)=2):

Remark 1. Using the technique of pushing-forward measures, one can put the
inequality (LHH) in a more general form that includes Jensen�s inequality. In
fact, if (X;�; �) is a �nite measure space (on an abstract set X) and T : X ! K
is a �-integrable map, then we may consider the push-forward measure � = T#�;
which is given by the formula �(A) = �(T�1(A))): The barycenter of � is

T =
1

�(X)

Z
X

T (x)d�(x)

and the formula (LHH) becomes

f(T ) � 1

�(K)

Z
K

f(t)d�(t)

=
1

�(X)

Z
X

f(T (x))d�(x):

The right hand side of (HH) represents the mean value of f with respect to a
probability measure, � = 1

2�a+
1
2�b; supported on the extreme points of the interval

[a; b]. As usually, �c denotes here the Dirac measure concentrated at c.
The extension of the right hand side of (HH) to the general setting of continuous

convex functions de�ned on metrizable compact convex sets is accomplished by the
following theorem due to G. Choquet, which relates the geometry of K to a given
mass distribution.

Theorem 1. Let � be a Borel probability measure on a metrizable compact convex
subset K of a locally convex Hausdor¤ space. Then there exists a probability measure
� on K which has the same barycenter as �; is null outside the set ExtK; of all
extreme points of K, and veri�es the inequality

(RHH)
Z
K

f(x) d�(x) �
Z
ExtK

f(x) d�(x);

for all continuous convex functions f : K ! R:

In the case of functions de�ned on intervals, the combination of the inequalities
(LHH) and (RHH) reads as follows:

Corollary 1. If � is a Borel probability measure on an interval [a; b]; then

f(b�) �
Z b

a

f(x) d�(x) � b� b�
b� a f(a) +

b� � a
b� a f(b)

for all continuous convex functions f : [a; b]! R:

An extension of Theorem 1 to the general case of compact convex sets non-
necessarily metrizable can be found in [15].
A stronger property of convexity is log-convexity. A positive function de�ned on

an interval (or, more generally, on a convex subset of some vector space) is called
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log-convex if log f(x) is a convex function of x; equivalently, if for any two points
x and y in its domain and any t in [0; 1] we have

(log-C) f((1� t)x+ ty) � f(x)1�tf(y)t;
f is called log-concave if the inequality above works in the reversed way (that is,
when 1=f is log-convex). The arithmetic mean-geometric mean inequality easily
yields that every log-convex function is also convex.

Remark 2. For example, f(x) = x2 is a convex function on (0;1), which is
not is not log-convex. On the other hand, f(x) = ex

2

is log-convex on R since
log ex

2

= x2 is convex. A less trivial example of a log-convex function is the gamma
function, if restricted to the positive reals (see the Bohr�Mollerup theorem [13]).
Some examples of log-concave functions:
i) x� on (0;1) is log-concave for � � 0 (and log-convex for � � 0);
ii) The normal probability density f(x) = 1p

2�
e�x

2=2 and the cumulative Gauss-
ian distribution function

�(x) =
1p
2�

Z x

�1
e�t

2=2dt;

are both log-concave;
iii) The determinant function det is log-concave on the set of all positively de-

�ned matrices of dimension n� n;
iv) If f : Rn � Rm ! R is log-concave, then

g(x) =

Z
Rm
f(x; y)dy

is log-concave too. In particular, the convolution of two log-concave functions f
and g;

(f � g) (x) =
Z
Rn
f(x� y)g(y)dy;

is log-concave.
v) The product of log-concave functions is log-concave.

As log-convexity implies convexity, one may expect that stronger variants of the
inequalities (LHH) and (RHH) are available in the case of log-convex functions
f . Indeed, a direct application of these results to log f yields the double inequality

(HH 0) f(b�) � exp
�Z

K

log f(x) d�(x)

�
� exp

�Z
ExtK

log f(x) d�(x)

�
,

where � is related to � as in Theorem 1. This inequality says that the geometric
mean of f lies between the value of f at the barycenter of � and the geometric
mean of the restriction of f to ExtK with respect to a Borel probability measure
� induced by �: Due to the geometric mean-arithmetic mean inequality,

f(b�) � exp
 Z b

a

log f(x) d�(x)

!
�
Z b

a

f(x) d�(x);

so at least the left hand side of (HH 0) is stronger than (LHH).
Surprisingly, the existence of an analogue of (RHH) in the context of log-

convexity proves to be an open problem. The essence of (RHH) is the existence of
Borel probability measure on ExtK that gives rise to an induced arithmetic mean
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that exceeds the integral arithmetic mean on K associated to �: What should be
this induced mean in the log-convex case?
A possible answer is suggested by the following remark due to P. M. Gill, C. E.

M. Pearce, and J. Peµcaríc [5]: if f is a log-convex function de�ned on an interval
[a; b]; then

1

b� a

Z b

a

f(x) dx � L(f(a); f(b));

where

(L) L(x; y) =

� x�y
log x�log y if x 6= y

x if x = y

represents the so called logarithmic mean. This mean lies between the geometric
mean and the arithmetic mean of x and y: See [2]. The logarithmic mean proves
useful in engineering problems involving heat and mass transfer.
Most of the usual means, including the arithmetic mean,

A (a; b) =
a+ b

2
;

and the geometric mean,

G (a; b) =
p
ab;

comes through formulae involving pairs of numbers with equal weights and extends
canonically to the case of �nite family of numbers with unequal weights, and next to
the general framework of probability �elds. For example, if (X;�; �) is a probability
�eld, then the arithmetic mean of a function f 2 L1(�) is

A(f ;�) =

Z
X

fd�

and the geometric mean of a positive function f 2 L1(�) is

G(f ;�) = exp

�Z
X

log f d�

�
:

Problem 1. What is L(f ;�)?

The existing literature concerning the logarithmic mean associated to a proba-
bility measure contains several (rather di¤erent) approaches. See [8], [9], [10], [16],
[17], and [18]. Unfortunately, none of them seems able to o¤er a full solution to the
problem of extending the aforementioned result of Gill, Pearce and Peµcaríc to the
framework of Theorem 1.
The aim of the present paper is to show how a solution can be built in three

special cases: the case of intervals, the case of balls and the case of simplices. Of
course, the above problem can be extended to the more involving framework of
generalized convexity, and our paper ends with the case of multiplicatively convex
functions. That case is interesting because it emphasizes a certain asymmetry in
the formation of Hermite-Hadamard type formulae. In fact, while the upper bound
of the (integral) arithmetic mean depends on both means de�ning the type of
convexity of the given function, the lower bound depends only on the mean acting
on the domain of de�nition.



THE HERMITE-HADAMARD INEQUALITY 5

2. The case of intervals

We start with the case where K is a compact interval [a; b] endowed with a Borel
probability measure �: In this case, the measure

� =
b� b�
b� a �a +

b� � a
b� a �b;

represents the arithmetic displacement of � at the endpoints of the interval [a; b]:
We will denote � also dispA (�==Ext[a; b]) : The coe¢ cients

c1(�) =
b� b�
b� a and c2(�) =

b� � a
b� a ;

represent the weights of �: A key remark is the formula

(AD) A

�
f ;
b� b�
b� a �a +

b� � a
b� a �b

�
=

Z b

a

(mx+ n)d�;

where and y = mx+n represents the chord joining the endpoints of f . Indeed, the
equation of this chord is y = f(a) + f(b)�f(a)

b�a (x � a) and the proof of (AD) turns
easily into a straightforward computation. It is worth to restate (AD) as

A (f ;dispA (�==Ext[a; b])) =
Z b

a

(mx+ n)d�

and to view the left hand side as the arithmetic mean induced by � at Ext[a; b]:
Now it is natural to introduce the logarithmic mean induced by � at Ext[a; b] via

the formula

L(f ;�==Ext[a; b]) =

Z b

a

exp(mx+ n)d�;

where y = mx+ n represents the chord joining the endpoints of log f .
The logarithmic mean can also be interpreted as the area under an exponential

curve. Therefore

L(f ;�==Ext[a; b])

=

Z b

a

exp(log f(a) +
log f(b)� log f(a)

b� a (x� a))d�

=

Z b

a

f(a)(b�x)=(b�a)f(b)(x�a)=(b�a)d�

=

Z b

a

exp

�
b� x
b� a log f(a) +

x� a
b� a log f(b)

�
d�:

A special case is that of the normalized Lebesgue measure,

L(f ;
dx

b� a==Ext[a; b]) =
1

b� af(a)
Z b

a

�
f(b)

f(a)

�(x�a)=(b�a)
dx

= L(f(a); f(b));

which agrees with the usual de�nition of logarithmic mean.
The fact that the induced logarithmic mean is indeed a mean is straightforward.

Indeed
f � g implies L(f ;�==Ext[a; b]) � L(g;�==Ext[a; b]);

and
L(1;�==Ext[a; b]) = 1:
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Clearly, this mean depends only on the values (of the function under attention) at
the endpoints.
Notice that unlike the arithmetic mean, the induced logarithmic mean is not

linear. However, it is positively homogeneous.
Simple examples shows that two di¤erent Borel probability measures on [a; b]

having the same arithmetic displacement at the endpoints may lead to di¤erent
induced logarithmic means. This is not surprising because even in the statement
of Theorem 1 the measure � it is not unique.
It is important to notice a basic di¤erence between the induced arithmetic mean

at the endpoints and the induced logarithmic mean. The later comes in a direct
way, skipping the computation of L(f ;�) for some measure � playing the role of
"logarithmic displacement" of � at the endpoints.
The following result provides a log-convex analogue of Theorem 1 in the case of

functions de�ned on compact intervals.

Theorem 2. Let f be a continuous positive function de�ned on an interval I and
let � be a positive Borel measure on I.
i) If f is log-convex, then for every compact subinterval [a; b] of I;

A

�
f ;

�

� ([a; b])

�
� L

�
f ;

�

� ([a; b])
==Ext[a; b]

�
� A

�
f ;dispA

�

� ([a; b])
==Ext[a; b]

�
:

ii) Conversely, if � is a non-atomic measure and

A

�
f ;

�

� ([a; b])

�
� L

�
f ;

�

� ([a; b])
==Ext[a; b]

�

for every compact subinterval [a; b] of I, then f is log-convex.

The assertion i) of Theorem 2 improves on the conclusion of Theorem 1 in the
case of log-convex functions.
Theorem 2 has a companion for the log-concave functions (all inequalities work-

ing in the reversed way).

Proof. i) Consider the homeomorphism T : [0; 1] ! [a; b]; T (t) = (1� t) a + tb:
Then

T#

�
T�1#

�

� ([a; b])

�
=

�

� ([a; b])
:
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If f is log-convex,

A

�
f ;

�

� ([a; b])

�
=

1

� ([a; b])

Z b

a

f(x) d�

=

Z 1

0

f ((1� t) a+ tb) d
�
T�1#

�

� ([a; b])

�
�
Z 1

0

f(a)1�tf(b)td

�
T�1#

�

� ([a; b])

�
=

Z b

a

f(a)(b�x)=(b�a)f(b)(x�a)=(b�a)d

�
T#

�
T�1#

�

� ([a; b])

��
= L

�
f ;

�

� ([a; b])
==Ext[a; b]

�
;

for all a < b in I: On the other hand, by the geometric mean-arithmetic mean
inequality

f(a)(b�x)=(b�a)f(b)(x�a)=(b�a) � b� x
b� af(a) +

x� a
b� a f(b);

which yields

L

�
f ;

�

� ([a; b])
==Ext[a; b]

�
� A

�
f ;dispA

�

� ([a; b])
==Ext[a; b]

�
:

ii) Assume, by reductio ad absurdum, that f(x) is not log-convex. Then there
must exist a subinterval [x; y] � I and a number " 2 (0; 1) such that

f ((1� ")x+ "y) > f(x)1�"f(y)";

Since f is continuous, the above inequality holds on an entire neighborhood
["1; "2] of ": We choose ["1; "2] the biggest neighborhood with that property. Put
a = (1� "1)x+ "1y and b = (1� "2)x+ "2y: Because of continuity we have

f (a) = f(x)1�"1f(y)"1

and

f (b) = f(x)1�"2f(y)"2 :

Then a < b are points in I and for every t 2 (0; 1) we have:

f ((1� t) a+ tb) = f ((1� t) ((1� "1)x+ "1y) + t ((1� "2)x+ "2y))
= f (x [(1� t) (1� "1) + t (1� "2)] + y ((1� t) "1 + t"2))

> f (x)
(1�t)(1�"1)+t(1�"2) f (y)

(1�t)"1+t"2

=
�
f (x)

1�"1 f (y)
"1
�1�t �

f (x)
1�"2 f (y)

"2
�t

= f (a)
1�t

f (b)
t
:



8 CONSTANTIN P. NICULESCU

By integrating this inequality with respect to t; we obtain

A(f ;�) =
1

� ([a; b])

Z b

a

f(x) d�

=

Z 1

0

f ((1� t) a+ tb) d
�
T�1#

�

� ([a; b])

�
>

Z 1

0

f(a)1�tf(b)td

�
T�1#

�

� ([a; b])

�
=

1

� ([a; b])

Z b

a

f(a)(b�x)=(b�a)f(b)(x�a)=(b�a)d�

= L

�
f ;

�

� ([a; b])
==Ext[a; b]

�
;

a fact that contradicts iii): �

Corollary 2. (The (log-HH) formula). If f is a log-convex function de�ned on
an interval [a; b]; then

f

�
a+ b

2

�
�
 

1

b� a

Z b

a

log f(x) dx

!
� 1

b� a

Z b

a

f(x) dx � L(f(a); f(b))

� f(a) + f(b)

2
:

Recently the Hermite-Hadamard inequality was extended outside the setting of
Borel probability measures. Indeed, A. Florea and C. P. Niculescu [4] provided
a complete characterization of those signed Borel measures for which Corollary 1
holds true (the so called Hermite-Hadamard measures). The inequalities (HH 0)
also work in the context of Hermite-Hadamard measures (since they are a direct
consequence of Corollary 1).

Problem 2. Characterize those signed Borel measures � on the interval [a; b] such
that �([a; b]) = 1 andZ b

a

f(x)d� �
Z b

a

exp

�
b� x
b� a log f(a) +

x� a
b� a log f(b)

�
d�

for all log-convex functions f : [a; b]! R:

A. M. Fink [3] has some partial results related to this problem.

3. The Higher Dimensional Case

Most of the above discussion was restricted to functions on intervals, but the
framework of log-convexity is much larger.

Problem 3. Does Theorem 2 admit a higher dimensional analogue?

At present this is a tantalizing problem. We can answer it in some special
cases, for example, for balls and simplices in Rn; when endowed with the normal-
ized Lebesgue measure. For the shake of simplicity we will restrict here to the
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2-dimensional case. The set of extreme points of the compact disc D(a;R) (of cen-
ter a and radius r) is the circle S1(a;R); while in the case of a (nondegenerate)
triangle �ABC of vertices A;B;C this set is fA;B;Cg:

Theorem 3. Suppose that f is a continuous function de�ned on a convex subset

 � R2.
i) If f is log-convex, then for every compact disc DR(a;R) contained in 
;

1

�R2

ZZ
D(a;R)

f (x; y) dxdy � 1

�R

Z
S1(a;R)

L(f(x; y); f(x;�y))y2 ds:

ii) If the above inequality works for all compact discs contained in 
; then f is
log-convex.

Proof. i) Clearly, it su¢ ces to consider the case of the unit disc. In this case, by
performing the change of coordinates

T : [�1; 1]� [0; 1]; T (x; t) =
�
x; (2t� 1)

p
1� x2

�
;

we obtain

A

�
f ;
dxdy

�

�
=
1

�

ZZ
fx2+y2�1g

f (x; y) dxdy

=
2

�

Z 1

�1

Z 1

0

f
�
(1� t)

�
x;�

p
1� x2

�
+ t
�
x;
p
1� x2

��p
1� x2dtdx

� 2

�

Z 1

�1

Z 1

0

f1�t
�
x;�

p
1� x2

�
f t
�
x;
p
1� x2

�p
1� x2dtdx

=
2

�

Z 1

�1

f
�
x;
p
1� x2

�
� f

�
x;�

p
1� x2

�
log f

�
x;
p
1� x2

�
� log f

�
x;�

p
1� x2

�p1� x2dx
=
1

�

Z
S1
L(f(x; y); f(x;�y))y2 ds:

ii) Adapt the argument for Theorem 2 ii): �

The case of triangles is very similar, the role of (RHH) being played by the
inequality

1

area (�ABC)

ZZ
�ABC

f (x; y) dxdy

� 2
Z Z

�1+�2�1
�1;�2�0

f (A)
�1 f (B)

�2 f (C)
1��1��2 d�1d�2

=
�2
P
f (A) (log f (B)� log f (C))

(log f (A)� log f (B)) (log f (B)� log f (C)) (log f (C)� log f (A)) :

Here the right hand side equals the value of the logarithmic mean of three variables
proposed by Neuman [10] and Mustonen [8], [9].

4. Convexity Associated to Means

Log-convexity is only one of the many variants of convexity now in use, and the
problems raised above should be viewed in the more general context of convexity
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with respect to a pair of means. Given a continuous function f : E ! F and a pair
of means, M on E; and N on F; we say that f is (M;N)-convex if

f (M (x; y)) � N (f(x); f(y))

for all x; y 2 E: Under this terminology the usual convex functions are the same
as the (A;A)-convex functions, while the log-convex functions coincide with the
(A;G)-functions.
See [11], [12] and [13] for a discussion of convexity from this point of view.
We end our paper by noticing the analogue of the Hermite-Hadamard inequality

(HH) in the case of (G;G)-convex functions (also known as the multiplicatively
convex functions). These are the positive continuous functions f : I ! R (de�ned
on subintervals of (0;1)) such that

f (
p
xy) �

p
f(x)f(y)

for all x; y 2 I: See [11] and [13], for examples and main results.
If f : [a; b] ! R is (G;G)-convex, then f � exp : [log a; log b] ! R is log-convex

and Theorem 2 applies to it. Therefore, for every Borel probability measure � on
[a; b]; Z b

a

f(x)d� =

Z log b

log a

f (exp t) d (log#�)

�
Z log b

log a

f(a)
log b�t

log b�log a f(b)
t�log a

log b�log a d (log#�)

=

Z b

a

f(a)
log b�log x
log b�log a f(b)

log x�log a
log b�log a d�:

On the other hand, by (log-LHH);

f(eblog #�) � exp
�Z

K

log f(x) d�(x)

�
�
Z b

a

f(x)d�;

where

blog#� =

Z log b

log a

td (log#�) =

Z b

a

log xd�

is the barycenter of log#�.
For � = 1

b�adx this barycenter is precisely the logarithm of the identric mean,

I(a; b) =
1

e

�
bb

aa

�1=(b�a)
;

and thus the analogue of the Hermite-Hadamard inequality (HH) in the case of
(GG)-convex functions has the form

(log-GG) f(I(a; b)) � 1

b� a

Z b

a

f(x)dx � 1

b� a

Z b

a

f(a)
log b�log x
log b�log a f(b)

log x�log a
log b�log a dx

=
bf(b)� af(a)

log (bf(b))� log (af(a)) �
log b� log a
b� a
= L (af(a); bf(b)) =L(a; b):

The second inequality was �rst noticed in [19].
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As in the case of logarithmic mean, the problem of �nding the formula of I(f ;�)
in full generality is still open.
An extension of the two-sided inequality (log-GG) to the case of pairs of quasi-

arithmetic means will appear in [7].
Last but not least, the Hermite-Hadamard inequality was recently extended by

the author of this paper to the setting of spaces with a curved geometry, where
the geodesics play the role of segments. See [14]. The problem of establishing a
log-convex companion remains open.
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